blob: e736e16052bdb9a12ccfccfbbe44f86affaa1877 [file] [log] [blame]
/*
* Copyright 2000 MontaVista Software Inc.
* Author: MontaVista Software, Inc.
* stevel@mvista.com or source@mvista.com
*
* ########################################################################
*
* This program is free software; you can distribute it and/or modify it
* under the terms of the GNU General Public License (Version 2) as
* published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
*
* ########################################################################
*
* Ethernet driver for the MIPS GT96100 Advanced Communication Controller.
*
*/
#ifndef __mips__
#error This driver only works with MIPS architectures!
#endif
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/string.h>
#include <linux/timer.h>
#include <linux/errno.h>
#include <linux/in.h>
#include <linux/ioport.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/delay.h>
#include <asm/irq.h>
#include <asm/bitops.h>
#include <asm/io.h>
#include "gt96100eth.h"
#ifdef GT96100_DEBUG
static int gt96100_debug = GT96100_DEBUG;
#else
static int gt96100_debug = 3;
#endif
// prototypes
static void *dmaalloc(size_t size, dma_addr_t * dma_handle);
static void dmafree(size_t size, void *vaddr);
static int gt96100_add_hash_entry(struct net_device *dev,
unsigned char *addr);
static void read_mib_counters(struct gt96100_private *gp);
static int read_MII(struct net_device *dev, u32 reg);
static int write_MII(struct net_device *dev, u32 reg, u16 data);
static void dump_MII(struct net_device *dev);
static void update_stats(struct gt96100_private *gp);
static void abort(struct net_device *dev, u32 abort_bits);
static void hard_stop(struct net_device *dev);
static void enable_ether_irq(struct net_device *dev);
static void disable_ether_irq(struct net_device *dev);
static int __init gt96100_probe1(struct net_device *dev, long ioaddr,
int irq, int port_num);
static int gt96100_init(struct net_device *dev);
static int gt96100_open(struct net_device *dev);
static int gt96100_close(struct net_device *dev);
static int gt96100_tx(struct sk_buff *skb, struct net_device *dev);
static int gt96100_rx(struct net_device *dev, u32 status);
static void gt96100_interrupt(int irq, void *dev_id, struct pt_regs *regs);
static void gt96100_tx_timeout(struct net_device *dev);
static void gt96100_set_rx_mode(struct net_device *dev);
static struct net_device_stats *gt96100_get_stats(struct net_device *dev);
static char version[] __devinitdata =
"gt96100eth.c:0.1 stevel@mvista.com\n";
// FIX! Need real Ethernet addresses
static unsigned char gt96100_station_addr[2][6] __devinitdata =
{ {0x01, 0x02, 0x03, 0x04, 0x05, 0x06},
{0x01, 0x02, 0x03, 0x04, 0x05, 0x07}
};
#define nibswap(x) ((((x) >> 4) & 0x0f) | (((x) << 4) & 0xf0))
#define RUN_AT(x) (jiffies + (x))
// For reading/writing 32-bit words from/to DMA memory
#define cpu_to_dma32 cpu_to_be32
#define dma32_to_cpu be32_to_cpu
/*
* Base address and interupt of the GT96100 ethernet controllers
*/
static struct {
unsigned int port;
int irq;
} gt96100_iflist[NUM_INTERFACES] = {
{
GT96100_ETH0_BASE, GT96100_ETHER0_IRQ}, {
GT96100_ETH1_BASE, GT96100_ETHER1_IRQ}
};
/*
DMA memory allocation, derived from pci_alloc_consistent.
*/
static void *dmaalloc(size_t size, dma_addr_t * dma_handle)
{
void *ret;
ret =
(void *) __get_free_pages(GFP_ATOMIC | GFP_DMA,
get_order(size));
if (ret != NULL) {
dma_cache_inv((unsigned long) ret, size);
if (dma_handle != NULL)
*dma_handle = virt_to_phys(ret);
/* bump virtual address up to non-cached area */
ret = KSEG1ADDR(ret);
}
return ret;
}
static void dmafree(size_t size, void *vaddr)
{
vaddr = KSEG0ADDR(vaddr);
free_pages((unsigned long) vaddr, get_order(size));
}
static int read_MII(struct net_device *dev, u32 reg)
{
struct gt96100_private *gp = (struct gt96100_private *) dev->priv;
int timedout = 20;
u32 smir = smirOpCode | (gp->phy_addr << smirPhyAdBit) |
(reg << smirRegAdBit);
// wait for last operation to complete
while (GT96100_READ(GT96100_ETH_SMI_REG) & smirBusy) {
// snooze for 1 msec and check again
#if 0
current->state = TASK_INTERRUPTIBLE;
schedule_timeout(10 * HZ / 10000);
#else
mdelay(1);
#endif
if (--timedout == 0) {
printk(KERN_ERR "%s: read_MII busy timeout!!\n",
dev->name);
return -1;
}
}
GT96100_WRITE(GT96100_ETH_SMI_REG, smir);
timedout = 20;
// wait for read to complete
while (!(smir = GT96100_READ(GT96100_ETH_SMI_REG) & smirReadValid)) {
// snooze for 1 msec and check again
#if 0
current->state = TASK_INTERRUPTIBLE;
schedule_timeout(10 * HZ / 10000);
#else
mdelay(1);
#endif
if (--timedout == 0) {
printk(KERN_ERR "%s: read_MII timeout!!\n",
dev->name);
return -1;
}
}
return (int) (smir & smirDataMask);
}
static int write_MII(struct net_device *dev, u32 reg, u16 data)
{
struct gt96100_private *gp = (struct gt96100_private *) dev->priv;
int timedout = 20;
u32 smir =
(gp->phy_addr << smirPhyAdBit) | (reg << smirRegAdBit) | data;
// wait for last operation to complete
while (GT96100_READ(GT96100_ETH_SMI_REG) & smirBusy) {
// snooze for 1 msec and check again
#if 0
current->state = TASK_INTERRUPTIBLE;
schedule_timeout(10 * HZ / 10000);
#else
mdelay(1);
#endif
if (--timedout == 0) {
printk(KERN_ERR "%s: write_MII busy timeout!!\n",
dev->name);
return -1;
}
}
GT96100_WRITE(GT96100_ETH_SMI_REG, smir);
return 0;
}
static void dump_MII(struct net_device *dev)
{
int i, val;
for (i = 0; i < 7; i++) {
if ((val = read_MII(dev, i)) >= 0)
printk("%s: MII Reg %d=%x\n", dev->name, i, val);
}
for (i = 16; i < 21; i++) {
if ((val = read_MII(dev, i)) >= 0)
printk("%s: MII Reg %d=%x\n", dev->name, i, val);
}
}
static int
gt96100_add_hash_entry(struct net_device *dev, unsigned char *addr)
{
struct gt96100_private *gp = (struct gt96100_private *) dev->priv;
u16 hashResult, stmp;
unsigned char ctmp, hash_ea[6];
u32 tblEntry, *tblEntryAddr;
int i;
for (i = 0; i < 6; i++) {
// nibble swap
ctmp = nibswap(addr[i]);
// invert every nibble
hash_ea[i] = ((ctmp & 1) << 3) | ((ctmp & 8) >> 3) |
((ctmp & 2) << 1) | ((ctmp & 4) >> 1);
hash_ea[i] |= ((ctmp & 0x10) << 3) | ((ctmp & 0x80) >> 3) |
((ctmp & 0x20) << 1) | ((ctmp & 0x40) >> 1);
}
if (gp->hash_mode == 0) {
hashResult = ((u16) hash_ea[0] & 0xfc) << 7;
stmp =
((u16) hash_ea[0] & 0x03) | (((u16) hash_ea[1] & 0x7f)
<< 2);
stmp ^=
(((u16) hash_ea[1] >> 7) & 0x01) | ((u16) hash_ea[2] <<
1);
stmp ^= (u16) hash_ea[3] | (((u16) hash_ea[4] & 1) << 8);
hashResult |= stmp;
} else {
return -1; // don't support hash mode 1
}
tblEntryAddr =
(u32 *) (&gp->hash_table[((u32) hashResult & 0x7ff) << 3]);
for (i = 0; i < HASH_HOP_NUMBER; i++) {
if ((*tblEntryAddr & hteValid)
&& !(*tblEntryAddr & hteSkip)) {
// This entry is already occupied, go to next entry
tblEntryAddr += 2;
} else {
memset(tblEntryAddr, 0, 8);
tblEntry = hteValid | hteRD;
tblEntry |= (u32) addr[5] << 3;
tblEntry |= (u32) addr[4] << 11;
tblEntry |= (u32) addr[3] << 19;
tblEntry |= ((u32) addr[2] & 0x1f) << 27;
*(tblEntryAddr + 1) = cpu_to_dma32(tblEntry);
tblEntry = ((u32) addr[2] >> 5) & 0x07;
tblEntry |= (u32) addr[1] << 3;
tblEntry |= (u32) addr[0] << 11;
*tblEntryAddr = cpu_to_dma32(tblEntry);
break;
}
}
if (i >= HASH_HOP_NUMBER) {
printk(KERN_ERR "%s: gt96100_add_hash_entry expired!\n",
dev->name);
return -1; // Couldn't find an unused entry
}
return 0;
}
static void read_mib_counters(struct gt96100_private *gp)
{
u32 *mib_regs = (u32 *) & gp->mib;
int i;
for (i = 0; i < sizeof(mib_counters_t) / sizeof(u32); i++)
mib_regs[i] =
GT96100ETH_READ(gp,
GT96100_ETH_MIB_COUNT_BASE +
i * sizeof(u32));
}
static void update_stats(struct gt96100_private *gp)
{
mib_counters_t *mib = &gp->mib;
struct net_device_stats *stats = &gp->stats;
read_mib_counters(gp);
stats->rx_packets = mib->totalFramesReceived;
stats->tx_packets = mib->framesSent;
stats->rx_bytes = mib->totalByteReceived;
stats->tx_bytes = mib->byteSent;
stats->rx_errors = mib->totalFramesReceived - mib->framesReceived;
//the tx error counters are incremented by the ISR
//rx_dropped incremented by gt96100_rx
//tx_dropped incremented by gt96100_tx
stats->multicast = mib->multicastFramesReceived;
// Tx collisions incremented by ISR, so add in MIB Rx collisions
stats->collisions += mib->collision + mib->lateCollision;
stats->rx_length_errors = mib->oversizeFrames + mib->fragments;
// The RxError condition means the Rx DMA encountered a
// CPU owned descriptor, which, if things are working as
// they should, means the Rx ring has overflowed.
stats->rx_over_errors = mib->macRxError;
stats->rx_crc_errors = mib->cRCError;
}
static void abort(struct net_device *dev, u32 abort_bits)
{
struct gt96100_private *gp = (struct gt96100_private *) dev->priv;
int timedout = 100; // wait up to 100 msec for hard stop to complete
if (gt96100_debug > 2)
printk(KERN_INFO "%s: abort\n", dev->name);
// Return if neither Rx or Tx abort bits are set
if (!(abort_bits & (sdcmrAR | sdcmrAT)))
return;
// make sure only the Rx/Tx abort bits are set
abort_bits &= (sdcmrAR | sdcmrAT);
spin_lock(&gp->lock);
// abort any Rx/Tx DMA immediately
GT96100ETH_WRITE(gp, GT96100_ETH_SDMA_COMM, abort_bits);
if (gt96100_debug > 2)
printk(KERN_INFO "%s: abort: SDMA comm = %x\n",
dev->name, GT96100ETH_READ(gp,
GT96100_ETH_SDMA_COMM));
// wait for abort to complete
while (GT96100ETH_READ(gp, GT96100_ETH_SDMA_COMM) & abort_bits) {
// snooze for 20 msec and check again
#if 0
current->state = TASK_INTERRUPTIBLE;
schedule_timeout(10 * HZ / 10000);
#else
mdelay(1);
#endif
if (--timedout == 0) {
printk(KERN_ERR "%s: abort timeout!!\n",
dev->name);
break;
}
}
if (gt96100_debug > 2)
printk(KERN_INFO "%s: abort: timedout=%d\n", dev->name,
timedout);
spin_unlock(&gp->lock);
}
static void hard_stop(struct net_device *dev)
{
struct gt96100_private *gp = (struct gt96100_private *) dev->priv;
if (gt96100_debug > 2)
printk(KERN_INFO "%s: hard stop\n", dev->name);
disable_ether_irq(dev);
abort(dev, sdcmrAR | sdcmrAT);
// disable port
GT96100ETH_WRITE(gp, GT96100_ETH_PORT_CONFIG, 0);
}
static void enable_ether_irq(struct net_device *dev)
{
struct gt96100_private *gp = (struct gt96100_private *) dev->priv;
u32 intMask;
// unmask interrupts
GT96100ETH_WRITE(gp, GT96100_ETH_INT_MASK,
icrRxBuffer | icrTxBufferLow | icrTxEndLow |
icrRxError | icrTxErrorLow | icrRxOVR |
icrTxUdr | icrRxBufferQ0 | icrRxErrorQ0 |
icrMIIPhySTC);
// now route ethernet interrupts to GT Int0 (eth0 and eth1 will be
// sharing it).
// FIX! The kernel's irq code should do this
intMask = GT96100_READ(GT96100_INT0_HIGH_MASK);
intMask |= 1 << gp->port_num;
GT96100_WRITE(GT96100_INT0_HIGH_MASK, intMask);
}
static void disable_ether_irq(struct net_device *dev)
{
struct gt96100_private *gp = (struct gt96100_private *) dev->priv;
u32 intMask;
// FIX! The kernel's irq code should do this
intMask = GT96100_READ(GT96100_INT0_HIGH_MASK);
intMask &= ~(1 << gp->port_num);
GT96100_WRITE(GT96100_INT0_HIGH_MASK, intMask);
GT96100ETH_WRITE(gp, GT96100_ETH_INT_MASK, 0);
}
/*
* Probe for a GT96100 ethernet controller.
*/
int __init gt96100_probe(struct net_device *dev)
{
unsigned int base_addr = dev ? dev->base_addr : 0;
int i;
#ifndef CONFIG_MIPS_GT96100ETH
return -ENODEV;
#endif
if (gt96100_debug > 2)
printk(KERN_INFO "%s: gt96100_probe\n", dev->name);
if (base_addr >= KSEG0) /* Check a single specified location. */
return gt96100_probe1(dev, base_addr, dev->irq, 0);
else if (base_addr != 0) /* Don't probe at all. */
return -ENXIO;
// for (i = 0; i<NUM_INTERFACES; i++) {
for (i = NUM_INTERFACES - 1; i >= 0; i--) {
int base_addr = gt96100_iflist[i].port;
#if 0
if (check_region(base_addr, GT96100_ETH_IO_SIZE)) {
printk(KERN_ERR
"%s: gt96100_probe: ioaddr 0x%lx taken?\n",
dev->name, base_addr);
continue;
}
#endif
if (gt96100_probe1
(dev, base_addr, gt96100_iflist[i].irq, i) == 0)
return 0;
}
return -ENODEV;
}
static int __init
gt96100_probe1(struct net_device *dev, long ioaddr, int irq, int port_num)
{
static unsigned version_printed = 0;
struct gt96100_private *gp = NULL;
int i, retval;
u32 cpuConfig;
// FIX! probe for GT96100 by reading a suitable register
if (gt96100_debug > 2)
printk(KERN_INFO "gt96100_probe1: ioaddr 0x%lx, irq %d\n",
ioaddr, irq);
request_region(ioaddr, GT96100_ETH_IO_SIZE, "GT96100ETH");
cpuConfig = GT96100_READ(GT96100_CPU_INTERF_CONFIG);
if (cpuConfig & (1 << 12)) {
printk(KERN_ERR
"gt96100_probe1: must be in Big Endian mode!\n");
retval = -ENODEV;
goto free_region;
}
if (gt96100_debug > 2)
printk(KERN_INFO
"gt96100_probe1: chip in Big Endian mode - cool\n");
/* Allocate a new 'dev' if needed. */
if (dev == NULL)
dev = init_etherdev(0, sizeof(struct gt96100_private));
if (gt96100_debug && version_printed++ == 0)
printk(version);
if (irq < 0) {
printk(KERN_ERR
"gt96100_probe1: irq unknown - probing not supported\n");
retval = -ENODEV;
goto free_region;
}
printk(KERN_INFO "%s: GT-96100 ethernet found at 0x%lx, irq %d\n",
dev->name, ioaddr, irq);
/* private struct aligned and zeroed by init_etherdev */
/* Fill in the 'dev' fields. */
dev->base_addr = ioaddr;
dev->irq = irq;
memcpy(dev->dev_addr, gt96100_station_addr[port_num],
sizeof(dev->dev_addr));
printk(KERN_INFO "%s: HW Address ", dev->name);
for (i = 0; i < sizeof(dev->dev_addr); i++) {
printk("%2.2x", dev->dev_addr[i]);
printk(i < 5 ? ":" : "\n");
}
/* Initialize our private structure. */
if (dev->priv == NULL) {
gp =
(struct gt96100_private *) kmalloc(sizeof(*gp),
GFP_KERNEL);
if (gp == NULL) {
retval = -ENOMEM;
goto free_region;
}
dev->priv = gp;
}
gp = dev->priv;
memset(gp, 0, sizeof(*gp)); // clear it
gp->port_num = port_num;
gp->io_size = GT96100_ETH_IO_SIZE;
gp->port_offset = port_num * GT96100_ETH_IO_SIZE;
gp->phy_addr = port_num + 1;
if (gt96100_debug > 2)
printk(KERN_INFO "%s: gt96100_probe1, port %d\n",
dev->name, gp->port_num);
// Allocate Rx and Tx descriptor rings
if (gp->rx_ring == NULL) {
// All descriptors in ring must be 16-byte aligned
gp->rx_ring = dmaalloc(sizeof(gt96100_rd_t) * RX_RING_SIZE
+
sizeof(gt96100_td_t) * TX_RING_SIZE,
&gp->rx_ring_dma);
if (gp->rx_ring == NULL) {
retval = -ENOMEM;
goto free_region;
}
gp->tx_ring =
(gt96100_td_t *) (gp->rx_ring + RX_RING_SIZE);
gp->tx_ring_dma =
gp->rx_ring_dma + sizeof(gt96100_rd_t) * RX_RING_SIZE;
}
if (gt96100_debug > 2)
printk(KERN_INFO
"%s: gt96100_probe1, rx_ring=%p, tx_ring=%p\n",
dev->name, gp->rx_ring, gp->tx_ring);
// Allocate Rx Hash Table
if (gp->hash_table == NULL) {
gp->hash_table = (char *) dmaalloc(RX_HASH_TABLE_SIZE,
&gp->hash_table_dma);
if (gp->hash_table == NULL) {
dmafree(sizeof(gt96100_rd_t) * RX_RING_SIZE
+ sizeof(gt96100_td_t) * TX_RING_SIZE,
gp->rx_ring);
retval = -ENOMEM;
goto free_region;
}
}
if (gt96100_debug > 2)
printk(KERN_INFO "%s: gt96100_probe1, hash=%p\n",
dev->name, gp->hash_table);
spin_lock_init(&gp->lock);
dev->open = gt96100_open;
dev->hard_start_xmit = gt96100_tx;
dev->stop = gt96100_close;
dev->get_stats = gt96100_get_stats;
//dev->do_ioctl = gt96100_ioctl;
dev->set_multicast_list = gt96100_set_rx_mode;
dev->tx_timeout = gt96100_tx_timeout;
dev->watchdog_timeo = GT96100ETH_TX_TIMEOUT;
/* Fill in the fields of the device structure with ethernet values. */
ether_setup(dev);
return 0;
free_region:
release_region(ioaddr, gp->io_size);
unregister_netdev(dev);
if (dev->priv != NULL)
kfree(dev->priv);
kfree(dev);
printk(KERN_ERR "%s: gt96100_probe1 failed. Returns %d\n",
dev->name, retval);
return retval;
}
static int gt96100_init(struct net_device *dev)
{
struct gt96100_private *gp = (struct gt96100_private *) dev->priv;
unsigned long flags;
u32 phyAD, ciu;
int i;
if (gt96100_debug > 2)
printk("%s: gt96100_init: dev=%p\n", dev->name, dev);
// Stop and disable Port
hard_stop(dev);
spin_lock_irqsave(&gp->lock, flags);
// First things first, set-up hash table
memset(gp->hash_table, 0, RX_HASH_TABLE_SIZE); // clear it
gp->hash_mode = 0;
// Add a single entry to hash table - our ethernet address
gt96100_add_hash_entry(dev, dev->dev_addr);
// Set-up DMA ptr to hash table
GT96100ETH_WRITE(gp, GT96100_ETH_HASH_TBL_PTR, gp->hash_table_dma);
if (gt96100_debug > 2)
printk("%s: gt96100_init: Hash Tbl Ptr=%x\n", dev->name,
GT96100ETH_READ(gp, GT96100_ETH_HASH_TBL_PTR));
// Setup Tx descriptor ring
for (i = 0; i < TX_RING_SIZE; i++) {
gp->tx_ring[i].cmdstat = 0; // CPU owns
gp->tx_ring[i].byte_cnt = 0;
gp->tx_ring[i].buff_ptr = 0;
gp->tx_ring[i].next =
cpu_to_dma32(gp->tx_ring_dma +
sizeof(gt96100_td_t) * (i + 1));
}
/* Wrap the ring. */
gp->tx_ring[i - 1].next = cpu_to_dma32(gp->tx_ring_dma);
// setup only the lowest priority TxCDP reg
GT96100ETH_WRITE(gp, GT96100_ETH_CURR_TX_DESC_PTR0,
gp->tx_ring_dma);
GT96100ETH_WRITE(gp, GT96100_ETH_CURR_TX_DESC_PTR1, 0);
if (gt96100_debug > 2)
printk("%s: gt96100_init: Curr Tx Desc Ptr0=%x\n",
dev->name, GT96100ETH_READ(gp,
GT96100_ETH_CURR_TX_DESC_PTR0));
// Setup Rx descriptor ring
for (i = 0; i < RX_RING_SIZE; i++) {
dma_addr_t rx_buff_dma;
gp->rx_ring[i].next =
cpu_to_dma32(gp->rx_ring_dma +
sizeof(gt96100_rd_t) * (i + 1));
if (gp->rx_buff[i] == NULL)
gp->rx_buff[i] =
dmaalloc(PKT_BUF_SZ, &rx_buff_dma);
else
rx_buff_dma = virt_to_phys(gp->rx_buff[i]);
if (gp->rx_buff[i] == NULL)
break;
gp->rx_ring[i].buff_ptr = cpu_to_dma32(rx_buff_dma);
gp->rx_ring[i].buff_cnt_sz =
cpu_to_dma32(PKT_BUF_SZ << rdBuffSzBit);
// Give ownership to device, enable interrupt
gp->rx_ring[i].cmdstat =
cpu_to_dma32((u32) (rxOwn | rxEI));
}
if (i != RX_RING_SIZE) {
int j;
for (j = 0; j < RX_RING_SIZE; j++) {
if (gp->rx_buff[j]) {
dmafree(PKT_BUF_SZ, gp->rx_buff[j]);
gp->rx_buff[j] = NULL;
}
}
printk(KERN_ERR "%s: Rx ring allocation failed.\n",
dev->name);
spin_unlock_irqrestore(&gp->lock, flags);
return -ENOMEM;
}
/* Wrap the ring. */
gp->rx_ring[i - 1].next = cpu_to_dma32(gp->rx_ring_dma);
// Set our MII PHY device address
phyAD = GT96100_READ(GT96100_ETH_PHY_ADDR_REG);
phyAD &= ~(0x1f << (gp->port_num * 5));
phyAD |= gp->phy_addr << (gp->port_num * 5);
GT96100_WRITE(GT96100_ETH_PHY_ADDR_REG, phyAD);
if (gt96100_debug > 2)
printk("%s: gt96100_init: PhyAD=%x\n", dev->name,
GT96100_READ(GT96100_ETH_PHY_ADDR_REG));
// Clear all the RxFDP and RXCDP regs...
for (i = 0; i < 4; i++) {
GT96100ETH_WRITE(gp, GT96100_ETH_1ST_RX_DESC_PTR0 + i * 4,
0);
GT96100ETH_WRITE(gp, GT96100_ETH_CURR_RX_DESC_PTR0 + i * 4,
0);
}
// and setup only the lowest priority RxFDP and RxCDP regs
GT96100ETH_WRITE(gp, GT96100_ETH_1ST_RX_DESC_PTR0,
gp->rx_ring_dma);
GT96100ETH_WRITE(gp, GT96100_ETH_CURR_RX_DESC_PTR0,
gp->rx_ring_dma);
if (gt96100_debug > 2)
printk("%s: gt96100_init: 1st/Curr Rx Desc Ptr0=%x/%x\n",
dev->name, GT96100ETH_READ(gp,
GT96100_ETH_1ST_RX_DESC_PTR0),
GT96100ETH_READ(gp, GT96100_ETH_CURR_RX_DESC_PTR0));
// init Rx/Tx indeces and pkt counters
gp->rx_next_out = gp->tx_next_in = gp->tx_next_out = 0;
gp->tx_count = 0;
// setup DMA
// FIX! this should be done by Kernel setup code
ciu = GT96100_READ(GT96100_CIU_ARBITER_CONFIG);
ciu |= (0x0c << (gp->port_num * 2)); // set Ether DMA req priority to high
// FIX! setting the following bit causes the EV96100 board to hang!!!
//ciu |= (1 << (24+gp->port_num)); // pull Ethernet port out of Reset???
// FIX! endian mode???
ciu &= ~(1 << 31); // set desc endianess to Big
GT96100_WRITE(GT96100_CIU_ARBITER_CONFIG, ciu);
if (gt96100_debug > 2)
printk("%s: gt96100_init: CIU Config=%x/%x\n", dev->name,
ciu, GT96100_READ(GT96100_CIU_ARBITER_CONFIG));
// We want the Rx/Tx DMA to write/read data to/from memory in
// Big Endian mode. Also set DMA Burst Size to 8 64Bit words.
// FIX! endian mode???
GT96100ETH_WRITE(gp, GT96100_ETH_SDMA_CONFIG,
//sdcrBLMR | sdcrBLMT |
(0xf << sdcrRCBit) | sdcrRIFB | (3 << sdcrBSZBit));
if (gt96100_debug > 2)
printk("%s: gt96100_init: SDMA Config=%x\n", dev->name,
GT96100ETH_READ(gp, GT96100_ETH_SDMA_CONFIG));
// start Rx DMA
GT96100ETH_WRITE(gp, GT96100_ETH_SDMA_COMM, sdcmrERD);
if (gt96100_debug > 2)
printk("%s: gt96100_init: SDMA Comm=%x\n", dev->name,
GT96100ETH_READ(gp, GT96100_ETH_SDMA_COMM));
// enable interrupts
enable_ether_irq(dev);
/*
* Disable all Type-of-Service queueing. All Rx packets will be
* treated normally and will be sent to the lowest priority
* queue.
*
* Disable flow-control for now. FIX! support flow control?
*/
// clear all the MIB ctr regs
// Enable reg clear on read. FIX! desc of this bit is inconsistent
// in the GT-96100A datasheet.
GT96100ETH_WRITE(gp, GT96100_ETH_PORT_CONFIG_EXT,
pcxrFCTL | pcxrFCTLen | pcxrFLP);
read_mib_counters(gp);
GT96100ETH_WRITE(gp, GT96100_ETH_PORT_CONFIG_EXT,
pcxrFCTL | pcxrFCTLen | pcxrFLP | pcxrMIBclrMode);
if (gt96100_debug > 2)
printk("%s: gt96100_init: Port Config Ext=%x\n", dev->name,
GT96100ETH_READ(gp, GT96100_ETH_PORT_CONFIG_EXT));
// enable this port (set hash size to 1/2K)
GT96100ETH_WRITE(gp, GT96100_ETH_PORT_CONFIG, pcrEN | pcrHS);
if (gt96100_debug > 2)
printk("%s: gt96100_init: Port Config=%x\n", dev->name,
GT96100ETH_READ(gp, GT96100_ETH_PORT_CONFIG));
// we should now be receiving frames
if (gt96100_debug > 2)
dump_MII(dev);
spin_unlock_irqrestore(&gp->lock, flags);
return 0;
}
static int gt96100_open(struct net_device *dev)
{
int retval;
MOD_INC_USE_COUNT;
if (gt96100_debug > 2)
printk("%s: gt96100_open: dev=%p\n", dev->name, dev);
if ((retval = request_irq(dev->irq, &gt96100_interrupt,
SA_SHIRQ, dev->name, dev))) {
printk(KERN_ERR "%s: unable to get IRQ %d\n", dev->name,
dev->irq);
MOD_DEC_USE_COUNT;
return retval;
}
// Initialize and startup the GT-96100 ethernet port
if ((retval = gt96100_init(dev))) {
printk(KERN_ERR "%s: error in gt96100_init\n", dev->name);
free_irq(dev->irq, dev);
MOD_DEC_USE_COUNT;
return retval;
}
netif_start_queue(dev);
if (gt96100_debug > 2)
printk("%s: gt96100_open: Initialization done.\n",
dev->name);
return 0;
}
static int gt96100_close(struct net_device *dev)
{
struct gt96100_private *gp = (struct gt96100_private *) dev->priv;
int i;
if (gt96100_debug > 2)
printk("%s: gt96100_close: dev=%p\n", dev->name, dev);
// stop the device
if (netif_device_present(dev)) {
netif_stop_queue(dev);
hard_stop(dev);
}
// free the Rx DMA buffers
for (i = 0; i < RX_RING_SIZE; i++) {
if (gp->rx_buff[i]) {
dmafree(PKT_BUF_SZ, gp->rx_buff[i]);
gp->rx_buff[i] = NULL;
}
}
free_irq(dev->irq, dev);
MOD_DEC_USE_COUNT;
return 0;
}
static int gt96100_tx(struct sk_buff *skb, struct net_device *dev)
{
struct gt96100_private *gp = (struct gt96100_private *) dev->priv;
unsigned long flags;
int nextIn;
if (gt96100_debug > 2)
printk("%s: gt96100_tx: skb->len=%d, skb->data=%p\n",
dev->name, skb->len, skb->data);
spin_lock_irqsave(&gp->lock, flags);
if (gp->tx_count >= TX_RING_SIZE) {
printk(KERN_WARNING
"%s: Tx Ring full, refusing to send buffer.\n",
dev->name);
gp->stats.tx_dropped++;
spin_unlock_irqrestore(&gp->lock, flags);
return 1;
}
// Prepare the Descriptor at tx_next_in
nextIn = gp->tx_next_in;
if (dma32_to_cpu(gp->tx_ring[nextIn].cmdstat) & txOwn) {
printk(KERN_ERR "%s: gt96100_tx: TxOwn bit wrong!!\n",
dev->name);
}
gp->tx_skbuff[nextIn] = skb;
gp->tx_ring[nextIn].byte_cnt =
cpu_to_dma32(skb->len << tdByteCntBit);
gp->tx_ring[nextIn].buff_ptr =
cpu_to_dma32(virt_to_phys(skb->data));
// Give ownership to device, set first and last desc, enable interrupt
// Setting of ownership bit must be *last*!
gp->tx_ring[nextIn].cmdstat =
cpu_to_dma32((u32) (txOwn | txEI | txFirst | txLast));
// increment tx_next_in with wrap
gp->tx_next_in = (nextIn + 1) % TX_RING_SIZE;
// If count is zero, DMA should be stopped, so restart
if (gp->tx_count == 0) {
if (GT96100ETH_READ(gp, GT96100_ETH_PORT_STATUS) &
psrTxLow) printk(KERN_WARNING
"%s: Tx count zero but Tx queue running!\n",
dev->name);
GT96100ETH_WRITE(gp, GT96100_ETH_SDMA_COMM,
sdcmrERD | sdcmrTXDL);
}
// increment count and stop queue if full
if (++gp->tx_count == TX_RING_SIZE)
netif_stop_queue(dev);
dev->trans_start = jiffies;
spin_unlock_irqrestore(&gp->lock, flags);
return 0;
}
static int gt96100_rx(struct net_device *dev, u32 status)
{
struct gt96100_private *gp = (struct gt96100_private *) dev->priv;
struct sk_buff *skb;
int pkt_len, nextOut;
gt96100_rd_t *rd;
u32 cmdstat;
if (gt96100_debug > 2)
printk("%s: gt96100_rx: dev=%p, status = %x\n",
dev->name, dev, status);
// Continue until we reach the current descriptor pointer
for (nextOut = gp->rx_next_out;
nextOut !=
(GT96100ETH_READ(gp, GT96100_ETH_CURR_RX_DESC_PTR0) -
gp->rx_ring_dma) / sizeof(gt96100_rd_t);
nextOut = (nextOut + 1) % RX_RING_SIZE) {
rd = &gp->rx_ring[nextOut];
cmdstat = dma32_to_cpu(rd->cmdstat);
if (cmdstat & (u32) rxOwn) {
cmdstat &= ~((u32) rxOwn);
rd->cmdstat = cpu_to_dma32(cmdstat);
printk(KERN_ERR
"%s: gt96100_rx: ownership bit wrong!\n",
dev->name);
}
// must be first and last (ie only) buffer of packet
if (!(cmdstat & (u32) rxFirst)
|| !(cmdstat & (u32) rxLast)) {
printk(KERN_ERR
"%s: gt96100_rx: desc not first and last!\n",
dev->name);
continue;
}
// drop this received pkt if there were any errors
if ((cmdstat & (u32) rxErrorSummary)
|| (status & icrRxErrorQ0)) {
// update the detailed rx error counters that are not covered
// by the MIB counters.
if (cmdstat & (u32) rxOverrun)
gp->stats.rx_fifo_errors++;
continue;
}
pkt_len = dma32_to_cpu(rd->buff_cnt_sz) & rdByteCntMask;
/* Create new skb. */
skb = dev_alloc_skb(pkt_len + 2);
if (skb == NULL) {
printk(KERN_ERR
"%s: Memory squeeze, dropping packet.\n",
dev->name);
gp->stats.rx_dropped++;
continue;
}
skb->dev = dev;
skb_reserve(skb, 2); /* 16 byte IP header align */
skb_put(skb, pkt_len); /* Make room */
eth_copy_and_sum(skb, gp->rx_buff[nextOut], pkt_len, 0);
skb->protocol = eth_type_trans(skb, dev);
netif_rx(skb); /* pass the packet to upper layers */
// now we can release ownership of this desc back to device
cmdstat |= (u32) rxOwn;
rd->cmdstat = cpu_to_dma32(cmdstat);
dev->last_rx = jiffies;
}
gp->rx_next_out = nextOut;
return 0;
}
static void gt96100_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
struct net_device *dev = (struct net_device *) dev_id;
struct gt96100_private *gp = (struct gt96100_private *) dev->priv;
u32 status;
if (dev == NULL) {
printk(KERN_ERR "%s: isr: null dev ptr\n", dev->name);
return;
}
status = GT96100ETH_READ(gp, GT96100_ETH_INT_CAUSE);
// ACK interrupts
#if 0
GT96100ETH_CLRBIT(gp, GT96100_ETH_INT_CAUSE,
icrEtherIntSum | icrRxBufferQ1 | icrRxBufferQ2 |
icrRxBufferQ3 | icrRxBufferQ0 | icrTxBufferHigh |
icrTxEndHigh | icrTxBufferLow | icrTxEndLow |
icrTxErrorHigh | icrTxErrorLow | icrTxUdr);
#else
GT96100ETH_WRITE(gp, GT96100_ETH_INT_CAUSE, 0);
#endif
if ((status & icrEtherIntSum) == 0) {
// not our interrupt
//printk("%s: isr: no ints? icr=%x,cp0_cause=%x\n",
// dev->name, status, read_32bit_cp0_register(CP0_CAUSE));
return;
}
if (gt96100_debug > 3)
printk("%s: isr: entry, icr=%x\n", dev->name, status);
if (status & (icrRxBufferQ1 | icrRxBufferQ2 | icrRxBufferQ3)) {
printk(KERN_ERR "%s: isr: Rx intr in unused queues!?\n",
dev->name);
}
if (status & icrRxBufferQ0) {
gt96100_rx(dev, status);
}
if (status & (icrTxBufferHigh | icrTxEndHigh)) {
printk(KERN_ERR "%s: isr: Tx intr in unused queue!?\n",
dev->name);
}
if (status & icrMIIPhySTC) {
u32 psr = GT96100ETH_READ(gp, GT96100_ETH_PORT_STATUS);
printk("%s: port status:\n", dev->name);
printk
("%s: %s MBit/s, %s-duplex, flow-control %s, link is %s,\n",
dev->name, psr & psrSpeed ? "100" : "10",
psr & psrDuplex ? "full" : "half",
psr & psrFctl ? "disabled" : "enabled",
psr & psrLink ? "up" : "down");
printk
("%s: TxLowQ is %s, TxHighQ is %s, Transmitter is %s\n",
dev->name, psr & psrTxLow ? "running" : "stopped",
psr & psrTxHigh ? "running" : "stopped",
psr & psrTxInProg ? "on" : "off");
gp->last_psr = psr;
}
if (status & (icrTxBufferLow | icrTxEndLow)) {
int nextOut;
gt96100_td_t *td;
u32 cmdstat;
// Continue until we reach the current descriptor pointer
for (nextOut = gp->tx_next_out;
nextOut !=
(GT96100ETH_READ(gp, GT96100_ETH_CURR_TX_DESC_PTR0) -
gp->tx_ring_dma) / sizeof(gt96100_td_t);
nextOut = (nextOut + 1) % TX_RING_SIZE) {
td = &gp->tx_ring[nextOut];
cmdstat = dma32_to_cpu(td->cmdstat);
if (gt96100_debug > 2)
printk("%s: isr: Tx desc cmdstat=%x\n",
dev->name, cmdstat);
if (cmdstat & (u32) txOwn) {
cmdstat &= ~((u32) txOwn);
td->cmdstat = cpu_to_dma32(cmdstat);
printk(KERN_ERR
"%s: isr: Tx ownership bit wrong!\n",
dev->name);
}
// increment Tx error stats
if (cmdstat & (u32) txErrorSummary) {
if (gt96100_debug > 2)
printk
("%s: gt96100_interrupt: Tx error, cmdstat = %x\n",
dev->name, cmdstat);
gp->stats.tx_errors++;
if (cmdstat & (u32) txReTxLimit)
gp->stats.collisions++;
if (cmdstat & (u32) txUnderrun)
gp->stats.tx_fifo_errors++;
if (cmdstat & (u32) txLateCollision)
gp->stats.tx_window_errors++;
}
// Wake the queue if the ring was full
if (gp->tx_count == TX_RING_SIZE)
netif_wake_queue(dev);
// decrement tx ring buffer count
if (gp->tx_count)
gp->tx_count--;
// free the skb
if (gp->tx_skbuff[nextOut]) {
if (gt96100_debug > 2)
printk
("%s: isr: good Tx, skb=%p\n",
dev->name,
gp->tx_skbuff[nextOut]);
dev_kfree_skb_irq(gp->tx_skbuff[nextOut]);
gp->tx_skbuff[nextOut] = NULL;
} else {
printk(KERN_ERR "%s: isr: no skb!\n",
dev->name);
}
}
if (gp->tx_count == 0 && nextOut != gp->tx_next_in) {
// FIX! this should probably be a panic
printk(KERN_ERR
"%s: isr: warning! Tx queue inconsistent\n",
dev->name);
}
gp->tx_next_out = nextOut;
if ((status & icrTxEndLow) && gp->tx_count != 0) {
// we must restart the DMA
if (gt96100_debug > 2)
printk("%s: isr: Restarting Tx DMA\n",
dev->name);
GT96100ETH_WRITE(gp, GT96100_ETH_SDMA_COMM,
sdcmrERD | sdcmrTXDL);
}
}
// Now check TX errors (RX errors were handled in gt96100_rx)
if (status & icrTxErrorHigh) {
printk(KERN_ERR
"%s: isr: Tx resource error in unused queue!?\n",
dev->name);
}
if (status & icrTxErrorLow) {
printk(KERN_ERR "%s: isr: Tx resource error\n", dev->name);
}
if (status & icrTxUdr) {
printk(KERN_ERR "%s: isr: Tx underrun error\n", dev->name);
}
if (gt96100_debug > 3)
printk("%s: isr: exit, icr=%x\n",
dev->name, GT96100ETH_READ(gp,
GT96100_ETH_INT_CAUSE));
}
/*
* The Tx ring has been full longer than the watchdog timeout
* value, meaning that the interrupt routine has not been freeing
* up space in the Tx ring buffer.
*/
static void gt96100_tx_timeout(struct net_device *dev)
{
// struct gt96100_private *gp = (struct gt96100_private *)dev->priv;
printk(KERN_ERR "%s: gt96100_tx_timeout: dev=%p\n", dev->name,
dev);
// FIX! do something, like reset the device
}
static void gt96100_set_rx_mode(struct net_device *dev)
{
struct gt96100_private *gp = (struct gt96100_private *) dev->priv;
unsigned long flags;
struct dev_mc_list *mcptr;
if (gt96100_debug > 2)
printk("%s: gt96100_set_rx_mode: dev=%p, flags=%x\n",
dev->name, dev, dev->flags);
// stop the Receiver DMA
abort(dev, sdcmrAR);
spin_lock_irqsave(&gp->lock, flags);
if (dev->flags & IFF_PROMISC)
GT96100ETH_WRITE(gp, GT96100_ETH_PORT_CONFIG,
pcrEN | pcrHS | pcrPM);
memset(gp->hash_table, 0, RX_HASH_TABLE_SIZE); // clear hash table
// Add our ethernet address
gt96100_add_hash_entry(dev, dev->dev_addr);
if (dev->mc_count) {
for (mcptr = dev->mc_list; mcptr; mcptr = mcptr->next) {
gt96100_add_hash_entry(dev, mcptr->dmi_addr);
}
}
// restart Rx DMA
GT96100ETH_WRITE(gp, GT96100_ETH_SDMA_COMM, sdcmrERD);
spin_unlock_irqrestore(&gp->lock, flags);
}
static struct net_device_stats *gt96100_get_stats(struct net_device *dev)
{
struct gt96100_private *gp = (struct gt96100_private *) dev->priv;
unsigned long flags;
if (gt96100_debug > 2)
printk("%s: gt96100_get_stats: dev=%p\n", dev->name, dev);
if (netif_device_present(dev)) {
spin_lock_irqsave(&gp->lock, flags);
update_stats(gp);
spin_unlock_irqrestore(&gp->lock, flags);
}
return &gp->stats;
}
module_init(gt96100_probe);
MODULE_LICENSE("GPL");