blob: ca4c26fa88f7a34aaa11089e7fac68796f16d64a [file] [log] [blame]
/*
* IEEE 1394 for Linux
*
* Transaction support.
*
* Copyright (C) 1999 Andreas E. Bombe
*
* This code is licensed under the GPL. See the file COPYING in the root
* directory of the kernel sources for details.
*/
#include <linux/sched.h>
#include <asm/errno.h>
#include <asm/bitops.h>
#include "ieee1394.h"
#include "ieee1394_types.h"
#include "hosts.h"
#include "ieee1394_core.h"
#include "highlevel.h"
#define PREP_ASYNC_HEAD_ADDRESS(tc) \
packet->tcode = tc; \
packet->header[0] = (packet->node_id << 16) | (packet->tlabel << 10) \
| (1 << 8) | (tc << 4); \
packet->header[1] = (packet->host->node_id << 16) | (addr >> 32); \
packet->header[2] = addr & 0xffffffff
#define PREP_ASYNC_HEAD_RCODE(tc) \
packet->tcode = tc; \
packet->header[0] = (packet->node_id << 16) | (packet->tlabel << 10) \
| (1 << 8) | (tc << 4); \
packet->header[1] = (packet->host->node_id << 16) | (rcode << 12); \
packet->header[2] = 0
void fill_async_readquad(struct hpsb_packet *packet, u64 addr)
{
PREP_ASYNC_HEAD_ADDRESS(TCODE_READQ);
packet->header_size = 12;
packet->data_size = 0;
packet->expect_response = 1;
}
void fill_async_readquad_resp(struct hpsb_packet *packet, int rcode,
quadlet_t data)
{
PREP_ASYNC_HEAD_RCODE(TCODE_READQ_RESPONSE);
packet->header[3] = data;
packet->header_size = 16;
packet->data_size = 0;
}
void fill_async_readblock(struct hpsb_packet *packet, u64 addr, int length)
{
PREP_ASYNC_HEAD_ADDRESS(TCODE_READB);
packet->header[3] = length << 16;
packet->header_size = 16;
packet->data_size = 0;
packet->expect_response = 1;
}
void fill_async_readblock_resp(struct hpsb_packet *packet, int rcode,
int length)
{
if (rcode != RCODE_COMPLETE) {
length = 0;
}
PREP_ASYNC_HEAD_RCODE(TCODE_READB_RESPONSE);
packet->header[3] = length << 16;
packet->header_size = 16;
packet->data_size = length + (length % 4 ? 4 - (length % 4) : 0);
}
void fill_async_writequad(struct hpsb_packet *packet, u64 addr, quadlet_t data)
{
PREP_ASYNC_HEAD_ADDRESS(TCODE_WRITEQ);
packet->header[3] = data;
packet->header_size = 16;
packet->data_size = 0;
packet->expect_response = 1;
}
void fill_async_writeblock(struct hpsb_packet *packet, u64 addr, int length)
{
PREP_ASYNC_HEAD_ADDRESS(TCODE_WRITEB);
packet->header[3] = length << 16;
packet->header_size = 16;
packet->expect_response = 1;
packet->data_size = length + (length % 4 ? 4 - (length % 4) : 0);
}
void fill_async_write_resp(struct hpsb_packet *packet, int rcode)
{
PREP_ASYNC_HEAD_RCODE(TCODE_WRITE_RESPONSE);
packet->header[2] = 0;
packet->header_size = 12;
packet->data_size = 0;
}
void fill_async_lock(struct hpsb_packet *packet, u64 addr, int extcode,
int length)
{
PREP_ASYNC_HEAD_ADDRESS(TCODE_LOCK_REQUEST);
packet->header[3] = (length << 16) | extcode;
packet->header_size = 16;
packet->data_size = length;
packet->expect_response = 1;
}
void fill_async_lock_resp(struct hpsb_packet *packet, int rcode, int extcode,
int length)
{
if (rcode != RCODE_COMPLETE) {
length = 0;
}
PREP_ASYNC_HEAD_RCODE(TCODE_LOCK_RESPONSE);
packet->header[3] = (length << 16) | extcode;
packet->header_size = 16;
packet->data_size = length;
}
void fill_iso_packet(struct hpsb_packet *packet, int length, int channel,
int tag, int sync)
{
packet->header[0] = (length << 16) | (tag << 14) | (channel << 8)
| (TCODE_ISO_DATA << 4) | sync;
packet->header_size = 4;
packet->data_size = length;
packet->type = hpsb_iso;
packet->tcode = TCODE_ISO_DATA;
}
void fill_phy_packet(struct hpsb_packet *packet, quadlet_t data)
{
packet->header[0] = data;
packet->header[1] = ~data;
packet->header_size = 8;
packet->data_size = 0;
packet->expect_response = 0;
packet->type = hpsb_raw; /* No CRC added */
packet->speed_code = SPEED_100; /* Force speed to be 100Mbps */
}
/**
* get_tlabel - allocate a transaction label
* @host: host to be used for transmission
* @nodeid: the node ID of the transmission target
* @wait: whether to sleep if no tlabel is available
*
* Every asynchronous transaction on the 1394 bus needs a transaction label to
* match the response to the request. This label has to be different from any
* other transaction label in an outstanding request to the same node to make
* matching possible without ambiguity.
*
* There are 64 different tlabels, so an allocated tlabel has to be freed with
* free_tlabel() after the transaction is complete (unless it's reused again for
* the same target node).
*
* @wait must not be set to true if you are calling from interrupt context.
*
* Return value: The allocated transaction label or -1 if there was no free
* tlabel and @wait is false.
*/
int get_tlabel(struct hpsb_host *host, nodeid_t nodeid, int wait)
{
int tlabel;
unsigned long flags;
if (wait) {
down(&host->tlabel_count);
} else {
if (down_trylock(&host->tlabel_count)) return -1;
}
spin_lock_irqsave(&host->tlabel_lock, flags);
if (host->tlabel_pool[0] != ~0) {
tlabel = ffz(host->tlabel_pool[0]);
host->tlabel_pool[0] |= 1 << tlabel;
} else {
tlabel = ffz(host->tlabel_pool[1]);
host->tlabel_pool[1] |= 1 << tlabel;
tlabel += 32;
}
spin_unlock_irqrestore(&host->tlabel_lock, flags);
return tlabel;
}
/**
* free_tlabel - free an allocated transaction label
* @host: host to be used for transmission
* @nodeid: the node ID of the transmission target
* @tlabel: the transaction label to free
*
* Frees the transaction label allocated with get_tlabel(). The tlabel has to
* be freed after the transaction is complete (i.e. response was received for a
* split transaction or packet was sent for a unified transaction).
*
* A tlabel must not be freed twice.
*/
void free_tlabel(struct hpsb_host *host, nodeid_t nodeid, int tlabel)
{
unsigned long flags;
spin_lock_irqsave(&host->tlabel_lock, flags);
if (tlabel < 32) {
host->tlabel_pool[0] &= ~(1 << tlabel);
} else {
host->tlabel_pool[1] &= ~(1 << (tlabel-32));
}
spin_unlock_irqrestore(&host->tlabel_lock, flags);
up(&host->tlabel_count);
}
int hpsb_packet_success(struct hpsb_packet *packet)
{
switch (packet->ack_code) {
case ACK_PENDING:
switch ((packet->header[1] >> 12) & 0xf) {
case RCODE_COMPLETE:
return 0;
case RCODE_CONFLICT_ERROR:
return -EAGAIN;
case RCODE_DATA_ERROR:
return -EREMOTEIO;
case RCODE_TYPE_ERROR:
return -EACCES;
case RCODE_ADDRESS_ERROR:
return -EINVAL;
default:
HPSB_ERR("received reserved rcode %d from node %d",
(packet->header[1] >> 12) & 0xf,
packet->node_id);
return -EAGAIN;
}
HPSB_PANIC("reached unreachable code 1 in %s", __FUNCTION__);
case ACK_BUSY_X:
case ACK_BUSY_A:
case ACK_BUSY_B:
return -EBUSY;
case ACK_TYPE_ERROR:
return -EACCES;
case ACK_COMPLETE:
if (packet->tcode == TCODE_WRITEQ
|| packet->tcode == TCODE_WRITEB) {
return 0;
} else {
HPSB_ERR("impossible ack_complete from node %d "
"(tcode %d)", packet->node_id, packet->tcode);
return -EAGAIN;
}
case ACK_DATA_ERROR:
if (packet->tcode == TCODE_WRITEB
|| packet->tcode == TCODE_LOCK_REQUEST) {
return -EAGAIN;
} else {
HPSB_ERR("impossible ack_data_error from node %d "
"(tcode %d)", packet->node_id, packet->tcode);
return -EAGAIN;
}
case ACKX_NONE:
case ACKX_SEND_ERROR:
case ACKX_ABORTED:
case ACKX_TIMEOUT:
/* error while sending */
return -EAGAIN;
default:
HPSB_ERR("got invalid ack %d from node %d (tcode %d)",
packet->ack_code, packet->node_id, packet->tcode);
return -EAGAIN;
}
HPSB_PANIC("reached unreachable code 2 in %s", __FUNCTION__);
}
int hpsb_read_trylocal(struct hpsb_host *host, nodeid_t node, u64 addr,
quadlet_t *buffer, size_t length)
{
if (host->node_id != node) return -1;
return highlevel_read(host, node, buffer, addr, length);
}
struct hpsb_packet *hpsb_make_readqpacket(struct hpsb_host *host, nodeid_t node,
u64 addr)
{
struct hpsb_packet *p;
p = alloc_hpsb_packet(0);
if (!p) return NULL;
p->host = host;
p->tlabel = get_tlabel(host, node, 1);
p->node_id = node;
fill_async_readquad(p, addr);
return p;
}
struct hpsb_packet *hpsb_make_readbpacket(struct hpsb_host *host, nodeid_t node,
u64 addr, size_t length)
{
struct hpsb_packet *p;
p = alloc_hpsb_packet(length + (length % 4 ? 4 - (length % 4) : 0));
if (!p) return NULL;
p->host = host;
p->tlabel = get_tlabel(host, node, 1);
p->node_id = node;
fill_async_readblock(p, addr, length);
return p;
}
struct hpsb_packet *hpsb_make_writeqpacket(struct hpsb_host *host,
nodeid_t node, u64 addr,
quadlet_t data)
{
struct hpsb_packet *p;
p = alloc_hpsb_packet(0);
if (!p) return NULL;
p->host = host;
p->tlabel = get_tlabel(host, node, 1);
p->node_id = node;
fill_async_writequad(p, addr, data);
return p;
}
struct hpsb_packet *hpsb_make_writebpacket(struct hpsb_host *host,
nodeid_t node, u64 addr,
size_t length)
{
struct hpsb_packet *p;
p = alloc_hpsb_packet(length + (length % 4 ? 4 - (length % 4) : 0));
if (!p) return NULL;
if (length % 4) {
p->data[length / 4] = 0;
}
p->host = host;
p->tlabel = get_tlabel(host, node, 1);
p->node_id = node;
fill_async_writeblock(p, addr, length);
return p;
}
struct hpsb_packet *hpsb_make_lockpacket(struct hpsb_host *host, nodeid_t node,
u64 addr, int extcode)
{
struct hpsb_packet *p;
p = alloc_hpsb_packet(8);
if (!p) return NULL;
p->host = host;
p->tlabel = get_tlabel(host, node, 1);
p->node_id = node;
switch (extcode) {
case EXTCODE_FETCH_ADD:
case EXTCODE_LITTLE_ADD:
fill_async_lock(p, addr, extcode, 4);
break;
default:
fill_async_lock(p, addr, extcode, 8);
break;
}
return p;
}
struct hpsb_packet *hpsb_make_phypacket(struct hpsb_host *host,
quadlet_t data)
{
struct hpsb_packet *p;
p = alloc_hpsb_packet(0);
if (!p) return NULL;
p->host = host;
fill_phy_packet(p, data);
return p;
}
/*
* FIXME - these functions should probably read from / write to user space to
* avoid in kernel buffers for user space callers
*/
int hpsb_read(struct hpsb_host *host, nodeid_t node, u64 addr,
quadlet_t *buffer, size_t length)
{
struct hpsb_packet *packet;
int retval = 0;
if (length == 0) {
return -EINVAL;
}
if (host->node_id == node) {
switch(highlevel_read(host, node, buffer, addr, length)) {
case RCODE_COMPLETE:
return 0;
case RCODE_TYPE_ERROR:
return -EACCES;
case RCODE_ADDRESS_ERROR:
default:
return -EINVAL;
}
}
if (length == 4) {
packet = hpsb_make_readqpacket(host, node, addr);
} else {
packet = hpsb_make_readbpacket(host, node, addr, length);
}
if (!packet) {
return -ENOMEM;
}
packet->generation = get_hpsb_generation(host);
if (!hpsb_send_packet(packet)) {
retval = -EINVAL;
goto hpsb_read_fail;
}
down(&packet->state_change);
down(&packet->state_change);
retval = hpsb_packet_success(packet);
if (retval == 0) {
if (length == 4) {
*buffer = packet->header[3];
} else {
memcpy(buffer, packet->data, length);
}
}
hpsb_read_fail:
free_tlabel(host, node, packet->tlabel);
free_hpsb_packet(packet);
return retval;
}
struct hpsb_packet *hpsb_make_packet (struct hpsb_host *host, nodeid_t node,
u64 addr, quadlet_t *buffer, size_t length)
{
struct hpsb_packet *packet;
if (length == 0)
return NULL;
if (length == 4)
packet = hpsb_make_writeqpacket(host, node, addr, *buffer);
else
packet = hpsb_make_writebpacket(host, node, addr, length);
if (!packet)
return NULL;
/* Sometimes this may be called without data, just to allocate the
* packet. */
if (length != 4 && buffer)
memcpy(packet->data, buffer, length);
return packet;
}
int hpsb_write(struct hpsb_host *host, nodeid_t node, u64 addr,
quadlet_t *buffer, size_t length)
{
struct hpsb_packet *packet;
int retval;
if (length == 0)
return -EINVAL;
if (host->node_id == node) {
switch(highlevel_write(host, node, node, buffer, addr, length)) {
case RCODE_COMPLETE:
return 0;
case RCODE_TYPE_ERROR:
return -EACCES;
case RCODE_ADDRESS_ERROR:
default:
return -EINVAL;
}
}
packet = hpsb_make_packet (host, node, addr, buffer, length);
if (!packet)
return -ENOMEM;
packet->generation = get_hpsb_generation(host);
if (!hpsb_send_packet(packet)) {
retval = -EINVAL;
goto hpsb_write_fail;
}
down(&packet->state_change);
down(&packet->state_change);
retval = hpsb_packet_success(packet);
hpsb_write_fail:
free_tlabel(host, node, packet->tlabel);
free_hpsb_packet(packet);
return retval;
}
/* We need a hpsb_lock64 function for the 64 bit equivalent. Probably. */
int hpsb_lock(struct hpsb_host *host, nodeid_t node, u64 addr, int extcode,
quadlet_t *data, quadlet_t arg)
{
struct hpsb_packet *packet;
int retval = 0, length;
if (host->node_id == node) {
switch(highlevel_lock(host, node, data, addr, *data, arg,
extcode)) {
case RCODE_COMPLETE:
return 0;
case RCODE_TYPE_ERROR:
return -EACCES;
case RCODE_ADDRESS_ERROR:
default:
return -EINVAL;
}
}
packet = alloc_hpsb_packet(8);
if (!packet) {
return -ENOMEM;
}
packet->host = host;
packet->tlabel = get_tlabel(host, node, 1);
packet->node_id = node;
switch (extcode) {
case EXTCODE_MASK_SWAP:
case EXTCODE_COMPARE_SWAP:
case EXTCODE_BOUNDED_ADD:
case EXTCODE_WRAP_ADD:
length = 8;
packet->data[0] = arg;
packet->data[1] = *data;
break;
case EXTCODE_FETCH_ADD:
case EXTCODE_LITTLE_ADD:
length = 4;
packet->data[0] = *data;
break;
default:
return -EINVAL;
}
fill_async_lock(packet, addr, extcode, length);
packet->generation = get_hpsb_generation(host);
if (!hpsb_send_packet(packet)) {
retval = -EINVAL;
goto hpsb_lock_fail;
}
down(&packet->state_change);
down(&packet->state_change);
retval = hpsb_packet_success(packet);
if (retval == 0) {
*data = packet->data[0];
}
hpsb_lock_fail:
free_tlabel(host, node, packet->tlabel);
free_hpsb_packet(packet);
return retval;
}