blob: cc48edb4c8096b59d602a40fcacc185117ee2635 [file] [log] [blame]
/*
* drivers/net/wan/dscc4/dscc4_main.c: a DSCC4 HDLC driver for Linux
*
* This software may be used and distributed according to the terms of the
* GNU General Public License.
*
* The author may be reached as romieu@cogenit.fr.
* Specific bug reports/asian food will be welcome.
*
* Special thanks to the nice people at CS-Telecom for the hardware and the
* access to the test/measure tools.
*
*
* Theory of Operation
*
* I. Board Compatibility
*
* This device driver is designed for the Siemens PEB20534 4 ports serial
* controller as found on Etinc PCISYNC cards. The documentation for the
* chipset is available at http://www.infineon.com:
* - Data Sheet "DSCC4, DMA Supported Serial Communication Controller with
* 4 Channels, PEB 20534 Version 2.1, PEF 20534 Version 2.1";
* - Application Hint "Management of DSCC4 on-chip FIFO resources".
* Jens David has built an adapter based on the same chipset. Take a look
* at http://www.afthd.tu-darmstadt.de/~dg1kjd/pciscc4 for a specific
* driver.
* Sample code (2 revisions) is available at Infineon.
*
* II. Board-specific settings
*
* Pcisync can transmit some clock signal to the outside world on the
* *first two* ports provided you put a quartz and a line driver on it and
* remove the jumpers. The operation is described on Etinc web site. If you
* go DCE on these ports, don't forget to use an adequate cable.
*
* Sharing of the PCI interrupt line for this board is possible.
*
* III. Driver operation
*
* The rx/tx operations are based on a linked list of descriptor. I haven't
* tried the start/stop descriptor method as this one looks like the cheapest
* in terms of PCI manipulation.
*
* Tx direction
* Once the data section of the current descriptor processed, the next linked
* descriptor is loaded if the HOLD bit isn't set in the current descriptor.
* If HOLD is met, the transmission is stopped until the host unsets it and
* signals the change via TxPOLL.
* When the tx ring is full, the xmit routine issues a call to netdev_stop.
* The device is supposed to be enabled again during an ALLS irq (we could
* use HI but as it's easy to loose events, it's fscked).
*
* Rx direction
* The received frames aren't supposed to span over multiple receiving areas.
* I may implement it some day but it isn't the highest ranked item.
*
* IV. Notes
* The chipset is buggy. Typically, under some specific load patterns (I
* wouldn't call them "high"), the irq queues and the descriptors look like
* some event has been lost. Even assuming some fancy PCI feature, it won't
* explain the reproductible missing "C" bit in the descriptors. Faking an
* irq in the periodic timer isn't really elegant but at least it seems
* reliable.
* The current error (XDU, RFO) recovery code is untested.
* So far, RDO takes his RX channel down and the right sequence to enable it
* again is still a mistery. If RDO happens, plan a reboot. More details
* in the code (NB: as this happens, TX still works).
* Don't mess the cables during operation, especially on DTE ports. I don't
* suggest it for DCE either but at least one can get some messages instead
* of a complete instant freeze.
* Tests are done on Rev. 20 of the silicium. The RDO handling changes with
* the documentation/chipset releases. An on-line errata would be welcome.
*
* TODO:
* - syncppp oopses. X25 untested.
* - use polling at high irq/s,
* - performance analysis,
* - endianness.
*
* 2001/12/10 Daniela Squassoni <daniela@cyclades.com>
* - Contribution to support the new generic HDLC layer.
*
* 2002/01 Ueimor
* - old style interface removal
* - dscc4_release_ring fix (related to DMA mapping)
* - hard_start_xmit fix (hint: TxSizeMax)
* - misc crapectomy.
*/
#include <linux/version.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/pci.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <asm/system.h>
#include <asm/cache.h>
#include <asm/byteorder.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <linux/init.h>
#include <linux/string.h>
#include <linux/if_arp.h>
#include <linux/netdevice.h>
#include <linux/skbuff.h>
#include <linux/delay.h>
#include <net/syncppp.h>
#include <linux/hdlc.h>
/* Version */
static const char version[] = "$Id: dscc4.c,v 1.157 2002/01/28 01:54:19 romieu Exp $\n";
static int debug;
static int quartz;
#define DRV_NAME "dscc4"
#undef DSCC4_POLLING
#define DEBUG
/* Module parameters */
MODULE_AUTHOR("Maintainer: Francois Romieu <romieu@cogenit.fr>");
MODULE_DESCRIPTION("Siemens PEB20534 PCI Controler");
MODULE_LICENSE("GPL");
MODULE_PARM(debug,"i");
MODULE_PARM_DESC(debug,"Enable/disable extra messages");
MODULE_PARM(quartz,"i");
MODULE_PARM_DESC(quartz,"If present, on-board quartz frequency (Hz)");
EXPORT_NO_SYMBOLS;
/* Structures */
struct thingie {
int define;
u32 bits;
};
struct TxFD {
u32 state;
u32 next;
u32 data;
u32 complete;
u32 jiffies; /* more hack to come :o) */
};
struct RxFD {
u32 state1;
u32 next;
u32 data;
u32 state2;
u32 end;
};
#define DEBUG
#define DEBUG_PARANOIA
#define TX_RING_SIZE 32
#define RX_RING_SIZE 32
#define IRQ_RING_SIZE 64 /* Keep it A multiple of 32 */
#define TX_TIMEOUT (HZ/10)
#define DSCC4_HZ_MAX 33000000
#define BRR_DIVIDER_MAX 64*0x00008000
#define dev_per_card 4
#define SOURCE_ID(flags) ((flags >> 28 ) & 0x03)
#define TO_SIZE(state) ((state >> 16) & 0x1fff)
#define TO_STATE(len) cpu_to_le32((len & TxSizeMax) << 16)
#define RX_MAX(len) ((((len) >> 5) + 1)<< 5)
#define SCC_REG_START(id) SCC_START+(id)*SCC_OFFSET
#undef DEBUG
struct dscc4_pci_priv {
u32 *iqcfg;
int cfg_cur;
spinlock_t lock;
struct pci_dev *pdev;
struct dscc4_dev_priv *root;
dma_addr_t iqcfg_dma;
u32 xtal_hz;
};
struct dscc4_dev_priv {
struct sk_buff *rx_skbuff[RX_RING_SIZE];
struct sk_buff *tx_skbuff[TX_RING_SIZE];
struct RxFD *rx_fd;
struct TxFD *tx_fd;
u32 *iqrx;
u32 *iqtx;
u32 rx_current;
u32 tx_current;
u32 iqrx_current;
u32 iqtx_current;
u32 tx_dirty;
int bad_tx_frame;
int bad_rx_frame;
int rx_needs_refill;
dma_addr_t tx_fd_dma;
dma_addr_t rx_fd_dma;
dma_addr_t iqtx_dma;
dma_addr_t iqrx_dma;
struct timer_list timer;
struct dscc4_pci_priv *pci_priv;
spinlock_t lock;
int dev_id;
volatile u32 flags;
u32 timer_help;
u32 hi_expected;
hdlc_device hdlc;
sync_serial_settings settings;
unsigned short encoding;
unsigned short parity;
u32 pad __attribute__ ((aligned (4)));
};
/* GLOBAL registers definitions */
#define GCMDR 0x00
#define GSTAR 0x04
#define GMODE 0x08
#define IQLENR0 0x0C
#define IQLENR1 0x10
#define IQRX0 0x14
#define IQTX0 0x24
#define IQCFG 0x3c
#define FIFOCR1 0x44
#define FIFOCR2 0x48
#define FIFOCR3 0x4c
#define FIFOCR4 0x34
#define CH0CFG 0x50
#define CH0BRDA 0x54
#define CH0BTDA 0x58
/* SCC registers definitions */
#define SCC_START 0x0100
#define SCC_OFFSET 0x80
#define CMDR 0x00
#define STAR 0x04
#define CCR0 0x08
#define CCR1 0x0c
#define CCR2 0x10
#define BRR 0x2C
#define RLCR 0x40
#define IMR 0x54
#define ISR 0x58
/* Bit masks */
#define EncodingMask 0x00700000
#define CrcMask 0x00000003
#define IntRxScc0 0x10000000
#define IntTxScc0 0x01000000
#define TxPollCmd 0x00000400
#define RxActivate 0x08000000
#define MTFi 0x04000000
#define Rdr 0x00400000
#define Rdt 0x00200000
#define Idr 0x00100000
#define Idt 0x00080000
#define TxSccRes 0x01000000
#define RxSccRes 0x00010000
#define TxSizeMax 0x1fff
#define Ccr0ClockMask 0x0000003f
#define Ccr1LoopMask 0x00000200
#define BrrExpMask 0x00000f00
#define BrrMultMask 0x0000003f
#define EncodingMask 0x00700000
#define Hold 0x40000000
#define SccBusy 0x10000000
#define FrameOk (FrameVfr | FrameCrc)
#define FrameVfr 0x80
#define FrameRdo 0x40
#define FrameCrc 0x20
#define FrameRab 0x10
#define FrameAborted 0x00000200
#define FrameEnd 0x80000000
#define DataComplete 0x40000000
#define LengthCheck 0x00008000
#define SccEvt 0x02000000
#define NoAck 0x00000200
#define Action 0x00000001
#define HiDesc 0x20000000
/* SCC events */
#define RxEvt 0xf0000000
#define TxEvt 0x0f000000
#define Alls 0x00040000
#define Xdu 0x00010000
#define Xmr 0x00002000
#define Xpr 0x00001000
#define Rdo 0x00000080
#define Rfs 0x00000040
#define Rfo 0x00000002
#define Flex 0x00000001
/* DMA core events */
#define Cfg 0x00200000
#define Hi 0x00040000
#define Fi 0x00020000
#define Err 0x00010000
#define Arf 0x00000002
#define ArAck 0x00000001
/* Misc */
#define NeedIDR 0x00000001
#define NeedIDT 0x00000002
#define RdoSet 0x00000004
/* Functions prototypes */
static inline void dscc4_rx_irq(struct dscc4_pci_priv *, struct dscc4_dev_priv *);
static inline void dscc4_tx_irq(struct dscc4_pci_priv *, struct dscc4_dev_priv *);
static int dscc4_found1(struct pci_dev *, unsigned long ioaddr);
static int dscc4_init_one(struct pci_dev *, const struct pci_device_id *ent);
static int dscc4_open(struct net_device *);
static int dscc4_start_xmit(struct sk_buff *, struct net_device *);
static int dscc4_close(struct net_device *);
static int dscc4_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
static int dscc4_init_ring(struct net_device *);
static void dscc4_release_ring(struct dscc4_dev_priv *);
static void dscc4_timer(unsigned long);
static void dscc4_tx_timeout(struct net_device *);
static void dscc4_irq(int irq, void *dev_id, struct pt_regs *ptregs);
static int dscc4_hdlc_attach(hdlc_device *, unsigned short, unsigned short);
static int dscc4_set_iface(struct net_device *);
static inline int dscc4_set_quartz(struct dscc4_dev_priv *, int);
#ifdef DSCC4_POLLING
static int dscc4_tx_poll(struct dscc4_dev_priv *, struct net_device *);
#endif
static inline void dscc4_patch_register(u32 ioaddr, u32 mask, u32 value)
{
u32 state;
state = readl(ioaddr);
state &= ~mask;
state |= value;
writel(state, ioaddr);
}
int state_check(u32 state, struct dscc4_dev_priv *dpriv,
struct net_device *dev, const char *msg)
{
#ifdef DEBUG_PARANOIA
if (SOURCE_ID(state) != dpriv->dev_id) {
printk(KERN_DEBUG "%s (%s): Source Id=%d, state=%08x\n",
dev->name, msg, SOURCE_ID(state), state );
return -1;
}
if (state & 0x0df80c00) {
printk(KERN_DEBUG "%s (%s): state=%08x (UFO alert)\n",
dev->name, msg, state);
return -1;
}
return 0;
#else
return 1;
#endif
}
void inline reset_TxFD(struct TxFD *tx_fd) {
/* FIXME: test with the last arg (size specification) = 0 */
tx_fd->state = FrameEnd | Hold | 0x00100000;
tx_fd->complete = 0x00000000;
}
static void dscc4_release_ring(struct dscc4_dev_priv *dpriv)
{
struct pci_dev *pdev = dpriv->pci_priv->pdev;
struct TxFD *tx_fd = dpriv->tx_fd;
struct RxFD *rx_fd = dpriv->rx_fd;
struct sk_buff **skbuff;
int i;
pci_free_consistent(pdev, TX_RING_SIZE*sizeof(struct TxFD), tx_fd,
dpriv->tx_fd_dma);
pci_free_consistent(pdev, RX_RING_SIZE*sizeof(struct RxFD), rx_fd,
dpriv->rx_fd_dma);
skbuff = dpriv->tx_skbuff;
for (i = 0; i < TX_RING_SIZE; i++) {
if (*skbuff) {
pci_unmap_single(pdev, tx_fd->data, (*skbuff)->len,
PCI_DMA_TODEVICE);
dev_kfree_skb(*skbuff);
}
skbuff++;
tx_fd++;
}
skbuff = dpriv->rx_skbuff;
for (i = 0; i < RX_RING_SIZE; i++) {
if (*skbuff) {
pci_unmap_single(pdev, rx_fd->data, (*skbuff)->len,
PCI_DMA_FROMDEVICE);
dev_kfree_skb(*skbuff);
}
skbuff++;
rx_fd++;
}
}
void inline try_get_rx_skb(struct dscc4_dev_priv *priv, int cur, struct net_device *dev)
{
struct sk_buff *skb;
skb = dev_alloc_skb(RX_MAX(HDLC_MAX_MRU));
priv->rx_skbuff[cur] = skb;
if (!skb) {
priv->rx_fd[cur--].data = (u32) NULL;
priv->rx_fd[cur%RX_RING_SIZE].state1 |= Hold;
priv->rx_needs_refill++;
return;
}
skb->dev = dev;
skb->protocol = htons(ETH_P_IP);
skb->mac.raw = skb->data;
priv->rx_fd[cur].data = pci_map_single(priv->pci_priv->pdev, skb->data,
skb->len, PCI_DMA_FROMDEVICE);
}
/*
* IRQ/thread/whatever safe
*/
static int dscc4_wait_ack_cec(u32 ioaddr, struct net_device *dev, char *msg)
{
s16 i = 0;
while (readl(ioaddr + STAR) & SccBusy) {
if (i++ < 0) {
printk(KERN_ERR "%s: %s timeout\n", dev->name, msg);
return -1;
}
rmb();
}
printk(KERN_DEBUG "%s: %s ack (%d try)\n", dev->name, msg, i);
return 0;
}
static int dscc4_do_action(struct net_device *dev, char *msg)
{
unsigned long ioaddr = dev->base_addr;
u32 state;
s16 i;
writel(Action, ioaddr + GCMDR);
ioaddr += GSTAR;
for (i = 0; i >= 0; i++) {
state = readl(ioaddr);
if (state & Arf) {
printk(KERN_ERR "%s: %s failed\n", dev->name, msg);
writel(Arf, ioaddr);
return -1;
} else if (state & ArAck) {
printk(KERN_DEBUG "%s: %s ack (%d try)\n",
dev->name, msg, i);
writel(ArAck, ioaddr);
return 0;
}
}
printk(KERN_ERR "%s: %s timeout\n", dev->name, msg);
return -1;
}
static inline int dscc4_xpr_ack(struct dscc4_dev_priv *dpriv)
{
int cur, ret = 0;
s16 i;
cur = dpriv->iqtx_current%IRQ_RING_SIZE;
for (i = 0; i >= 0; i++) {
if (!(dpriv->flags & (NeedIDR | NeedIDT)) ||
(dpriv->iqtx[cur] & Xpr))
break;
smp_rmb();
}
if (i < 0) {
printk(KERN_ERR "%s: %s timeout\n", "dscc4", "XPR");
ret = -1;
}
return ret;
}
static inline void dscc4_rx_skb(struct dscc4_dev_priv *dpriv, int cur,
struct RxFD *rx_fd, struct net_device *dev)
{
struct pci_dev *pdev = dpriv->pci_priv->pdev;
struct sk_buff *skb;
int pkt_len;
skb = dpriv->rx_skbuff[cur];
pkt_len = TO_SIZE(rx_fd->state2) - 1;
pci_dma_sync_single(pdev, rx_fd->data, pkt_len + 1, PCI_DMA_FROMDEVICE);
if((skb->data[pkt_len] & FrameOk) == FrameOk) {
pci_unmap_single(pdev, rx_fd->data, skb->len, PCI_DMA_FROMDEVICE);
dev_to_hdlc(dev)->stats.rx_packets++;
dev_to_hdlc(dev)->stats.rx_bytes += pkt_len;
skb->tail += pkt_len;
skb->len = pkt_len;
if (netif_running(hdlc_to_dev(&dpriv->hdlc)))
skb->protocol = htons(ETH_P_HDLC);
netif_rx(skb);
try_get_rx_skb(dpriv, cur, dev);
} else {
if(skb->data[pkt_len] & FrameRdo)
dev_to_hdlc(dev)->stats.rx_fifo_errors++;
else if(!(skb->data[pkt_len] | ~FrameCrc))
dev_to_hdlc(dev)->stats.rx_crc_errors++;
else if(!(skb->data[pkt_len] | ~(FrameVfr | FrameRab)))
dev_to_hdlc(dev)->stats.rx_length_errors++;
else
dev_to_hdlc(dev)->stats.rx_errors++;
}
rx_fd->state1 |= Hold;
rx_fd->state2 = 0x00000000;
rx_fd->end = 0xbabeface;
if (!rx_fd->data)
return;
rx_fd--;
if (!cur)
rx_fd += RX_RING_SIZE;
rx_fd->state1 &= ~Hold;
}
static int __init dscc4_init_one (struct pci_dev *pdev,
const struct pci_device_id *ent)
{
struct dscc4_pci_priv *priv;
struct dscc4_dev_priv *dpriv;
static int cards_found = 0;
unsigned long ioaddr;
int i;
printk(KERN_DEBUG "%s", version);
if (pci_enable_device(pdev))
goto err_out;
if (!request_mem_region(pci_resource_start(pdev, 0),
pci_resource_len(pdev, 0), "registers")) {
printk(KERN_ERR "%s: can't reserve MMIO region (regs)\n",
DRV_NAME);
goto err_out;
}
if (!request_mem_region(pci_resource_start(pdev, 1),
pci_resource_len(pdev, 1), "LBI interface")) {
printk(KERN_ERR "%s: can't reserve MMIO region (lbi)\n",
DRV_NAME);
goto err_out_free_mmio_region0;
}
ioaddr = (unsigned long)ioremap(pci_resource_start(pdev, 0),
pci_resource_len(pdev, 0));
if (!ioaddr) {
printk(KERN_ERR "%s: cannot remap MMIO region %lx @ %lx\n",
DRV_NAME, pci_resource_len(pdev, 0),
pci_resource_start(pdev, 0));
goto err_out_free_mmio_region;
}
printk(KERN_DEBUG "Siemens DSCC4, MMIO at %#lx (regs), %#lx (lbi), IRQ %d\n",
pci_resource_start(pdev, 0),
pci_resource_start(pdev, 1), pdev->irq);
/* No need for High PCI latency. Cf app. note. */
pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0x10);
pci_set_master(pdev);
if (dscc4_found1(pdev, ioaddr))
goto err_out_iounmap;
priv = (struct dscc4_pci_priv *)pci_get_drvdata(pdev);
if (request_irq(pdev->irq, &dscc4_irq, SA_SHIRQ, DRV_NAME, priv->root)){
printk(KERN_WARNING "%s: IRQ %d busy\n", DRV_NAME, pdev->irq);
goto err_out_iounmap;
}
/* power up/little endian/dma core controlled via hold bit */
writel(0x00000000, ioaddr + GMODE);
/* Shared interrupt queue */
{
u32 bits;
bits = (IRQ_RING_SIZE >> 5) - 1;
bits |= bits << 4;
bits |= bits << 8;
bits |= bits << 16;
writel(bits, ioaddr + IQLENR0);
}
/* Global interrupt queue */
writel((u32)(((IRQ_RING_SIZE >> 5) - 1) << 20), ioaddr + IQLENR1);
priv->iqcfg = (u32 *) pci_alloc_consistent(pdev,
IRQ_RING_SIZE*sizeof(u32), &priv->iqcfg_dma);
if (!priv->iqcfg)
goto err_out_free_irq;
writel(priv->iqcfg_dma, ioaddr + IQCFG);
/*
* SCC 0-3 private rx/tx irq structures
* IQRX/TXi needs to be set soon. Learned it the hard way...
*/
for(i = 0; i < dev_per_card; i++) {
dpriv = priv->root + i;
dpriv->iqtx = (u32 *) pci_alloc_consistent(pdev,
IRQ_RING_SIZE*sizeof(u32), &dpriv->iqtx_dma);
if (!dpriv->iqtx)
goto err_out_free_iqtx;
writel(dpriv->iqtx_dma, ioaddr + IQTX0 + i*4);
}
for(i = 0; i < dev_per_card; i++) {
dpriv = priv->root + i;
dpriv->iqrx = (u32 *) pci_alloc_consistent(pdev,
IRQ_RING_SIZE*sizeof(u32), &dpriv->iqrx_dma);
if (!dpriv->iqrx)
goto err_out_free_iqrx;
writel(dpriv->iqrx_dma, ioaddr + IQRX0 + i*4);
}
/* Cf application hint. Beware of hard-lock condition on threshold. */
writel(0x42104000, ioaddr + FIFOCR1);
//writel(0x9ce69800, ioaddr + FIFOCR2);
writel(0xdef6d800, ioaddr + FIFOCR2);
//writel(0x11111111, ioaddr + FIFOCR4);
writel(0x18181818, ioaddr + FIFOCR4);
// FIXME: should depend on the chipset revision
writel(0x0000000e, ioaddr + FIFOCR3);
writel(0xff200001, ioaddr + GCMDR);
cards_found++;
return 0;
err_out_free_iqrx:
while (--i >= 0) {
dpriv = priv->root + i;
pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32),
dpriv->iqrx, dpriv->iqrx_dma);
}
i = dev_per_card;
err_out_free_iqtx:
while (--i >= 0) {
dpriv = priv->root + i;
pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32),
dpriv->iqtx, dpriv->iqtx_dma);
}
pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32), priv->iqcfg,
priv->iqcfg_dma);
err_out_free_irq:
free_irq(pdev->irq, priv->root);
err_out_iounmap:
iounmap ((void *)ioaddr);
err_out_free_mmio_region:
release_mem_region(pci_resource_start(pdev, 1),
pci_resource_len(pdev, 1));
err_out_free_mmio_region0:
release_mem_region(pci_resource_start(pdev, 0),
pci_resource_len(pdev, 0));
err_out:
return -ENODEV;
};
/*
* Let's hope the default values are decent enough to protect my
* feet from the user's gun - Ueimor
*/
static void dscc4_init_registers(u32 base_addr, int dev_id)
{
u32 ioaddr = base_addr + SCC_REG_START(dev_id);
writel(0x80001000, ioaddr + CCR0);
writel(LengthCheck | (HDLC_MAX_MRU >> 5), ioaddr + RLCR);
/* no address recognition/crc-CCITT/cts enabled */
writel(0x021c8000, ioaddr + CCR1);
/* crc not forwarded */
writel(0x00050008 & ~RxActivate, ioaddr + CCR2);
// crc forwarded
//writel(0x00250008 & ~RxActivate, ioaddr + CCR2);
/* Don't mask RDO. Ever. */
#ifdef DSCC4_POLLING
writel(0xfffeef7f, ioaddr + IMR); /* Interrupt mask */
#else
//writel(0xfffaef7f, ioaddr + IMR); /* Interrupt mask */
writel(0xfffaef7e, ioaddr + IMR); /* Interrupt mask */
#endif
}
static int dscc4_found1(struct pci_dev *pdev, unsigned long ioaddr)
{
struct dscc4_pci_priv *ppriv;
struct dscc4_dev_priv *root;
int i = 0;
root = (struct dscc4_dev_priv *)
kmalloc(dev_per_card*sizeof(*root), GFP_KERNEL);
if (!root) {
printk(KERN_ERR "%s: can't allocate data\n", DRV_NAME);
goto err_out;
}
memset(root, 0, dev_per_card*sizeof(*root));
ppriv = (struct dscc4_pci_priv *) kmalloc(sizeof(*ppriv), GFP_KERNEL);
if (!ppriv) {
printk(KERN_ERR "%s: can't allocate private data\n", DRV_NAME);
goto err_free_dev;
}
memset(ppriv, 0, sizeof(struct dscc4_pci_priv));
for (i = 0; i < dev_per_card; i++) {
struct dscc4_dev_priv *dpriv = root + i;
hdlc_device *hdlc = &dpriv->hdlc;
struct net_device *d = hdlc_to_dev(hdlc);
d->base_addr = ioaddr;
d->init = NULL;
d->irq = pdev->irq;
d->open = dscc4_open;
d->stop = dscc4_close;
d->set_multicast_list = NULL;
d->do_ioctl = dscc4_ioctl;
d->tx_timeout = dscc4_tx_timeout;
d->watchdog_timeo = TX_TIMEOUT;
dpriv->dev_id = i;
dpriv->pci_priv = ppriv;
spin_lock_init(&dpriv->lock);
d->priv = dpriv;
hdlc->xmit = dscc4_start_xmit;
hdlc->attach = dscc4_hdlc_attach;
if (register_hdlc_device(hdlc)) {
printk(KERN_ERR "%s: unable to register\n", DRV_NAME);
goto err_unregister;
}
hdlc->proto = IF_PROTO_HDLC;
SET_MODULE_OWNER(d);
dscc4_init_registers(ioaddr, i);
dpriv->parity = PARITY_CRC16_PR0_CCITT;
dpriv->encoding = ENCODING_NRZ;
}
if (dscc4_set_quartz(root, quartz) < 0)
goto err_unregister;
ppriv->root = root;
spin_lock_init(&ppriv->lock);
pci_set_drvdata(pdev, ppriv);
return 0;
err_unregister:
while (--i >= 0)
unregister_hdlc_device(&root[i].hdlc);
kfree(ppriv);
err_free_dev:
kfree(root);
err_out:
return -1;
};
static void dscc4_timer(unsigned long data)
{
struct net_device *dev = (struct net_device *)data;
struct dscc4_dev_priv *dpriv;
struct dscc4_pci_priv *ppriv;
dpriv = dev->priv;
if (netif_queue_stopped(dev) &&
((jiffies - dev->trans_start) > TX_TIMEOUT)) {
ppriv = dpriv->pci_priv;
if (dpriv->iqtx[dpriv->iqtx_current%IRQ_RING_SIZE]) {
u32 flags;
printk(KERN_DEBUG "%s: pending events\n", dev->name);
dev->trans_start = jiffies;
spin_lock_irqsave(&ppriv->lock, flags);
dscc4_tx_irq(ppriv, dpriv);
spin_unlock_irqrestore(&ppriv->lock, flags);
} else {
struct TxFD *tx_fd;
struct sk_buff *skb;
int i,j;
printk(KERN_DEBUG "%s: missing events\n", dev->name);
i = dpriv->tx_dirty%TX_RING_SIZE;
j = dpriv->tx_current - dpriv->tx_dirty;
dev_to_hdlc(dev)->stats.tx_dropped += j;
while(j--) {
skb = dpriv->tx_skbuff[i];
tx_fd = dpriv->tx_fd + i;
if (skb) {
dpriv->tx_skbuff[i] = NULL;
pci_unmap_single(ppriv->pdev, tx_fd->data, skb->len,
PCI_DMA_TODEVICE);
dev_kfree_skb_irq(skb);
} else
printk(KERN_INFO "%s: hardware on drugs!\n", dev->name);
tx_fd->data = 0; /* DEBUG */
tx_fd->complete &= ~DataComplete;
i++;
i %= TX_RING_SIZE;
}
dpriv->tx_dirty = dpriv->tx_current;
dev->trans_start = jiffies;
netif_wake_queue(dev);
printk(KERN_DEBUG "%s: re-enabled\n", dev->name);
}
}
dpriv->timer.expires = jiffies + TX_TIMEOUT;
add_timer(&dpriv->timer);
}
static void dscc4_tx_timeout(struct net_device *dev)
{
/* FIXME: something is missing there */
}
static int dscc4_loopback_check(struct dscc4_dev_priv *dpriv)
{
sync_serial_settings *settings = &dpriv->settings;
if (settings->loopback && (settings->clock_type != CLOCK_INT)) {
struct net_device *dev = hdlc_to_dev(&dpriv->hdlc);
printk(KERN_INFO "%s: loopback requires clock\n", dev->name);
return -1;
}
return 0;
}
static int dscc4_open(struct net_device *dev)
{
struct dscc4_dev_priv *dpriv = dev->priv;
hdlc_device *hdlc = &dpriv->hdlc;
struct dscc4_pci_priv *ppriv;
u32 ioaddr;
int ret = -EAGAIN;
if ((dscc4_loopback_check(dpriv) < 0) || !dev->hard_start_xmit)
goto err;
if ((ret = hdlc_open(hdlc)))
goto err;
MOD_INC_USE_COUNT;
ppriv = dpriv->pci_priv;
if (dscc4_init_ring(dev))
goto err_out;
ioaddr = dev->base_addr + SCC_REG_START(dpriv->dev_id);
/* IDT+IDR during XPR */
dpriv->flags = NeedIDR | NeedIDT;
/*
* The following is a bit paranoid...
*
* NB: the datasheet "...CEC will stay active if the SCC is in
* power-down mode or..." and CCR2.RAC = 1 are two different
* situations.
*/
if (readl(ioaddr + STAR) & SccBusy) {
printk(KERN_ERR "%s busy. Try later\n", dev->name);
goto err_free_ring;
}
/* Posted write is flushed in the busy-waiting loop */
writel(TxSccRes | RxSccRes, ioaddr + CMDR);
if (dscc4_wait_ack_cec(ioaddr, dev, "Cec"))
goto err_free_ring;
/*
* I would expect XPR near CE completion (before ? after ?).
* At worst, this code won't see a late XPR and people
* will have to re-issue an ifconfig (this is harmless).
* WARNING, a really missing XPR usually means a hardware
* reset is needed. Suggestions anyone ?
*/
if (dscc4_xpr_ack(dpriv))
goto err_free_ring;
netif_start_queue(dev);
init_timer(&dpriv->timer);
dpriv->timer.expires = jiffies + 10*HZ;
dpriv->timer.data = (unsigned long)dev;
dpriv->timer.function = &dscc4_timer;
add_timer(&dpriv->timer);
netif_carrier_on(dev);
return 0;
err_free_ring:
dscc4_release_ring(dpriv);
err_out:
hdlc_close(hdlc);
MOD_DEC_USE_COUNT;
err:
return ret;
}
#ifdef DSCC4_POLLING
static int dscc4_tx_poll(struct dscc4_dev_priv *dpriv, struct net_device *dev)
{
/* FIXME: it's gonna be easy (TM), for sure */
}
#endif /* DSCC4_POLLING */
static int dscc4_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct dscc4_dev_priv *dpriv = dev->priv;
struct dscc4_pci_priv *ppriv;
struct TxFD *tx_fd;
int cur, next;
ppriv = dpriv->pci_priv;
cur = dpriv->tx_current++%TX_RING_SIZE;
next = dpriv->tx_current%TX_RING_SIZE;
dpriv->tx_skbuff[next] = skb;
tx_fd = dpriv->tx_fd + next;
printk(KERN_DEBUG "%s: %d sent\n", dev->name, skb->len);
tx_fd->state = FrameEnd | Hold | TO_STATE(skb->len);
tx_fd->data = pci_map_single(ppriv->pdev, skb->data, skb->len,
PCI_DMA_TODEVICE);
tx_fd->complete = 0x00000000;
mb(); // FIXME: suppress ?
#ifdef DSCC4_POLLING
spin_lock(&dpriv->lock);
while(dscc4_tx_poll(dpriv, dev));
spin_unlock(&dpriv->lock);
#endif
/*
* I know there's a window for a race in the following lines but
* dscc4_timer will take good care of it. The chipset eats events
* (especially the net_dev re-enabling ones) thus there is no
* reason to try and be smart.
*/
if ((dpriv->tx_dirty + 16) < dpriv->tx_current) {
netif_stop_queue(dev);
dpriv->hi_expected = 2;
}
tx_fd = dpriv->tx_fd + cur;
tx_fd->state &= ~Hold;
mb(); // FIXME: suppress ?
/*
* One may avoid some pci transactions during intense TX periods.
* Not sure it's worth the pain...
*/
writel((TxPollCmd << dpriv->dev_id) | NoAck, dev->base_addr + GCMDR);
dev->trans_start = jiffies;
return 0;
}
static int dscc4_close(struct net_device *dev)
{
struct dscc4_dev_priv *dpriv = (struct dscc4_dev_priv *)dev->priv;
u32 ioaddr = dev->base_addr;
int dev_id;
hdlc_device *hdlc = dev_to_hdlc(dev);
del_timer_sync(&dpriv->timer);
netif_stop_queue(dev);
dev_id = dpriv->dev_id;
writel(0x00050000, ioaddr + SCC_REG_START(dev_id) + CCR2);
writel(MTFi|Rdr|Rdt, ioaddr + CH0CFG + dev_id*0x0c); /* Reset Rx/Tx */
writel(0x00000001, ioaddr + GCMDR);
readl(ioaddr + GCMDR);
/*
* FIXME: wait for the command ack before returning the memory
* structures to the kernel.
*/
hdlc_close(hdlc);
dscc4_release_ring(dpriv);
MOD_DEC_USE_COUNT;
return 0;
}
static inline int dscc4_check_clock_ability(int port)
{
int ret = 0;
#ifdef CONFIG_DSCC4_CLOCK_ON_TWO_PORTS_ONLY
if (port >= 2)
ret = -1;
#endif
return ret;
}
static int dscc4_set_clock(struct net_device *dev, u32 *bps, u32 *state)
{
struct dscc4_dev_priv *dpriv = (struct dscc4_dev_priv *)dev->priv;
u32 brr;
*state &= ~Ccr0ClockMask;
if (*bps) { /* Clock generated - required for DCE */
u32 n = 0, m = 0, divider;
int xtal;
xtal = dpriv->pci_priv->xtal_hz;
if (!xtal)
return -1;
if (dscc4_check_clock_ability(dpriv->dev_id) < 0)
return -1;
divider = xtal / *bps;
if (divider > BRR_DIVIDER_MAX) {
divider >>= 4;
*state |= 0x00000036; /* Clock mode 6b (BRG/16) */
} else
*state |= 0x00000037; /* Clock mode 7b (BRG) */
if (divider >> 22) {
n = 63;
m = 15;
} else if (divider) {
/* Extraction of the 6 highest weighted bits */
m = 0;
while (0xffffffc0 & divider) {
m++;
divider >>= 1;
}
n = divider;
}
brr = (m << 8) | n;
divider = n << m;
if (!(*state & 0x00000001)) /* Clock mode 6b */
divider <<= 4;
*bps = xtal / divider;
} else {
/*
* External clock - DTE
* "state" already reflects Clock mode 0a.
* Nothing more to be done
*/
brr = 0;
}
writel(brr, dev->base_addr + BRR + SCC_REG_START(dpriv->dev_id));
return 0;
}
static int dscc4_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
struct dscc4_dev_priv *dpriv = dev->priv;
struct if_settings *if_s = &ifr->ifr_settings;
const size_t size = sizeof(dpriv->settings);
int ret = 0;
if (dev->flags & IFF_UP)
return -EBUSY;
if (cmd != SIOCDEVICE)
return -EOPNOTSUPP;
switch(ifr->ifr_settings.type) {
case IF_GET_IFACE:
if_s->type = IF_IFACE_SYNC_SERIAL;
if (if_s->data_length == 0)
return 0;
if (if_s->data_length < size)
return -ENOMEM;
if (copy_to_user(if_s->data, &dpriv->settings, size))
return -EFAULT;
if_s->data_length = size;
break;
case IF_IFACE_SYNC_SERIAL:
if(!capable(CAP_NET_ADMIN))
return -EPERM;
if (if_s->data_length != size)
return -ENOMEM;
if (copy_from_user(&dpriv->settings, if_s->data, size))
return -EFAULT;
ret = dscc4_set_iface(dev);
break;
default:
ret = hdlc_ioctl(dev, ifr, cmd);
break;
}
return ret;
}
static inline int dscc4_set_quartz(struct dscc4_dev_priv *dpriv, int hz)
{
int ret = 0;
if ((hz < 0) || (hz > DSCC4_HZ_MAX))
ret = -EOPNOTSUPP;
else
dpriv->pci_priv->xtal_hz = hz;
return ret;
}
static int dscc4_match(struct thingie *p, int value)
{
int i;
for (i = 0; p[i].define != -1; i++) {
if (value == p[i].define)
break;
}
if (p[i].define == -1)
return -1;
else
return i;
}
static int dscc4_clock_setting(struct net_device *dev)
{
struct dscc4_dev_priv *dpriv = dev->priv;
sync_serial_settings *settings = &dpriv->settings;
u32 bps, state;
u32 ioaddr;
bps = settings->clock_rate;
ioaddr = dev->base_addr + CCR0 + SCC_REG_START(dpriv->dev_id);
state = readl(ioaddr);
if(dscc4_set_clock(dev, &bps, &state) < 0)
return -EOPNOTSUPP;
if (bps) { /* DCE */
printk(KERN_DEBUG "%s: generated RxClk (DCE)\n", dev->name);
if (settings->clock_rate != bps) {
settings->clock_rate = bps;
printk(KERN_DEBUG "%s: clock adjusted from %08d to %08d \n",
dev->name, dpriv->settings.clock_rate, bps);
}
} else { /* DTE */
state = 0x80001000;
printk(KERN_DEBUG "%s: external RxClk (DTE)\n", dev->name);
}
writel(state, ioaddr);
return 0;
}
static int dscc4_encoding_setting(struct net_device *dev)
{
struct dscc4_dev_priv *dpriv = dev->priv;
struct thingie encoding[] = {
{ ENCODING_NRZ, 0x00000000 },
{ ENCODING_NRZI, 0x00200000 },
{ ENCODING_FM_MARK, 0x00400000 },
{ ENCODING_FM_SPACE, 0x00500000 },
{ ENCODING_MANCHESTER, 0x00600000 },
{ -1, 0}
};
int i, ret = 0;
i = dscc4_match(encoding, dpriv->encoding);
if (i >= 0) {
u32 ioaddr;
ioaddr = dev->base_addr + CCR0 + SCC_REG_START(dpriv->dev_id);
dscc4_patch_register(ioaddr, EncodingMask, encoding[i].bits);
} else
ret = -EOPNOTSUPP;
return ret;
}
static int dscc4_loopback_setting(struct net_device *dev)
{
struct dscc4_dev_priv *dpriv = dev->priv;
sync_serial_settings *settings = &dpriv->settings;
u32 ioaddr, state;
ioaddr = dev->base_addr + CCR1 + SCC_REG_START(dpriv->dev_id);
state = readl(ioaddr);
if (settings->loopback) {
printk(KERN_DEBUG "%s: loopback\n", dev->name);
state |= 0x00000100;
} else {
printk(KERN_DEBUG "%s: normal\n", dev->name);
state &= ~0x00000100;
}
writel(state, ioaddr);
return 0;
}
static int dscc4_crc_setting(struct net_device *dev)
{
struct dscc4_dev_priv *dpriv = dev->priv;
struct thingie crc[] = {
{ PARITY_CRC16_PR0_CCITT, 0x00000010 },
{ PARITY_CRC16_PR1_CCITT, 0x00000000 },
{ PARITY_CRC32_PR0_CCITT, 0x00000011 },
{ PARITY_CRC32_PR1_CCITT, 0x00000001 }
};
int i, ret = 0;
i = dscc4_match(crc, dpriv->parity);
if (i >= 0) {
u32 ioaddr;
ioaddr = dev->base_addr + CCR1 + SCC_REG_START(dpriv->dev_id);
dscc4_patch_register(ioaddr, CrcMask, crc[i].bits);
} else
ret = -EOPNOTSUPP;
return ret;
}
static int dscc4_set_iface(struct net_device *dev)
{
struct {
int (*action)(struct net_device *);
} *p, do_setting[] = {
{ dscc4_encoding_setting },
{ dscc4_clock_setting },
{ dscc4_loopback_setting },
{ dscc4_crc_setting },
{ NULL }
};
int ret = 0;
for (p = do_setting; p->action; p++) {
if ((ret = p->action(dev)) < 0)
break;
}
return ret;
}
static void dscc4_irq(int irq, void *token, struct pt_regs *ptregs)
{
struct dscc4_dev_priv *root = token;
struct dscc4_pci_priv *priv;
struct net_device *dev;
u32 ioaddr, state;
unsigned long flags;
int i;
priv = root->pci_priv;
dev = hdlc_to_dev(&root->hdlc);
spin_lock_irqsave(&priv->lock, flags);
ioaddr = dev->base_addr;
state = readl(ioaddr + GSTAR);
if (!state)
goto out;
writel(state, ioaddr + GSTAR);
if (state & Arf) {
printk(KERN_ERR "%s: failure (Arf). Harass the maintener\n",
dev->name);
goto out;
}
state &= ~ArAck;
if (state & Cfg) {
if (debug)
printk(KERN_DEBUG "CfgIV\n");
if (priv->iqcfg[priv->cfg_cur++%IRQ_RING_SIZE] & Arf)
printk(KERN_ERR "%s: %s failed\n", dev->name, "CFG");
if (!(state &= ~Cfg))
goto out;
}
if (state & RxEvt) {
i = dev_per_card - 1;
do {
dscc4_rx_irq(priv, root + i);
} while (--i >= 0);
state &= ~RxEvt;
}
if (state & TxEvt) {
i = dev_per_card - 1;
do {
dscc4_tx_irq(priv, root + i);
} while (--i >= 0);
state &= ~TxEvt;
}
out:
spin_unlock_irqrestore(&priv->lock, flags);
}
static inline void dscc4_tx_irq(struct dscc4_pci_priv *ppriv, struct dscc4_dev_priv *dpriv)
{
struct net_device *dev = hdlc_to_dev(&dpriv->hdlc);
u32 state;
int cur, loop = 0;
try:
cur = dpriv->iqtx_current%IRQ_RING_SIZE;
state = dpriv->iqtx[cur];
if (!state) {
#ifdef DEBUG
if (loop > 1)
printk(KERN_DEBUG "%s: Tx irq loop=%d\n", dev->name, loop);
#endif
if (loop && netif_queue_stopped(dev))
if ((dpriv->tx_dirty + 8) >= dpriv->tx_current)
netif_wake_queue(dev);
return;
}
loop++;
dpriv->iqtx[cur] = 0;
dpriv->iqtx_current++;
if (state_check(state, dpriv, dev, "Tx"))
return;
// state &= 0x0fffffff; /* Tracking the analyzed bits */
if (state & SccEvt) {
if (state & Alls) {
struct TxFD *tx_fd;
struct sk_buff *skb;
cur = dpriv->tx_dirty%TX_RING_SIZE;
tx_fd = dpriv->tx_fd + cur;
skb = dpriv->tx_skbuff[cur];
/* XXX: hideous kludge - to be removed "later" */
if (!skb) {
printk(KERN_ERR "%s: NULL skb in tx_irq at index %d\n", dev->name, cur);
goto try;
}
dpriv->tx_dirty++; // MUST be after skb test
/* Happens sometime. Don't know what triggers it */
if (!(tx_fd->complete & DataComplete)) {
u32 ioaddr, isr;
ioaddr = dev->base_addr +
SCC_REG_START(dpriv->dev_id) + ISR;
isr = readl(ioaddr);
printk(KERN_DEBUG
"%s: DataComplete=0 cur=%d isr=%08x state=%08x\n",
dev->name, cur, isr, state);
writel(isr, ioaddr);
dev_to_hdlc(dev)->stats.tx_dropped++;
} else {
tx_fd->complete &= ~DataComplete;
if (tx_fd->state & FrameEnd) {
dev_to_hdlc(dev)->stats.tx_packets++;
dev_to_hdlc(dev)->stats.tx_bytes += skb->len;
}
}
dpriv->tx_skbuff[cur] = NULL;
pci_unmap_single(ppriv->pdev, tx_fd->data, skb->len,
PCI_DMA_TODEVICE);
tx_fd->data = 0; /* DEBUG */
dev_kfree_skb_irq(skb);
{ // DEBUG
cur = (dpriv->tx_dirty-1)%TX_RING_SIZE;
tx_fd = dpriv->tx_fd + cur;
tx_fd->state |= Hold;
}
if (!(state &= ~Alls))
goto try;
}
/*
* Transmit Data Underrun
*/
if (state & Xdu) {
printk(KERN_ERR "%s: XDU. Ask maintainer\n", DRV_NAME);
dpriv->flags = NeedIDT;
/* Tx reset */
writel(MTFi | Rdt,
dev->base_addr + 0x0c*dpriv->dev_id + CH0CFG);
writel(0x00000001, dev->base_addr + GCMDR);
return;
}
if (state & Xmr) {
/* Frame needs to be sent again - FIXME */
//dscc4_start_xmit(dpriv->tx_skbuff[dpriv->tx_dirty], dev);
if (!(state &= ~0x00002000)) /* DEBUG */
goto try;
}
if (state & Xpr) {
unsigned long ioaddr = dev->base_addr;
unsigned long scc_offset;
u32 scc_addr;
scc_offset = ioaddr + SCC_REG_START(dpriv->dev_id);
scc_addr = ioaddr + 0x0c*dpriv->dev_id;
if (readl(scc_offset + STAR) & SccBusy)
printk(KERN_DEBUG "%s busy. Fatal\n",
dev->name);
/*
* Keep this order: IDT before IDR
*/
if (dpriv->flags & NeedIDT) {
writel(MTFi | Idt, scc_addr + CH0CFG);
writel(dpriv->tx_fd_dma +
(dpriv->tx_dirty%TX_RING_SIZE)*
sizeof(struct TxFD), scc_addr + CH0BTDA);
if(dscc4_do_action(dev, "IDT"))
goto err_xpr;
dpriv->flags &= ~NeedIDT;
mb();
}
if (dpriv->flags & NeedIDR) {
writel(MTFi | Idr, scc_addr + CH0CFG);
writel(dpriv->rx_fd_dma +
(dpriv->rx_current%RX_RING_SIZE)*
sizeof(struct RxFD), scc_addr + CH0BRDA);
if(dscc4_do_action(dev, "IDR"))
goto err_xpr;
dpriv->flags &= ~NeedIDR;
mb();
/* Activate receiver and misc */
writel(0x08050008, scc_offset + CCR2);
}
err_xpr:
if (!(state &= ~Xpr))
goto try;
}
} else { /* ! SccEvt */
if (state & Hi) {
#ifdef DSCC4_POLLING
while(!dscc4_tx_poll(dpriv, dev));
#endif
state &= ~Hi;
}
/*
* FIXME: it may be avoided. Re-re-re-read the manual.
*/
if (state & Err) {
printk(KERN_ERR "%s (Tx): ERR\n", dev->name);
dev_to_hdlc(dev)->stats.tx_errors++;
state &= ~Err;
}
}
goto try;
}
static inline void dscc4_rx_irq(struct dscc4_pci_priv *priv,
struct dscc4_dev_priv *dpriv)
{
struct net_device *dev = hdlc_to_dev(&dpriv->hdlc);
u32 state;
int cur;
try:
cur = dpriv->iqrx_current%IRQ_RING_SIZE;
state = dpriv->iqrx[cur];
if (!state)
return;
dpriv->iqrx[cur] = 0;
dpriv->iqrx_current++;
if (state_check(state, dpriv, dev, "Tx"))
return;
if (!(state & SccEvt)){
struct RxFD *rx_fd;
state &= 0x00ffffff;
if (state & Err) { /* Hold or reset */
printk(KERN_DEBUG "%s (Rx): ERR\n", dev->name);
cur = dpriv->rx_current;
rx_fd = dpriv->rx_fd + cur;
/*
* Presume we're not facing a DMAC receiver reset.
* As We use the rx size-filtering feature of the
* DSCC4, the beginning of a new frame is waiting in
* the rx fifo. I bet a Receive Data Overflow will
* happen most of time but let's try and avoid it.
* Btw (as for RDO) if one experiences ERR whereas
* the system looks rather idle, there may be a
* problem with latency. In this case, increasing
* RX_RING_SIZE may help.
*/
while (dpriv->rx_needs_refill) {
while(!(rx_fd->state1 & Hold)) {
rx_fd++;
cur++;
if (!(cur = cur%RX_RING_SIZE))
rx_fd = dpriv->rx_fd;
}
dpriv->rx_needs_refill--;
try_get_rx_skb(dpriv, cur, dev);
if (!rx_fd->data)
goto try;
rx_fd->state1 &= ~Hold;
rx_fd->state2 = 0x00000000;
rx_fd->end = 0xbabeface;
}
goto try;
}
if (state & Fi) {
cur = dpriv->rx_current%RX_RING_SIZE;
rx_fd = dpriv->rx_fd + cur;
dscc4_rx_skb(dpriv, cur, rx_fd, dev);
dpriv->rx_current++;
goto try;
}
if (state & Hi ) { /* HI bit */
state &= ~Hi;
goto try;
}
} else { /* ! SccEvt */
#ifdef DEBUG_PARANOIA
int i;
static struct {
u32 mask;
const char *irq_name;
} evts[] = {
{ 0x00008000, "TIN"},
{ 0x00004000, "CSC"},
{ 0x00000020, "RSC"},
{ 0x00000010, "PCE"},
{ 0x00000008, "PLLA"},
{ 0x00000004, "CDSC"},
{ 0, NULL}
};
#endif /* DEBUG_PARANOIA */
state &= 0x00ffffff;
#ifdef DEBUG_PARANOIA
for (i = 0; evts[i].irq_name; i++) {
if (state & evts[i].mask) {
printk(KERN_DEBUG "%s: %s\n", dev->name,
evts[i].irq_name);
if (!(state &= ~evts[i].mask))
goto try;
}
}
#endif /* DEBUG_PARANOIA */
/*
* Receive Data Overflow (FIXME: untested)
*/
if (state & Rdo) {
u32 ioaddr, scc_offset, scc_addr;
struct RxFD *rx_fd;
int cur;
//if (debug)
// dscc4_rx_dump(dpriv);
ioaddr = dev->base_addr;
scc_addr = ioaddr + 0x0c*dpriv->dev_id;
scc_offset = ioaddr + SCC_REG_START(dpriv->dev_id);
writel(readl(scc_offset + CCR2) & ~RxActivate,
scc_offset + CCR2);
/*
* This has no effect. Why ?
* ORed with TxSccRes, one sees the CFG ack (for
* the TX part only).
*/
writel(RxSccRes, scc_offset + CMDR);
dpriv->flags |= RdoSet;
/*
* Let's try and save something in the received data.
* rx_current must be incremented at least once to
* avoid HOLD in the BRDA-to-be-pointed desc.
*/
do {
cur = dpriv->rx_current++%RX_RING_SIZE;
rx_fd = dpriv->rx_fd + cur;
if (!(rx_fd->state2 & DataComplete))
break;
if (rx_fd->state2 & FrameAborted) {
dev_to_hdlc(dev)->stats.rx_over_errors++;
rx_fd->state1 |= Hold;
rx_fd->state2 = 0x00000000;
rx_fd->end = 0xbabeface;
} else
dscc4_rx_skb(dpriv, cur, rx_fd, dev);
} while (1);
if (debug) {
if (dpriv->flags & RdoSet)
printk(KERN_DEBUG
"%s: no RDO in Rx data\n", DRV_NAME);
}
#ifdef DSCC4_RDO_EXPERIMENTAL_RECOVERY
/*
* FIXME: must the reset be this violent ?
*/
writel(dpriv->rx_fd_dma +
(dpriv->rx_current%RX_RING_SIZE)*
sizeof(struct RxFD), scc_addr + CH0BRDA);
writel(MTFi|Rdr|Idr, scc_addr + CH0CFG);
if(dscc4_do_action(dev, "RDR")) {
printk(KERN_ERR "%s: RDO recovery failed(%s)\n",
dev->name, "RDR");
goto rdo_end;
}
writel(MTFi|Idr, scc_addr + CH0CFG);
if(dscc4_do_action(dev, "IDR")) {
printk(KERN_ERR "%s: RDO recovery failed(%s)\n",
dev->name, "IDR");
goto rdo_end;
}
rdo_end:
#endif
writel(readl(scc_offset + CCR2) | RxActivate,
scc_offset + CCR2);
goto try;
}
/* These will be used later */
if (state & Rfs) {
if (!(state &= ~Rfs))
goto try;
}
if (state & Rfo) {
if (!(state &= ~Rfo))
goto try;
}
if (state & Flex) {
printk(KERN_DEBUG "%s: Flex. Ttttt...\n", DRV_NAME);
if (!(state &= ~Flex))
goto try;
}
}
}
static int dscc4_init_ring(struct net_device *dev)
{
struct dscc4_dev_priv *dpriv = (struct dscc4_dev_priv *)dev->priv;
struct TxFD *tx_fd;
struct RxFD *rx_fd;
int i;
tx_fd = (struct TxFD *) pci_alloc_consistent(dpriv->pci_priv->pdev,
TX_RING_SIZE*sizeof(struct TxFD), &dpriv->tx_fd_dma);
if (!tx_fd)
goto err_out;
rx_fd = (struct RxFD *) pci_alloc_consistent(dpriv->pci_priv->pdev,
RX_RING_SIZE*sizeof(struct RxFD), &dpriv->rx_fd_dma);
if (!rx_fd)
goto err_free_dma_tx;
dpriv->tx_fd = tx_fd;
dpriv->rx_fd = rx_fd;
dpriv->rx_current = 0;
dpriv->tx_current = 0;
dpriv->tx_dirty = 0;
/* the dma core of the dscc4 will be locked on the first desc */
for(i = 0; i < TX_RING_SIZE; ) {
reset_TxFD(tx_fd);
/* FIXME: NULL should be ok - to be tried */
tx_fd->data = dpriv->tx_fd_dma;
dpriv->tx_skbuff[i] = NULL;
i++;
tx_fd->next = (u32)(dpriv->tx_fd_dma + i*sizeof(struct TxFD));
tx_fd++;
}
(--tx_fd)->next = (u32)dpriv->tx_fd_dma;
{
/*
* XXX: I would expect the following to work for the first descriptor
* (tx_fd->state = 0xc0000000)
* - Hold=1 (don't try and branch to the next descripto);
* - No=0 (I want an empty data section, i.e. size=0);
* - Fe=1 (required by No=0 or we got an Err irq and must reset).
* Alas, it fails (and locks solid). Thus the introduction of a dummy
* skb to avoid No=0 (choose one: Ugly [ ] Tasteless [ ] VMS [ ]).
* 2002/01: errata sheet acknowledges the problem [X].
*/
struct sk_buff *skb;
skb = dev_alloc_skb(32);
if (!skb)
goto err_free_dma_tx;
skb->len = 32;
memset(skb->data, 0xaa, 16);
tx_fd -= (TX_RING_SIZE - 1);
tx_fd->state = 0xc0000000;
tx_fd->state |= ((u32)(skb->len & TxSizeMax)) << 16;
tx_fd->data = pci_map_single(dpriv->pci_priv->pdev, skb->data,
skb->len, PCI_DMA_TODEVICE);
dpriv->tx_skbuff[0] = skb;
}
for (i = 0; i < RX_RING_SIZE;) {
/* size set by the host. Multiple of 4 bytes please */
rx_fd->state1 = HiDesc; /* Hi, no Hold */
rx_fd->state2 = 0x00000000;
rx_fd->end = 0xbabeface;
rx_fd->state1 |= (RX_MAX(HDLC_MAX_MRU) << 16);
try_get_rx_skb(dpriv, i, dev);
i++;
rx_fd->next = (u32)(dpriv->rx_fd_dma + i*sizeof(struct RxFD));
rx_fd++;
}
(--rx_fd)->next = (u32)dpriv->rx_fd_dma;
rx_fd->state1 |= 0x40000000; /* Hold */
return 0;
err_free_dma_tx:
pci_free_consistent(dpriv->pci_priv->pdev, TX_RING_SIZE*sizeof(*tx_fd),
tx_fd, dpriv->tx_fd_dma);
err_out:
return -1;
}
static void __exit dscc4_remove_one(struct pci_dev *pdev)
{
struct dscc4_pci_priv *ppriv;
struct dscc4_dev_priv *root;
u32 ioaddr;
int i;
ppriv = pci_get_drvdata(pdev);
root = ppriv->root;
ioaddr = hdlc_to_dev(&root->hdlc)->base_addr;
free_irq(pdev->irq, root);
pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32), ppriv->iqcfg,
ppriv->iqcfg_dma);
for (i = 0; i < dev_per_card; i++) {
struct dscc4_dev_priv *dpriv = root + i;
hdlc_device *hdlc = &dpriv->hdlc;
unregister_hdlc_device(hdlc);
pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32),
dpriv->iqrx, dpriv->iqrx_dma);
pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32),
dpriv->iqtx, dpriv->iqtx_dma);
}
iounmap((void *)ioaddr);
kfree(root);
pci_set_drvdata(pdev, NULL);
kfree(ppriv);
release_mem_region(pci_resource_start(pdev, 1),
pci_resource_len(pdev, 1));
release_mem_region(pci_resource_start(pdev, 0),
pci_resource_len(pdev, 0));
}
static int dscc4_hdlc_attach(hdlc_device *hdlc, unsigned short encoding,
unsigned short parity)
{
struct dscc4_dev_priv *dpriv = hdlc_to_dev(hdlc)->priv;
if (encoding != ENCODING_NRZ &&
encoding != ENCODING_NRZI &&
encoding != ENCODING_FM_MARK &&
encoding != ENCODING_FM_SPACE &&
encoding != ENCODING_MANCHESTER)
return -EINVAL;
if (parity != PARITY_NONE &&
parity != PARITY_CRC16_PR0_CCITT &&
parity != PARITY_CRC16_PR1_CCITT &&
parity != PARITY_CRC32_PR0_CCITT &&
parity != PARITY_CRC32_PR1_CCITT)
return -EINVAL;
dpriv->encoding = encoding;
dpriv->parity = parity;
return 0;
}
static struct pci_device_id dscc4_pci_tbl[] __devinitdata = {
{ PCI_VENDOR_ID_SIEMENS, PCI_DEVICE_ID_SIEMENS_DSCC4,
PCI_ANY_ID, PCI_ANY_ID, },
{ 0,}
};
MODULE_DEVICE_TABLE(pci, dscc4_pci_tbl);
static struct pci_driver dscc4_driver = {
name: "dscc4",
id_table: dscc4_pci_tbl,
probe: dscc4_init_one,
remove: dscc4_remove_one,
};
static int __init dscc4_init_module(void)
{
return pci_module_init(&dscc4_driver);
}
static void __exit dscc4_cleanup_module(void)
{
pci_unregister_driver(&dscc4_driver);
}
module_init(dscc4_init_module);
module_exit(dscc4_cleanup_module);