blob: f7858a63c202010ad735fd28447bf9c470b3fc0d [file] [log] [blame]
/* $Id: sungem.c,v 1.43 2001-12-05 08:40:54 davem Exp $
* sungem.c: Sun GEM ethernet driver.
*
* Copyright (C) 2000, 2001 David S. Miller (davem@redhat.com)
*
* Support for Apple GMAC and assorted PHYs by
* Benjamin Herrenscmidt (benh@kernel.crashing.org)
*
* TODO:
* - Get rid of all those nasty mdelay's and replace them
* with schedule_timeout.
* - Implement WOL
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/types.h>
#include <linux/fcntl.h>
#include <linux/interrupt.h>
#include <linux/ptrace.h>
#include <linux/ioport.h>
#include <linux/in.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/errno.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/mii.h>
#include <linux/ethtool.h>
#include <asm/system.h>
#include <asm/bitops.h>
#include <asm/io.h>
#include <asm/byteorder.h>
#include <asm/uaccess.h>
#include <asm/irq.h>
#ifdef __sparc__
#include <asm/idprom.h>
#include <asm/openprom.h>
#include <asm/oplib.h>
#include <asm/pbm.h>
#endif
#ifdef CONFIG_ALL_PPC
#include <asm/pci-bridge.h>
#include <asm/prom.h>
#include <asm/machdep.h>
#include <asm/pmac_feature.h>
#endif
#include "sungem.h"
#define DRV_NAME "sungem"
#define DRV_VERSION "0.96"
#define DRV_RELDATE "11/17/01"
#define DRV_AUTHOR "David S. Miller (davem@redhat.com)"
static char version[] __devinitdata =
DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE " " DRV_AUTHOR "\n";
MODULE_AUTHOR(DRV_AUTHOR);
MODULE_DESCRIPTION("Sun GEM Gbit ethernet driver");
MODULE_LICENSE("GPL");
MODULE_PARM(gem_debug, "i");
MODULE_PARM_DESC(gem_debug, "(ignored)");
MODULE_PARM(link_mode, "i");
static int link_mode;
static u16 link_modes[] __devinitdata = {
BMCR_ANENABLE, /* 0 : autoneg */
0, /* 1 : 10bt half duplex */
BMCR_SPEED100, /* 2 : 100bt half duplex */
BMCR_SPD2, /* verify this */ /* 3 : 1000bt half duplex */
BMCR_FULLDPLX, /* 4 : 10bt full duplex */
BMCR_SPEED100|BMCR_FULLDPLX, /* 5 : 100bt full duplex */
BMCR_SPD2|BMCR_FULLDPLX /* 6 : 1000bt full duplex */
};
#define GEM_MODULE_NAME "gem"
#define PFX GEM_MODULE_NAME ": "
#ifdef GEM_DEBUG
int gem_debug = GEM_DEBUG;
#else
int gem_debug = 1;
#endif
static struct pci_device_id gem_pci_tbl[] __devinitdata = {
{ PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_GEM,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
/* These models only differ from the original GEM in
* that their tx/rx fifos are of a different size and
* they only support 10/100 speeds. -DaveM
*
* Apple's GMAC does support gigabit on machines with
* the BCM54xx PHYs. -BenH
*/
{ PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_RIO_GEM,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
{0, }
};
MODULE_DEVICE_TABLE(pci, gem_pci_tbl);
static u16 __phy_read(struct gem *gp, int reg, int phy_addr)
{
u32 cmd;
int limit = 10000;
cmd = (1 << 30);
cmd |= (2 << 28);
cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
cmd |= (reg << 18) & MIF_FRAME_REGAD;
cmd |= (MIF_FRAME_TAMSB);
writel(cmd, gp->regs + MIF_FRAME);
while (limit--) {
cmd = readl(gp->regs + MIF_FRAME);
if (cmd & MIF_FRAME_TALSB)
break;
udelay(10);
}
if (!limit)
cmd = 0xffff;
return cmd & MIF_FRAME_DATA;
}
static inline u16 phy_read(struct gem *gp, int reg)
{
return __phy_read(gp, reg, gp->mii_phy_addr);
}
static void __phy_write(struct gem *gp, int reg, u16 val, int phy_addr)
{
u32 cmd;
int limit = 10000;
cmd = (1 << 30);
cmd |= (1 << 28);
cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
cmd |= (reg << 18) & MIF_FRAME_REGAD;
cmd |= (MIF_FRAME_TAMSB);
cmd |= (val & MIF_FRAME_DATA);
writel(cmd, gp->regs + MIF_FRAME);
while (limit--) {
cmd = readl(gp->regs + MIF_FRAME);
if (cmd & MIF_FRAME_TALSB)
break;
udelay(10);
}
}
static inline void phy_write(struct gem *gp, int reg, u16 val)
{
__phy_write(gp, reg, val, gp->mii_phy_addr);
}
static void gem_handle_mif_event(struct gem *gp, u32 reg_val, u32 changed_bits)
{
}
static int gem_pcs_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
{
u32 pcs_istat = readl(gp->regs + PCS_ISTAT);
u32 pcs_miistat;
if (!(pcs_istat & PCS_ISTAT_LSC)) {
printk(KERN_ERR "%s: PCS irq but no link status change???\n",
dev->name);
return 0;
}
/* The link status bit latches on zero, so you must
* read it twice in such a case to see a transition
* to the link being up.
*/
pcs_miistat = readl(gp->regs + PCS_MIISTAT);
if (!(pcs_miistat & PCS_MIISTAT_LS))
pcs_miistat |=
(readl(gp->regs + PCS_MIISTAT) &
PCS_MIISTAT_LS);
if (pcs_miistat & PCS_MIISTAT_ANC) {
/* The remote-fault indication is only valid
* when autoneg has completed.
*/
if (pcs_miistat & PCS_MIISTAT_RF)
printk(KERN_INFO "%s: PCS AutoNEG complete, "
"RemoteFault\n", dev->name);
else
printk(KERN_INFO "%s: PCS AutoNEG complete.\n",
dev->name);
}
if (pcs_miistat & PCS_MIISTAT_LS) {
printk(KERN_INFO "%s: PCS link is now up.\n",
dev->name);
} else {
printk(KERN_INFO "%s: PCS link is now down.\n",
dev->name);
/* If this happens and the link timer is not running,
* reset so we re-negotiate.
*/
if (!timer_pending(&gp->link_timer))
return 1;
}
return 0;
}
static int gem_txmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
{
u32 txmac_stat = readl(gp->regs + MAC_TXSTAT);
/* Defer timer expiration is quite normal,
* don't even log the event.
*/
if ((txmac_stat & MAC_TXSTAT_DTE) &&
!(txmac_stat & ~MAC_TXSTAT_DTE))
return 0;
if (txmac_stat & MAC_TXSTAT_URUN) {
printk(KERN_ERR "%s: TX MAC xmit underrun.\n",
dev->name);
gp->net_stats.tx_fifo_errors++;
}
if (txmac_stat & MAC_TXSTAT_MPE) {
printk(KERN_ERR "%s: TX MAC max packet size error.\n",
dev->name);
gp->net_stats.tx_errors++;
}
/* The rest are all cases of one of the 16-bit TX
* counters expiring.
*/
if (txmac_stat & MAC_TXSTAT_NCE)
gp->net_stats.collisions += 0x10000;
if (txmac_stat & MAC_TXSTAT_ECE) {
gp->net_stats.tx_aborted_errors += 0x10000;
gp->net_stats.collisions += 0x10000;
}
if (txmac_stat & MAC_TXSTAT_LCE) {
gp->net_stats.tx_aborted_errors += 0x10000;
gp->net_stats.collisions += 0x10000;
}
/* We do not keep track of MAC_TXSTAT_FCE and
* MAC_TXSTAT_PCE events.
*/
return 0;
}
static int gem_rxmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
{
u32 rxmac_stat = readl(gp->regs + MAC_RXSTAT);
if (rxmac_stat & MAC_RXSTAT_OFLW) {
printk(KERN_ERR "%s: RX MAC fifo overflow.\n",
dev->name);
gp->net_stats.rx_over_errors++;
gp->net_stats.rx_fifo_errors++;
}
if (rxmac_stat & MAC_RXSTAT_ACE)
gp->net_stats.rx_frame_errors += 0x10000;
if (rxmac_stat & MAC_RXSTAT_CCE)
gp->net_stats.rx_crc_errors += 0x10000;
if (rxmac_stat & MAC_RXSTAT_LCE)
gp->net_stats.rx_length_errors += 0x10000;
/* We do not track MAC_RXSTAT_FCE and MAC_RXSTAT_VCE
* events.
*/
return 0;
}
static int gem_mac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
{
u32 mac_cstat = readl(gp->regs + MAC_CSTAT);
/* This interrupt is just for pause frame and pause
* tracking. It is useful for diagnostics and debug
* but probably by default we will mask these events.
*/
if (mac_cstat & MAC_CSTAT_PS)
gp->pause_entered++;
if (mac_cstat & MAC_CSTAT_PRCV)
gp->pause_last_time_recvd = (mac_cstat >> 16);
return 0;
}
static int gem_mif_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
{
u32 mif_status = readl(gp->regs + MIF_STATUS);
u32 reg_val, changed_bits;
reg_val = (mif_status & MIF_STATUS_DATA) >> 16;
changed_bits = (mif_status & MIF_STATUS_STAT);
gem_handle_mif_event(gp, reg_val, changed_bits);
return 0;
}
static int gem_pci_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
{
u32 pci_estat = readl(gp->regs + GREG_PCIESTAT);
if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
printk(KERN_ERR "%s: PCI error [%04x] ",
dev->name, pci_estat);
if (pci_estat & GREG_PCIESTAT_BADACK)
printk("<No ACK64# during ABS64 cycle> ");
if (pci_estat & GREG_PCIESTAT_DTRTO)
printk("<Delayed transaction timeout> ");
if (pci_estat & GREG_PCIESTAT_OTHER)
printk("<other>");
printk("\n");
} else {
pci_estat |= GREG_PCIESTAT_OTHER;
printk(KERN_ERR "%s: PCI error\n", dev->name);
}
if (pci_estat & GREG_PCIESTAT_OTHER) {
u16 pci_cfg_stat;
/* Interrogate PCI config space for the
* true cause.
*/
pci_read_config_word(gp->pdev, PCI_STATUS,
&pci_cfg_stat);
printk(KERN_ERR "%s: Read PCI cfg space status [%04x]\n",
dev->name, pci_cfg_stat);
if (pci_cfg_stat & PCI_STATUS_PARITY)
printk(KERN_ERR "%s: PCI parity error detected.\n",
dev->name);
if (pci_cfg_stat & PCI_STATUS_SIG_TARGET_ABORT)
printk(KERN_ERR "%s: PCI target abort.\n",
dev->name);
if (pci_cfg_stat & PCI_STATUS_REC_TARGET_ABORT)
printk(KERN_ERR "%s: PCI master acks target abort.\n",
dev->name);
if (pci_cfg_stat & PCI_STATUS_REC_MASTER_ABORT)
printk(KERN_ERR "%s: PCI master abort.\n",
dev->name);
if (pci_cfg_stat & PCI_STATUS_SIG_SYSTEM_ERROR)
printk(KERN_ERR "%s: PCI system error SERR#.\n",
dev->name);
if (pci_cfg_stat & PCI_STATUS_DETECTED_PARITY)
printk(KERN_ERR "%s: PCI parity error.\n",
dev->name);
/* Write the error bits back to clear them. */
pci_cfg_stat &= (PCI_STATUS_PARITY |
PCI_STATUS_SIG_TARGET_ABORT |
PCI_STATUS_REC_TARGET_ABORT |
PCI_STATUS_REC_MASTER_ABORT |
PCI_STATUS_SIG_SYSTEM_ERROR |
PCI_STATUS_DETECTED_PARITY);
pci_write_config_word(gp->pdev,
PCI_STATUS, pci_cfg_stat);
}
/* For all PCI errors, we should reset the chip. */
return 1;
}
/* All non-normal interrupt conditions get serviced here.
* Returns non-zero if we should just exit the interrupt
* handler right now (ie. if we reset the card which invalidates
* all of the other original irq status bits).
*/
static int gem_abnormal_irq(struct net_device *dev, struct gem *gp, u32 gem_status)
{
if (gem_status & GREG_STAT_RXNOBUF) {
/* Frame arrived, no free RX buffers available. */
gp->net_stats.rx_dropped++;
}
if (gem_status & GREG_STAT_RXTAGERR) {
/* corrupt RX tag framing */
gp->net_stats.rx_errors++;
goto do_reset;
}
if (gem_status & GREG_STAT_PCS) {
if (gem_pcs_interrupt(dev, gp, gem_status))
goto do_reset;
}
if (gem_status & GREG_STAT_TXMAC) {
if (gem_txmac_interrupt(dev, gp, gem_status))
goto do_reset;
}
if (gem_status & GREG_STAT_RXMAC) {
if (gem_rxmac_interrupt(dev, gp, gem_status))
goto do_reset;
}
if (gem_status & GREG_STAT_MAC) {
if (gem_mac_interrupt(dev, gp, gem_status))
goto do_reset;
}
if (gem_status & GREG_STAT_MIF) {
if (gem_mif_interrupt(dev, gp, gem_status))
goto do_reset;
}
if (gem_status & GREG_STAT_PCIERR) {
if (gem_pci_interrupt(dev, gp, gem_status))
goto do_reset;
}
return 0;
do_reset:
gp->reset_task_pending = 1;
schedule_task(&gp->reset_task);
return 1;
}
static __inline__ void gem_tx(struct net_device *dev, struct gem *gp, u32 gem_status)
{
int entry, limit;
entry = gp->tx_old;
limit = ((gem_status & GREG_STAT_TXNR) >> GREG_STAT_TXNR_SHIFT);
while (entry != limit) {
struct sk_buff *skb;
struct gem_txd *txd;
dma_addr_t dma_addr;
u32 dma_len;
int frag;
skb = gp->tx_skbs[entry];
if (skb_shinfo(skb)->nr_frags) {
int last = entry + skb_shinfo(skb)->nr_frags;
int walk = entry;
int incomplete = 0;
last &= (TX_RING_SIZE - 1);
for (;;) {
walk = NEXT_TX(walk);
if (walk == limit)
incomplete = 1;
if (walk == last)
break;
}
if (incomplete)
break;
}
gp->tx_skbs[entry] = NULL;
gp->net_stats.tx_bytes += skb->len;
for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
txd = &gp->init_block->txd[entry];
dma_addr = le64_to_cpu(txd->buffer);
dma_len = le64_to_cpu(txd->control_word) & TXDCTRL_BUFSZ;
pci_unmap_page(gp->pdev, dma_addr, dma_len, PCI_DMA_TODEVICE);
entry = NEXT_TX(entry);
}
gp->net_stats.tx_packets++;
dev_kfree_skb_irq(skb);
}
gp->tx_old = entry;
if (netif_queue_stopped(dev) &&
TX_BUFFS_AVAIL(gp) > 0)
netif_wake_queue(dev);
}
static __inline__ void gem_post_rxds(struct gem *gp, int limit)
{
int cluster_start, curr, count, kick;
cluster_start = curr = (gp->rx_new & ~(4 - 1));
count = 0;
kick = -1;
while (curr != limit) {
curr = NEXT_RX(curr);
if (++count == 4) {
struct gem_rxd *rxd =
&gp->init_block->rxd[cluster_start];
for (;;) {
rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
rxd++;
cluster_start = NEXT_RX(cluster_start);
if (cluster_start == curr)
break;
}
kick = curr;
count = 0;
}
}
if (kick >= 0)
writel(kick, gp->regs + RXDMA_KICK);
}
static void gem_rx(struct gem *gp)
{
int entry, drops;
entry = gp->rx_new;
drops = 0;
for (;;) {
struct gem_rxd *rxd = &gp->init_block->rxd[entry];
struct sk_buff *skb;
u64 status = cpu_to_le64(rxd->status_word);
dma_addr_t dma_addr;
int len;
if ((status & RXDCTRL_OWN) != 0)
break;
skb = gp->rx_skbs[entry];
len = (status & RXDCTRL_BUFSZ) >> 16;
if ((len < ETH_ZLEN) || (status & RXDCTRL_BAD)) {
gp->net_stats.rx_errors++;
if (len < ETH_ZLEN)
gp->net_stats.rx_length_errors++;
if (len & RXDCTRL_BAD)
gp->net_stats.rx_crc_errors++;
/* We'll just return it to GEM. */
drop_it:
gp->net_stats.rx_dropped++;
goto next;
}
dma_addr = cpu_to_le64(rxd->buffer);
if (len > RX_COPY_THRESHOLD) {
struct sk_buff *new_skb;
new_skb = gem_alloc_skb(RX_BUF_ALLOC_SIZE(gp), GFP_ATOMIC);
if (new_skb == NULL) {
drops++;
goto drop_it;
}
pci_unmap_page(gp->pdev, dma_addr,
RX_BUF_ALLOC_SIZE(gp),
PCI_DMA_FROMDEVICE);
gp->rx_skbs[entry] = new_skb;
new_skb->dev = gp->dev;
skb_put(new_skb, (ETH_FRAME_LEN + RX_OFFSET));
rxd->buffer = cpu_to_le64(pci_map_page(gp->pdev,
virt_to_page(new_skb->data),
((unsigned long) new_skb->data &
~PAGE_MASK),
RX_BUF_ALLOC_SIZE(gp),
PCI_DMA_FROMDEVICE));
skb_reserve(new_skb, RX_OFFSET);
/* Trim the original skb for the netif. */
skb_trim(skb, len);
} else {
struct sk_buff *copy_skb = dev_alloc_skb(len + 2);
if (copy_skb == NULL) {
drops++;
goto drop_it;
}
copy_skb->dev = gp->dev;
skb_reserve(copy_skb, 2);
skb_put(copy_skb, len);
pci_dma_sync_single(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE);
memcpy(copy_skb->data, skb->data, len);
/* We'll reuse the original ring buffer. */
skb = copy_skb;
}
skb->csum = ntohs((status & RXDCTRL_TCPCSUM) ^ 0xffff);
skb->ip_summed = CHECKSUM_HW;
skb->protocol = eth_type_trans(skb, gp->dev);
netif_rx(skb);
gp->net_stats.rx_packets++;
gp->net_stats.rx_bytes += len;
gp->dev->last_rx = jiffies;
next:
entry = NEXT_RX(entry);
}
gem_post_rxds(gp, entry);
gp->rx_new = entry;
if (drops)
printk(KERN_INFO "%s: Memory squeeze, deferring packet.\n",
gp->dev->name);
}
static void gem_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
struct net_device *dev = dev_id;
struct gem *gp = dev->priv;
u32 gem_status = readl(gp->regs + GREG_STAT);
spin_lock(&gp->lock);
if (gem_status & GREG_STAT_ABNORMAL) {
if (gem_abnormal_irq(dev, gp, gem_status))
goto out;
}
if (gem_status & (GREG_STAT_TXALL | GREG_STAT_TXINTME))
gem_tx(dev, gp, gem_status);
if (gem_status & GREG_STAT_RXDONE)
gem_rx(gp);
out:
spin_unlock(&gp->lock);
}
static void gem_tx_timeout(struct net_device *dev)
{
struct gem *gp = dev->priv;
printk(KERN_ERR "%s: transmit timed out, resetting\n", dev->name);
if (!gp->hw_running) {
printk("%s: hrm.. hw not running !\n", dev->name);
return;
}
printk(KERN_ERR "%s: TX_STATE[%08x:%08x:%08x]\n",
dev->name,
readl(gp->regs + TXDMA_CFG),
readl(gp->regs + MAC_TXSTAT),
readl(gp->regs + MAC_TXCFG));
printk(KERN_ERR "%s: RX_STATE[%08x:%08x:%08x]\n",
dev->name,
readl(gp->regs + RXDMA_CFG),
readl(gp->regs + MAC_RXSTAT),
readl(gp->regs + MAC_RXCFG));
spin_lock_irq(&gp->lock);
gp->reset_task_pending = 1;
schedule_task(&gp->reset_task);
spin_unlock_irq(&gp->lock);
}
static __inline__ int gem_intme(int entry)
{
/* Algorithm: IRQ every 1/2 of descriptors. */
if (!(entry & ((TX_RING_SIZE>>1)-1)))
return 1;
return 0;
}
static int gem_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct gem *gp = dev->priv;
int entry;
u64 ctrl;
ctrl = 0;
if (skb->ip_summed == CHECKSUM_HW) {
u64 csum_start_off, csum_stuff_off;
csum_start_off = (u64) (skb->h.raw - skb->data);
csum_stuff_off = (u64) ((skb->h.raw + skb->csum) - skb->data);
ctrl = (TXDCTRL_CENAB |
(csum_start_off << 15) |
(csum_stuff_off << 21));
}
spin_lock_irq(&gp->lock);
if (TX_BUFFS_AVAIL(gp) <= (skb_shinfo(skb)->nr_frags + 1)) {
netif_stop_queue(dev);
spin_unlock_irq(&gp->lock);
return 1;
}
entry = gp->tx_new;
gp->tx_skbs[entry] = skb;
if (skb_shinfo(skb)->nr_frags == 0) {
struct gem_txd *txd = &gp->init_block->txd[entry];
dma_addr_t mapping;
u32 len;
len = skb->len;
mapping = pci_map_page(gp->pdev,
virt_to_page(skb->data),
((unsigned long) skb->data &
~PAGE_MASK),
len, PCI_DMA_TODEVICE);
ctrl |= TXDCTRL_SOF | TXDCTRL_EOF | len;
if (gem_intme(entry))
ctrl |= TXDCTRL_INTME;
txd->buffer = cpu_to_le64(mapping);
txd->control_word = cpu_to_le64(ctrl);
entry = NEXT_TX(entry);
} else {
struct gem_txd *txd;
u32 first_len;
u64 intme;
dma_addr_t first_mapping;
int frag, first_entry = entry;
intme = 0;
if (gem_intme(entry))
intme |= TXDCTRL_INTME;
/* We must give this initial chunk to the device last.
* Otherwise we could race with the device.
*/
first_len = skb->len - skb->data_len;
first_mapping = pci_map_page(gp->pdev, virt_to_page(skb->data),
((unsigned long) skb->data & ~PAGE_MASK),
first_len, PCI_DMA_TODEVICE);
entry = NEXT_TX(entry);
for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
u32 len;
dma_addr_t mapping;
u64 this_ctrl;
len = this_frag->size;
mapping = pci_map_page(gp->pdev,
this_frag->page,
this_frag->page_offset,
len, PCI_DMA_TODEVICE);
this_ctrl = ctrl;
if (frag == skb_shinfo(skb)->nr_frags - 1)
this_ctrl |= TXDCTRL_EOF;
txd = &gp->init_block->txd[entry];
txd->buffer = cpu_to_le64(mapping);
txd->control_word = cpu_to_le64(this_ctrl | len);
if (gem_intme(entry))
intme |= TXDCTRL_INTME;
entry = NEXT_TX(entry);
}
txd = &gp->init_block->txd[first_entry];
txd->buffer = cpu_to_le64(first_mapping);
txd->control_word =
cpu_to_le64(ctrl | TXDCTRL_SOF | intme | first_len);
}
gp->tx_new = entry;
if (TX_BUFFS_AVAIL(gp) <= 0)
netif_stop_queue(dev);
writel(gp->tx_new, gp->regs + TXDMA_KICK);
spin_unlock_irq(&gp->lock);
dev->trans_start = jiffies;
return 0;
}
/* Jumbo-grams don't seem to work :-( */
#if 1
#define MAX_MTU 1500
#else
#define MAX_MTU 9000
#endif
static int gem_change_mtu(struct net_device *dev, int new_mtu)
{
struct gem *gp = dev->priv;
if (new_mtu < 0 || new_mtu > MAX_MTU)
return -EINVAL;
spin_lock_irq(&gp->lock);
dev->mtu = new_mtu;
gp->reset_task_pending = 1;
schedule_task(&gp->reset_task);
spin_unlock_irq(&gp->lock);
flush_scheduled_tasks();
return 0;
}
#define STOP_TRIES 32
static void gem_stop(struct gem *gp)
{
int limit;
u32 val;
/* Make sure we won't get any more interrupts */
writel(0xffffffff, gp->regs + GREG_IMASK);
/* Reset the chip */
writel(GREG_SWRST_TXRST | GREG_SWRST_RXRST, gp->regs + GREG_SWRST);
limit = STOP_TRIES;
do {
udelay(20);
val = readl(gp->regs + GREG_SWRST);
if (limit-- <= 0)
break;
} while (val & (GREG_SWRST_TXRST | GREG_SWRST_RXRST));
if (limit <= 0)
printk(KERN_ERR "gem: SW reset is ghetto.\n");
}
static void gem_start_dma(struct gem *gp)
{
unsigned long val;
/* We are ready to rock, turn everything on. */
val = readl(gp->regs + TXDMA_CFG);
writel(val | TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
val = readl(gp->regs + RXDMA_CFG);
writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
val = readl(gp->regs + MAC_TXCFG);
writel(val | MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
val = readl(gp->regs + MAC_RXCFG);
writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
(void) readl(gp->regs + MAC_RXCFG);
udelay(100);
writel(GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
}
/* Link modes of the BCM5400 PHY */
static int phy_BCM5400_link_table[8][3] = {
{ 0, 0, 0 }, /* No link */
{ 0, 0, 0 }, /* 10BT Half Duplex */
{ 1, 0, 0 }, /* 10BT Full Duplex */
{ 0, 1, 0 }, /* 100BT Half Duplex */
{ 0, 1, 0 }, /* 100BT Half Duplex */
{ 1, 1, 0 }, /* 100BT Full Duplex*/
{ 1, 0, 1 }, /* 1000BT */
{ 1, 0, 1 }, /* 1000BT */
};
static void gem_begin_auto_negotiation(struct gem *gp, struct ethtool_cmd *ep)
{
u16 ctl;
/* Setup link parameters */
if (!ep)
goto start_aneg;
if (ep->autoneg == AUTONEG_ENABLE) {
/* TODO: parse ep->advertising */
gp->link_advertise |= (ADVERTISE_10HALF | ADVERTISE_10FULL);
gp->link_advertise |= (ADVERTISE_100HALF | ADVERTISE_100FULL);
/* Can I advertise gigabit here ? I'd need BCM PHY docs... */
gp->link_cntl = BMCR_ANENABLE;
} else {
gp->link_cntl = 0;
if (ep->speed == SPEED_100)
gp->link_cntl |= BMCR_SPEED100;
else if (ep->speed == SPEED_1000 && gp->gigabit_capable)
/* Hrm... check if this is right... */
gp->link_cntl |= BMCR_SPD2;
if (ep->duplex == DUPLEX_FULL)
gp->link_cntl |= BMCR_FULLDPLX;
}
start_aneg:
spin_lock_irq(&gp->lock);
if (!gp->hw_running) {
spin_unlock_irq(&gp->lock);
return;
}
/* Configure PHY & start aneg */
ctl = phy_read(gp, MII_BMCR);
ctl &= ~(BMCR_FULLDPLX|BMCR_SPEED100|BMCR_ANENABLE);
ctl |= gp->link_cntl;
if (ctl & BMCR_ANENABLE) {
ctl |= BMCR_ANRESTART;
gp->lstate = link_aneg;
} else {
gp->lstate = link_force_ok;
}
phy_write(gp, MII_BMCR, ctl);
gp->timer_ticks = 0;
gp->link_timer.expires = jiffies + ((12 * HZ) / 10);
add_timer(&gp->link_timer);
spin_unlock_irq(&gp->lock);
}
static void gem_read_mii_link_mode(struct gem *gp, int *fd, int *spd, int *pause)
{
u32 val;
*fd = 0;
*spd = 10;
*pause = 0;
if (gp->phy_mod == phymod_bcm5400 ||
gp->phy_mod == phymod_bcm5401 ||
gp->phy_mod == phymod_bcm5411) {
int link_mode;
val = phy_read(gp, MII_BCM5400_AUXSTATUS);
link_mode = ((val & MII_BCM5400_AUXSTATUS_LINKMODE_MASK) >>
MII_BCM5400_AUXSTATUS_LINKMODE_SHIFT);
*fd = phy_BCM5400_link_table[link_mode][0];
*spd = phy_BCM5400_link_table[link_mode][2] ?
1000 :
(phy_BCM5400_link_table[link_mode][1] ? 100 : 10);
val = phy_read(gp, MII_LPA);
if (val & LPA_PAUSE)
*pause = 1;
} else {
val = phy_read(gp, MII_LPA);
if (val & (LPA_10FULL | LPA_100FULL))
*fd = 1;
if (val & (LPA_100FULL | LPA_100HALF))
*spd = 100;
}
}
/* A link-up condition has occurred, initialize and enable the
* rest of the chip.
*/
static void gem_set_link_modes(struct gem *gp)
{
u32 val;
int full_duplex, speed, pause;
full_duplex = 0;
speed = 10;
pause = 0;
if (gp->phy_type == phy_mii_mdio0 ||
gp->phy_type == phy_mii_mdio1) {
val = phy_read(gp, MII_BMCR);
if (val & BMCR_ANENABLE)
gem_read_mii_link_mode(gp, &full_duplex, &speed, &pause);
else {
if (val & BMCR_FULLDPLX)
full_duplex = 1;
if (val & BMCR_SPEED100)
speed = 100;
}
} else {
u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
if (pcs_lpa & PCS_MIIADV_FD)
full_duplex = 1;
speed = 1000;
}
printk(KERN_INFO "%s: Link is up at %d Mbps, %s-duplex.\n",
gp->dev->name, speed, (full_duplex ? "full" : "half"));
val = (MAC_TXCFG_EIPG0 | MAC_TXCFG_NGU);
if (full_duplex) {
val |= (MAC_TXCFG_ICS | MAC_TXCFG_ICOLL);
} else {
/* MAC_TXCFG_NBO must be zero. */
}
writel(val, gp->regs + MAC_TXCFG);
val = (MAC_XIFCFG_OE | MAC_XIFCFG_LLED);
if (!full_duplex &&
(gp->phy_type == phy_mii_mdio0 ||
gp->phy_type == phy_mii_mdio1)) {
val |= MAC_XIFCFG_DISE;
} else if (full_duplex) {
val |= MAC_XIFCFG_FLED;
}
if (speed == 1000)
val |= (MAC_XIFCFG_GMII);
writel(val, gp->regs + MAC_XIFCFG);
/* If gigabit and half-duplex, enable carrier extension
* mode. Else, disable it.
*/
if (speed == 1000 && !full_duplex) {
val = readl(gp->regs + MAC_TXCFG);
writel(val | MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
val = readl(gp->regs + MAC_RXCFG);
writel(val | MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
} else {
val = readl(gp->regs + MAC_TXCFG);
writel(val & ~MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
val = readl(gp->regs + MAC_RXCFG);
writel(val & ~MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
}
if (gp->phy_type == phy_serialink ||
gp->phy_type == phy_serdes) {
u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
if (pcs_lpa & (PCS_MIIADV_SP | PCS_MIIADV_AP))
pause = 1;
}
if (!full_duplex)
writel(512, gp->regs + MAC_STIME);
else
writel(64, gp->regs + MAC_STIME);
val = readl(gp->regs + MAC_MCCFG);
if (pause)
val |= (MAC_MCCFG_SPE | MAC_MCCFG_RPE);
else
val &= ~(MAC_MCCFG_SPE | MAC_MCCFG_RPE);
writel(val, gp->regs + MAC_MCCFG);
gem_start_dma(gp);
}
static int gem_mdio_link_not_up(struct gem *gp)
{
if (gp->lstate == link_force_ret) {
printk(KERN_INFO "%s: Autoneg failed again, keeping"
" forced mode\n", gp->dev->name);
phy_write(gp, MII_BMCR, gp->link_fcntl);
gp->timer_ticks = 5;
gp->lstate = link_force_ok;
} else if (gp->lstate == link_aneg) {
u16 val = phy_read(gp, MII_BMCR);
/* Try forced modes. */
val &= ~(BMCR_ANRESTART | BMCR_ANENABLE);
val &= ~(BMCR_FULLDPLX);
val |= BMCR_SPEED100;
phy_write(gp, MII_BMCR, val);
gp->timer_ticks = 5;
gp->lstate = link_force_try;
} else {
/* Downgrade from 100 to 10 Mbps if necessary.
* If already at 10Mbps, warn user about the
* situation every 10 ticks.
*/
u16 val = phy_read(gp, MII_BMCR);
if (val & BMCR_SPEED100) {
val &= ~BMCR_SPEED100;
phy_write(gp, MII_BMCR, val);
gp->timer_ticks = 5;
} else {
return 1;
}
}
return 0;
}
static void gem_init_rings(struct gem *, int);
static void gem_init_hw(struct gem *, int);
static void gem_reset_task(void *data)
{
struct gem *gp = (struct gem *) data;
/* The link went down, we reset the ring, but keep
* DMA stopped. Todo: Use this function for reset
* on error as well.
*/
if (gp->hw_running && gp->opened) {
/* Make sure we don't get interrupts or tx packets */
spin_lock_irq(&gp->lock);
netif_stop_queue(gp->dev);
writel(0xffffffff, gp->regs + GREG_IMASK);
spin_unlock_irq(&gp->lock);
/* Reset the chip & rings */
gem_stop(gp);
gem_init_rings(gp, 0);
gem_init_hw(gp, 0);
netif_wake_queue(gp->dev);
}
gp->reset_task_pending = 0;
}
static void gem_link_timer(unsigned long data)
{
struct gem *gp = (struct gem *) data;
if (!gp->hw_running)
return;
/* If the link of task is still pending, we just
* reschedule the link timer
*/
if (gp->reset_task_pending)
goto restart;
spin_lock_irq(&gp->lock);
if (gp->phy_type == phy_mii_mdio0 ||
gp->phy_type == phy_mii_mdio1) {
u16 val = phy_read(gp, MII_BMSR);
int up;
/* When using autoneg, we really wait for ANEGCOMPLETE or we may
* get a "transcient" incorrect link state
*/
#if 0
{
u16 cntl = phy_read(gp, MII_BMCR);
if (cntl & BMCR_ANENABLE)
up = (val & (BMSR_ANEGCOMPLETE | BMSR_LSTATUS)) == (BMSR_ANEGCOMPLETE | BMSR_LSTATUS);
else
up = (val & BMSR_LSTATUS) != 0;
}
#else
up = (val & BMSR_LSTATUS) != 0;
#endif
if (up) {
/* Ok, here we got a link. If we had it due to a forced
* fallback, and we were configured for autoneg, we do
* retry a short autoneg pass. If you know your hub is
* broken, use ethtool ;)
*/
if (gp->lstate == link_force_try && (gp->link_cntl & BMCR_ANENABLE)) {
gp->lstate = link_force_ret;
gp->link_fcntl = phy_read(gp, MII_BMCR);
gp->timer_ticks = 5;
printk(KERN_INFO "%s: Got link after fallback, retrying autoneg"
" once...\n", gp->dev->name);
phy_write(gp, MII_BMCR,
gp->link_fcntl | BMCR_ANENABLE | BMCR_ANRESTART);
} else if (gp->lstate != link_up) {
gp->lstate = link_up;
if (gp->opened)
gem_set_link_modes(gp);
}
} else {
int restart = 0;
/* If the link was previously up, we restart the
* whole process
*/
if (gp->lstate == link_up) {
gp->lstate = link_down;
printk(KERN_INFO "%s: Link down\n", gp->dev->name);
gp->reset_task_pending = 1;
schedule_task(&gp->reset_task);
restart = 1;
} else if (++gp->timer_ticks > 10)
restart = gem_mdio_link_not_up(gp);
if (restart) {
spin_unlock_irq(&gp->lock);
gem_begin_auto_negotiation(gp, NULL);
return;
}
}
} else {
u32 val = readl(gp->regs + PCS_MIISTAT);
if (!(val & PCS_MIISTAT_LS))
val = readl(gp->regs + PCS_MIISTAT);
if ((val & PCS_MIISTAT_LS) != 0) {
gp->lstate = link_up;
if (gp->opened)
gem_set_link_modes(gp);
}
}
restart:
gp->link_timer.expires = jiffies + ((12 * HZ) / 10);
add_timer(&gp->link_timer);
spin_unlock_irq(&gp->lock);
}
static void gem_clean_rings(struct gem *gp)
{
struct gem_init_block *gb = gp->init_block;
struct sk_buff *skb;
int i;
dma_addr_t dma_addr;
for (i = 0; i < RX_RING_SIZE; i++) {
struct gem_rxd *rxd;
rxd = &gb->rxd[i];
if (gp->rx_skbs[i] != NULL) {
skb = gp->rx_skbs[i];
dma_addr = le64_to_cpu(rxd->buffer);
pci_unmap_page(gp->pdev, dma_addr,
RX_BUF_ALLOC_SIZE(gp),
PCI_DMA_FROMDEVICE);
dev_kfree_skb_any(skb);
gp->rx_skbs[i] = NULL;
}
rxd->status_word = 0;
rxd->buffer = 0;
}
for (i = 0; i < TX_RING_SIZE; i++) {
if (gp->tx_skbs[i] != NULL) {
struct gem_txd *txd;
int frag;
skb = gp->tx_skbs[i];
gp->tx_skbs[i] = NULL;
for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
txd = &gb->txd[i];
dma_addr = le64_to_cpu(txd->buffer);
pci_unmap_page(gp->pdev, dma_addr,
le64_to_cpu(txd->control_word) &
TXDCTRL_BUFSZ, PCI_DMA_TODEVICE);
if (frag != skb_shinfo(skb)->nr_frags)
i++;
}
dev_kfree_skb_any(skb);
}
}
}
static void gem_init_rings(struct gem *gp, int from_irq)
{
struct gem_init_block *gb = gp->init_block;
struct net_device *dev = gp->dev;
int i, gfp_flags = GFP_KERNEL;
dma_addr_t dma_addr;
if (from_irq)
gfp_flags = GFP_ATOMIC;
gp->rx_new = gp->rx_old = gp->tx_new = gp->tx_old = 0;
gem_clean_rings(gp);
for (i = 0; i < RX_RING_SIZE; i++) {
struct sk_buff *skb;
struct gem_rxd *rxd = &gb->rxd[i];
skb = gem_alloc_skb(RX_BUF_ALLOC_SIZE(gp), gfp_flags);
if (!skb) {
rxd->buffer = 0;
rxd->status_word = 0;
continue;
}
gp->rx_skbs[i] = skb;
skb->dev = dev;
skb_put(skb, (ETH_FRAME_LEN + RX_OFFSET));
dma_addr = pci_map_page(gp->pdev,
virt_to_page(skb->data),
((unsigned long) skb->data &
~PAGE_MASK),
RX_BUF_ALLOC_SIZE(gp),
PCI_DMA_FROMDEVICE);
rxd->buffer = cpu_to_le64(dma_addr);
rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
skb_reserve(skb, RX_OFFSET);
}
for (i = 0; i < TX_RING_SIZE; i++) {
struct gem_txd *txd = &gb->txd[i];
txd->control_word = 0;
txd->buffer = 0;
}
}
static int gem_reset_one_mii_phy(struct gem *gp, int phy_addr)
{
u16 val;
int limit = 10000;
val = __phy_read(gp, MII_BMCR, phy_addr);
val &= ~BMCR_ISOLATE;
val |= BMCR_RESET;
__phy_write(gp, MII_BMCR, val, phy_addr);
udelay(100);
while (limit--) {
val = __phy_read(gp, MII_BMCR, phy_addr);
if ((val & BMCR_RESET) == 0)
break;
udelay(10);
}
if ((val & BMCR_ISOLATE) && limit > 0)
__phy_write(gp, MII_BMCR, val & ~BMCR_ISOLATE, phy_addr);
return (limit <= 0);
}
static void gem_init_bcm5201_phy(struct gem *gp)
{
u16 data;
data = phy_read(gp, MII_BCM5201_MULTIPHY);
data &= ~MII_BCM5201_MULTIPHY_SUPERISOLATE;
phy_write(gp, MII_BCM5201_MULTIPHY, data);
}
static void gem_init_bcm5400_phy(struct gem *gp)
{
u16 data;
/* Configure for gigabit full duplex */
data = phy_read(gp, MII_BCM5400_AUXCONTROL);
data |= MII_BCM5400_AUXCONTROL_PWR10BASET;
phy_write(gp, MII_BCM5400_AUXCONTROL, data);
data = phy_read(gp, MII_BCM5400_GB_CONTROL);
data |= MII_BCM5400_GB_CONTROL_FULLDUPLEXCAP;
phy_write(gp, MII_BCM5400_GB_CONTROL, data);
mdelay(10);
/* Reset and configure cascaded 10/100 PHY */
gem_reset_one_mii_phy(gp, 0x1f);
data = __phy_read(gp, MII_BCM5201_MULTIPHY, 0x1f);
data |= MII_BCM5201_MULTIPHY_SERIALMODE;
__phy_write(gp, MII_BCM5201_MULTIPHY, data, 0x1f);
data = phy_read(gp, MII_BCM5400_AUXCONTROL);
data &= ~MII_BCM5400_AUXCONTROL_PWR10BASET;
phy_write(gp, MII_BCM5400_AUXCONTROL, data);
}
static void gem_init_bcm5401_phy(struct gem *gp)
{
u16 data;
int rev;
rev = phy_read(gp, MII_PHYSID2) & 0x000f;
if (rev == 0 || rev == 3) {
/* Some revisions of 5401 appear to need this
* initialisation sequence to disable, according
* to OF, "tap power management"
*
* WARNING ! OF and Darwin don't agree on the
* register addresses. OF seem to interpret the
* register numbers below as decimal
*/
phy_write(gp, 0x18, 0x0c20);
phy_write(gp, 0x17, 0x0012);
phy_write(gp, 0x15, 0x1804);
phy_write(gp, 0x17, 0x0013);
phy_write(gp, 0x15, 0x1204);
phy_write(gp, 0x17, 0x8006);
phy_write(gp, 0x15, 0x0132);
phy_write(gp, 0x17, 0x8006);
phy_write(gp, 0x15, 0x0232);
phy_write(gp, 0x17, 0x201f);
phy_write(gp, 0x15, 0x0a20);
}
/* Configure for gigabit full duplex */
data = phy_read(gp, MII_BCM5400_GB_CONTROL);
data |= MII_BCM5400_GB_CONTROL_FULLDUPLEXCAP;
phy_write(gp, MII_BCM5400_GB_CONTROL, data);
mdelay(1);
/* Reset and configure cascaded 10/100 PHY */
gem_reset_one_mii_phy(gp, 0x1f);
data = __phy_read(gp, MII_BCM5201_MULTIPHY, 0x1f);
data |= MII_BCM5201_MULTIPHY_SERIALMODE;
__phy_write(gp, MII_BCM5201_MULTIPHY, data, 0x1f);
}
static void gem_init_bcm5411_phy(struct gem *gp)
{
u16 data;
/* Here's some more Apple black magic to setup
* some voltage stuffs.
*/
phy_write(gp, 0x1c, 0x8c23);
phy_write(gp, 0x1c, 0x8ca3);
phy_write(gp, 0x1c, 0x8c23);
/* Here, Apple seems to want to reset it, do
* it as well
*/
phy_write(gp, MII_BMCR, BMCR_RESET);
/* Start autoneg */
phy_write(gp, MII_BMCR,
(BMCR_ANENABLE | BMCR_FULLDPLX |
BMCR_ANRESTART | BMCR_SPD2));
data = phy_read(gp, MII_BCM5400_GB_CONTROL);
data |= MII_BCM5400_GB_CONTROL_FULLDUPLEXCAP;
phy_write(gp, MII_BCM5400_GB_CONTROL, data);
}
static void gem_init_phy(struct gem *gp)
{
u32 mifcfg;
if (!gp->wake_on_lan && gp->phy_mod == phymod_bcm5201)
phy_write(gp, MII_BCM5201_INTERRUPT, 0);
/* Revert MIF CFG setting done on stop_phy */
mifcfg = readl(gp->regs + MIF_CFG);
mifcfg &= ~MIF_CFG_BBMODE;
writel(mifcfg, gp->regs + MIF_CFG);
#ifdef CONFIG_ALL_PPC
if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE) {
int i;
pmac_call_feature(PMAC_FTR_GMAC_PHY_RESET, gp->of_node, 0, 0);
for (i = 0; i < 32; i++) {
gp->mii_phy_addr = i;
if (phy_read(gp, MII_BMCR) != 0xffff)
break;
}
if (i == 32) {
printk(KERN_WARNING "%s: GMAC PHY not responding !\n",
gp->dev->name);
return;
}
}
#endif /* CONFIG_ALL_PPC */
if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
u32 val;
/* Init datapath mode register. */
if (gp->phy_type == phy_mii_mdio0 ||
gp->phy_type == phy_mii_mdio1) {
val = PCS_DMODE_MGM;
} else if (gp->phy_type == phy_serialink) {
val = PCS_DMODE_SM | PCS_DMODE_GMOE;
} else {
val = PCS_DMODE_ESM;
}
writel(val, gp->regs + PCS_DMODE);
}
if (gp->phy_type == phy_mii_mdio0 ||
gp->phy_type == phy_mii_mdio1) {
u32 phy_id;
u16 val;
/* Take PHY out of isloate mode and reset it. */
gem_reset_one_mii_phy(gp, gp->mii_phy_addr);
phy_id = (phy_read(gp, MII_PHYSID1) << 16 | phy_read(gp, MII_PHYSID2))
& 0xfffffff0;
printk(KERN_INFO "%s: MII PHY ID: %x ", gp->dev->name, phy_id);
switch(phy_id) {
case 0x406210:
gp->phy_mod = phymod_bcm5201;
gem_init_bcm5201_phy(gp);
printk("BCM 5201\n");
break;
case 0x4061e0:
printk("BCM 5221\n");
gp->phy_mod = phymod_bcm5221;
break;
case 0x206040:
printk("BCM 5400\n");
gp->phy_mod = phymod_bcm5400;
gem_init_bcm5400_phy(gp);
gp->gigabit_capable = 1;
break;
case 0x206050:
printk("BCM 5401\n");
gp->phy_mod = phymod_bcm5401;
gem_init_bcm5401_phy(gp);
gp->gigabit_capable = 1;
break;
case 0x206070:
printk("BCM 5411\n");
gp->phy_mod = phymod_bcm5411;
gem_init_bcm5411_phy(gp);
gp->gigabit_capable = 1;
break;
case 0x18074c0:
printk("Lucent\n");
gp->phy_mod = phymod_generic;
break;
case 0x437420:
printk("Enable Semiconductor\n");
gp->phy_mod = phymod_generic;
break;
default:
printk("Unknown\n");
gp->phy_mod = phymod_generic;
break;
};
/* Init advertisement and enable autonegotiation. */
val = phy_read(gp, MII_BMCR);
val &= ~BMCR_ANENABLE;
phy_write(gp, MII_BMCR, val);
udelay(10);
phy_write(gp, MII_ADVERTISE,
phy_read(gp, MII_ADVERTISE) |
(ADVERTISE_10HALF | ADVERTISE_10FULL |
ADVERTISE_100HALF | ADVERTISE_100FULL));
} else {
u32 val;
int limit;
/* Reset PCS unit. */
val = readl(gp->regs + PCS_MIICTRL);
val |= PCS_MIICTRL_RST;
writeb(val, gp->regs + PCS_MIICTRL);
limit = 32;
while (readl(gp->regs + PCS_MIICTRL) & PCS_MIICTRL_RST) {
udelay(100);
if (limit-- <= 0)
break;
}
if (limit <= 0)
printk(KERN_WARNING "%s: PCS reset bit would not clear.\n",
gp->dev->name);
/* Make sure PCS is disabled while changing advertisement
* configuration.
*/
val = readl(gp->regs + PCS_CFG);
val &= ~(PCS_CFG_ENABLE | PCS_CFG_TO);
writel(val, gp->regs + PCS_CFG);
/* Advertise all capabilities. */
val = readl(gp->regs + PCS_MIIADV);
val |= (PCS_MIIADV_FD | PCS_MIIADV_HD |
PCS_MIIADV_SP | PCS_MIIADV_AP);
writel(val, gp->regs + PCS_MIIADV);
/* Enable and restart auto-negotiation, disable wrapback/loopback,
* and re-enable PCS.
*/
val = readl(gp->regs + PCS_MIICTRL);
val |= (PCS_MIICTRL_RAN | PCS_MIICTRL_ANE);
val &= ~PCS_MIICTRL_WB;
writel(val, gp->regs + PCS_MIICTRL);
val = readl(gp->regs + PCS_CFG);
val |= PCS_CFG_ENABLE;
writel(val, gp->regs + PCS_CFG);
/* Make sure serialink loopback is off. The meaning
* of this bit is logically inverted based upon whether
* you are in Serialink or SERDES mode.
*/
val = readl(gp->regs + PCS_SCTRL);
if (gp->phy_type == phy_serialink)
val &= ~PCS_SCTRL_LOOP;
else
val |= PCS_SCTRL_LOOP;
writel(val, gp->regs + PCS_SCTRL);
gp->gigabit_capable = 1;
}
}
static void gem_init_dma(struct gem *gp)
{
u64 desc_dma = (u64) gp->gblock_dvma;
u32 val;
val = (TXDMA_CFG_BASE | (0x7ff << 10) | TXDMA_CFG_PMODE);
writel(val, gp->regs + TXDMA_CFG);
writel(desc_dma >> 32, gp->regs + TXDMA_DBHI);
writel(desc_dma & 0xffffffff, gp->regs + TXDMA_DBLOW);
desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
writel(0, gp->regs + TXDMA_KICK);
val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
((14 / 2) << 13) | RXDMA_CFG_FTHRESH_512);
writel(val, gp->regs + RXDMA_CFG);
writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
val = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
writel(val, gp->regs + RXDMA_PTHRESH);
if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
writel(((5 & RXDMA_BLANK_IPKTS) |
((8 << 12) & RXDMA_BLANK_ITIME)),
gp->regs + RXDMA_BLANK);
else
writel(((5 & RXDMA_BLANK_IPKTS) |
((4 << 12) & RXDMA_BLANK_ITIME)),
gp->regs + RXDMA_BLANK);
}
#define CRC_POLYNOMIAL_LE 0xedb88320UL /* Ethernet CRC, little endian */
static void gem_init_mac(struct gem *gp)
{
unsigned char *e = &gp->dev->dev_addr[0];
u32 rxcfg;
if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
gp->pdev->device == PCI_DEVICE_ID_SUN_GEM)
writel(0x1bf0, gp->regs + MAC_SNDPAUSE);
writel(0x00, gp->regs + MAC_IPG0);
writel(0x08, gp->regs + MAC_IPG1);
writel(0x04, gp->regs + MAC_IPG2);
writel(0x40, gp->regs + MAC_STIME);
writel(0x40, gp->regs + MAC_MINFSZ);
writel(0x20000000 | (gp->dev->mtu + 18), gp->regs + MAC_MAXFSZ);
writel(0x07, gp->regs + MAC_PASIZE);
writel(0x04, gp->regs + MAC_JAMSIZE);
writel(0x10, gp->regs + MAC_ATTLIM);
writel(0x8808, gp->regs + MAC_MCTYPE);
writel((e[5] | (e[4] << 8)) & 0x3ff, gp->regs + MAC_RANDSEED);
writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
writel(0, gp->regs + MAC_ADDR3);
writel(0, gp->regs + MAC_ADDR4);
writel(0, gp->regs + MAC_ADDR5);
writel(0x0001, gp->regs + MAC_ADDR6);
writel(0xc200, gp->regs + MAC_ADDR7);
writel(0x0180, gp->regs + MAC_ADDR8);
writel(0, gp->regs + MAC_AFILT0);
writel(0, gp->regs + MAC_AFILT1);
writel(0, gp->regs + MAC_AFILT2);
writel(0, gp->regs + MAC_AF21MSK);
writel(0, gp->regs + MAC_AF0MSK);
rxcfg = 0;
if ((gp->dev->flags & IFF_ALLMULTI) ||
(gp->dev->mc_count > 256)) {
writel(0xffff, gp->regs + MAC_HASH0);
writel(0xffff, gp->regs + MAC_HASH1);
writel(0xffff, gp->regs + MAC_HASH2);
writel(0xffff, gp->regs + MAC_HASH3);
writel(0xffff, gp->regs + MAC_HASH4);
writel(0xffff, gp->regs + MAC_HASH5);
writel(0xffff, gp->regs + MAC_HASH6);
writel(0xffff, gp->regs + MAC_HASH7);
writel(0xffff, gp->regs + MAC_HASH8);
writel(0xffff, gp->regs + MAC_HASH9);
writel(0xffff, gp->regs + MAC_HASH10);
writel(0xffff, gp->regs + MAC_HASH11);
writel(0xffff, gp->regs + MAC_HASH12);
writel(0xffff, gp->regs + MAC_HASH13);
writel(0xffff, gp->regs + MAC_HASH14);
writel(0xffff, gp->regs + MAC_HASH15);
} else if (gp->dev->flags & IFF_PROMISC) {
rxcfg |= MAC_RXCFG_PROM;
} else {
u16 hash_table[16];
u32 crc, poly = CRC_POLYNOMIAL_LE;
struct dev_mc_list *dmi = gp->dev->mc_list;
int i, j, bit, byte;
for (i = 0; i < 16; i++)
hash_table[i] = 0;
for (i = 0; i < gp->dev->mc_count; i++) {
char *addrs = dmi->dmi_addr;
dmi = dmi->next;
if (!(*addrs & 1))
continue;
crc = 0xffffffffU;
for (byte = 0; byte < 6; byte++) {
for (bit = *addrs++, j = 0; j < 8; j++, bit >>= 1) {
int test;
test = ((bit ^ crc) & 0x01);
crc >>= 1;
if (test)
crc = crc ^ poly;
}
}
crc >>= 24;
hash_table[crc >> 4] |= 1 << (crc & 0xf);
}
writel(hash_table[0], gp->regs + MAC_HASH0);
writel(hash_table[1], gp->regs + MAC_HASH1);
writel(hash_table[2], gp->regs + MAC_HASH2);
writel(hash_table[3], gp->regs + MAC_HASH3);
writel(hash_table[4], gp->regs + MAC_HASH4);
writel(hash_table[5], gp->regs + MAC_HASH5);
writel(hash_table[6], gp->regs + MAC_HASH6);
writel(hash_table[7], gp->regs + MAC_HASH7);
writel(hash_table[8], gp->regs + MAC_HASH8);
writel(hash_table[9], gp->regs + MAC_HASH9);
writel(hash_table[10], gp->regs + MAC_HASH10);
writel(hash_table[11], gp->regs + MAC_HASH11);
writel(hash_table[12], gp->regs + MAC_HASH12);
writel(hash_table[13], gp->regs + MAC_HASH13);
writel(hash_table[14], gp->regs + MAC_HASH14);
writel(hash_table[15], gp->regs + MAC_HASH15);
}
writel(0, gp->regs + MAC_NCOLL);
writel(0, gp->regs + MAC_FASUCC);
writel(0, gp->regs + MAC_ECOLL);
writel(0, gp->regs + MAC_LCOLL);
writel(0, gp->regs + MAC_DTIMER);
writel(0, gp->regs + MAC_PATMPS);
writel(0, gp->regs + MAC_RFCTR);
writel(0, gp->regs + MAC_LERR);
writel(0, gp->regs + MAC_AERR);
writel(0, gp->regs + MAC_FCSERR);
writel(0, gp->regs + MAC_RXCVERR);
/* Clear RX/TX/MAC/XIF config, we will set these up and enable
* them once a link is established.
*/
writel(0, gp->regs + MAC_TXCFG);
writel(rxcfg, gp->regs + MAC_RXCFG);
writel(0, gp->regs + MAC_MCCFG);
writel(0, gp->regs + MAC_XIFCFG);
/* Setup MAC interrupts. We want to get all of the interesting
* counter expiration events, but we do not want to hear about
* normal rx/tx as the DMA engine tells us that.
*/
writel(MAC_TXSTAT_XMIT, gp->regs + MAC_TXMASK);
writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
/* Don't enable even the PAUSE interrupts for now, we
* make no use of those events other than to record them.
*/
writel(0xffffffff, gp->regs + MAC_MCMASK);
}
static void gem_init_pause_thresholds(struct gem *gp)
{
/* Calculate pause thresholds. Setting the OFF threshold to the
* full RX fifo size effectively disables PAUSE generation which
* is what we do for 10/100 only GEMs which have FIFOs too small
* to make real gains from PAUSE.
*/
if (gp->rx_fifo_sz <= (2 * 1024)) {
gp->rx_pause_off = gp->rx_pause_on = gp->rx_fifo_sz;
} else {
int off = (gp->rx_fifo_sz - (5 * 1024));
int on = off - 1024;
gp->rx_pause_off = off;
gp->rx_pause_on = on;
}
{
u32 cfg;
cfg = GREG_CFG_IBURST;
cfg |= ((31 << 1) & GREG_CFG_TXDMALIM);
cfg |= ((31 << 6) & GREG_CFG_RXDMALIM);
writel(cfg, gp->regs + GREG_CFG);
}
}
static int gem_check_invariants(struct gem *gp)
{
struct pci_dev *pdev = gp->pdev;
u32 mif_cfg;
/* On Apple's sungem, we can't rely on registers as the chip
* was been powered down by the firmware. We do the PHY lookup
* when the interface is opened and we configure the driver
* with known values.
*/
if (pdev->vendor == PCI_VENDOR_ID_APPLE) {
gp->phy_type = phy_mii_mdio0;
gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
return 0;
}
mif_cfg = readl(gp->regs + MIF_CFG);
if (pdev->vendor == PCI_VENDOR_ID_SUN &&
pdev->device == PCI_DEVICE_ID_SUN_RIO_GEM) {
/* One of the MII PHYs _must_ be present
* as this chip has no gigabit PHY.
*/
if ((mif_cfg & (MIF_CFG_MDI0 | MIF_CFG_MDI1)) == 0) {
printk(KERN_ERR PFX "RIO GEM lacks MII phy, mif_cfg[%08x]\n",
mif_cfg);
return -1;
}
}
/* Determine initial PHY interface type guess. MDIO1 is the
* external PHY and thus takes precedence over MDIO0.
*/
if (mif_cfg & MIF_CFG_MDI1) {
gp->phy_type = phy_mii_mdio1;
mif_cfg |= MIF_CFG_PSELECT;
writel(mif_cfg, gp->regs + MIF_CFG);
} else if (mif_cfg & MIF_CFG_MDI0) {
gp->phy_type = phy_mii_mdio0;
mif_cfg &= ~MIF_CFG_PSELECT;
writel(mif_cfg, gp->regs + MIF_CFG);
} else {
gp->phy_type = phy_serialink;
}
if (gp->phy_type == phy_mii_mdio1 ||
gp->phy_type == phy_mii_mdio0) {
int i;
for (i = 0; i < 32; i++) {
gp->mii_phy_addr = i;
if (phy_read(gp, MII_BMCR) != 0xffff)
break;
}
if (i == 32) {
if (pdev->device != PCI_DEVICE_ID_SUN_GEM) {
printk(KERN_ERR PFX "RIO MII phy will not respond.\n");
return -1;
}
gp->phy_type = phy_serdes;
}
}
/* Fetch the FIFO configurations now too. */
gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
if (pdev->vendor == PCI_VENDOR_ID_SUN) {
if (pdev->device == PCI_DEVICE_ID_SUN_GEM) {
if (gp->tx_fifo_sz != (9 * 1024) ||
gp->rx_fifo_sz != (20 * 1024)) {
printk(KERN_ERR PFX "GEM has bogus fifo sizes tx(%d) rx(%d)\n",
gp->tx_fifo_sz, gp->rx_fifo_sz);
return -1;
}
} else {
if (gp->tx_fifo_sz != (2 * 1024) ||
gp->rx_fifo_sz != (2 * 1024)) {
printk(KERN_ERR PFX "RIO GEM has bogus fifo sizes tx(%d) rx(%d)\n",
gp->tx_fifo_sz, gp->rx_fifo_sz);
return -1;
}
}
}
return 0;
}
static void gem_init_hw(struct gem *gp, int restart_link)
{
/* On Apple's gmac, I initialize the PHY only after
* setting up the chip. It appears the gigabit PHYs
* don't quite like beeing talked to on the GII when
* the chip is not running, I suspect it might not
* be clocked at that point. --BenH
*/
if (restart_link)
gem_init_phy(gp);
gem_init_dma(gp);
gem_init_mac(gp);
gem_init_pause_thresholds(gp);
spin_lock_irq(&gp->lock);
if (restart_link) {
/* Default aneg parameters */
gp->timer_ticks = 0;
gp->lstate = link_down;
spin_unlock_irq(&gp->lock);
/* Can I advertise gigabit here ? I'd need BCM PHY docs... */
gem_begin_auto_negotiation(gp, NULL);
} else {
if (gp->lstate == link_up)
gem_set_link_modes(gp);
spin_unlock_irq(&gp->lock);
}
}
#ifdef CONFIG_ALL_PPC
/* Enable the chip's clock and make sure it's config space is
* setup properly. There appear to be no need to restore the
* base addresses.
*/
static void gem_apple_powerup(struct gem *gp)
{
u16 cmd;
u32 mif_cfg;
pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 1);
udelay(100);
pci_read_config_word(gp->pdev, PCI_COMMAND, &cmd);
cmd |= PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER | PCI_COMMAND_INVALIDATE;
pci_write_config_word(gp->pdev, PCI_COMMAND, cmd);
pci_write_config_byte(gp->pdev, PCI_LATENCY_TIMER, 6);
pci_write_config_byte(gp->pdev, PCI_CACHE_LINE_SIZE, 8);
mdelay(1);
mif_cfg = readl(gp->regs + MIF_CFG);
mif_cfg &= ~(MIF_CFG_PSELECT|MIF_CFG_POLL|MIF_CFG_BBMODE|MIF_CFG_MDI1);
mif_cfg |= MIF_CFG_MDI0;
writel(mif_cfg, gp->regs + MIF_CFG);
writel(PCS_DMODE_MGM, gp->regs + PCS_DMODE);
writel(MAC_XIFCFG_OE, gp->regs + MAC_XIFCFG);
mdelay(1);
}
/* Turn off the chip's clock */
static void gem_apple_powerdown(struct gem *gp)
{
pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 0);
}
#endif /* CONFIG_ALL_PPC */
static void gem_stop_phy(struct gem *gp)
{
u32 mifcfg;
if (!gp->wake_on_lan && gp->phy_mod == phymod_bcm5201)
phy_write(gp, MII_BCM5201_INTERRUPT, 0);
/* Make sure we aren't polling PHY status change. We
* don't currently use that feature though
*/
mifcfg = readl(gp->regs + MIF_CFG);
mifcfg &= ~MIF_CFG_POLL;
writel(mifcfg, gp->regs + MIF_CFG);
/* Here's a strange hack used by both MacOS 9 and X */
phy_write(gp, MII_LPA, phy_read(gp, MII_LPA));
if (gp->wake_on_lan) {
/* Setup wake-on-lan */
} else
writel(0, gp->regs + MAC_RXCFG);
writel(0, gp->regs + MAC_TXCFG);
writel(0, gp->regs + MAC_XIFCFG);
writel(0, gp->regs + TXDMA_CFG);
writel(0, gp->regs + RXDMA_CFG);
if (!gp->wake_on_lan) {
gem_stop(gp);
writel(MAC_TXRST_CMD, gp->regs + MAC_TXRST);
writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
if (gp->phy_mod == phymod_bcm5400 || gp->phy_mod == phymod_bcm5401 ||
gp->phy_mod == phymod_bcm5411) {
#if 0 /* Commented out in Darwin... someone has those dawn docs ? */
phy_write(gp, MII_BMCR, BMCR_PDOWN);
#endif
} else if (gp->phy_mod == phymod_bcm5201 || gp->phy_mod == phymod_bcm5221) {
#if 0 /* Commented out in Darwin... someone has those dawn docs ? */
u16 val = phy_read(gp, MII_BCM5201_AUXMODE2)
phy_write(gp, MII_BCM5201_AUXMODE2,
val & ~MII_BCM5201_AUXMODE2_LOWPOWER);
#endif
phy_write(gp, MII_BCM5201_MULTIPHY, MII_BCM5201_MULTIPHY_SUPERISOLATE);
}
/* According to Apple, we must set the MDIO pins to this begnign
* state or we may 1) eat more current, 2) damage some PHYs
*/
writel(mifcfg | MIF_CFG_BBMODE, gp->regs + MIF_CFG);
writel(0, gp->regs + MIF_BBCLK);
writel(0, gp->regs + MIF_BBDATA);
writel(0, gp->regs + MIF_BBOENAB);
writel(MAC_XIFCFG_GMII | MAC_XIFCFG_LBCK, gp->regs + MAC_XIFCFG);
(void) readl(gp->regs + MAC_XIFCFG);
}
}
/* Shut down the chip, must be called with pm_sem held. */
static void gem_shutdown(struct gem *gp)
{
/* Make us not-running to avoid timers respawning */
gp->hw_running = 0;
/* Stop the link timer */
del_timer_sync(&gp->link_timer);
/* Stop the reset task */
while (gp->reset_task_pending)
schedule();
/* Actually stop the chip */
if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE)
gem_stop_phy(gp);
else
gem_stop(gp);
#ifdef CONFIG_ALL_PPC
/* Power down the chip */
if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE)
gem_apple_powerdown(gp);
#endif /* CONFIG_ALL_PPC */
}
static void gem_pm_task(void *data)
{
struct gem *gp = (struct gem *) data;
/* We assume if we can't lock the pm_sem, then open() was
* called again (or suspend()), and we can safely ignore
* the PM request
*/
if (down_trylock(&gp->pm_sem))
return;
/* Driver was re-opened or already shut down */
if (gp->opened || !gp->hw_running) {
up(&gp->pm_sem);
return;
}
gem_shutdown(gp);
up(&gp->pm_sem);
}
static void gem_pm_timer(unsigned long data)
{
struct gem *gp = (struct gem *) data;
schedule_task(&gp->pm_task);
}
static int gem_open(struct net_device *dev)
{
struct gem *gp = dev->priv;
int hw_was_up = gp->hw_running;
down(&gp->pm_sem);
/* Stop the PM timer/task */
del_timer(&gp->pm_timer);
flush_scheduled_tasks();
if (!gp->hw_running) {
#ifdef CONFIG_ALL_PPC
/* First, we need to bring up the chip */
if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE) {
gem_apple_powerup(gp);
gem_check_invariants(gp);
}
#endif /* CONFIG_ALL_PPC */
/* Reset the chip */
gem_stop(gp);
gp->hw_running = 1;
}
/* We can now request the interrupt as we know it's masked
* on the controller
*/
if (request_irq(gp->pdev->irq, gem_interrupt,
SA_SHIRQ, dev->name, (void *)dev)) {
#ifdef CONFIG_ALL_PPC
if (!hw_was_up && gp->pdev->vendor == PCI_VENDOR_ID_APPLE)
gem_apple_powerdown(gp);
#endif /* CONFIG_ALL_PPC */
/* Fire the PM timer that will shut us down in about 10 seconds */
gp->pm_timer.expires = jiffies + 10*HZ;
add_timer(&gp->pm_timer);
up(&gp->pm_sem);
return -EAGAIN;
}
/* Allocate & setup ring buffers */
gem_init_rings(gp, 0);
/* Init & setup chip hardware */
gem_init_hw(gp, !hw_was_up);
gp->opened = 1;
up(&gp->pm_sem);
return 0;
}
static int gem_close(struct net_device *dev)
{
struct gem *gp = dev->priv;
/* Make sure we don't get distracted by suspend/resume */
down(&gp->pm_sem);
/* Stop traffic, mark us closed */
spin_lock_irq(&gp->lock);
gp->opened = 0;
writel(0xffffffff, gp->regs + GREG_IMASK);
netif_stop_queue(dev);
spin_unlock_irq(&gp->lock);
/* Stop chip */
gem_stop(gp);
/* Get rid of rings */
gem_clean_rings(gp);
/* Bye, the pm timer will finish the job */
free_irq(gp->pdev->irq, (void *) dev);
/* Fire the PM timer that will shut us down in about 10 seconds */
gp->pm_timer.expires = jiffies + 10*HZ;
add_timer(&gp->pm_timer);
up(&gp->pm_sem);
return 0;
}
#ifdef CONFIG_PM
static int gem_suspend(struct pci_dev *pdev, u32 state)
{
struct net_device *dev = pci_get_drvdata(pdev);
struct gem *gp = dev->priv;
/* We hold the PM semaphore during entire driver
* sleep time
*/
down(&gp->pm_sem);
printk(KERN_INFO "%s: suspending, WakeOnLan %s\n",
dev->name, gp->wake_on_lan ? "enabled" : "disabled");
/* If the driver is opened, we stop the DMA */
if (gp->opened) {
/* Stop traffic, mark us closed */
netif_device_detach(dev);
spin_lock_irq(&gp->lock);
writel(0xffffffff, gp->regs + GREG_IMASK);
spin_unlock_irq(&gp->lock);
/* Stop chip */
gem_stop(gp);
/* Get rid of ring buffers */
gem_clean_rings(gp);
if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE)
disable_irq(gp->pdev->irq);
}
if (gp->hw_running) {
/* Kill PM timer if any */
del_timer_sync(&gp->pm_timer);
flush_scheduled_tasks();
gem_shutdown(gp);
}
return 0;
}
static int gem_resume(struct pci_dev *pdev)
{
struct net_device *dev = pci_get_drvdata(pdev);
struct gem *gp = dev->priv;
printk(KERN_INFO "%s: resuming\n", dev->name);
if (gp->opened) {
#ifdef CONFIG_ALL_PPC
/* First, we need to bring up the chip */
if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE) {
gem_apple_powerup(gp);
gem_check_invariants(gp);
}
#endif /* CONFIG_ALL_PPC */
gem_stop(gp);
gp->hw_running = 1;
gem_init_rings(gp, 0);
gem_init_hw(gp, 1);
netif_device_attach(dev);
if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE)
enable_irq(gp->pdev->irq);
}
up(&gp->pm_sem);
return 0;
}
#endif /* CONFIG_PM */
static struct net_device_stats *gem_get_stats(struct net_device *dev)
{
struct gem *gp = dev->priv;
struct net_device_stats *stats = &gp->net_stats;
if (gp->hw_running) {
stats->rx_crc_errors += readl(gp->regs + MAC_FCSERR);
writel(0, gp->regs + MAC_FCSERR);
stats->rx_frame_errors += readl(gp->regs + MAC_AERR);
writel(0, gp->regs + MAC_AERR);
stats->rx_length_errors += readl(gp->regs + MAC_LERR);
writel(0, gp->regs + MAC_LERR);
stats->tx_aborted_errors += readl(gp->regs + MAC_ECOLL);
stats->collisions +=
(readl(gp->regs + MAC_ECOLL) +
readl(gp->regs + MAC_LCOLL));
writel(0, gp->regs + MAC_ECOLL);
writel(0, gp->regs + MAC_LCOLL);
}
return &gp->net_stats;
}
static void gem_set_multicast(struct net_device *dev)
{
struct gem *gp = dev->priv;
if (!gp->hw_running)
return;
netif_stop_queue(dev);
if ((gp->dev->flags & IFF_ALLMULTI) ||
(gp->dev->mc_count > 256)) {
writel(0xffff, gp->regs + MAC_HASH0);
writel(0xffff, gp->regs + MAC_HASH1);
writel(0xffff, gp->regs + MAC_HASH2);
writel(0xffff, gp->regs + MAC_HASH3);
writel(0xffff, gp->regs + MAC_HASH4);
writel(0xffff, gp->regs + MAC_HASH5);
writel(0xffff, gp->regs + MAC_HASH6);
writel(0xffff, gp->regs + MAC_HASH7);
writel(0xffff, gp->regs + MAC_HASH8);
writel(0xffff, gp->regs + MAC_HASH9);
writel(0xffff, gp->regs + MAC_HASH10);
writel(0xffff, gp->regs + MAC_HASH11);
writel(0xffff, gp->regs + MAC_HASH12);
writel(0xffff, gp->regs + MAC_HASH13);
writel(0xffff, gp->regs + MAC_HASH14);
writel(0xffff, gp->regs + MAC_HASH15);
} else if (gp->dev->flags & IFF_PROMISC) {
u32 rxcfg = readl(gp->regs + MAC_RXCFG);
int limit = 10000;
writel(rxcfg & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
while (readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB) {
if (!limit--)
break;
udelay(10);
}
rxcfg |= MAC_RXCFG_PROM;
writel(rxcfg, gp->regs + MAC_RXCFG);
} else {
u16 hash_table[16];
u32 crc, poly = CRC_POLYNOMIAL_LE;
struct dev_mc_list *dmi = gp->dev->mc_list;
int i, j, bit, byte;
for (i = 0; i < 16; i++)
hash_table[i] = 0;
for (i = 0; i < dev->mc_count; i++) {
char *addrs = dmi->dmi_addr;
dmi = dmi->next;
if (!(*addrs & 1))
continue;
crc = 0xffffffffU;
for (byte = 0; byte < 6; byte++) {
for (bit = *addrs++, j = 0; j < 8; j++, bit >>= 1) {
int test;
test = ((bit ^ crc) & 0x01);
crc >>= 1;
if (test)
crc = crc ^ poly;
}
}
crc >>= 24;
hash_table[crc >> 4] |= 1 << (crc & 0xf);
}
writel(hash_table[0], gp->regs + MAC_HASH0);
writel(hash_table[1], gp->regs + MAC_HASH1);
writel(hash_table[2], gp->regs + MAC_HASH2);
writel(hash_table[3], gp->regs + MAC_HASH3);
writel(hash_table[4], gp->regs + MAC_HASH4);
writel(hash_table[5], gp->regs + MAC_HASH5);
writel(hash_table[6], gp->regs + MAC_HASH6);
writel(hash_table[7], gp->regs + MAC_HASH7);
writel(hash_table[8], gp->regs + MAC_HASH8);
writel(hash_table[9], gp->regs + MAC_HASH9);
writel(hash_table[10], gp->regs + MAC_HASH10);
writel(hash_table[11], gp->regs + MAC_HASH11);
writel(hash_table[12], gp->regs + MAC_HASH12);
writel(hash_table[13], gp->regs + MAC_HASH13);
writel(hash_table[14], gp->regs + MAC_HASH14);
writel(hash_table[15], gp->regs + MAC_HASH15);
}
/* Hrm... we may walk on the reset task here... */
netif_wake_queue(dev);
}
/* Eventually add support for changing the advertisement
* on autoneg.
*/
static int gem_ethtool_ioctl(struct net_device *dev, void *ep_user)
{
struct gem *gp = dev->priv;
u16 bmcr;
int full_duplex, speed, pause;
struct ethtool_cmd ecmd;
if (copy_from_user(&ecmd, ep_user, sizeof(ecmd)))
return -EFAULT;
switch(ecmd.cmd) {
case ETHTOOL_GDRVINFO: {
struct ethtool_drvinfo info = { cmd: ETHTOOL_GDRVINFO };
strncpy(info.driver, DRV_NAME, ETHTOOL_BUSINFO_LEN);
strncpy(info.version, DRV_VERSION, ETHTOOL_BUSINFO_LEN);
info.fw_version[0] = '\0';
strncpy(info.bus_info, gp->pdev->slot_name, ETHTOOL_BUSINFO_LEN);
info.regdump_len = 0; /*SUNGEM_NREGS;*/
if (copy_to_user(ep_user, &info, sizeof(info)))
return -EFAULT;
return 0;
}
case ETHTOOL_GSET:
ecmd.supported =
(SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
SUPPORTED_Autoneg | SUPPORTED_TP | SUPPORTED_MII);
if (gp->gigabit_capable)
ecmd.supported |=
(SUPPORTED_1000baseT_Half |
SUPPORTED_1000baseT_Full);
/* XXX hardcoded stuff for now */
ecmd.port = PORT_MII;
ecmd.transceiver = XCVR_EXTERNAL;
ecmd.phy_address = 0; /* XXX fixed PHYAD */
/* Record PHY settings if HW is on. */
if (gp->hw_running) {
bmcr = phy_read(gp, MII_BMCR);
gem_read_mii_link_mode(gp, &full_duplex, &speed, &pause);
} else
bmcr = 0;
if (bmcr & BMCR_ANENABLE) {
ecmd.autoneg = AUTONEG_ENABLE;
ecmd.speed = speed == 10 ? SPEED_10 : (speed == 1000 ? SPEED_1000 : SPEED_100);
ecmd.duplex = full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
} else {
ecmd.autoneg = AUTONEG_DISABLE;
ecmd.speed =
(bmcr & BMCR_SPEED100) ?
SPEED_100 : SPEED_10;
ecmd.duplex =
(bmcr & BMCR_FULLDPLX) ?
DUPLEX_FULL : DUPLEX_HALF;
}
if (copy_to_user(ep_user, &ecmd, sizeof(ecmd)))
return -EFAULT;
return 0;
case ETHTOOL_SSET:
if (!capable(CAP_NET_ADMIN))
return -EPERM;
/* Verify the settings we care about. */
if (ecmd.autoneg != AUTONEG_ENABLE &&
ecmd.autoneg != AUTONEG_DISABLE)
return -EINVAL;
if (ecmd.autoneg == AUTONEG_DISABLE &&
((ecmd.speed != SPEED_100 &&
ecmd.speed != SPEED_10) ||
(ecmd.duplex != DUPLEX_HALF &&
ecmd.duplex != DUPLEX_FULL)))
return -EINVAL;
/* Apply settings and restart link process */
if (gp->hw_running)
del_timer(&gp->link_timer);
gem_begin_auto_negotiation(gp, &ecmd);
return 0;
case ETHTOOL_NWAY_RST:
if ((gp->link_cntl & BMCR_ANENABLE) == 0)
return -EINVAL;
if (gp->hw_running)
del_timer(&gp->link_timer);
gem_begin_auto_negotiation(gp, NULL);
return 0;
case ETHTOOL_GWOL:
case ETHTOOL_SWOL:
break; /* todo */
/* get link status */
case ETHTOOL_GLINK: {
struct ethtool_value edata = { cmd: ETHTOOL_GLINK };
edata.data = (gp->lstate == link_up);
if (copy_to_user(ep_user, &edata, sizeof(edata)))
return -EFAULT;
return 0;
}
/* get message-level */
case ETHTOOL_GMSGLVL: {
struct ethtool_value edata = { cmd: ETHTOOL_GMSGLVL };
edata.data = gem_debug;
if (copy_to_user(ep_user, &edata, sizeof(edata)))
return -EFAULT;
return 0;
}
/* set message-level */
case ETHTOOL_SMSGLVL: {
struct ethtool_value edata;
if (copy_from_user(&edata, ep_user, sizeof(edata)))
return -EFAULT;
gem_debug = edata.data;
return 0;
}
#if 0
case ETHTOOL_GREGS: {
struct ethtool_regs regs;
u32 *regbuf;
int r = 0;
if (copy_from_user(&regs, useraddr, sizeof(regs)))
return -EFAULT;
if (regs.len > SUNGEM_NREGS) {
regs.len = SUNGEM_NREGS;
}
regs.version = 0;
if (copy_to_user(useraddr, &regs, sizeof(regs)))
return -EFAULT;
if (!gp->hw_running)
return -ENODEV;
useraddr += offsetof(struct ethtool_regs, data);
/* Use kmalloc to avoid bloating the stack */
regbuf = kmalloc(4 * SUNGEM_NREGS, GFP_KERNEL);
if (!regbuf)
return -ENOMEM;
spin_lock_irq(&np->lock);
gem_get_regs(gp, regbuf);
spin_unlock_irq(&np->lock);
if (copy_to_user(useraddr, regbuf, regs.len*sizeof(u32)))
r = -EFAULT;
kfree(regbuf);
return r;
}
#endif
};
return -EOPNOTSUPP;
}
static int gem_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
struct gem *gp = dev->priv;
struct mii_ioctl_data *data = (struct mii_ioctl_data *)&ifr->ifr_data;
int rc = -EOPNOTSUPP;
/* Hold the PM semaphore while doing ioctl's or we may collide
* with open/close and power management and oops.
*/
down(&gp->pm_sem);
switch (cmd) {
case SIOCETHTOOL:
rc = gem_ethtool_ioctl(dev, ifr->ifr_data);
break;
case SIOCGMIIPHY: /* Get address of MII PHY in use. */
data->phy_id = gp->mii_phy_addr;
/* Fallthrough... */
case SIOCGMIIREG: /* Read MII PHY register. */
data->val_out = __phy_read(gp, data->reg_num & 0x1f, data->phy_id & 0x1f);
rc = 0;
break;
case SIOCSMIIREG: /* Write MII PHY register. */
if (!capable(CAP_NET_ADMIN)) {
rc = -EPERM;
} else {
__phy_write(gp, data->reg_num & 0x1f, data->val_in, data->phy_id & 0x1f);
rc = 0;
}
break;
};
up(&gp->pm_sem);
return rc;
}
static int __devinit gem_get_device_address(struct gem *gp)
{
#if defined(__sparc__) || defined(CONFIG_ALL_PPC)
struct net_device *dev = gp->dev;
#endif
#ifdef __sparc__
struct pci_dev *pdev = gp->pdev;
struct pcidev_cookie *pcp = pdev->sysdata;
int node = -1;
if (pcp != NULL) {
node = pcp->prom_node;
if (prom_getproplen(node, "local-mac-address") == 6)
prom_getproperty(node, "local-mac-address",
dev->dev_addr, 6);
else
node = -1;
}
if (node == -1)
memcpy(dev->dev_addr, idprom->id_ethaddr, 6);
#endif
#ifdef CONFIG_ALL_PPC
unsigned char *addr;
addr = get_property(gp->of_node, "local-mac-address", NULL);
if (addr == NULL) {
printk("\n");
printk(KERN_ERR "%s: can't get mac-address\n", dev->name);
return -1;
}
memcpy(dev->dev_addr, addr, MAX_ADDR_LEN);
#endif
return 0;
}
static int __devinit gem_init_one(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
static int gem_version_printed = 0;
unsigned long gemreg_base, gemreg_len;
struct net_device *dev;
struct gem *gp;
int i, err, pci_using_dac;
if (gem_version_printed++ == 0)
printk(KERN_INFO "%s", version);
/* Apple gmac note: during probe, the chip is powered up by
* the arch code to allow the code below to work (and to let
* the chip be probed on the config space. It won't stay powered
* up until the interface is brought up however, so we can't rely
* on register configuration done at this point.
*/
err = pci_enable_device(pdev);
if (err) {
printk(KERN_ERR PFX "Cannot enable MMIO operation, "
"aborting.\n");
return err;
}
pci_set_master(pdev);
/* Configure DMA attributes. */
/* All of the GEM documentation states that 64-bit DMA addressing
* is fully supported and should work just fine. However the
* front end for RIO based GEMs is different and only supports
* 32-bit addressing.
*
* For now we assume the various PPC GEMs are 32-bit only as well.
*/
if (pdev->vendor == PCI_VENDOR_ID_SUN &&
pdev->device == PCI_DEVICE_ID_SUN_GEM &&
!pci_set_dma_mask(pdev, (u64) 0xffffffffffffffff)) {
pci_using_dac = 1;
} else {
err = pci_set_dma_mask(pdev, (u64) 0xffffffff);
if (err) {
printk(KERN_ERR PFX "No usable DMA configuration, "
"aborting.\n");
return err;
}
pci_using_dac = 0;
}
gemreg_base = pci_resource_start(pdev, 0);
gemreg_len = pci_resource_len(pdev, 0);
if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) {
printk(KERN_ERR PFX "Cannot find proper PCI device "
"base address, aborting.\n");
return -ENODEV;
}
dev = init_etherdev(NULL, sizeof(*gp));
if (!dev) {
printk(KERN_ERR PFX "Etherdev init failed, aborting.\n");
return -ENOMEM;
}
SET_MODULE_OWNER(dev);
if (!request_mem_region(gemreg_base, gemreg_len, dev->name)) {
printk(KERN_ERR PFX "MMIO resource (0x%lx@0x%lx) unavailable, "
"aborting.\n", gemreg_base, gemreg_len);
goto err_out_free_netdev;
}
gp = dev->priv;
gp->pdev = pdev;
dev->base_addr = (long) pdev;
gp->dev = dev;
spin_lock_init(&gp->lock);
init_MUTEX(&gp->pm_sem);
init_timer(&gp->link_timer);
gp->link_timer.function = gem_link_timer;
gp->link_timer.data = (unsigned long) gp;
init_timer(&gp->pm_timer);
gp->pm_timer.function = gem_pm_timer;
gp->pm_timer.data = (unsigned long) gp;
INIT_TQUEUE(&gp->pm_task, gem_pm_task, gp);
INIT_TQUEUE(&gp->reset_task, gem_reset_task, gp);
/* Default link parameters */
if (link_mode >= 0 && link_mode <= 6)
gp->link_cntl = link_modes[link_mode];
else
gp->link_cntl = BMCR_ANENABLE;
gp->lstate = link_down;
gp->timer_ticks = 0;
gp->regs = (unsigned long) ioremap(gemreg_base, gemreg_len);
if (gp->regs == 0UL) {
printk(KERN_ERR PFX "Cannot map device registers, "
"aborting.\n");
goto err_out_free_mmio_res;
}
/* On Apple, we power the chip up now in order for check
* invariants to work, but also because the firmware might
* not have properly shut down the PHY.
*/
#ifdef CONFIG_ALL_PPC
if (pdev->vendor == PCI_VENDOR_ID_APPLE) {
gem_apple_powerup(gp);
if (gem_check_invariants(gp))
goto err_out_iounmap;
gem_stop(gp);
gp->hw_running = 1;
gem_init_phy(gp);
gem_begin_auto_negotiation(gp, NULL);
}
#endif
/* Non Apple hardware, we just reset the chip and check
* for invariants
*/
if (pdev->vendor != PCI_VENDOR_ID_APPLE) {
gem_stop(gp);
if (gem_check_invariants(gp))
goto err_out_iounmap;
gp->hw_running = 1;
}
/* It is guarenteed that the returned buffer will be at least
* PAGE_SIZE aligned.
*/
gp->init_block = (struct gem_init_block *)
pci_alloc_consistent(pdev, sizeof(struct gem_init_block),
&gp->gblock_dvma);
if (!gp->init_block) {
printk(KERN_ERR PFX "Cannot allocate init block, "
"aborting.\n");
goto err_out_iounmap;
}
pci_set_drvdata(pdev, dev);
printk(KERN_INFO "%s: Sun GEM (PCI) 10/100/1000BaseT Ethernet ",
dev->name);
#ifdef CONFIG_ALL_PPC
gp->of_node = pci_device_to_OF_node(pdev);
#endif
if (gem_get_device_address(gp))
goto err_out_iounmap;
for (i = 0; i < 6; i++)
printk("%2.2x%c", dev->dev_addr[i],
i == 5 ? ' ' : ':');
printk("\n");
dev->open = gem_open;
dev->stop = gem_close;
dev->hard_start_xmit = gem_start_xmit;
dev->get_stats = gem_get_stats;
dev->set_multicast_list = gem_set_multicast;
dev->do_ioctl = gem_ioctl;
dev->tx_timeout = gem_tx_timeout;
dev->watchdog_timeo = 5 * HZ;
dev->change_mtu = gem_change_mtu;
dev->irq = pdev->irq;
dev->dma = 0;
/* GEM can do it all... */
dev->features |= NETIF_F_SG | NETIF_F_HW_CSUM;
if (pci_using_dac)
dev->features |= NETIF_F_HIGHDMA;
/* Fire the PM timer that will shut us down in about 10 seconds */
gp->pm_timer.expires = jiffies + 10*HZ;
add_timer(&gp->pm_timer);
return 0;
err_out_iounmap:
down(&gp->pm_sem);
/* Stop the PM timer & task */
del_timer_sync(&gp->pm_timer);
flush_scheduled_tasks();
if (gp->hw_running)
gem_shutdown(gp);
up(&gp->pm_sem);
iounmap((void *) gp->regs);
err_out_free_mmio_res:
release_mem_region(gemreg_base, gemreg_len);
err_out_free_netdev:
unregister_netdev(dev);
kfree(dev);
return -ENODEV;
}
static void __devexit gem_remove_one(struct pci_dev *pdev)
{
struct net_device *dev = pci_get_drvdata(pdev);
if (dev) {
struct gem *gp = dev->priv;
unregister_netdev(dev);
down(&gp->pm_sem);
/* Stop the PM timer & task */
del_timer_sync(&gp->pm_timer);
flush_scheduled_tasks();
if (gp->hw_running)
gem_shutdown(gp);
up(&gp->pm_sem);
pci_free_consistent(pdev,
sizeof(struct gem_init_block),
gp->init_block,
gp->gblock_dvma);
iounmap((void *) gp->regs);
release_mem_region(pci_resource_start(pdev, 0),
pci_resource_len(pdev, 0));
kfree(dev);
pci_set_drvdata(pdev, NULL);
}
}
static struct pci_driver gem_driver = {
name: GEM_MODULE_NAME,
id_table: gem_pci_tbl,
probe: gem_init_one,
remove: gem_remove_one,
#ifdef CONFIG_PM
suspend: gem_suspend,
resume: gem_resume,
#endif /* CONFIG_PM */
};
static int __init gem_init(void)
{
return pci_module_init(&gem_driver);
}
static void __exit gem_cleanup(void)
{
pci_unregister_driver(&gem_driver);
}
module_init(gem_init);
module_exit(gem_cleanup);