blob: 9188af33f6786616dbd6019869d9ee7ed7cacf43 [file] [log] [blame]
/*
* linux/arch/mips/dec/time.c
*
* Copyright (C) 1991, 1992, 1995 Linus Torvalds
* Copyright (C) 2000 Maciej W. Rozycki
*
* This file contains the time handling details for PC-style clocks as
* found in some MIPS systems.
*
*/
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/param.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <asm/cpu.h>
#include <asm/bootinfo.h>
#include <asm/mipsregs.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/dec/machtype.h>
#include <asm/dec/ioasic.h>
#include <asm/dec/ioasic_addrs.h>
#include <linux/mc146818rtc.h>
#include <linux/timex.h>
#include <asm/div64.h>
extern void (*board_time_init)(struct irqaction *irq);
extern volatile unsigned long wall_jiffies;
extern rwlock_t xtime_lock;
/*
* Change this if you have some constant time drift
*/
/* This is the value for the PC-style PICs. */
/* #define USECS_PER_JIFFY (1000020/HZ) */
/* This is for machines which generate the exact clock. */
#define USECS_PER_JIFFY (1000000/HZ)
#define USECS_PER_JIFFY_FRAC ((1000000ULL << 32) / HZ & 0xffffffff)
/* Cycle counter value at the previous timer interrupt.. */
static unsigned int timerhi, timerlo;
/*
* Cached "1/(clocks per usec)*2^32" value.
* It has to be recalculated once each jiffy.
*/
static unsigned long cached_quotient = 0;
/* Last jiffy when do_fast_gettimeoffset() was called. */
static unsigned long last_jiffies = 0;
/*
* On MIPS only R4000 and better have a cycle counter.
*
* FIXME: Does playing with the RP bit in c0_status interfere with this code?
*/
static unsigned long do_fast_gettimeoffset(void)
{
u32 count;
unsigned long res, tmp;
unsigned long quotient;
tmp = jiffies;
quotient = cached_quotient;
if (last_jiffies != tmp) {
last_jiffies = tmp;
if (last_jiffies != 0) {
unsigned long r0;
__asm__(".set push\n\t"
".set mips3\n\t"
"lwu %0,%3\n\t"
"dsll32 %1,%2,0\n\t"
"or %1,%1,%0\n\t"
"ddivu $0,%1,%4\n\t"
"mflo %1\n\t"
"dsll32 %0,%5,0\n\t"
"or %0,%0,%6\n\t"
"ddivu $0,%0,%1\n\t"
"mflo %0\n\t"
".set pop"
: "=&r" (quotient), "=&r" (r0)
: "r" (timerhi), "m" (timerlo),
"r" (tmp), "r" (USECS_PER_JIFFY),
"r" (USECS_PER_JIFFY_FRAC));
cached_quotient = quotient;
}
}
/* Get last timer tick in absolute kernel time */
count = read_32bit_cp0_register(CP0_COUNT);
/* .. relative to previous jiffy (32 bits is enough) */
count -= timerlo;
//printk("count: %08lx, %08lx:%08lx\n", count, timerhi, timerlo);
__asm__("multu %2,%3"
: "=l" (tmp), "=h" (res)
: "r" (count), "r" (quotient));
/*
* Due to possible jiffies inconsistencies, we need to check
* the result so that we'll get a timer that is monotonic.
*/
if (res >= USECS_PER_JIFFY)
res = USECS_PER_JIFFY - 1;
return res;
}
static unsigned long do_ioasic_gettimeoffset(void)
{
u32 count;
unsigned long res, tmp;
unsigned long quotient;
tmp = jiffies;
quotient = cached_quotient;
if (last_jiffies != tmp) {
last_jiffies = tmp;
if (last_jiffies != 0) {
unsigned long r0;
do_div64_32(r0, timerhi, timerlo, tmp);
do_div64_32(quotient, USECS_PER_JIFFY,
USECS_PER_JIFFY_FRAC, r0);
cached_quotient = quotient;
}
}
/* Get last timer tick in absolute kernel time */
count = ioasic_read(FCTR);
/* .. relative to previous jiffy (32 bits is enough) */
count -= timerlo;
//printk("count: %08x, %08x:%08x\n", count, timerhi, timerlo);
__asm__("multu %2,%3"
: "=l" (tmp), "=h" (res)
: "r" (count), "r" (quotient));
/*
* Due to possible jiffies inconsistencies, we need to check
* the result so that we'll get a timer that is monotonic.
*/
if (res >= USECS_PER_JIFFY)
res = USECS_PER_JIFFY - 1;
return res;
}
/* This function must be called with interrupts disabled
* It was inspired by Steve McCanne's microtime-i386 for BSD. -- jrs
*
* However, the pc-audio speaker driver changes the divisor so that
* it gets interrupted rather more often - it loads 64 into the
* counter rather than 11932! This has an adverse impact on
* do_gettimeoffset() -- it stops working! What is also not
* good is that the interval that our timer function gets called
* is no longer 10.0002 ms, but 9.9767 ms. To get around this
* would require using a different timing source. Maybe someone
* could use the RTC - I know that this can interrupt at frequencies
* ranging from 8192Hz to 2Hz. If I had the energy, I'd somehow fix
* it so that at startup, the timer code in sched.c would select
* using either the RTC or the 8253 timer. The decision would be
* based on whether there was any other device around that needed
* to trample on the 8253. I'd set up the RTC to interrupt at 1024 Hz,
* and then do some jiggery to have a version of do_timer that
* advanced the clock by 1/1024 s. Every time that reached over 1/100
* of a second, then do all the old code. If the time was kept correct
* then do_gettimeoffset could just return 0 - there is no low order
* divider that can be accessed.
*
* Ideally, you would be able to use the RTC for the speaker driver,
* but it appears that the speaker driver really needs interrupt more
* often than every 120 us or so.
*
* Anyway, this needs more thought.... pjsg (1993-08-28)
*
* If you are really that interested, you should be reading
* comp.protocols.time.ntp!
*/
#define TICK_SIZE tick
static unsigned long do_slow_gettimeoffset(void)
{
/*
* This is a kludge until I find a way for the
* DECstations without bus cycle counter. HK
*/
return 0;
}
static unsigned long (*do_gettimeoffset) (void) = do_slow_gettimeoffset;
/*
* This version of gettimeofday has near microsecond resolution.
*/
void do_gettimeofday(struct timeval *tv)
{
unsigned long flags;
read_lock_irqsave(&xtime_lock, flags);
*tv = xtime;
tv->tv_usec += do_gettimeoffset();
/*
* xtime is atomically updated in timer_bh. jiffies - wall_jiffies
* is nonzero if the timer bottom half hasnt executed yet.
*/
if (jiffies - wall_jiffies)
tv->tv_usec += USECS_PER_JIFFY;
read_unlock_irqrestore(&xtime_lock, flags);
if (tv->tv_usec >= 1000000) {
tv->tv_usec -= 1000000;
tv->tv_sec++;
}
}
void do_settimeofday(struct timeval *tv)
{
write_lock_irq(&xtime_lock);
/* This is revolting. We need to set the xtime.tv_usec
* correctly. However, the value in this location is
* is value at the last tick.
* Discover what correction gettimeofday
* would have done, and then undo it!
*/
tv->tv_usec -= do_gettimeoffset();
if (tv->tv_usec < 0) {
tv->tv_usec += 1000000;
tv->tv_sec--;
}
xtime = *tv;
time_adjust = 0; /* stop active adjtime() */
time_status |= STA_UNSYNC;
time_maxerror = NTP_PHASE_LIMIT;
time_esterror = NTP_PHASE_LIMIT;
write_unlock_irq(&xtime_lock);
}
/*
* In order to set the CMOS clock precisely, set_rtc_mmss has to be
* called 500 ms after the second nowtime has started, because when
* nowtime is written into the registers of the CMOS clock, it will
* jump to the next second precisely 500 ms later. Check the Motorola
* MC146818A or Dallas DS12887 data sheet for details.
*/
static int set_rtc_mmss(unsigned long nowtime)
{
int retval = 0;
int real_seconds, real_minutes, cmos_minutes;
unsigned char save_control, save_freq_select;
save_control = CMOS_READ(RTC_CONTROL); /* tell the clock it's being set */
CMOS_WRITE((save_control | RTC_SET), RTC_CONTROL);
save_freq_select = CMOS_READ(RTC_FREQ_SELECT); /* stop and reset prescaler */
CMOS_WRITE((save_freq_select | RTC_DIV_RESET2), RTC_FREQ_SELECT);
cmos_minutes = CMOS_READ(RTC_MINUTES);
if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
BCD_TO_BIN(cmos_minutes);
/*
* since we're only adjusting minutes and seconds,
* don't interfere with hour overflow. This avoids
* messing with unknown time zones but requires your
* RTC not to be off by more than 15 minutes
*/
real_seconds = nowtime % 60;
real_minutes = nowtime / 60;
if (((abs(real_minutes - cmos_minutes) + 15) / 30) & 1)
real_minutes += 30; /* correct for half hour time zone */
real_minutes %= 60;
if (abs(real_minutes - cmos_minutes) < 30) {
if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
BIN_TO_BCD(real_seconds);
BIN_TO_BCD(real_minutes);
}
CMOS_WRITE(real_seconds, RTC_SECONDS);
CMOS_WRITE(real_minutes, RTC_MINUTES);
} else {
printk(KERN_WARNING
"set_rtc_mmss: can't update from %d to %d\n",
cmos_minutes, real_minutes);
retval = -1;
}
/* The following flags have to be released exactly in this order,
* otherwise the DS12887 (popular MC146818A clone with integrated
* battery and quartz) will not reset the oscillator and will not
* update precisely 500 ms later. You won't find this mentioned in
* the Dallas Semiconductor data sheets, but who believes data
* sheets anyway ... -- Markus Kuhn
*/
CMOS_WRITE(save_control, RTC_CONTROL);
CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
return retval;
}
/* last time the cmos clock got updated */
static long last_rtc_update;
/*
* timer_interrupt() needs to keep up the real-time clock,
* as well as call the "do_timer()" routine every clocktick
*/
static void inline
timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
volatile unsigned char dummy;
dummy = CMOS_READ(RTC_REG_C); /* ACK RTC Interrupt */
if (!user_mode(regs)) {
if (prof_buffer && current->pid) {
extern int _stext;
unsigned long pc = regs->cp0_epc;
pc -= (unsigned long) &_stext;
pc >>= prof_shift;
/*
* Dont ignore out-of-bounds pc values silently,
* put them into the last histogram slot, so if
* present, they will show up as a sharp peak.
*/
if (pc > prof_len - 1)
pc = prof_len - 1;
atomic_inc((atomic_t *) & prof_buffer[pc]);
}
}
do_timer(regs);
/*
* If we have an externally synchronized Linux clock, then update
* CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
* called as close as possible to 500 ms before the new second starts.
*/
read_lock(&xtime_lock);
if ((time_status & STA_UNSYNC) == 0
&& xtime.tv_sec > last_rtc_update + 660
&& xtime.tv_usec >= 500000 - tick / 2
&& xtime.tv_usec <= 500000 + tick / 2) {
if (set_rtc_mmss(xtime.tv_sec) == 0)
last_rtc_update = xtime.tv_sec;
else
/* do it again in 60 s */
last_rtc_update = xtime.tv_sec - 600;
}
/* As we return to user mode fire off the other CPU schedulers.. this is
basically because we don't yet share IRQ's around. This message is
rigged to be safe on the 386 - basically it's a hack, so don't look
closely for now.. */
/*smp_message_pass(MSG_ALL_BUT_SELF, MSG_RESCHEDULE, 0L, 0); */
read_unlock(&xtime_lock);
}
static void r4k_timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
unsigned int count;
/*
* The cycle counter is only 32 bit which is good for about
* a minute at current count rates of upto 150MHz or so.
*/
count = read_32bit_cp0_register(CP0_COUNT);
timerhi += (count < timerlo); /* Wrap around */
timerlo = count;
if (jiffies == ~0) {
/*
* If jiffies is to overflow in this timer_interrupt we must
* update the timer[hi]/[lo] to make do_fast_gettimeoffset()
* quotient calc still valid. -arca
*/
write_32bit_cp0_register(CP0_COUNT, 0);
timerhi = timerlo = 0;
}
timer_interrupt(irq, dev_id, regs);
}
static void ioasic_timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
unsigned int count;
/*
* The free-running counter is 32 bit which is good for about
* 2 minutes, 50 seconds at possible count rates of upto 25MHz.
*/
count = ioasic_read(FCTR);
timerhi += (count < timerlo); /* Wrap around */
timerlo = count;
if (jiffies == ~0) {
/*
* If jiffies is to overflow in this timer_interrupt we must
* update the timer[hi]/[lo] to make do_fast_gettimeoffset()
* quotient calc still valid. -arca
*/
ioasic_write(FCTR, 0);
timerhi = timerlo = 0;
}
timer_interrupt(irq, dev_id, regs);
}
struct irqaction irq0 = {timer_interrupt, SA_INTERRUPT, 0,
"timer", NULL, NULL};
void __init time_init(void)
{
unsigned int year, mon, day, hour, min, sec, real_year;
int i;
/* The Linux interpretation of the CMOS clock register contents:
* When the Update-In-Progress (UIP) flag goes from 1 to 0, the
* RTC registers show the second which has precisely just started.
* Let's hope other operating systems interpret the RTC the same way.
*/
/* read RTC exactly on falling edge of update flag */
for (i = 0; i < 1000000; i++) /* may take up to 1 second... */
if (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP)
break;
for (i = 0; i < 1000000; i++) /* must try at least 2.228 ms */
if (!(CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP))
break;
do { /* Isn't this overkill ? UIP above should guarantee consistency */
sec = CMOS_READ(RTC_SECONDS);
min = CMOS_READ(RTC_MINUTES);
hour = CMOS_READ(RTC_HOURS);
day = CMOS_READ(RTC_DAY_OF_MONTH);
mon = CMOS_READ(RTC_MONTH);
year = CMOS_READ(RTC_YEAR);
} while (sec != CMOS_READ(RTC_SECONDS));
if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
BCD_TO_BIN(sec);
BCD_TO_BIN(min);
BCD_TO_BIN(hour);
BCD_TO_BIN(day);
BCD_TO_BIN(mon);
BCD_TO_BIN(year);
}
/*
* The PROM will reset the year to either '72 or '73.
* Therefore we store the real year separately, in one
* of unused BBU RAM locations.
*/
real_year = CMOS_READ(RTC_DEC_YEAR);
year += real_year - 72 + 2000;
write_lock_irq(&xtime_lock);
xtime.tv_sec = mktime(year, mon, day, hour, min, sec);
xtime.tv_usec = 0;
write_unlock_irq(&xtime_lock);
if (mips_cpu.options & MIPS_CPU_COUNTER) {
write_32bit_cp0_register(CP0_COUNT, 0);
do_gettimeoffset = do_fast_gettimeoffset;
irq0.handler = r4k_timer_interrupt;
} else if (IOASIC) {
ioasic_write(FCTR, 0);
do_gettimeoffset = do_ioasic_gettimeoffset;
irq0.handler = ioasic_timer_interrupt;
}
board_time_init(&irq0);
}