blob: 3aabbbf08581b06050899525611aabd1c3d2935e [file] [log] [blame]
/*
* linux/net/sunrpc/svcsock.c
*
* These are the RPC server socket internals.
*
* The server scheduling algorithm does not always distribute the load
* evenly when servicing a single client. May need to modify the
* svc_sock_enqueue procedure...
*
* TCP support is largely untested and may be a little slow. The problem
* is that we currently do two separate recvfrom's, one for the 4-byte
* record length, and the second for the actual record. This could possibly
* be improved by always reading a minimum size of around 100 bytes and
* tucking any superfluous bytes away in a temporary store. Still, that
* leaves write requests out in the rain. An alternative may be to peek at
* the first skb in the queue, and if it matches the next TCP sequence
* number, to extract the record marker. Yuck.
*
* Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
*/
#include <linux/sched.h>
#include <linux/errno.h>
#include <linux/fcntl.h>
#include <linux/net.h>
#include <linux/in.h>
#include <linux/inet.h>
#include <linux/udp.h>
#include <linux/tcp.h>
#include <linux/version.h>
#include <linux/unistd.h>
#include <linux/slab.h>
#include <linux/netdevice.h>
#include <linux/skbuff.h>
#include <net/sock.h>
#include <net/checksum.h>
#include <net/ip.h>
#include <asm/uaccess.h>
#include <asm/ioctls.h>
#include <linux/sunrpc/types.h>
#include <linux/sunrpc/xdr.h>
#include <linux/sunrpc/svcsock.h>
#include <linux/sunrpc/stats.h>
/* SMP locking strategy:
*
* svc_sock->sk_lock and svc_serv->sv_lock protect their
* respective structures.
*
* Antideadlock ordering is sk_lock --> sv_lock.
*/
#define RPCDBG_FACILITY RPCDBG_SVCSOCK
static struct svc_sock *svc_setup_socket(struct svc_serv *, struct socket *,
int *errp, int pmap_reg);
static void svc_udp_data_ready(struct sock *, int);
static int svc_udp_recvfrom(struct svc_rqst *);
static int svc_udp_sendto(struct svc_rqst *);
/*
* Queue up an idle server thread. Must have serv->sv_lock held.
*/
static inline void
svc_serv_enqueue(struct svc_serv *serv, struct svc_rqst *rqstp)
{
rpc_append_list(&serv->sv_threads, rqstp);
}
/*
* Dequeue an nfsd thread. Must have serv->sv_lock held.
*/
static inline void
svc_serv_dequeue(struct svc_serv *serv, struct svc_rqst *rqstp)
{
rpc_remove_list(&serv->sv_threads, rqstp);
}
/*
* Release an skbuff after use
*/
static inline void
svc_release_skb(struct svc_rqst *rqstp)
{
struct sk_buff *skb = rqstp->rq_skbuff;
if (!skb)
return;
rqstp->rq_skbuff = NULL;
dprintk("svc: service %p, releasing skb %p\n", rqstp, skb);
skb_free_datagram(rqstp->rq_sock->sk_sk, skb);
}
/*
* Queue up a socket with data pending. If there are idle nfsd
* processes, wake 'em up.
*
* This must be called with svsk->sk_lock held.
*/
static void
svc_sock_enqueue(struct svc_sock *svsk)
{
struct svc_serv *serv = svsk->sk_server;
struct svc_rqst *rqstp;
/* NOTE: Local BH is already disabled by our caller. */
spin_lock(&serv->sv_lock);
if (serv->sv_threads && serv->sv_sockets)
printk(KERN_ERR
"svc_sock_enqueue: threads and sockets both waiting??\n");
if (svsk->sk_busy) {
/* Don't enqueue socket while daemon is receiving */
dprintk("svc: socket %p busy, not enqueued\n", svsk->sk_sk);
goto out_unlock;
}
/* Mark socket as busy. It will remain in this state until the
* server has processed all pending data and put the socket back
* on the idle list.
*/
svsk->sk_busy = 1;
if ((rqstp = serv->sv_threads) != NULL) {
dprintk("svc: socket %p served by daemon %p\n",
svsk->sk_sk, rqstp);
svc_serv_dequeue(serv, rqstp);
if (rqstp->rq_sock)
printk(KERN_ERR
"svc_sock_enqueue: server %p, rq_sock=%p!\n",
rqstp, rqstp->rq_sock);
rqstp->rq_sock = svsk;
svsk->sk_inuse++;
wake_up(&rqstp->rq_wait);
} else {
dprintk("svc: socket %p put into queue\n", svsk->sk_sk);
rpc_append_list(&serv->sv_sockets, svsk);
svsk->sk_qued = 1;
}
out_unlock:
spin_unlock(&serv->sv_lock);
}
/*
* Dequeue the first socket. Must be called with the serv->sv_lock held.
*/
static inline struct svc_sock *
svc_sock_dequeue(struct svc_serv *serv)
{
struct svc_sock *svsk;
if ((svsk = serv->sv_sockets) != NULL)
rpc_remove_list(&serv->sv_sockets, svsk);
if (svsk) {
dprintk("svc: socket %p dequeued, inuse=%d\n",
svsk->sk_sk, svsk->sk_inuse);
svsk->sk_qued = 0;
}
return svsk;
}
/*
* Having read count bytes from a socket, check whether it
* needs to be re-enqueued.
*/
static inline void
svc_sock_received(struct svc_sock *svsk, int count)
{
spin_lock_bh(&svsk->sk_lock);
if ((svsk->sk_data -= count) < 0) {
printk(KERN_NOTICE "svc: sk_data negative!\n");
svsk->sk_data = 0;
}
svsk->sk_rqstp = NULL; /* XXX */
svsk->sk_busy = 0;
if (svsk->sk_conn || svsk->sk_data || svsk->sk_close) {
dprintk("svc: socket %p re-enqueued after receive\n",
svsk->sk_sk);
svc_sock_enqueue(svsk);
}
spin_unlock_bh(&svsk->sk_lock);
}
/*
* Dequeue a new connection.
*/
static inline void
svc_sock_accepted(struct svc_sock *svsk)
{
spin_lock_bh(&svsk->sk_lock);
svsk->sk_busy = 0;
svsk->sk_conn--;
if (svsk->sk_conn || svsk->sk_data || svsk->sk_close) {
dprintk("svc: socket %p re-enqueued after accept\n",
svsk->sk_sk);
svc_sock_enqueue(svsk);
}
spin_unlock_bh(&svsk->sk_lock);
}
/*
* Release a socket after use.
*/
static inline void
svc_sock_release(struct svc_rqst *rqstp)
{
struct svc_sock *svsk = rqstp->rq_sock;
struct svc_serv *serv = svsk->sk_server;
svc_release_skb(rqstp);
rqstp->rq_sock = NULL;
spin_lock_bh(&serv->sv_lock);
if (!--(svsk->sk_inuse) && svsk->sk_dead) {
spin_unlock_bh(&serv->sv_lock);
dprintk("svc: releasing dead socket\n");
sock_release(svsk->sk_sock);
kfree(svsk);
}
else
spin_unlock_bh(&serv->sv_lock);
}
/*
* External function to wake up a server waiting for data
*/
void
svc_wake_up(struct svc_serv *serv)
{
struct svc_rqst *rqstp;
spin_lock_bh(&serv->sv_lock);
if ((rqstp = serv->sv_threads) != NULL) {
dprintk("svc: daemon %p woken up.\n", rqstp);
/*
svc_serv_dequeue(serv, rqstp);
rqstp->rq_sock = NULL;
*/
wake_up(&rqstp->rq_wait);
}
spin_unlock_bh(&serv->sv_lock);
}
/*
* Generic sendto routine
*/
static int
svc_sendto(struct svc_rqst *rqstp, struct iovec *iov, int nr)
{
mm_segment_t oldfs;
struct svc_sock *svsk = rqstp->rq_sock;
struct socket *sock = svsk->sk_sock;
struct msghdr msg;
int i, buflen, len;
for (i = buflen = 0; i < nr; i++)
buflen += iov[i].iov_len;
msg.msg_name = &rqstp->rq_addr;
msg.msg_namelen = sizeof(rqstp->rq_addr);
msg.msg_iov = iov;
msg.msg_iovlen = nr;
msg.msg_control = NULL;
msg.msg_controllen = 0;
msg.msg_flags = MSG_DONTWAIT;
oldfs = get_fs(); set_fs(KERNEL_DS);
len = sock_sendmsg(sock, &msg, buflen);
set_fs(oldfs);
dprintk("svc: socket %p sendto([%p %Zu... ], %d, %d) = %d\n",
rqstp->rq_sock, iov[0].iov_base, iov[0].iov_len, nr, buflen, len);
return len;
}
/*
* Check input queue length
*/
static int
svc_recv_available(struct svc_sock *svsk)
{
mm_segment_t oldfs;
struct socket *sock = svsk->sk_sock;
int avail, err;
oldfs = get_fs(); set_fs(KERNEL_DS);
err = sock->ops->ioctl(sock, TIOCINQ, (unsigned long) &avail);
set_fs(oldfs);
return (err >= 0)? avail : err;
}
/*
* Generic recvfrom routine.
*/
static int
svc_recvfrom(struct svc_rqst *rqstp, struct iovec *iov, int nr, int buflen)
{
mm_segment_t oldfs;
struct msghdr msg;
struct socket *sock;
int len, alen;
rqstp->rq_addrlen = sizeof(rqstp->rq_addr);
sock = rqstp->rq_sock->sk_sock;
msg.msg_name = &rqstp->rq_addr;
msg.msg_namelen = sizeof(rqstp->rq_addr);
msg.msg_iov = iov;
msg.msg_iovlen = nr;
msg.msg_control = NULL;
msg.msg_controllen = 0;
msg.msg_flags = MSG_DONTWAIT;
oldfs = get_fs(); set_fs(KERNEL_DS);
len = sock_recvmsg(sock, &msg, buflen, MSG_DONTWAIT);
set_fs(oldfs);
/* sock_recvmsg doesn't fill in the name/namelen, so we must..
* possibly we should cache this in the svc_sock structure
* at accept time. FIXME
*/
alen = sizeof(rqstp->rq_addr);
sock->ops->getname(sock, (struct sockaddr *)&rqstp->rq_addr, &alen, 1);
dprintk("svc: socket %p recvfrom(%p, %Zu) = %d\n",
rqstp->rq_sock, iov[0].iov_base, iov[0].iov_len, len);
return len;
}
/*
* INET callback when data has been received on the socket.
*/
static void
svc_udp_data_ready(struct sock *sk, int count)
{
struct svc_sock *svsk = (struct svc_sock *)(sk->user_data);
if (!svsk)
goto out;
dprintk("svc: socket %p(inet %p), count=%d, busy=%d\n",
svsk, sk, count, svsk->sk_busy);
spin_lock_bh(&svsk->sk_lock);
svsk->sk_data = 1;
svc_sock_enqueue(svsk);
spin_unlock_bh(&svsk->sk_lock);
out:
if (sk->sleep && waitqueue_active(sk->sleep))
wake_up_interruptible(sk->sleep);
}
/*
* Receive a datagram from a UDP socket.
*/
static int
svc_udp_recvfrom(struct svc_rqst *rqstp)
{
struct svc_sock *svsk = rqstp->rq_sock;
struct svc_serv *serv = svsk->sk_server;
struct sk_buff *skb;
u32 *data;
int err, len;
svsk->sk_data = 0;
while ((skb = skb_recv_datagram(svsk->sk_sk, 0, 1, &err)) == NULL) {
svc_sock_received(svsk, 0);
if (err == -EAGAIN)
return err;
/* possibly an icmp error */
dprintk("svc: recvfrom returned error %d\n", -err);
}
/* Sorry. */
if (skb_is_nonlinear(skb)) {
if (skb_linearize(skb, GFP_KERNEL) != 0) {
kfree_skb(skb);
svc_sock_received(svsk, 0);
return 0;
}
}
if (skb->ip_summed != CHECKSUM_UNNECESSARY) {
if ((unsigned short)csum_fold(skb_checksum(skb, 0, skb->len, skb->csum))) {
skb_free_datagram(svsk->sk_sk, skb);
svc_sock_received(svsk, 0);
return 0;
}
}
/* There may be more data */
svsk->sk_data = 1;
len = skb->len - sizeof(struct udphdr);
data = (u32 *) (skb->data + sizeof(struct udphdr));
rqstp->rq_skbuff = skb;
rqstp->rq_argbuf.base = data;
rqstp->rq_argbuf.buf = data;
rqstp->rq_argbuf.len = (len >> 2);
/* rqstp->rq_resbuf = rqstp->rq_defbuf; */
rqstp->rq_prot = IPPROTO_UDP;
/* Get sender address */
rqstp->rq_addr.sin_family = AF_INET;
rqstp->rq_addr.sin_port = skb->h.uh->source;
rqstp->rq_addr.sin_addr.s_addr = skb->nh.iph->saddr;
if (serv->sv_stats)
serv->sv_stats->netudpcnt++;
/* One down, maybe more to go... */
svsk->sk_sk->stamp = skb->stamp;
svc_sock_received(svsk, 0);
return len;
}
static int
svc_udp_sendto(struct svc_rqst *rqstp)
{
struct svc_buf *bufp = &rqstp->rq_resbuf;
int error;
/* Set up the first element of the reply iovec.
* Any other iovecs that may be in use have been taken
* care of by the server implementation itself.
*/
/* bufp->base = bufp->area; */
bufp->iov[0].iov_base = bufp->base;
bufp->iov[0].iov_len = bufp->len << 2;
error = svc_sendto(rqstp, bufp->iov, bufp->nriov);
if (error == -ECONNREFUSED)
/* ICMP error on earlier request. */
error = svc_sendto(rqstp, bufp->iov, bufp->nriov);
else if (error == -EAGAIN)
/* Ignore and wait for re-xmit */
error = 0;
return error;
}
static int
svc_udp_init(struct svc_sock *svsk)
{
svsk->sk_sk->data_ready = svc_udp_data_ready;
svsk->sk_recvfrom = svc_udp_recvfrom;
svsk->sk_sendto = svc_udp_sendto;
return 0;
}
/*
* A data_ready event on a listening socket means there's a connection
* pending. Do not use state_change as a substitute for it.
*/
static void
svc_tcp_listen_data_ready(struct sock *sk, int count_unused)
{
struct svc_sock *svsk;
dprintk("svc: socket %p TCP (listen) state change %d\n",
sk, sk->state);
if (sk->state != TCP_ESTABLISHED) {
/* Aborted connection, SYN_RECV or whatever... */
goto out;
}
if (!(svsk = (struct svc_sock *) sk->user_data)) {
printk("svc: socket %p: no user data\n", sk);
goto out;
}
spin_lock_bh(&svsk->sk_lock);
svsk->sk_conn++;
svc_sock_enqueue(svsk);
spin_unlock_bh(&svsk->sk_lock);
out:
if (sk->sleep && waitqueue_active(sk->sleep))
wake_up_interruptible_all(sk->sleep);
}
/*
* A state change on a connected socket means it's dying or dead.
*/
static void
svc_tcp_state_change(struct sock *sk)
{
struct svc_sock *svsk;
dprintk("svc: socket %p TCP (connected) state change %d (svsk %p)\n",
sk, sk->state, sk->user_data);
if (!(svsk = (struct svc_sock *) sk->user_data)) {
printk("svc: socket %p: no user data\n", sk);
goto out;
}
spin_lock_bh(&svsk->sk_lock);
svsk->sk_close = 1;
svc_sock_enqueue(svsk);
spin_unlock_bh(&svsk->sk_lock);
out:
if (sk->sleep && waitqueue_active(sk->sleep))
wake_up_interruptible_all(sk->sleep);
}
static void
svc_tcp_data_ready(struct sock *sk, int count)
{
struct svc_sock * svsk;
dprintk("svc: socket %p TCP data ready (svsk %p)\n",
sk, sk->user_data);
if (!(svsk = (struct svc_sock *)(sk->user_data)))
goto out;
spin_lock_bh(&svsk->sk_lock);
svsk->sk_data++;
svc_sock_enqueue(svsk);
spin_unlock_bh(&svsk->sk_lock);
out:
if (sk->sleep && waitqueue_active(sk->sleep))
wake_up_interruptible(sk->sleep);
}
/*
* Accept a TCP connection
*/
static void
svc_tcp_accept(struct svc_sock *svsk)
{
struct sockaddr_in sin;
struct svc_serv *serv = svsk->sk_server;
struct socket *sock = svsk->sk_sock;
struct socket *newsock;
struct proto_ops *ops;
struct svc_sock *newsvsk;
int err, slen;
dprintk("svc: tcp_accept %p sock %p\n", svsk, sock);
if (!sock)
return;
if (!(newsock = sock_alloc())) {
printk(KERN_WARNING "%s: no more sockets!\n", serv->sv_name);
return;
}
dprintk("svc: tcp_accept %p allocated\n", newsock);
newsock->type = sock->type;
newsock->ops = ops = sock->ops;
if ((err = ops->accept(sock, newsock, O_NONBLOCK)) < 0) {
if (net_ratelimit())
printk(KERN_WARNING "%s: accept failed (err %d)!\n",
serv->sv_name, -err);
goto failed; /* aborted connection or whatever */
}
slen = sizeof(sin);
err = ops->getname(newsock, (struct sockaddr *) &sin, &slen, 1);
if (err < 0) {
if (net_ratelimit())
printk(KERN_WARNING "%s: peername failed (err %d)!\n",
serv->sv_name, -err);
goto failed; /* aborted connection or whatever */
}
/* Ideally, we would want to reject connections from unauthorized
* hosts here, but when we get encription, the IP of the host won't
* tell us anything. For now just warn about unpriv connections.
*/
if (ntohs(sin.sin_port) >= 1024) {
if (net_ratelimit())
printk(KERN_WARNING
"%s: connect from unprivileged port: %u.%u.%u.%u:%d\n",
serv->sv_name,
NIPQUAD(sin.sin_addr.s_addr), ntohs(sin.sin_port));
}
dprintk("%s: connect from %u.%u.%u.%u:%04x\n", serv->sv_name,
NIPQUAD(sin.sin_addr.s_addr), ntohs(sin.sin_port));
if (!(newsvsk = svc_setup_socket(serv, newsock, &err, 0)))
goto failed;
/* Precharge. Data may have arrived on the socket before we
* installed the data_ready callback.
*/
spin_lock_bh(&newsvsk->sk_lock);
newsvsk->sk_data = 1;
newsvsk->sk_temp = 1;
svc_sock_enqueue(newsvsk);
spin_unlock_bh(&newsvsk->sk_lock);
if (serv->sv_stats)
serv->sv_stats->nettcpconn++;
return;
failed:
sock_release(newsock);
return;
}
/*
* Receive data from a TCP socket.
*/
static int
svc_tcp_recvfrom(struct svc_rqst *rqstp)
{
struct svc_sock *svsk = rqstp->rq_sock;
struct svc_serv *serv = svsk->sk_server;
struct svc_buf *bufp = &rqstp->rq_argbuf;
int len, ready, used;
dprintk("svc: tcp_recv %p data %d conn %d close %d\n",
svsk, svsk->sk_data, svsk->sk_conn, svsk->sk_close);
if (svsk->sk_close) {
svc_delete_socket(svsk);
return 0;
}
if (svsk->sk_conn) {
svc_tcp_accept(svsk);
svc_sock_accepted(svsk);
return 0;
}
ready = svsk->sk_data;
/* Receive data. If we haven't got the record length yet, get
* the next four bytes. Otherwise try to gobble up as much as
* possible up to the complete record length.
*/
if (svsk->sk_tcplen < 4) {
unsigned long want = 4 - svsk->sk_tcplen;
struct iovec iov;
iov.iov_base = ((char *) &svsk->sk_reclen) + svsk->sk_tcplen;
iov.iov_len = want;
if ((len = svc_recvfrom(rqstp, &iov, 1, want)) < 0)
goto error;
svsk->sk_tcplen += len;
svsk->sk_reclen = ntohl(svsk->sk_reclen);
if (!(svsk->sk_reclen & 0x80000000)) {
/* FIXME: technically, a record can be fragmented,
* and non-terminal fragments will not have the top
* bit set in the fragment length header.
* But apparently no known nfs clients send fragmented
* records. */
/* FIXME: shutdown socket */
printk(KERN_NOTICE "RPC: bad TCP reclen %08lx",
(unsigned long) svsk->sk_reclen);
return -EIO;
}
svsk->sk_reclen &= 0x7fffffff;
dprintk("svc: TCP record, %d bytes\n", svsk->sk_reclen);
}
/* Check whether enough data is available */
len = svc_recv_available(svsk);
if (len < 0)
goto error;
if (len < svsk->sk_reclen) {
/* FIXME: if sk_reclen > window-size, then we will
* never be able to receive the record, so should
* shutdown the connection
*/
dprintk("svc: incomplete TCP record (%d of %d)\n",
len, svsk->sk_reclen);
svc_sock_received(svsk, ready);
return -EAGAIN; /* record not complete */
}
/* if we think there is only one more record to read, but
* it is bigger than we expect, then two records must have arrived
* together, so pretend we aren't using the record.. */
if (len > svsk->sk_reclen && ready == 1)
used = 0;
else used = 1;
/* Frob argbuf */
bufp->iov[0].iov_base += 4;
bufp->iov[0].iov_len -= 4;
/* Now receive data */
len = svc_recvfrom(rqstp, bufp->iov, bufp->nriov, svsk->sk_reclen);
if (len < 0)
goto error;
dprintk("svc: TCP complete record (%d bytes)\n", len);
/* Position reply write pointer immediately after
* record length */
rqstp->rq_resbuf.buf += 1;
rqstp->rq_resbuf.len = 1;
rqstp->rq_skbuff = 0;
rqstp->rq_argbuf.buf += 1;
rqstp->rq_argbuf.len = (len >> 2);
rqstp->rq_prot = IPPROTO_TCP;
/* Reset TCP read info */
svsk->sk_reclen = 0;
svsk->sk_tcplen = 0;
svc_sock_received(svsk, used);
if (serv->sv_stats)
serv->sv_stats->nettcpcnt++;
return len;
error:
if (len == -EAGAIN) {
dprintk("RPC: TCP recvfrom got EAGAIN\n");
svc_sock_received(svsk, ready); /* Clear data ready */
} else {
printk(KERN_NOTICE "%s: recvfrom returned errno %d\n",
svsk->sk_server->sv_name, -len);
svc_sock_received(svsk, 0);
}
return len;
}
/*
* Send out data on TCP socket.
* FIXME: Make the sendto call non-blocking in order not to hang
* a daemon on a dead client. Requires write queue maintenance.
*/
static int
svc_tcp_sendto(struct svc_rqst *rqstp)
{
struct svc_buf *bufp = &rqstp->rq_resbuf;
int sent;
/* Set up the first element of the reply iovec.
* Any other iovecs that may be in use have been taken
* care of by the server implementation itself.
*/
bufp->iov[0].iov_base = bufp->base;
bufp->iov[0].iov_len = bufp->len << 2;
bufp->base[0] = htonl(0x80000000|((bufp->len << 2) - 4));
sent = svc_sendto(rqstp, bufp->iov, bufp->nriov);
if (sent != bufp->len<<2) {
printk(KERN_NOTICE "rpc-srv/tcp: %s: sent only %d bytes of %d - should shutdown socket\n",
rqstp->rq_sock->sk_server->sv_name,
sent, bufp->len << 2);
/* FIXME: should shutdown the socket, or allocate more memort
* or wait and try again or something. Otherwise
* client will get confused
*/
}
return sent;
}
static int
svc_tcp_init(struct svc_sock *svsk)
{
struct sock *sk = svsk->sk_sk;
svsk->sk_recvfrom = svc_tcp_recvfrom;
svsk->sk_sendto = svc_tcp_sendto;
if (sk->state == TCP_LISTEN) {
dprintk("setting up TCP socket for listening\n");
sk->data_ready = svc_tcp_listen_data_ready;
} else {
dprintk("setting up TCP socket for reading\n");
sk->state_change = svc_tcp_state_change;
sk->data_ready = svc_tcp_data_ready;
svsk->sk_reclen = 0;
svsk->sk_tcplen = 0;
}
return 0;
}
/*
* Receive the next request on any socket.
*/
int
svc_recv(struct svc_serv *serv, struct svc_rqst *rqstp, long timeout)
{
struct svc_sock *svsk;
int len;
DECLARE_WAITQUEUE(wait, current);
dprintk("svc: server %p waiting for data (to = %ld)\n",
rqstp, timeout);
if (rqstp->rq_sock)
printk(KERN_ERR
"svc_recv: service %p, socket not NULL!\n",
rqstp);
if (waitqueue_active(&rqstp->rq_wait))
printk(KERN_ERR
"svc_recv: service %p, wait queue active!\n",
rqstp);
/* Initialize the buffers */
rqstp->rq_argbuf = rqstp->rq_defbuf;
rqstp->rq_resbuf = rqstp->rq_defbuf;
if (signalled())
return -EINTR;
spin_lock_bh(&serv->sv_lock);
if ((svsk = svc_sock_dequeue(serv)) != NULL) {
rqstp->rq_sock = svsk;
svsk->sk_inuse++;
} else {
/* No data pending. Go to sleep */
svc_serv_enqueue(serv, rqstp);
/*
* We have to be able to interrupt this wait
* to bring down the daemons ...
*/
set_current_state(TASK_INTERRUPTIBLE);
add_wait_queue(&rqstp->rq_wait, &wait);
spin_unlock_bh(&serv->sv_lock);
schedule_timeout(timeout);
spin_lock_bh(&serv->sv_lock);
remove_wait_queue(&rqstp->rq_wait, &wait);
if (!(svsk = rqstp->rq_sock)) {
svc_serv_dequeue(serv, rqstp);
spin_unlock_bh(&serv->sv_lock);
dprintk("svc: server %p, no data yet\n", rqstp);
return signalled()? -EINTR : -EAGAIN;
}
}
spin_unlock_bh(&serv->sv_lock);
dprintk("svc: server %p, socket %p, inuse=%d\n",
rqstp, svsk, svsk->sk_inuse);
len = svsk->sk_recvfrom(rqstp);
dprintk("svc: got len=%d\n", len);
/* No data, incomplete (TCP) read, or accept() */
if (len == 0 || len == -EAGAIN) {
svc_sock_release(rqstp);
return -EAGAIN;
}
rqstp->rq_secure = ntohs(rqstp->rq_addr.sin_port) < 1024;
rqstp->rq_userset = 0;
rqstp->rq_verfed = 0;
svc_getlong(&rqstp->rq_argbuf, rqstp->rq_xid);
svc_putlong(&rqstp->rq_resbuf, rqstp->rq_xid);
/* Assume that the reply consists of a single buffer. */
rqstp->rq_resbuf.nriov = 1;
if (serv->sv_stats)
serv->sv_stats->netcnt++;
return len;
}
/*
* Drop request
*/
void
svc_drop(struct svc_rqst *rqstp)
{
dprintk("svc: socket %p dropped request\n", rqstp->rq_sock);
svc_sock_release(rqstp);
}
/*
* Return reply to client.
*/
int
svc_send(struct svc_rqst *rqstp)
{
struct svc_sock *svsk;
int len;
if ((svsk = rqstp->rq_sock) == NULL) {
printk(KERN_WARNING "NULL socket pointer in %s:%d\n",
__FILE__, __LINE__);
return -EFAULT;
}
/* release the receive skb before sending the reply */
svc_release_skb(rqstp);
len = svsk->sk_sendto(rqstp);
svc_sock_release(rqstp);
if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
return 0;
return len;
}
/*
* Initialize socket for RPC use and create svc_sock struct
* XXX: May want to setsockopt SO_SNDBUF and SO_RCVBUF.
*/
static struct svc_sock *
svc_setup_socket(struct svc_serv *serv, struct socket *sock,
int *errp, int pmap_register)
{
struct svc_sock *svsk;
struct sock *inet;
dprintk("svc: svc_setup_socket %p\n", sock);
if (!(svsk = kmalloc(sizeof(*svsk), GFP_KERNEL))) {
*errp = -ENOMEM;
return NULL;
}
memset(svsk, 0, sizeof(*svsk));
inet = sock->sk;
inet->user_data = svsk;
svsk->sk_sock = sock;
svsk->sk_sk = inet;
svsk->sk_ostate = inet->state_change;
svsk->sk_odata = inet->data_ready;
svsk->sk_server = serv;
spin_lock_init(&svsk->sk_lock);
/* Initialize the socket */
if (sock->type == SOCK_DGRAM)
*errp = svc_udp_init(svsk);
else
*errp = svc_tcp_init(svsk);
if (svsk->sk_sk == NULL)
printk(KERN_WARNING "svsk->sk_sk == NULL after svc_prot_init!\n");
/* Register socket with portmapper */
if (*errp >= 0 && pmap_register)
*errp = svc_register(serv, inet->protocol, ntohs(inet->sport));
if (*errp < 0) {
inet->user_data = NULL;
kfree(svsk);
return NULL;
}
spin_lock_bh(&serv->sv_lock);
svsk->sk_list = serv->sv_allsocks;
serv->sv_allsocks = svsk;
spin_unlock_bh(&serv->sv_lock);
dprintk("svc: svc_setup_socket created %p (inet %p)\n",
svsk, svsk->sk_sk);
return svsk;
}
/*
* Create socket for RPC service.
*/
static int
svc_create_socket(struct svc_serv *serv, int protocol, struct sockaddr_in *sin)
{
struct svc_sock *svsk;
struct socket *sock;
int error;
int type;
dprintk("svc: svc_create_socket(%s, %d, %u.%u.%u.%u:%d)\n",
serv->sv_program->pg_name, protocol,
NIPQUAD(sin->sin_addr.s_addr),
ntohs(sin->sin_port));
if (protocol != IPPROTO_UDP && protocol != IPPROTO_TCP) {
printk(KERN_WARNING "svc: only UDP and TCP "
"sockets supported\n");
return -EINVAL;
}
type = (protocol == IPPROTO_UDP)? SOCK_DGRAM : SOCK_STREAM;
if ((error = sock_create(PF_INET, type, protocol, &sock)) < 0)
return error;
if (sin != NULL) {
error = sock->ops->bind(sock, (struct sockaddr *) sin,
sizeof(*sin));
if (error < 0)
goto bummer;
}
if (protocol == IPPROTO_TCP) {
if ((error = sock->ops->listen(sock, 5)) < 0)
goto bummer;
}
if ((svsk = svc_setup_socket(serv, sock, &error, 1)) != NULL)
return 0;
bummer:
dprintk("svc: svc_create_socket error = %d\n", -error);
sock_release(sock);
return error;
}
/*
* Remove a dead socket
*/
void
svc_delete_socket(struct svc_sock *svsk)
{
struct svc_sock **rsk;
struct svc_serv *serv;
struct sock *sk;
dprintk("svc: svc_delete_socket(%p)\n", svsk);
serv = svsk->sk_server;
sk = svsk->sk_sk;
sk->state_change = svsk->sk_ostate;
sk->data_ready = svsk->sk_odata;
spin_lock_bh(&serv->sv_lock);
for (rsk = &serv->sv_allsocks; *rsk; rsk = &(*rsk)->sk_list) {
if (*rsk == svsk)
break;
}
if (!*rsk) {
spin_unlock_bh(&serv->sv_lock);
return;
}
*rsk = svsk->sk_list;
if (svsk->sk_qued)
rpc_remove_list(&serv->sv_sockets, svsk);
svsk->sk_dead = 1;
if (!svsk->sk_inuse) {
spin_unlock_bh(&serv->sv_lock);
sock_release(svsk->sk_sock);
kfree(svsk);
} else {
spin_unlock_bh(&serv->sv_lock);
printk(KERN_NOTICE "svc: server socket destroy delayed\n");
/* svsk->sk_server = NULL; */
}
}
/*
* Make a socket for nfsd and lockd
*/
int
svc_makesock(struct svc_serv *serv, int protocol, unsigned short port)
{
struct sockaddr_in sin;
dprintk("svc: creating socket proto = %d\n", protocol);
sin.sin_family = AF_INET;
sin.sin_addr.s_addr = INADDR_ANY;
sin.sin_port = htons(port);
return svc_create_socket(serv, protocol, &sin);
}