| /* | 
 |  * numa.c | 
 |  * | 
 |  * numa: Simulate NUMA-sensitive workload and measure their NUMA performance | 
 |  */ | 
 |  | 
 | #include "../perf.h" | 
 | #include "../builtin.h" | 
 | #include "../util/util.h" | 
 | #include "../util/parse-options.h" | 
 |  | 
 | #include "bench.h" | 
 |  | 
 | #include <errno.h> | 
 | #include <sched.h> | 
 | #include <stdio.h> | 
 | #include <assert.h> | 
 | #include <malloc.h> | 
 | #include <signal.h> | 
 | #include <stdlib.h> | 
 | #include <string.h> | 
 | #include <unistd.h> | 
 | #include <pthread.h> | 
 | #include <sys/mman.h> | 
 | #include <sys/time.h> | 
 | #include <sys/wait.h> | 
 | #include <sys/prctl.h> | 
 | #include <sys/types.h> | 
 |  | 
 | #include <numa.h> | 
 | #include <numaif.h> | 
 |  | 
 | /* | 
 |  * Regular printout to the terminal, supressed if -q is specified: | 
 |  */ | 
 | #define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0) | 
 |  | 
 | /* | 
 |  * Debug printf: | 
 |  */ | 
 | #define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0) | 
 |  | 
 | struct thread_data { | 
 | 	int			curr_cpu; | 
 | 	cpu_set_t		bind_cpumask; | 
 | 	int			bind_node; | 
 | 	u8			*process_data; | 
 | 	int			process_nr; | 
 | 	int			thread_nr; | 
 | 	int			task_nr; | 
 | 	unsigned int		loops_done; | 
 | 	u64			val; | 
 | 	u64			runtime_ns; | 
 | 	pthread_mutex_t		*process_lock; | 
 | }; | 
 |  | 
 | /* Parameters set by options: */ | 
 |  | 
 | struct params { | 
 | 	/* Startup synchronization: */ | 
 | 	bool			serialize_startup; | 
 |  | 
 | 	/* Task hierarchy: */ | 
 | 	int			nr_proc; | 
 | 	int			nr_threads; | 
 |  | 
 | 	/* Working set sizes: */ | 
 | 	const char		*mb_global_str; | 
 | 	const char		*mb_proc_str; | 
 | 	const char		*mb_proc_locked_str; | 
 | 	const char		*mb_thread_str; | 
 |  | 
 | 	double			mb_global; | 
 | 	double			mb_proc; | 
 | 	double			mb_proc_locked; | 
 | 	double			mb_thread; | 
 |  | 
 | 	/* Access patterns to the working set: */ | 
 | 	bool			data_reads; | 
 | 	bool			data_writes; | 
 | 	bool			data_backwards; | 
 | 	bool			data_zero_memset; | 
 | 	bool			data_rand_walk; | 
 | 	u32			nr_loops; | 
 | 	u32			nr_secs; | 
 | 	u32			sleep_usecs; | 
 |  | 
 | 	/* Working set initialization: */ | 
 | 	bool			init_zero; | 
 | 	bool			init_random; | 
 | 	bool			init_cpu0; | 
 |  | 
 | 	/* Misc options: */ | 
 | 	int			show_details; | 
 | 	int			run_all; | 
 | 	int			thp; | 
 |  | 
 | 	long			bytes_global; | 
 | 	long			bytes_process; | 
 | 	long			bytes_process_locked; | 
 | 	long			bytes_thread; | 
 |  | 
 | 	int			nr_tasks; | 
 | 	bool			show_quiet; | 
 |  | 
 | 	bool			show_convergence; | 
 | 	bool			measure_convergence; | 
 |  | 
 | 	int			perturb_secs; | 
 | 	int			nr_cpus; | 
 | 	int			nr_nodes; | 
 |  | 
 | 	/* Affinity options -C and -N: */ | 
 | 	char			*cpu_list_str; | 
 | 	char			*node_list_str; | 
 | }; | 
 |  | 
 |  | 
 | /* Global, read-writable area, accessible to all processes and threads: */ | 
 |  | 
 | struct global_info { | 
 | 	u8			*data; | 
 |  | 
 | 	pthread_mutex_t		startup_mutex; | 
 | 	int			nr_tasks_started; | 
 |  | 
 | 	pthread_mutex_t		startup_done_mutex; | 
 |  | 
 | 	pthread_mutex_t		start_work_mutex; | 
 | 	int			nr_tasks_working; | 
 |  | 
 | 	pthread_mutex_t		stop_work_mutex; | 
 | 	u64			bytes_done; | 
 |  | 
 | 	struct thread_data	*threads; | 
 |  | 
 | 	/* Convergence latency measurement: */ | 
 | 	bool			all_converged; | 
 | 	bool			stop_work; | 
 |  | 
 | 	int			print_once; | 
 |  | 
 | 	struct params		p; | 
 | }; | 
 |  | 
 | static struct global_info	*g = NULL; | 
 |  | 
 | static int parse_cpus_opt(const struct option *opt, const char *arg, int unset); | 
 | static int parse_nodes_opt(const struct option *opt, const char *arg, int unset); | 
 |  | 
 | struct params p0; | 
 |  | 
 | static const struct option options[] = { | 
 | 	OPT_INTEGER('p', "nr_proc"	, &p0.nr_proc,		"number of processes"), | 
 | 	OPT_INTEGER('t', "nr_threads"	, &p0.nr_threads,	"number of threads per process"), | 
 |  | 
 | 	OPT_STRING('G', "mb_global"	, &p0.mb_global_str,	"MB", "global  memory (MBs)"), | 
 | 	OPT_STRING('P', "mb_proc"	, &p0.mb_proc_str,	"MB", "process memory (MBs)"), | 
 | 	OPT_STRING('L', "mb_proc_locked", &p0.mb_proc_locked_str,"MB", "process serialized/locked memory access (MBs), <= process_memory"), | 
 | 	OPT_STRING('T', "mb_thread"	, &p0.mb_thread_str,	"MB", "thread  memory (MBs)"), | 
 |  | 
 | 	OPT_UINTEGER('l', "nr_loops"	, &p0.nr_loops,		"max number of loops to run"), | 
 | 	OPT_UINTEGER('s', "nr_secs"	, &p0.nr_secs,		"max number of seconds to run"), | 
 | 	OPT_UINTEGER('u', "usleep"	, &p0.sleep_usecs,	"usecs to sleep per loop iteration"), | 
 |  | 
 | 	OPT_BOOLEAN('R', "data_reads"	, &p0.data_reads,	"access the data via writes (can be mixed with -W)"), | 
 | 	OPT_BOOLEAN('W', "data_writes"	, &p0.data_writes,	"access the data via writes (can be mixed with -R)"), | 
 | 	OPT_BOOLEAN('B', "data_backwards", &p0.data_backwards,	"access the data backwards as well"), | 
 | 	OPT_BOOLEAN('Z', "data_zero_memset", &p0.data_zero_memset,"access the data via glibc bzero only"), | 
 | 	OPT_BOOLEAN('r', "data_rand_walk", &p0.data_rand_walk,	"access the data with random (32bit LFSR) walk"), | 
 |  | 
 |  | 
 | 	OPT_BOOLEAN('z', "init_zero"	, &p0.init_zero,	"bzero the initial allocations"), | 
 | 	OPT_BOOLEAN('I', "init_random"	, &p0.init_random,	"randomize the contents of the initial allocations"), | 
 | 	OPT_BOOLEAN('0', "init_cpu0"	, &p0.init_cpu0,	"do the initial allocations on CPU#0"), | 
 | 	OPT_INTEGER('x', "perturb_secs", &p0.perturb_secs,	"perturb thread 0/0 every X secs, to test convergence stability"), | 
 |  | 
 | 	OPT_INCR   ('d', "show_details"	, &p0.show_details,	"Show details"), | 
 | 	OPT_INCR   ('a', "all"		, &p0.run_all,		"Run all tests in the suite"), | 
 | 	OPT_INTEGER('H', "thp"		, &p0.thp,		"MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"), | 
 | 	OPT_BOOLEAN('c', "show_convergence", &p0.show_convergence, "show convergence details"), | 
 | 	OPT_BOOLEAN('m', "measure_convergence",	&p0.measure_convergence, "measure convergence latency"), | 
 | 	OPT_BOOLEAN('q', "quiet"	, &p0.show_quiet,	"bzero the initial allocations"), | 
 | 	OPT_BOOLEAN('S', "serialize-startup", &p0.serialize_startup,"serialize thread startup"), | 
 |  | 
 | 	/* Special option string parsing callbacks: */ | 
 |         OPT_CALLBACK('C', "cpus", NULL, "cpu[,cpu2,...cpuN]", | 
 | 			"bind the first N tasks to these specific cpus (the rest is unbound)", | 
 | 			parse_cpus_opt), | 
 |         OPT_CALLBACK('M', "memnodes", NULL, "node[,node2,...nodeN]", | 
 | 			"bind the first N tasks to these specific memory nodes (the rest is unbound)", | 
 | 			parse_nodes_opt), | 
 | 	OPT_END() | 
 | }; | 
 |  | 
 | static const char * const bench_numa_usage[] = { | 
 | 	"perf bench numa <options>", | 
 | 	NULL | 
 | }; | 
 |  | 
 | static const char * const numa_usage[] = { | 
 | 	"perf bench numa mem [<options>]", | 
 | 	NULL | 
 | }; | 
 |  | 
 | static cpu_set_t bind_to_cpu(int target_cpu) | 
 | { | 
 | 	cpu_set_t orig_mask, mask; | 
 | 	int ret; | 
 |  | 
 | 	ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask); | 
 | 	BUG_ON(ret); | 
 |  | 
 | 	CPU_ZERO(&mask); | 
 |  | 
 | 	if (target_cpu == -1) { | 
 | 		int cpu; | 
 |  | 
 | 		for (cpu = 0; cpu < g->p.nr_cpus; cpu++) | 
 | 			CPU_SET(cpu, &mask); | 
 | 	} else { | 
 | 		BUG_ON(target_cpu < 0 || target_cpu >= g->p.nr_cpus); | 
 | 		CPU_SET(target_cpu, &mask); | 
 | 	} | 
 |  | 
 | 	ret = sched_setaffinity(0, sizeof(mask), &mask); | 
 | 	BUG_ON(ret); | 
 |  | 
 | 	return orig_mask; | 
 | } | 
 |  | 
 | static cpu_set_t bind_to_node(int target_node) | 
 | { | 
 | 	int cpus_per_node = g->p.nr_cpus/g->p.nr_nodes; | 
 | 	cpu_set_t orig_mask, mask; | 
 | 	int cpu; | 
 | 	int ret; | 
 |  | 
 | 	BUG_ON(cpus_per_node*g->p.nr_nodes != g->p.nr_cpus); | 
 | 	BUG_ON(!cpus_per_node); | 
 |  | 
 | 	ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask); | 
 | 	BUG_ON(ret); | 
 |  | 
 | 	CPU_ZERO(&mask); | 
 |  | 
 | 	if (target_node == -1) { | 
 | 		for (cpu = 0; cpu < g->p.nr_cpus; cpu++) | 
 | 			CPU_SET(cpu, &mask); | 
 | 	} else { | 
 | 		int cpu_start = (target_node + 0) * cpus_per_node; | 
 | 		int cpu_stop  = (target_node + 1) * cpus_per_node; | 
 |  | 
 | 		BUG_ON(cpu_stop > g->p.nr_cpus); | 
 |  | 
 | 		for (cpu = cpu_start; cpu < cpu_stop; cpu++) | 
 | 			CPU_SET(cpu, &mask); | 
 | 	} | 
 |  | 
 | 	ret = sched_setaffinity(0, sizeof(mask), &mask); | 
 | 	BUG_ON(ret); | 
 |  | 
 | 	return orig_mask; | 
 | } | 
 |  | 
 | static void bind_to_cpumask(cpu_set_t mask) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	ret = sched_setaffinity(0, sizeof(mask), &mask); | 
 | 	BUG_ON(ret); | 
 | } | 
 |  | 
 | static void mempol_restore(void) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	ret = set_mempolicy(MPOL_DEFAULT, NULL, g->p.nr_nodes-1); | 
 |  | 
 | 	BUG_ON(ret); | 
 | } | 
 |  | 
 | static void bind_to_memnode(int node) | 
 | { | 
 | 	unsigned long nodemask; | 
 | 	int ret; | 
 |  | 
 | 	if (node == -1) | 
 | 		return; | 
 |  | 
 | 	BUG_ON(g->p.nr_nodes > (int)sizeof(nodemask)); | 
 | 	nodemask = 1L << node; | 
 |  | 
 | 	ret = set_mempolicy(MPOL_BIND, &nodemask, sizeof(nodemask)*8); | 
 | 	dprintf("binding to node %d, mask: %016lx => %d\n", node, nodemask, ret); | 
 |  | 
 | 	BUG_ON(ret); | 
 | } | 
 |  | 
 | #define HPSIZE (2*1024*1024) | 
 |  | 
 | #define set_taskname(fmt...)				\ | 
 | do {							\ | 
 | 	char name[20];					\ | 
 | 							\ | 
 | 	snprintf(name, 20, fmt);			\ | 
 | 	prctl(PR_SET_NAME, name);			\ | 
 | } while (0) | 
 |  | 
 | static u8 *alloc_data(ssize_t bytes0, int map_flags, | 
 | 		      int init_zero, int init_cpu0, int thp, int init_random) | 
 | { | 
 | 	cpu_set_t orig_mask; | 
 | 	ssize_t bytes; | 
 | 	u8 *buf; | 
 | 	int ret; | 
 |  | 
 | 	if (!bytes0) | 
 | 		return NULL; | 
 |  | 
 | 	/* Allocate and initialize all memory on CPU#0: */ | 
 | 	if (init_cpu0) { | 
 | 		orig_mask = bind_to_node(0); | 
 | 		bind_to_memnode(0); | 
 | 	} | 
 |  | 
 | 	bytes = bytes0 + HPSIZE; | 
 |  | 
 | 	buf = (void *)mmap(0, bytes, PROT_READ|PROT_WRITE, MAP_ANON|map_flags, -1, 0); | 
 | 	BUG_ON(buf == (void *)-1); | 
 |  | 
 | 	if (map_flags == MAP_PRIVATE) { | 
 | 		if (thp > 0) { | 
 | 			ret = madvise(buf, bytes, MADV_HUGEPAGE); | 
 | 			if (ret && !g->print_once) { | 
 | 				g->print_once = 1; | 
 | 				printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n"); | 
 | 			} | 
 | 		} | 
 | 		if (thp < 0) { | 
 | 			ret = madvise(buf, bytes, MADV_NOHUGEPAGE); | 
 | 			if (ret && !g->print_once) { | 
 | 				g->print_once = 1; | 
 | 				printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n"); | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (init_zero) { | 
 | 		bzero(buf, bytes); | 
 | 	} else { | 
 | 		/* Initialize random contents, different in each word: */ | 
 | 		if (init_random) { | 
 | 			u64 *wbuf = (void *)buf; | 
 | 			long off = rand(); | 
 | 			long i; | 
 |  | 
 | 			for (i = 0; i < bytes/8; i++) | 
 | 				wbuf[i] = i + off; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Align to 2MB boundary: */ | 
 | 	buf = (void *)(((unsigned long)buf + HPSIZE-1) & ~(HPSIZE-1)); | 
 |  | 
 | 	/* Restore affinity: */ | 
 | 	if (init_cpu0) { | 
 | 		bind_to_cpumask(orig_mask); | 
 | 		mempol_restore(); | 
 | 	} | 
 |  | 
 | 	return buf; | 
 | } | 
 |  | 
 | static void free_data(void *data, ssize_t bytes) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	if (!data) | 
 | 		return; | 
 |  | 
 | 	ret = munmap(data, bytes); | 
 | 	BUG_ON(ret); | 
 | } | 
 |  | 
 | /* | 
 |  * Create a shared memory buffer that can be shared between processes, zeroed: | 
 |  */ | 
 | static void * zalloc_shared_data(ssize_t bytes) | 
 | { | 
 | 	return alloc_data(bytes, MAP_SHARED, 1, g->p.init_cpu0,  g->p.thp, g->p.init_random); | 
 | } | 
 |  | 
 | /* | 
 |  * Create a shared memory buffer that can be shared between processes: | 
 |  */ | 
 | static void * setup_shared_data(ssize_t bytes) | 
 | { | 
 | 	return alloc_data(bytes, MAP_SHARED, 0, g->p.init_cpu0,  g->p.thp, g->p.init_random); | 
 | } | 
 |  | 
 | /* | 
 |  * Allocate process-local memory - this will either be shared between | 
 |  * threads of this process, or only be accessed by this thread: | 
 |  */ | 
 | static void * setup_private_data(ssize_t bytes) | 
 | { | 
 | 	return alloc_data(bytes, MAP_PRIVATE, 0, g->p.init_cpu0,  g->p.thp, g->p.init_random); | 
 | } | 
 |  | 
 | /* | 
 |  * Return a process-shared (global) mutex: | 
 |  */ | 
 | static void init_global_mutex(pthread_mutex_t *mutex) | 
 | { | 
 | 	pthread_mutexattr_t attr; | 
 |  | 
 | 	pthread_mutexattr_init(&attr); | 
 | 	pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED); | 
 | 	pthread_mutex_init(mutex, &attr); | 
 | } | 
 |  | 
 | static int parse_cpu_list(const char *arg) | 
 | { | 
 | 	p0.cpu_list_str = strdup(arg); | 
 |  | 
 | 	dprintf("got CPU list: {%s}\n", p0.cpu_list_str); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int parse_setup_cpu_list(void) | 
 | { | 
 | 	struct thread_data *td; | 
 | 	char *str0, *str; | 
 | 	int t; | 
 |  | 
 | 	if (!g->p.cpu_list_str) | 
 | 		return 0; | 
 |  | 
 | 	dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks); | 
 |  | 
 | 	str0 = str = strdup(g->p.cpu_list_str); | 
 | 	t = 0; | 
 |  | 
 | 	BUG_ON(!str); | 
 |  | 
 | 	tprintf("# binding tasks to CPUs:\n"); | 
 | 	tprintf("#  "); | 
 |  | 
 | 	while (true) { | 
 | 		int bind_cpu, bind_cpu_0, bind_cpu_1; | 
 | 		char *tok, *tok_end, *tok_step, *tok_len, *tok_mul; | 
 | 		int bind_len; | 
 | 		int step; | 
 | 		int mul; | 
 |  | 
 | 		tok = strsep(&str, ","); | 
 | 		if (!tok) | 
 | 			break; | 
 |  | 
 | 		tok_end = strstr(tok, "-"); | 
 |  | 
 | 		dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end); | 
 | 		if (!tok_end) { | 
 | 			/* Single CPU specified: */ | 
 | 			bind_cpu_0 = bind_cpu_1 = atol(tok); | 
 | 		} else { | 
 | 			/* CPU range specified (for example: "5-11"): */ | 
 | 			bind_cpu_0 = atol(tok); | 
 | 			bind_cpu_1 = atol(tok_end + 1); | 
 | 		} | 
 |  | 
 | 		step = 1; | 
 | 		tok_step = strstr(tok, "#"); | 
 | 		if (tok_step) { | 
 | 			step = atol(tok_step + 1); | 
 | 			BUG_ON(step <= 0 || step >= g->p.nr_cpus); | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Mask length. | 
 | 		 * Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4', | 
 | 		 * where the _4 means the next 4 CPUs are allowed. | 
 | 		 */ | 
 | 		bind_len = 1; | 
 | 		tok_len = strstr(tok, "_"); | 
 | 		if (tok_len) { | 
 | 			bind_len = atol(tok_len + 1); | 
 | 			BUG_ON(bind_len <= 0 || bind_len > g->p.nr_cpus); | 
 | 		} | 
 |  | 
 | 		/* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */ | 
 | 		mul = 1; | 
 | 		tok_mul = strstr(tok, "x"); | 
 | 		if (tok_mul) { | 
 | 			mul = atol(tok_mul + 1); | 
 | 			BUG_ON(mul <= 0); | 
 | 		} | 
 |  | 
 | 		dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0, bind_len, bind_cpu_1, step, mul); | 
 |  | 
 | 		if (bind_cpu_0 >= g->p.nr_cpus || bind_cpu_1 >= g->p.nr_cpus) { | 
 | 			printf("\nTest not applicable, system has only %d CPUs.\n", g->p.nr_cpus); | 
 | 			return -1; | 
 | 		} | 
 |  | 
 | 		BUG_ON(bind_cpu_0 < 0 || bind_cpu_1 < 0); | 
 | 		BUG_ON(bind_cpu_0 > bind_cpu_1); | 
 |  | 
 | 		for (bind_cpu = bind_cpu_0; bind_cpu <= bind_cpu_1; bind_cpu += step) { | 
 | 			int i; | 
 |  | 
 | 			for (i = 0; i < mul; i++) { | 
 | 				int cpu; | 
 |  | 
 | 				if (t >= g->p.nr_tasks) { | 
 | 					printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu); | 
 | 					goto out; | 
 | 				} | 
 | 				td = g->threads + t; | 
 |  | 
 | 				if (t) | 
 | 					tprintf(","); | 
 | 				if (bind_len > 1) { | 
 | 					tprintf("%2d/%d", bind_cpu, bind_len); | 
 | 				} else { | 
 | 					tprintf("%2d", bind_cpu); | 
 | 				} | 
 |  | 
 | 				CPU_ZERO(&td->bind_cpumask); | 
 | 				for (cpu = bind_cpu; cpu < bind_cpu+bind_len; cpu++) { | 
 | 					BUG_ON(cpu < 0 || cpu >= g->p.nr_cpus); | 
 | 					CPU_SET(cpu, &td->bind_cpumask); | 
 | 				} | 
 | 				t++; | 
 | 			} | 
 | 		} | 
 | 	} | 
 | out: | 
 |  | 
 | 	tprintf("\n"); | 
 |  | 
 | 	if (t < g->p.nr_tasks) | 
 | 		printf("# NOTE: %d tasks bound, %d tasks unbound\n", t, g->p.nr_tasks - t); | 
 |  | 
 | 	free(str0); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int parse_cpus_opt(const struct option *opt __maybe_unused, | 
 | 			  const char *arg, int unset __maybe_unused) | 
 | { | 
 | 	if (!arg) | 
 | 		return -1; | 
 |  | 
 | 	return parse_cpu_list(arg); | 
 | } | 
 |  | 
 | static int parse_node_list(const char *arg) | 
 | { | 
 | 	p0.node_list_str = strdup(arg); | 
 |  | 
 | 	dprintf("got NODE list: {%s}\n", p0.node_list_str); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int parse_setup_node_list(void) | 
 | { | 
 | 	struct thread_data *td; | 
 | 	char *str0, *str; | 
 | 	int t; | 
 |  | 
 | 	if (!g->p.node_list_str) | 
 | 		return 0; | 
 |  | 
 | 	dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks); | 
 |  | 
 | 	str0 = str = strdup(g->p.node_list_str); | 
 | 	t = 0; | 
 |  | 
 | 	BUG_ON(!str); | 
 |  | 
 | 	tprintf("# binding tasks to NODEs:\n"); | 
 | 	tprintf("# "); | 
 |  | 
 | 	while (true) { | 
 | 		int bind_node, bind_node_0, bind_node_1; | 
 | 		char *tok, *tok_end, *tok_step, *tok_mul; | 
 | 		int step; | 
 | 		int mul; | 
 |  | 
 | 		tok = strsep(&str, ","); | 
 | 		if (!tok) | 
 | 			break; | 
 |  | 
 | 		tok_end = strstr(tok, "-"); | 
 |  | 
 | 		dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end); | 
 | 		if (!tok_end) { | 
 | 			/* Single NODE specified: */ | 
 | 			bind_node_0 = bind_node_1 = atol(tok); | 
 | 		} else { | 
 | 			/* NODE range specified (for example: "5-11"): */ | 
 | 			bind_node_0 = atol(tok); | 
 | 			bind_node_1 = atol(tok_end + 1); | 
 | 		} | 
 |  | 
 | 		step = 1; | 
 | 		tok_step = strstr(tok, "#"); | 
 | 		if (tok_step) { | 
 | 			step = atol(tok_step + 1); | 
 | 			BUG_ON(step <= 0 || step >= g->p.nr_nodes); | 
 | 		} | 
 |  | 
 | 		/* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */ | 
 | 		mul = 1; | 
 | 		tok_mul = strstr(tok, "x"); | 
 | 		if (tok_mul) { | 
 | 			mul = atol(tok_mul + 1); | 
 | 			BUG_ON(mul <= 0); | 
 | 		} | 
 |  | 
 | 		dprintf("NODEs: %d-%d #%d\n", bind_node_0, bind_node_1, step); | 
 |  | 
 | 		if (bind_node_0 >= g->p.nr_nodes || bind_node_1 >= g->p.nr_nodes) { | 
 | 			printf("\nTest not applicable, system has only %d nodes.\n", g->p.nr_nodes); | 
 | 			return -1; | 
 | 		} | 
 |  | 
 | 		BUG_ON(bind_node_0 < 0 || bind_node_1 < 0); | 
 | 		BUG_ON(bind_node_0 > bind_node_1); | 
 |  | 
 | 		for (bind_node = bind_node_0; bind_node <= bind_node_1; bind_node += step) { | 
 | 			int i; | 
 |  | 
 | 			for (i = 0; i < mul; i++) { | 
 | 				if (t >= g->p.nr_tasks) { | 
 | 					printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node); | 
 | 					goto out; | 
 | 				} | 
 | 				td = g->threads + t; | 
 |  | 
 | 				if (!t) | 
 | 					tprintf(" %2d", bind_node); | 
 | 				else | 
 | 					tprintf(",%2d", bind_node); | 
 |  | 
 | 				td->bind_node = bind_node; | 
 | 				t++; | 
 | 			} | 
 | 		} | 
 | 	} | 
 | out: | 
 |  | 
 | 	tprintf("\n"); | 
 |  | 
 | 	if (t < g->p.nr_tasks) | 
 | 		printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t, g->p.nr_tasks - t); | 
 |  | 
 | 	free(str0); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int parse_nodes_opt(const struct option *opt __maybe_unused, | 
 | 			  const char *arg, int unset __maybe_unused) | 
 | { | 
 | 	if (!arg) | 
 | 		return -1; | 
 |  | 
 | 	return parse_node_list(arg); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | #define BIT(x) (1ul << x) | 
 |  | 
 | static inline uint32_t lfsr_32(uint32_t lfsr) | 
 | { | 
 | 	const uint32_t taps = BIT(1) | BIT(5) | BIT(6) | BIT(31); | 
 | 	return (lfsr>>1) ^ ((0x0u - (lfsr & 0x1u)) & taps); | 
 | } | 
 |  | 
 | /* | 
 |  * Make sure there's real data dependency to RAM (when read | 
 |  * accesses are enabled), so the compiler, the CPU and the | 
 |  * kernel (KSM, zero page, etc.) cannot optimize away RAM | 
 |  * accesses: | 
 |  */ | 
 | static inline u64 access_data(u64 *data __attribute__((unused)), u64 val) | 
 | { | 
 | 	if (g->p.data_reads) | 
 | 		val += *data; | 
 | 	if (g->p.data_writes) | 
 | 		*data = val + 1; | 
 | 	return val; | 
 | } | 
 |  | 
 | /* | 
 |  * The worker process does two types of work, a forwards going | 
 |  * loop and a backwards going loop. | 
 |  * | 
 |  * We do this so that on multiprocessor systems we do not create | 
 |  * a 'train' of processing, with highly synchronized processes, | 
 |  * skewing the whole benchmark. | 
 |  */ | 
 | static u64 do_work(u8 *__data, long bytes, int nr, int nr_max, int loop, u64 val) | 
 | { | 
 | 	long words = bytes/sizeof(u64); | 
 | 	u64 *data = (void *)__data; | 
 | 	long chunk_0, chunk_1; | 
 | 	u64 *d0, *d, *d1; | 
 | 	long off; | 
 | 	long i; | 
 |  | 
 | 	BUG_ON(!data && words); | 
 | 	BUG_ON(data && !words); | 
 |  | 
 | 	if (!data) | 
 | 		return val; | 
 |  | 
 | 	/* Very simple memset() work variant: */ | 
 | 	if (g->p.data_zero_memset && !g->p.data_rand_walk) { | 
 | 		bzero(data, bytes); | 
 | 		return val; | 
 | 	} | 
 |  | 
 | 	/* Spread out by PID/TID nr and by loop nr: */ | 
 | 	chunk_0 = words/nr_max; | 
 | 	chunk_1 = words/g->p.nr_loops; | 
 | 	off = nr*chunk_0 + loop*chunk_1; | 
 |  | 
 | 	while (off >= words) | 
 | 		off -= words; | 
 |  | 
 | 	if (g->p.data_rand_walk) { | 
 | 		u32 lfsr = nr + loop + val; | 
 | 		int j; | 
 |  | 
 | 		for (i = 0; i < words/1024; i++) { | 
 | 			long start, end; | 
 |  | 
 | 			lfsr = lfsr_32(lfsr); | 
 |  | 
 | 			start = lfsr % words; | 
 | 			end = min(start + 1024, words-1); | 
 |  | 
 | 			if (g->p.data_zero_memset) { | 
 | 				bzero(data + start, (end-start) * sizeof(u64)); | 
 | 			} else { | 
 | 				for (j = start; j < end; j++) | 
 | 					val = access_data(data + j, val); | 
 | 			} | 
 | 		} | 
 | 	} else if (!g->p.data_backwards || (nr + loop) & 1) { | 
 |  | 
 | 		d0 = data + off; | 
 | 		d  = data + off + 1; | 
 | 		d1 = data + words; | 
 |  | 
 | 		/* Process data forwards: */ | 
 | 		for (;;) { | 
 | 			if (unlikely(d >= d1)) | 
 | 				d = data; | 
 | 			if (unlikely(d == d0)) | 
 | 				break; | 
 |  | 
 | 			val = access_data(d, val); | 
 |  | 
 | 			d++; | 
 | 		} | 
 | 	} else { | 
 | 		/* Process data backwards: */ | 
 |  | 
 | 		d0 = data + off; | 
 | 		d  = data + off - 1; | 
 | 		d1 = data + words; | 
 |  | 
 | 		/* Process data forwards: */ | 
 | 		for (;;) { | 
 | 			if (unlikely(d < data)) | 
 | 				d = data + words-1; | 
 | 			if (unlikely(d == d0)) | 
 | 				break; | 
 |  | 
 | 			val = access_data(d, val); | 
 |  | 
 | 			d--; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return val; | 
 | } | 
 |  | 
 | static void update_curr_cpu(int task_nr, unsigned long bytes_worked) | 
 | { | 
 | 	unsigned int cpu; | 
 |  | 
 | 	cpu = sched_getcpu(); | 
 |  | 
 | 	g->threads[task_nr].curr_cpu = cpu; | 
 | 	prctl(0, bytes_worked); | 
 | } | 
 |  | 
 | #define MAX_NR_NODES	64 | 
 |  | 
 | /* | 
 |  * Count the number of nodes a process's threads | 
 |  * are spread out on. | 
 |  * | 
 |  * A count of 1 means that the process is compressed | 
 |  * to a single node. A count of g->p.nr_nodes means it's | 
 |  * spread out on the whole system. | 
 |  */ | 
 | static int count_process_nodes(int process_nr) | 
 | { | 
 | 	char node_present[MAX_NR_NODES] = { 0, }; | 
 | 	int nodes; | 
 | 	int n, t; | 
 |  | 
 | 	for (t = 0; t < g->p.nr_threads; t++) { | 
 | 		struct thread_data *td; | 
 | 		int task_nr; | 
 | 		int node; | 
 |  | 
 | 		task_nr = process_nr*g->p.nr_threads + t; | 
 | 		td = g->threads + task_nr; | 
 |  | 
 | 		node = numa_node_of_cpu(td->curr_cpu); | 
 | 		node_present[node] = 1; | 
 | 	} | 
 |  | 
 | 	nodes = 0; | 
 |  | 
 | 	for (n = 0; n < MAX_NR_NODES; n++) | 
 | 		nodes += node_present[n]; | 
 |  | 
 | 	return nodes; | 
 | } | 
 |  | 
 | /* | 
 |  * Count the number of distinct process-threads a node contains. | 
 |  * | 
 |  * A count of 1 means that the node contains only a single | 
 |  * process. If all nodes on the system contain at most one | 
 |  * process then we are well-converged. | 
 |  */ | 
 | static int count_node_processes(int node) | 
 | { | 
 | 	int processes = 0; | 
 | 	int t, p; | 
 |  | 
 | 	for (p = 0; p < g->p.nr_proc; p++) { | 
 | 		for (t = 0; t < g->p.nr_threads; t++) { | 
 | 			struct thread_data *td; | 
 | 			int task_nr; | 
 | 			int n; | 
 |  | 
 | 			task_nr = p*g->p.nr_threads + t; | 
 | 			td = g->threads + task_nr; | 
 |  | 
 | 			n = numa_node_of_cpu(td->curr_cpu); | 
 | 			if (n == node) { | 
 | 				processes++; | 
 | 				break; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return processes; | 
 | } | 
 |  | 
 | static void calc_convergence_compression(int *strong) | 
 | { | 
 | 	unsigned int nodes_min, nodes_max; | 
 | 	int p; | 
 |  | 
 | 	nodes_min = -1; | 
 | 	nodes_max =  0; | 
 |  | 
 | 	for (p = 0; p < g->p.nr_proc; p++) { | 
 | 		unsigned int nodes = count_process_nodes(p); | 
 |  | 
 | 		nodes_min = min(nodes, nodes_min); | 
 | 		nodes_max = max(nodes, nodes_max); | 
 | 	} | 
 |  | 
 | 	/* Strong convergence: all threads compress on a single node: */ | 
 | 	if (nodes_min == 1 && nodes_max == 1) { | 
 | 		*strong = 1; | 
 | 	} else { | 
 | 		*strong = 0; | 
 | 		tprintf(" {%d-%d}", nodes_min, nodes_max); | 
 | 	} | 
 | } | 
 |  | 
 | static void calc_convergence(double runtime_ns_max, double *convergence) | 
 | { | 
 | 	unsigned int loops_done_min, loops_done_max; | 
 | 	int process_groups; | 
 | 	int nodes[MAX_NR_NODES]; | 
 | 	int distance; | 
 | 	int nr_min; | 
 | 	int nr_max; | 
 | 	int strong; | 
 | 	int sum; | 
 | 	int nr; | 
 | 	int node; | 
 | 	int cpu; | 
 | 	int t; | 
 |  | 
 | 	if (!g->p.show_convergence && !g->p.measure_convergence) | 
 | 		return; | 
 |  | 
 | 	for (node = 0; node < g->p.nr_nodes; node++) | 
 | 		nodes[node] = 0; | 
 |  | 
 | 	loops_done_min = -1; | 
 | 	loops_done_max = 0; | 
 |  | 
 | 	for (t = 0; t < g->p.nr_tasks; t++) { | 
 | 		struct thread_data *td = g->threads + t; | 
 | 		unsigned int loops_done; | 
 |  | 
 | 		cpu = td->curr_cpu; | 
 |  | 
 | 		/* Not all threads have written it yet: */ | 
 | 		if (cpu < 0) | 
 | 			continue; | 
 |  | 
 | 		node = numa_node_of_cpu(cpu); | 
 |  | 
 | 		nodes[node]++; | 
 |  | 
 | 		loops_done = td->loops_done; | 
 | 		loops_done_min = min(loops_done, loops_done_min); | 
 | 		loops_done_max = max(loops_done, loops_done_max); | 
 | 	} | 
 |  | 
 | 	nr_max = 0; | 
 | 	nr_min = g->p.nr_tasks; | 
 | 	sum = 0; | 
 |  | 
 | 	for (node = 0; node < g->p.nr_nodes; node++) { | 
 | 		nr = nodes[node]; | 
 | 		nr_min = min(nr, nr_min); | 
 | 		nr_max = max(nr, nr_max); | 
 | 		sum += nr; | 
 | 	} | 
 | 	BUG_ON(nr_min > nr_max); | 
 |  | 
 | 	BUG_ON(sum > g->p.nr_tasks); | 
 |  | 
 | 	if (0 && (sum < g->p.nr_tasks)) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * Count the number of distinct process groups present | 
 | 	 * on nodes - when we are converged this will decrease | 
 | 	 * to g->p.nr_proc: | 
 | 	 */ | 
 | 	process_groups = 0; | 
 |  | 
 | 	for (node = 0; node < g->p.nr_nodes; node++) { | 
 | 		int processes = count_node_processes(node); | 
 |  | 
 | 		nr = nodes[node]; | 
 | 		tprintf(" %2d/%-2d", nr, processes); | 
 |  | 
 | 		process_groups += processes; | 
 | 	} | 
 |  | 
 | 	distance = nr_max - nr_min; | 
 |  | 
 | 	tprintf(" [%2d/%-2d]", distance, process_groups); | 
 |  | 
 | 	tprintf(" l:%3d-%-3d (%3d)", | 
 | 		loops_done_min, loops_done_max, loops_done_max-loops_done_min); | 
 |  | 
 | 	if (loops_done_min && loops_done_max) { | 
 | 		double skew = 1.0 - (double)loops_done_min/loops_done_max; | 
 |  | 
 | 		tprintf(" [%4.1f%%]", skew * 100.0); | 
 | 	} | 
 |  | 
 | 	calc_convergence_compression(&strong); | 
 |  | 
 | 	if (strong && process_groups == g->p.nr_proc) { | 
 | 		if (!*convergence) { | 
 | 			*convergence = runtime_ns_max; | 
 | 			tprintf(" (%6.1fs converged)\n", *convergence/1e9); | 
 | 			if (g->p.measure_convergence) { | 
 | 				g->all_converged = true; | 
 | 				g->stop_work = true; | 
 | 			} | 
 | 		} | 
 | 	} else { | 
 | 		if (*convergence) { | 
 | 			tprintf(" (%6.1fs de-converged)", runtime_ns_max/1e9); | 
 | 			*convergence = 0; | 
 | 		} | 
 | 		tprintf("\n"); | 
 | 	} | 
 | } | 
 |  | 
 | static void show_summary(double runtime_ns_max, int l, double *convergence) | 
 | { | 
 | 	tprintf("\r #  %5.1f%%  [%.1f mins]", | 
 | 		(double)(l+1)/g->p.nr_loops*100.0, runtime_ns_max/1e9 / 60.0); | 
 |  | 
 | 	calc_convergence(runtime_ns_max, convergence); | 
 |  | 
 | 	if (g->p.show_details >= 0) | 
 | 		fflush(stdout); | 
 | } | 
 |  | 
 | static void *worker_thread(void *__tdata) | 
 | { | 
 | 	struct thread_data *td = __tdata; | 
 | 	struct timeval start0, start, stop, diff; | 
 | 	int process_nr = td->process_nr; | 
 | 	int thread_nr = td->thread_nr; | 
 | 	unsigned long last_perturbance; | 
 | 	int task_nr = td->task_nr; | 
 | 	int details = g->p.show_details; | 
 | 	int first_task, last_task; | 
 | 	double convergence = 0; | 
 | 	u64 val = td->val; | 
 | 	double runtime_ns_max; | 
 | 	u8 *global_data; | 
 | 	u8 *process_data; | 
 | 	u8 *thread_data; | 
 | 	u64 bytes_done; | 
 | 	long work_done; | 
 | 	u32 l; | 
 |  | 
 | 	bind_to_cpumask(td->bind_cpumask); | 
 | 	bind_to_memnode(td->bind_node); | 
 |  | 
 | 	set_taskname("thread %d/%d", process_nr, thread_nr); | 
 |  | 
 | 	global_data = g->data; | 
 | 	process_data = td->process_data; | 
 | 	thread_data = setup_private_data(g->p.bytes_thread); | 
 |  | 
 | 	bytes_done = 0; | 
 |  | 
 | 	last_task = 0; | 
 | 	if (process_nr == g->p.nr_proc-1 && thread_nr == g->p.nr_threads-1) | 
 | 		last_task = 1; | 
 |  | 
 | 	first_task = 0; | 
 | 	if (process_nr == 0 && thread_nr == 0) | 
 | 		first_task = 1; | 
 |  | 
 | 	if (details >= 2) { | 
 | 		printf("#  thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n", | 
 | 			process_nr, thread_nr, global_data, process_data, thread_data); | 
 | 	} | 
 |  | 
 | 	if (g->p.serialize_startup) { | 
 | 		pthread_mutex_lock(&g->startup_mutex); | 
 | 		g->nr_tasks_started++; | 
 | 		pthread_mutex_unlock(&g->startup_mutex); | 
 |  | 
 | 		/* Here we will wait for the main process to start us all at once: */ | 
 | 		pthread_mutex_lock(&g->start_work_mutex); | 
 | 		g->nr_tasks_working++; | 
 |  | 
 | 		/* Last one wake the main process: */ | 
 | 		if (g->nr_tasks_working == g->p.nr_tasks) | 
 | 			pthread_mutex_unlock(&g->startup_done_mutex); | 
 |  | 
 | 		pthread_mutex_unlock(&g->start_work_mutex); | 
 | 	} | 
 |  | 
 | 	gettimeofday(&start0, NULL); | 
 |  | 
 | 	start = stop = start0; | 
 | 	last_perturbance = start.tv_sec; | 
 |  | 
 | 	for (l = 0; l < g->p.nr_loops; l++) { | 
 | 		start = stop; | 
 |  | 
 | 		if (g->stop_work) | 
 | 			break; | 
 |  | 
 | 		val += do_work(global_data,  g->p.bytes_global,  process_nr, g->p.nr_proc,	l, val); | 
 | 		val += do_work(process_data, g->p.bytes_process, thread_nr,  g->p.nr_threads,	l, val); | 
 | 		val += do_work(thread_data,  g->p.bytes_thread,  0,          1,		l, val); | 
 |  | 
 | 		if (g->p.sleep_usecs) { | 
 | 			pthread_mutex_lock(td->process_lock); | 
 | 			usleep(g->p.sleep_usecs); | 
 | 			pthread_mutex_unlock(td->process_lock); | 
 | 		} | 
 | 		/* | 
 | 		 * Amount of work to be done under a process-global lock: | 
 | 		 */ | 
 | 		if (g->p.bytes_process_locked) { | 
 | 			pthread_mutex_lock(td->process_lock); | 
 | 			val += do_work(process_data, g->p.bytes_process_locked, thread_nr,  g->p.nr_threads,	l, val); | 
 | 			pthread_mutex_unlock(td->process_lock); | 
 | 		} | 
 |  | 
 | 		work_done = g->p.bytes_global + g->p.bytes_process + | 
 | 			    g->p.bytes_process_locked + g->p.bytes_thread; | 
 |  | 
 | 		update_curr_cpu(task_nr, work_done); | 
 | 		bytes_done += work_done; | 
 |  | 
 | 		if (details < 0 && !g->p.perturb_secs && !g->p.measure_convergence && !g->p.nr_secs) | 
 | 			continue; | 
 |  | 
 | 		td->loops_done = l; | 
 |  | 
 | 		gettimeofday(&stop, NULL); | 
 |  | 
 | 		/* Check whether our max runtime timed out: */ | 
 | 		if (g->p.nr_secs) { | 
 | 			timersub(&stop, &start0, &diff); | 
 | 			if ((u32)diff.tv_sec >= g->p.nr_secs) { | 
 | 				g->stop_work = true; | 
 | 				break; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		/* Update the summary at most once per second: */ | 
 | 		if (start.tv_sec == stop.tv_sec) | 
 | 			continue; | 
 |  | 
 | 		/* | 
 | 		 * Perturb the first task's equilibrium every g->p.perturb_secs seconds, | 
 | 		 * by migrating to CPU#0: | 
 | 		 */ | 
 | 		if (first_task && g->p.perturb_secs && (int)(stop.tv_sec - last_perturbance) >= g->p.perturb_secs) { | 
 | 			cpu_set_t orig_mask; | 
 | 			int target_cpu; | 
 | 			int this_cpu; | 
 |  | 
 | 			last_perturbance = stop.tv_sec; | 
 |  | 
 | 			/* | 
 | 			 * Depending on where we are running, move into | 
 | 			 * the other half of the system, to create some | 
 | 			 * real disturbance: | 
 | 			 */ | 
 | 			this_cpu = g->threads[task_nr].curr_cpu; | 
 | 			if (this_cpu < g->p.nr_cpus/2) | 
 | 				target_cpu = g->p.nr_cpus-1; | 
 | 			else | 
 | 				target_cpu = 0; | 
 |  | 
 | 			orig_mask = bind_to_cpu(target_cpu); | 
 |  | 
 | 			/* Here we are running on the target CPU already */ | 
 | 			if (details >= 1) | 
 | 				printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu); | 
 |  | 
 | 			bind_to_cpumask(orig_mask); | 
 | 		} | 
 |  | 
 | 		if (details >= 3) { | 
 | 			timersub(&stop, &start, &diff); | 
 | 			runtime_ns_max = diff.tv_sec * 1000000000; | 
 | 			runtime_ns_max += diff.tv_usec * 1000; | 
 |  | 
 | 			if (details >= 0) { | 
 | 				printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016"PRIx64"]\n", | 
 | 					process_nr, thread_nr, runtime_ns_max / bytes_done, val); | 
 | 			} | 
 | 			fflush(stdout); | 
 | 		} | 
 | 		if (!last_task) | 
 | 			continue; | 
 |  | 
 | 		timersub(&stop, &start0, &diff); | 
 | 		runtime_ns_max = diff.tv_sec * 1000000000ULL; | 
 | 		runtime_ns_max += diff.tv_usec * 1000ULL; | 
 |  | 
 | 		show_summary(runtime_ns_max, l, &convergence); | 
 | 	} | 
 |  | 
 | 	gettimeofday(&stop, NULL); | 
 | 	timersub(&stop, &start0, &diff); | 
 | 	td->runtime_ns = diff.tv_sec * 1000000000ULL; | 
 | 	td->runtime_ns += diff.tv_usec * 1000ULL; | 
 |  | 
 | 	free_data(thread_data, g->p.bytes_thread); | 
 |  | 
 | 	pthread_mutex_lock(&g->stop_work_mutex); | 
 | 	g->bytes_done += bytes_done; | 
 | 	pthread_mutex_unlock(&g->stop_work_mutex); | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * A worker process starts a couple of threads: | 
 |  */ | 
 | static void worker_process(int process_nr) | 
 | { | 
 | 	pthread_mutex_t process_lock; | 
 | 	struct thread_data *td; | 
 | 	pthread_t *pthreads; | 
 | 	u8 *process_data; | 
 | 	int task_nr; | 
 | 	int ret; | 
 | 	int t; | 
 |  | 
 | 	pthread_mutex_init(&process_lock, NULL); | 
 | 	set_taskname("process %d", process_nr); | 
 |  | 
 | 	/* | 
 | 	 * Pick up the memory policy and the CPU binding of our first thread, | 
 | 	 * so that we initialize memory accordingly: | 
 | 	 */ | 
 | 	task_nr = process_nr*g->p.nr_threads; | 
 | 	td = g->threads + task_nr; | 
 |  | 
 | 	bind_to_memnode(td->bind_node); | 
 | 	bind_to_cpumask(td->bind_cpumask); | 
 |  | 
 | 	pthreads = zalloc(g->p.nr_threads * sizeof(pthread_t)); | 
 | 	process_data = setup_private_data(g->p.bytes_process); | 
 |  | 
 | 	if (g->p.show_details >= 3) { | 
 | 		printf(" # process %2d global mem: %p, process mem: %p\n", | 
 | 			process_nr, g->data, process_data); | 
 | 	} | 
 |  | 
 | 	for (t = 0; t < g->p.nr_threads; t++) { | 
 | 		task_nr = process_nr*g->p.nr_threads + t; | 
 | 		td = g->threads + task_nr; | 
 |  | 
 | 		td->process_data = process_data; | 
 | 		td->process_nr   = process_nr; | 
 | 		td->thread_nr    = t; | 
 | 		td->task_nr	 = task_nr; | 
 | 		td->val          = rand(); | 
 | 		td->curr_cpu	 = -1; | 
 | 		td->process_lock = &process_lock; | 
 |  | 
 | 		ret = pthread_create(pthreads + t, NULL, worker_thread, td); | 
 | 		BUG_ON(ret); | 
 | 	} | 
 |  | 
 | 	for (t = 0; t < g->p.nr_threads; t++) { | 
 |                 ret = pthread_join(pthreads[t], NULL); | 
 | 		BUG_ON(ret); | 
 | 	} | 
 |  | 
 | 	free_data(process_data, g->p.bytes_process); | 
 | 	free(pthreads); | 
 | } | 
 |  | 
 | static void print_summary(void) | 
 | { | 
 | 	if (g->p.show_details < 0) | 
 | 		return; | 
 |  | 
 | 	printf("\n ###\n"); | 
 | 	printf(" # %d %s will execute (on %d nodes, %d CPUs):\n", | 
 | 		g->p.nr_tasks, g->p.nr_tasks == 1 ? "task" : "tasks", g->p.nr_nodes, g->p.nr_cpus); | 
 | 	printf(" #      %5dx %5ldMB global  shared mem operations\n", | 
 | 			g->p.nr_loops, g->p.bytes_global/1024/1024); | 
 | 	printf(" #      %5dx %5ldMB process shared mem operations\n", | 
 | 			g->p.nr_loops, g->p.bytes_process/1024/1024); | 
 | 	printf(" #      %5dx %5ldMB thread  local  mem operations\n", | 
 | 			g->p.nr_loops, g->p.bytes_thread/1024/1024); | 
 |  | 
 | 	printf(" ###\n"); | 
 |  | 
 | 	printf("\n ###\n"); fflush(stdout); | 
 | } | 
 |  | 
 | static void init_thread_data(void) | 
 | { | 
 | 	ssize_t size = sizeof(*g->threads)*g->p.nr_tasks; | 
 | 	int t; | 
 |  | 
 | 	g->threads = zalloc_shared_data(size); | 
 |  | 
 | 	for (t = 0; t < g->p.nr_tasks; t++) { | 
 | 		struct thread_data *td = g->threads + t; | 
 | 		int cpu; | 
 |  | 
 | 		/* Allow all nodes by default: */ | 
 | 		td->bind_node = -1; | 
 |  | 
 | 		/* Allow all CPUs by default: */ | 
 | 		CPU_ZERO(&td->bind_cpumask); | 
 | 		for (cpu = 0; cpu < g->p.nr_cpus; cpu++) | 
 | 			CPU_SET(cpu, &td->bind_cpumask); | 
 | 	} | 
 | } | 
 |  | 
 | static void deinit_thread_data(void) | 
 | { | 
 | 	ssize_t size = sizeof(*g->threads)*g->p.nr_tasks; | 
 |  | 
 | 	free_data(g->threads, size); | 
 | } | 
 |  | 
 | static int init(void) | 
 | { | 
 | 	g = (void *)alloc_data(sizeof(*g), MAP_SHARED, 1, 0, 0 /* THP */, 0); | 
 |  | 
 | 	/* Copy over options: */ | 
 | 	g->p = p0; | 
 |  | 
 | 	g->p.nr_cpus = numa_num_configured_cpus(); | 
 |  | 
 | 	g->p.nr_nodes = numa_max_node() + 1; | 
 |  | 
 | 	/* char array in count_process_nodes(): */ | 
 | 	BUG_ON(g->p.nr_nodes > MAX_NR_NODES || g->p.nr_nodes < 0); | 
 |  | 
 | 	if (g->p.show_quiet && !g->p.show_details) | 
 | 		g->p.show_details = -1; | 
 |  | 
 | 	/* Some memory should be specified: */ | 
 | 	if (!g->p.mb_global_str && !g->p.mb_proc_str && !g->p.mb_thread_str) | 
 | 		return -1; | 
 |  | 
 | 	if (g->p.mb_global_str) { | 
 | 		g->p.mb_global = atof(g->p.mb_global_str); | 
 | 		BUG_ON(g->p.mb_global < 0); | 
 | 	} | 
 |  | 
 | 	if (g->p.mb_proc_str) { | 
 | 		g->p.mb_proc = atof(g->p.mb_proc_str); | 
 | 		BUG_ON(g->p.mb_proc < 0); | 
 | 	} | 
 |  | 
 | 	if (g->p.mb_proc_locked_str) { | 
 | 		g->p.mb_proc_locked = atof(g->p.mb_proc_locked_str); | 
 | 		BUG_ON(g->p.mb_proc_locked < 0); | 
 | 		BUG_ON(g->p.mb_proc_locked > g->p.mb_proc); | 
 | 	} | 
 |  | 
 | 	if (g->p.mb_thread_str) { | 
 | 		g->p.mb_thread = atof(g->p.mb_thread_str); | 
 | 		BUG_ON(g->p.mb_thread < 0); | 
 | 	} | 
 |  | 
 | 	BUG_ON(g->p.nr_threads <= 0); | 
 | 	BUG_ON(g->p.nr_proc <= 0); | 
 |  | 
 | 	g->p.nr_tasks = g->p.nr_proc*g->p.nr_threads; | 
 |  | 
 | 	g->p.bytes_global		= g->p.mb_global	*1024L*1024L; | 
 | 	g->p.bytes_process		= g->p.mb_proc		*1024L*1024L; | 
 | 	g->p.bytes_process_locked	= g->p.mb_proc_locked	*1024L*1024L; | 
 | 	g->p.bytes_thread		= g->p.mb_thread	*1024L*1024L; | 
 |  | 
 | 	g->data = setup_shared_data(g->p.bytes_global); | 
 |  | 
 | 	/* Startup serialization: */ | 
 | 	init_global_mutex(&g->start_work_mutex); | 
 | 	init_global_mutex(&g->startup_mutex); | 
 | 	init_global_mutex(&g->startup_done_mutex); | 
 | 	init_global_mutex(&g->stop_work_mutex); | 
 |  | 
 | 	init_thread_data(); | 
 |  | 
 | 	tprintf("#\n"); | 
 | 	if (parse_setup_cpu_list() || parse_setup_node_list()) | 
 | 		return -1; | 
 | 	tprintf("#\n"); | 
 |  | 
 | 	print_summary(); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void deinit(void) | 
 | { | 
 | 	free_data(g->data, g->p.bytes_global); | 
 | 	g->data = NULL; | 
 |  | 
 | 	deinit_thread_data(); | 
 |  | 
 | 	free_data(g, sizeof(*g)); | 
 | 	g = NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * Print a short or long result, depending on the verbosity setting: | 
 |  */ | 
 | static void print_res(const char *name, double val, | 
 | 		      const char *txt_unit, const char *txt_short, const char *txt_long) | 
 | { | 
 | 	if (!name) | 
 | 		name = "main,"; | 
 |  | 
 | 	if (g->p.show_quiet) | 
 | 		printf(" %-30s %15.3f, %-15s %s\n", name, val, txt_unit, txt_short); | 
 | 	else | 
 | 		printf(" %14.3f %s\n", val, txt_long); | 
 | } | 
 |  | 
 | static int __bench_numa(const char *name) | 
 | { | 
 | 	struct timeval start, stop, diff; | 
 | 	u64 runtime_ns_min, runtime_ns_sum; | 
 | 	pid_t *pids, pid, wpid; | 
 | 	double delta_runtime; | 
 | 	double runtime_avg; | 
 | 	double runtime_sec_max; | 
 | 	double runtime_sec_min; | 
 | 	int wait_stat; | 
 | 	double bytes; | 
 | 	int i, t; | 
 |  | 
 | 	if (init()) | 
 | 		return -1; | 
 |  | 
 | 	pids = zalloc(g->p.nr_proc * sizeof(*pids)); | 
 | 	pid = -1; | 
 |  | 
 | 	/* All threads try to acquire it, this way we can wait for them to start up: */ | 
 | 	pthread_mutex_lock(&g->start_work_mutex); | 
 |  | 
 | 	if (g->p.serialize_startup) { | 
 | 		tprintf(" #\n"); | 
 | 		tprintf(" # Startup synchronization: ..."); fflush(stdout); | 
 | 	} | 
 |  | 
 | 	gettimeofday(&start, NULL); | 
 |  | 
 | 	for (i = 0; i < g->p.nr_proc; i++) { | 
 | 		pid = fork(); | 
 | 		dprintf(" # process %2d: PID %d\n", i, pid); | 
 |  | 
 | 		BUG_ON(pid < 0); | 
 | 		if (!pid) { | 
 | 			/* Child process: */ | 
 | 			worker_process(i); | 
 |  | 
 | 			exit(0); | 
 | 		} | 
 | 		pids[i] = pid; | 
 |  | 
 | 	} | 
 | 	/* Wait for all the threads to start up: */ | 
 | 	while (g->nr_tasks_started != g->p.nr_tasks) | 
 | 		usleep(1000); | 
 |  | 
 | 	BUG_ON(g->nr_tasks_started != g->p.nr_tasks); | 
 |  | 
 | 	if (g->p.serialize_startup) { | 
 | 		double startup_sec; | 
 |  | 
 | 		pthread_mutex_lock(&g->startup_done_mutex); | 
 |  | 
 | 		/* This will start all threads: */ | 
 | 		pthread_mutex_unlock(&g->start_work_mutex); | 
 |  | 
 | 		/* This mutex is locked - the last started thread will wake us: */ | 
 | 		pthread_mutex_lock(&g->startup_done_mutex); | 
 |  | 
 | 		gettimeofday(&stop, NULL); | 
 |  | 
 | 		timersub(&stop, &start, &diff); | 
 |  | 
 | 		startup_sec = diff.tv_sec * 1000000000.0; | 
 | 		startup_sec += diff.tv_usec * 1000.0; | 
 | 		startup_sec /= 1e9; | 
 |  | 
 | 		tprintf(" threads initialized in %.6f seconds.\n", startup_sec); | 
 | 		tprintf(" #\n"); | 
 |  | 
 | 		start = stop; | 
 | 		pthread_mutex_unlock(&g->startup_done_mutex); | 
 | 	} else { | 
 | 		gettimeofday(&start, NULL); | 
 | 	} | 
 |  | 
 | 	/* Parent process: */ | 
 |  | 
 |  | 
 | 	for (i = 0; i < g->p.nr_proc; i++) { | 
 | 		wpid = waitpid(pids[i], &wait_stat, 0); | 
 | 		BUG_ON(wpid < 0); | 
 | 		BUG_ON(!WIFEXITED(wait_stat)); | 
 |  | 
 | 	} | 
 |  | 
 | 	runtime_ns_sum = 0; | 
 | 	runtime_ns_min = -1LL; | 
 |  | 
 | 	for (t = 0; t < g->p.nr_tasks; t++) { | 
 | 		u64 thread_runtime_ns = g->threads[t].runtime_ns; | 
 |  | 
 | 		runtime_ns_sum += thread_runtime_ns; | 
 | 		runtime_ns_min = min(thread_runtime_ns, runtime_ns_min); | 
 | 	} | 
 |  | 
 | 	gettimeofday(&stop, NULL); | 
 | 	timersub(&stop, &start, &diff); | 
 |  | 
 | 	BUG_ON(bench_format != BENCH_FORMAT_DEFAULT); | 
 |  | 
 | 	tprintf("\n ###\n"); | 
 | 	tprintf("\n"); | 
 |  | 
 | 	runtime_sec_max = diff.tv_sec * 1000000000.0; | 
 | 	runtime_sec_max += diff.tv_usec * 1000.0; | 
 | 	runtime_sec_max /= 1e9; | 
 |  | 
 | 	runtime_sec_min = runtime_ns_min/1e9; | 
 |  | 
 | 	bytes = g->bytes_done; | 
 | 	runtime_avg = (double)runtime_ns_sum / g->p.nr_tasks / 1e9; | 
 |  | 
 | 	if (g->p.measure_convergence) { | 
 | 		print_res(name, runtime_sec_max, | 
 | 			"secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge"); | 
 | 	} | 
 |  | 
 | 	print_res(name, runtime_sec_max, | 
 | 		"secs,", "runtime-max/thread",	"secs slowest (max) thread-runtime"); | 
 |  | 
 | 	print_res(name, runtime_sec_min, | 
 | 		"secs,", "runtime-min/thread",	"secs fastest (min) thread-runtime"); | 
 |  | 
 | 	print_res(name, runtime_avg, | 
 | 		"secs,", "runtime-avg/thread",	"secs average thread-runtime"); | 
 |  | 
 | 	delta_runtime = (runtime_sec_max - runtime_sec_min)/2.0; | 
 | 	print_res(name, delta_runtime / runtime_sec_max * 100.0, | 
 | 		"%,", "spread-runtime/thread",	"% difference between max/avg runtime"); | 
 |  | 
 | 	print_res(name, bytes / g->p.nr_tasks / 1e9, | 
 | 		"GB,", "data/thread",		"GB data processed, per thread"); | 
 |  | 
 | 	print_res(name, bytes / 1e9, | 
 | 		"GB,", "data-total",		"GB data processed, total"); | 
 |  | 
 | 	print_res(name, runtime_sec_max * 1e9 / (bytes / g->p.nr_tasks), | 
 | 		"nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime"); | 
 |  | 
 | 	print_res(name, bytes / g->p.nr_tasks / 1e9 / runtime_sec_max, | 
 | 		"GB/sec,", "thread-speed",	"GB/sec/thread speed"); | 
 |  | 
 | 	print_res(name, bytes / runtime_sec_max / 1e9, | 
 | 		"GB/sec,", "total-speed",	"GB/sec total speed"); | 
 |  | 
 | 	free(pids); | 
 |  | 
 | 	deinit(); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | #define MAX_ARGS 50 | 
 |  | 
 | static int command_size(const char **argv) | 
 | { | 
 | 	int size = 0; | 
 |  | 
 | 	while (*argv) { | 
 | 		size++; | 
 | 		argv++; | 
 | 	} | 
 |  | 
 | 	BUG_ON(size >= MAX_ARGS); | 
 |  | 
 | 	return size; | 
 | } | 
 |  | 
 | static void init_params(struct params *p, const char *name, int argc, const char **argv) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	printf("\n # Running %s \"perf bench numa", name); | 
 |  | 
 | 	for (i = 0; i < argc; i++) | 
 | 		printf(" %s", argv[i]); | 
 |  | 
 | 	printf("\"\n"); | 
 |  | 
 | 	memset(p, 0, sizeof(*p)); | 
 |  | 
 | 	/* Initialize nonzero defaults: */ | 
 |  | 
 | 	p->serialize_startup		= 1; | 
 | 	p->data_reads			= true; | 
 | 	p->data_writes			= true; | 
 | 	p->data_backwards		= true; | 
 | 	p->data_rand_walk		= true; | 
 | 	p->nr_loops			= -1; | 
 | 	p->init_random			= true; | 
 | } | 
 |  | 
 | static int run_bench_numa(const char *name, const char **argv) | 
 | { | 
 | 	int argc = command_size(argv); | 
 |  | 
 | 	init_params(&p0, name, argc, argv); | 
 | 	argc = parse_options(argc, argv, options, bench_numa_usage, 0); | 
 | 	if (argc) | 
 | 		goto err; | 
 |  | 
 | 	if (__bench_numa(name)) | 
 | 		goto err; | 
 |  | 
 | 	return 0; | 
 |  | 
 | err: | 
 | 	return -1; | 
 | } | 
 |  | 
 | #define OPT_BW_RAM		"-s",  "20", "-zZq",    "--thp", " 1", "--no-data_rand_walk" | 
 | #define OPT_BW_RAM_NOTHP	OPT_BW_RAM,		"--thp", "-1" | 
 |  | 
 | #define OPT_CONV		"-s", "100", "-zZ0qcm", "--thp", " 1" | 
 | #define OPT_CONV_NOTHP		OPT_CONV,		"--thp", "-1" | 
 |  | 
 | #define OPT_BW			"-s",  "20", "-zZ0q",   "--thp", " 1" | 
 | #define OPT_BW_NOTHP		OPT_BW,			"--thp", "-1" | 
 |  | 
 | /* | 
 |  * The built-in test-suite executed by "perf bench numa -a". | 
 |  * | 
 |  * (A minimum of 4 nodes and 16 GB of RAM is recommended.) | 
 |  */ | 
 | static const char *tests[][MAX_ARGS] = { | 
 |    /* Basic single-stream NUMA bandwidth measurements: */ | 
 |    { "RAM-bw-local,",	  "mem",  "-p",  "1",  "-t",  "1", "-P", "1024", | 
 | 			  "-C" ,   "0", "-M",   "0", OPT_BW_RAM }, | 
 |    { "RAM-bw-local-NOTHP,", | 
 | 			  "mem",  "-p",  "1",  "-t",  "1", "-P", "1024", | 
 | 			  "-C" ,   "0", "-M",   "0", OPT_BW_RAM_NOTHP }, | 
 |    { "RAM-bw-remote,",	  "mem",  "-p",  "1",  "-t",  "1", "-P", "1024", | 
 | 			  "-C" ,   "0", "-M",   "1", OPT_BW_RAM }, | 
 |  | 
 |    /* 2-stream NUMA bandwidth measurements: */ | 
 |    { "RAM-bw-local-2x,",  "mem",  "-p",  "2",  "-t",  "1", "-P", "1024", | 
 | 			   "-C", "0,2", "-M", "0x2", OPT_BW_RAM }, | 
 |    { "RAM-bw-remote-2x,", "mem",  "-p",  "2",  "-t",  "1", "-P", "1024", | 
 | 		 	   "-C", "0,2", "-M", "1x2", OPT_BW_RAM }, | 
 |  | 
 |    /* Cross-stream NUMA bandwidth measurement: */ | 
 |    { "RAM-bw-cross,",     "mem",  "-p",  "2",  "-t",  "1", "-P", "1024", | 
 | 		 	   "-C", "0,8", "-M", "1,0", OPT_BW_RAM }, | 
 |  | 
 |    /* Convergence latency measurements: */ | 
 |    { " 1x3-convergence,", "mem",  "-p",  "1", "-t",  "3", "-P",  "512", OPT_CONV }, | 
 |    { " 1x4-convergence,", "mem",  "-p",  "1", "-t",  "4", "-P",  "512", OPT_CONV }, | 
 |    { " 1x6-convergence,", "mem",  "-p",  "1", "-t",  "6", "-P", "1020", OPT_CONV }, | 
 |    { " 2x3-convergence,", "mem",  "-p",  "3", "-t",  "3", "-P", "1020", OPT_CONV }, | 
 |    { " 3x3-convergence,", "mem",  "-p",  "3", "-t",  "3", "-P", "1020", OPT_CONV }, | 
 |    { " 4x4-convergence,", "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_CONV }, | 
 |    { " 4x4-convergence-NOTHP,", | 
 | 			  "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_CONV_NOTHP }, | 
 |    { " 4x6-convergence,", "mem",  "-p",  "4", "-t",  "6", "-P", "1020", OPT_CONV }, | 
 |    { " 4x8-convergence,", "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_CONV }, | 
 |    { " 8x4-convergence,", "mem",  "-p",  "8", "-t",  "4", "-P",  "512", OPT_CONV }, | 
 |    { " 8x4-convergence-NOTHP,", | 
 | 			  "mem",  "-p",  "8", "-t",  "4", "-P",  "512", OPT_CONV_NOTHP }, | 
 |    { " 3x1-convergence,", "mem",  "-p",  "3", "-t",  "1", "-P",  "512", OPT_CONV }, | 
 |    { " 4x1-convergence,", "mem",  "-p",  "4", "-t",  "1", "-P",  "512", OPT_CONV }, | 
 |    { " 8x1-convergence,", "mem",  "-p",  "8", "-t",  "1", "-P",  "512", OPT_CONV }, | 
 |    { "16x1-convergence,", "mem",  "-p", "16", "-t",  "1", "-P",  "256", OPT_CONV }, | 
 |    { "32x1-convergence,", "mem",  "-p", "32", "-t",  "1", "-P",  "128", OPT_CONV }, | 
 |  | 
 |    /* Various NUMA process/thread layout bandwidth measurements: */ | 
 |    { " 2x1-bw-process,",  "mem",  "-p",  "2", "-t",  "1", "-P", "1024", OPT_BW }, | 
 |    { " 3x1-bw-process,",  "mem",  "-p",  "3", "-t",  "1", "-P", "1024", OPT_BW }, | 
 |    { " 4x1-bw-process,",  "mem",  "-p",  "4", "-t",  "1", "-P", "1024", OPT_BW }, | 
 |    { " 8x1-bw-process,",  "mem",  "-p",  "8", "-t",  "1", "-P", " 512", OPT_BW }, | 
 |    { " 8x1-bw-process-NOTHP,", | 
 | 			  "mem",  "-p",  "8", "-t",  "1", "-P", " 512", OPT_BW_NOTHP }, | 
 |    { "16x1-bw-process,",  "mem",  "-p", "16", "-t",  "1", "-P",  "256", OPT_BW }, | 
 |  | 
 |    { " 4x1-bw-thread,",	  "mem",  "-p",  "1", "-t",  "4", "-T",  "256", OPT_BW }, | 
 |    { " 8x1-bw-thread,",	  "mem",  "-p",  "1", "-t",  "8", "-T",  "256", OPT_BW }, | 
 |    { "16x1-bw-thread,",   "mem",  "-p",  "1", "-t", "16", "-T",  "128", OPT_BW }, | 
 |    { "32x1-bw-thread,",   "mem",  "-p",  "1", "-t", "32", "-T",   "64", OPT_BW }, | 
 |  | 
 |    { " 2x3-bw-thread,",	  "mem",  "-p",  "2", "-t",  "3", "-P",  "512", OPT_BW }, | 
 |    { " 4x4-bw-thread,",	  "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_BW }, | 
 |    { " 4x6-bw-thread,",	  "mem",  "-p",  "4", "-t",  "6", "-P",  "512", OPT_BW }, | 
 |    { " 4x8-bw-thread,",	  "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_BW }, | 
 |    { " 4x8-bw-thread-NOTHP,", | 
 | 			  "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_BW_NOTHP }, | 
 |    { " 3x3-bw-thread,",	  "mem",  "-p",  "3", "-t",  "3", "-P",  "512", OPT_BW }, | 
 |    { " 5x5-bw-thread,",	  "mem",  "-p",  "5", "-t",  "5", "-P",  "512", OPT_BW }, | 
 |  | 
 |    { "2x16-bw-thread,",   "mem",  "-p",  "2", "-t", "16", "-P",  "512", OPT_BW }, | 
 |    { "1x32-bw-thread,",   "mem",  "-p",  "1", "-t", "32", "-P", "2048", OPT_BW }, | 
 |  | 
 |    { "numa02-bw,",	  "mem",  "-p",  "1", "-t", "32", "-T",   "32", OPT_BW }, | 
 |    { "numa02-bw-NOTHP,",  "mem",  "-p",  "1", "-t", "32", "-T",   "32", OPT_BW_NOTHP }, | 
 |    { "numa01-bw-thread,", "mem",  "-p",  "2", "-t", "16", "-T",  "192", OPT_BW }, | 
 |    { "numa01-bw-thread-NOTHP,", | 
 | 			  "mem",  "-p",  "2", "-t", "16", "-T",  "192", OPT_BW_NOTHP }, | 
 | }; | 
 |  | 
 | static int bench_all(void) | 
 | { | 
 | 	int nr = ARRAY_SIZE(tests); | 
 | 	int ret; | 
 | 	int i; | 
 |  | 
 | 	ret = system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'"); | 
 | 	BUG_ON(ret < 0); | 
 |  | 
 | 	for (i = 0; i < nr; i++) { | 
 | 		run_bench_numa(tests[i][0], tests[i] + 1); | 
 | 	} | 
 |  | 
 | 	printf("\n"); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int bench_numa(int argc, const char **argv, const char *prefix __maybe_unused) | 
 | { | 
 | 	init_params(&p0, "main,", argc, argv); | 
 | 	argc = parse_options(argc, argv, options, bench_numa_usage, 0); | 
 | 	if (argc) | 
 | 		goto err; | 
 |  | 
 | 	if (p0.run_all) | 
 | 		return bench_all(); | 
 |  | 
 | 	if (__bench_numa(NULL)) | 
 | 		goto err; | 
 |  | 
 | 	return 0; | 
 |  | 
 | err: | 
 | 	usage_with_options(numa_usage, options); | 
 | 	return -1; | 
 | } |