|  | /* | 
|  | * Copyright (C) 2011-2012 Red Hat UK. | 
|  | * | 
|  | * This file is released under the GPL. | 
|  | */ | 
|  |  | 
|  | #include "dm-thin-metadata.h" | 
|  | #include "dm-bio-prison.h" | 
|  | #include "dm.h" | 
|  |  | 
|  | #include <linux/device-mapper.h> | 
|  | #include <linux/dm-io.h> | 
|  | #include <linux/dm-kcopyd.h> | 
|  | #include <linux/list.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/slab.h> | 
|  |  | 
|  | #define	DM_MSG_PREFIX	"thin" | 
|  |  | 
|  | /* | 
|  | * Tunable constants | 
|  | */ | 
|  | #define ENDIO_HOOK_POOL_SIZE 1024 | 
|  | #define MAPPING_POOL_SIZE 1024 | 
|  | #define PRISON_CELLS 1024 | 
|  | #define COMMIT_PERIOD HZ | 
|  |  | 
|  | DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle, | 
|  | "A percentage of time allocated for copy on write"); | 
|  |  | 
|  | /* | 
|  | * The block size of the device holding pool data must be | 
|  | * between 64KB and 1GB. | 
|  | */ | 
|  | #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT) | 
|  | #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT) | 
|  |  | 
|  | /* | 
|  | * Device id is restricted to 24 bits. | 
|  | */ | 
|  | #define MAX_DEV_ID ((1 << 24) - 1) | 
|  |  | 
|  | /* | 
|  | * How do we handle breaking sharing of data blocks? | 
|  | * ================================================= | 
|  | * | 
|  | * We use a standard copy-on-write btree to store the mappings for the | 
|  | * devices (note I'm talking about copy-on-write of the metadata here, not | 
|  | * the data).  When you take an internal snapshot you clone the root node | 
|  | * of the origin btree.  After this there is no concept of an origin or a | 
|  | * snapshot.  They are just two device trees that happen to point to the | 
|  | * same data blocks. | 
|  | * | 
|  | * When we get a write in we decide if it's to a shared data block using | 
|  | * some timestamp magic.  If it is, we have to break sharing. | 
|  | * | 
|  | * Let's say we write to a shared block in what was the origin.  The | 
|  | * steps are: | 
|  | * | 
|  | * i) plug io further to this physical block. (see bio_prison code). | 
|  | * | 
|  | * ii) quiesce any read io to that shared data block.  Obviously | 
|  | * including all devices that share this block.  (see dm_deferred_set code) | 
|  | * | 
|  | * iii) copy the data block to a newly allocate block.  This step can be | 
|  | * missed out if the io covers the block. (schedule_copy). | 
|  | * | 
|  | * iv) insert the new mapping into the origin's btree | 
|  | * (process_prepared_mapping).  This act of inserting breaks some | 
|  | * sharing of btree nodes between the two devices.  Breaking sharing only | 
|  | * effects the btree of that specific device.  Btrees for the other | 
|  | * devices that share the block never change.  The btree for the origin | 
|  | * device as it was after the last commit is untouched, ie. we're using | 
|  | * persistent data structures in the functional programming sense. | 
|  | * | 
|  | * v) unplug io to this physical block, including the io that triggered | 
|  | * the breaking of sharing. | 
|  | * | 
|  | * Steps (ii) and (iii) occur in parallel. | 
|  | * | 
|  | * The metadata _doesn't_ need to be committed before the io continues.  We | 
|  | * get away with this because the io is always written to a _new_ block. | 
|  | * If there's a crash, then: | 
|  | * | 
|  | * - The origin mapping will point to the old origin block (the shared | 
|  | * one).  This will contain the data as it was before the io that triggered | 
|  | * the breaking of sharing came in. | 
|  | * | 
|  | * - The snap mapping still points to the old block.  As it would after | 
|  | * the commit. | 
|  | * | 
|  | * The downside of this scheme is the timestamp magic isn't perfect, and | 
|  | * will continue to think that data block in the snapshot device is shared | 
|  | * even after the write to the origin has broken sharing.  I suspect data | 
|  | * blocks will typically be shared by many different devices, so we're | 
|  | * breaking sharing n + 1 times, rather than n, where n is the number of | 
|  | * devices that reference this data block.  At the moment I think the | 
|  | * benefits far, far outweigh the disadvantages. | 
|  | */ | 
|  |  | 
|  | /*----------------------------------------------------------------*/ | 
|  |  | 
|  | /* | 
|  | * Key building. | 
|  | */ | 
|  | static void build_data_key(struct dm_thin_device *td, | 
|  | dm_block_t b, struct dm_cell_key *key) | 
|  | { | 
|  | key->virtual = 0; | 
|  | key->dev = dm_thin_dev_id(td); | 
|  | key->block = b; | 
|  | } | 
|  |  | 
|  | static void build_virtual_key(struct dm_thin_device *td, dm_block_t b, | 
|  | struct dm_cell_key *key) | 
|  | { | 
|  | key->virtual = 1; | 
|  | key->dev = dm_thin_dev_id(td); | 
|  | key->block = b; | 
|  | } | 
|  |  | 
|  | /*----------------------------------------------------------------*/ | 
|  |  | 
|  | /* | 
|  | * A pool device ties together a metadata device and a data device.  It | 
|  | * also provides the interface for creating and destroying internal | 
|  | * devices. | 
|  | */ | 
|  | struct dm_thin_new_mapping; | 
|  |  | 
|  | /* | 
|  | * The pool runs in 3 modes.  Ordered in degraded order for comparisons. | 
|  | */ | 
|  | enum pool_mode { | 
|  | PM_WRITE,		/* metadata may be changed */ | 
|  | PM_READ_ONLY,		/* metadata may not be changed */ | 
|  | PM_FAIL,		/* all I/O fails */ | 
|  | }; | 
|  |  | 
|  | struct pool_features { | 
|  | enum pool_mode mode; | 
|  |  | 
|  | bool zero_new_blocks:1; | 
|  | bool discard_enabled:1; | 
|  | bool discard_passdown:1; | 
|  | }; | 
|  |  | 
|  | struct thin_c; | 
|  | typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio); | 
|  | typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m); | 
|  |  | 
|  | struct pool { | 
|  | struct list_head list; | 
|  | struct dm_target *ti;	/* Only set if a pool target is bound */ | 
|  |  | 
|  | struct mapped_device *pool_md; | 
|  | struct block_device *md_dev; | 
|  | struct dm_pool_metadata *pmd; | 
|  |  | 
|  | dm_block_t low_water_blocks; | 
|  | uint32_t sectors_per_block; | 
|  | int sectors_per_block_shift; | 
|  |  | 
|  | struct pool_features pf; | 
|  | unsigned low_water_triggered:1;	/* A dm event has been sent */ | 
|  | unsigned no_free_space:1;	/* A -ENOSPC warning has been issued */ | 
|  |  | 
|  | struct dm_bio_prison *prison; | 
|  | struct dm_kcopyd_client *copier; | 
|  |  | 
|  | struct workqueue_struct *wq; | 
|  | struct work_struct worker; | 
|  | struct delayed_work waker; | 
|  |  | 
|  | unsigned long last_commit_jiffies; | 
|  | unsigned ref_count; | 
|  |  | 
|  | spinlock_t lock; | 
|  | struct bio_list deferred_bios; | 
|  | struct bio_list deferred_flush_bios; | 
|  | struct list_head prepared_mappings; | 
|  | struct list_head prepared_discards; | 
|  |  | 
|  | struct bio_list retry_on_resume_list; | 
|  |  | 
|  | struct dm_deferred_set *shared_read_ds; | 
|  | struct dm_deferred_set *all_io_ds; | 
|  |  | 
|  | struct dm_thin_new_mapping *next_mapping; | 
|  | mempool_t *mapping_pool; | 
|  |  | 
|  | process_bio_fn process_bio; | 
|  | process_bio_fn process_discard; | 
|  |  | 
|  | process_mapping_fn process_prepared_mapping; | 
|  | process_mapping_fn process_prepared_discard; | 
|  | }; | 
|  |  | 
|  | static enum pool_mode get_pool_mode(struct pool *pool); | 
|  | static void set_pool_mode(struct pool *pool, enum pool_mode mode); | 
|  |  | 
|  | /* | 
|  | * Target context for a pool. | 
|  | */ | 
|  | struct pool_c { | 
|  | struct dm_target *ti; | 
|  | struct pool *pool; | 
|  | struct dm_dev *data_dev; | 
|  | struct dm_dev *metadata_dev; | 
|  | struct dm_target_callbacks callbacks; | 
|  |  | 
|  | dm_block_t low_water_blocks; | 
|  | struct pool_features requested_pf; /* Features requested during table load */ | 
|  | struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */ | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Target context for a thin. | 
|  | */ | 
|  | struct thin_c { | 
|  | struct dm_dev *pool_dev; | 
|  | struct dm_dev *origin_dev; | 
|  | dm_thin_id dev_id; | 
|  |  | 
|  | struct pool *pool; | 
|  | struct dm_thin_device *td; | 
|  | }; | 
|  |  | 
|  | /*----------------------------------------------------------------*/ | 
|  |  | 
|  | /* | 
|  | * wake_worker() is used when new work is queued and when pool_resume is | 
|  | * ready to continue deferred IO processing. | 
|  | */ | 
|  | static void wake_worker(struct pool *pool) | 
|  | { | 
|  | queue_work(pool->wq, &pool->worker); | 
|  | } | 
|  |  | 
|  | /*----------------------------------------------------------------*/ | 
|  |  | 
|  | static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio, | 
|  | struct dm_bio_prison_cell **cell_result) | 
|  | { | 
|  | int r; | 
|  | struct dm_bio_prison_cell *cell_prealloc; | 
|  |  | 
|  | /* | 
|  | * Allocate a cell from the prison's mempool. | 
|  | * This might block but it can't fail. | 
|  | */ | 
|  | cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO); | 
|  |  | 
|  | r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result); | 
|  | if (r) | 
|  | /* | 
|  | * We reused an old cell; we can get rid of | 
|  | * the new one. | 
|  | */ | 
|  | dm_bio_prison_free_cell(pool->prison, cell_prealloc); | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static void cell_release(struct pool *pool, | 
|  | struct dm_bio_prison_cell *cell, | 
|  | struct bio_list *bios) | 
|  | { | 
|  | dm_cell_release(pool->prison, cell, bios); | 
|  | dm_bio_prison_free_cell(pool->prison, cell); | 
|  | } | 
|  |  | 
|  | static void cell_release_no_holder(struct pool *pool, | 
|  | struct dm_bio_prison_cell *cell, | 
|  | struct bio_list *bios) | 
|  | { | 
|  | dm_cell_release_no_holder(pool->prison, cell, bios); | 
|  | dm_bio_prison_free_cell(pool->prison, cell); | 
|  | } | 
|  |  | 
|  | static void cell_defer_no_holder_no_free(struct thin_c *tc, | 
|  | struct dm_bio_prison_cell *cell) | 
|  | { | 
|  | struct pool *pool = tc->pool; | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&pool->lock, flags); | 
|  | dm_cell_release_no_holder(pool->prison, cell, &pool->deferred_bios); | 
|  | spin_unlock_irqrestore(&pool->lock, flags); | 
|  |  | 
|  | wake_worker(pool); | 
|  | } | 
|  |  | 
|  | static void cell_error(struct pool *pool, | 
|  | struct dm_bio_prison_cell *cell) | 
|  | { | 
|  | dm_cell_error(pool->prison, cell); | 
|  | dm_bio_prison_free_cell(pool->prison, cell); | 
|  | } | 
|  |  | 
|  | /*----------------------------------------------------------------*/ | 
|  |  | 
|  | /* | 
|  | * A global list of pools that uses a struct mapped_device as a key. | 
|  | */ | 
|  | static struct dm_thin_pool_table { | 
|  | struct mutex mutex; | 
|  | struct list_head pools; | 
|  | } dm_thin_pool_table; | 
|  |  | 
|  | static void pool_table_init(void) | 
|  | { | 
|  | mutex_init(&dm_thin_pool_table.mutex); | 
|  | INIT_LIST_HEAD(&dm_thin_pool_table.pools); | 
|  | } | 
|  |  | 
|  | static void __pool_table_insert(struct pool *pool) | 
|  | { | 
|  | BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); | 
|  | list_add(&pool->list, &dm_thin_pool_table.pools); | 
|  | } | 
|  |  | 
|  | static void __pool_table_remove(struct pool *pool) | 
|  | { | 
|  | BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); | 
|  | list_del(&pool->list); | 
|  | } | 
|  |  | 
|  | static struct pool *__pool_table_lookup(struct mapped_device *md) | 
|  | { | 
|  | struct pool *pool = NULL, *tmp; | 
|  |  | 
|  | BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); | 
|  |  | 
|  | list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) { | 
|  | if (tmp->pool_md == md) { | 
|  | pool = tmp; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return pool; | 
|  | } | 
|  |  | 
|  | static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev) | 
|  | { | 
|  | struct pool *pool = NULL, *tmp; | 
|  |  | 
|  | BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); | 
|  |  | 
|  | list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) { | 
|  | if (tmp->md_dev == md_dev) { | 
|  | pool = tmp; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return pool; | 
|  | } | 
|  |  | 
|  | /*----------------------------------------------------------------*/ | 
|  |  | 
|  | struct dm_thin_endio_hook { | 
|  | struct thin_c *tc; | 
|  | struct dm_deferred_entry *shared_read_entry; | 
|  | struct dm_deferred_entry *all_io_entry; | 
|  | struct dm_thin_new_mapping *overwrite_mapping; | 
|  | }; | 
|  |  | 
|  | static void __requeue_bio_list(struct thin_c *tc, struct bio_list *master) | 
|  | { | 
|  | struct bio *bio; | 
|  | struct bio_list bios; | 
|  |  | 
|  | bio_list_init(&bios); | 
|  | bio_list_merge(&bios, master); | 
|  | bio_list_init(master); | 
|  |  | 
|  | while ((bio = bio_list_pop(&bios))) { | 
|  | struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); | 
|  |  | 
|  | if (h->tc == tc) | 
|  | bio_endio(bio, DM_ENDIO_REQUEUE); | 
|  | else | 
|  | bio_list_add(master, bio); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void requeue_io(struct thin_c *tc) | 
|  | { | 
|  | struct pool *pool = tc->pool; | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&pool->lock, flags); | 
|  | __requeue_bio_list(tc, &pool->deferred_bios); | 
|  | __requeue_bio_list(tc, &pool->retry_on_resume_list); | 
|  | spin_unlock_irqrestore(&pool->lock, flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This section of code contains the logic for processing a thin device's IO. | 
|  | * Much of the code depends on pool object resources (lists, workqueues, etc) | 
|  | * but most is exclusively called from the thin target rather than the thin-pool | 
|  | * target. | 
|  | */ | 
|  |  | 
|  | static bool block_size_is_power_of_two(struct pool *pool) | 
|  | { | 
|  | return pool->sectors_per_block_shift >= 0; | 
|  | } | 
|  |  | 
|  | static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio) | 
|  | { | 
|  | struct pool *pool = tc->pool; | 
|  | sector_t block_nr = bio->bi_sector; | 
|  |  | 
|  | if (block_size_is_power_of_two(pool)) | 
|  | block_nr >>= pool->sectors_per_block_shift; | 
|  | else | 
|  | (void) sector_div(block_nr, pool->sectors_per_block); | 
|  |  | 
|  | return block_nr; | 
|  | } | 
|  |  | 
|  | static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block) | 
|  | { | 
|  | struct pool *pool = tc->pool; | 
|  | sector_t bi_sector = bio->bi_sector; | 
|  |  | 
|  | bio->bi_bdev = tc->pool_dev->bdev; | 
|  | if (block_size_is_power_of_two(pool)) | 
|  | bio->bi_sector = (block << pool->sectors_per_block_shift) | | 
|  | (bi_sector & (pool->sectors_per_block - 1)); | 
|  | else | 
|  | bio->bi_sector = (block * pool->sectors_per_block) + | 
|  | sector_div(bi_sector, pool->sectors_per_block); | 
|  | } | 
|  |  | 
|  | static void remap_to_origin(struct thin_c *tc, struct bio *bio) | 
|  | { | 
|  | bio->bi_bdev = tc->origin_dev->bdev; | 
|  | } | 
|  |  | 
|  | static int bio_triggers_commit(struct thin_c *tc, struct bio *bio) | 
|  | { | 
|  | return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && | 
|  | dm_thin_changed_this_transaction(tc->td); | 
|  | } | 
|  |  | 
|  | static void inc_all_io_entry(struct pool *pool, struct bio *bio) | 
|  | { | 
|  | struct dm_thin_endio_hook *h; | 
|  |  | 
|  | if (bio->bi_rw & REQ_DISCARD) | 
|  | return; | 
|  |  | 
|  | h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); | 
|  | h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds); | 
|  | } | 
|  |  | 
|  | static void issue(struct thin_c *tc, struct bio *bio) | 
|  | { | 
|  | struct pool *pool = tc->pool; | 
|  | unsigned long flags; | 
|  |  | 
|  | if (!bio_triggers_commit(tc, bio)) { | 
|  | generic_make_request(bio); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Complete bio with an error if earlier I/O caused changes to | 
|  | * the metadata that can't be committed e.g, due to I/O errors | 
|  | * on the metadata device. | 
|  | */ | 
|  | if (dm_thin_aborted_changes(tc->td)) { | 
|  | bio_io_error(bio); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Batch together any bios that trigger commits and then issue a | 
|  | * single commit for them in process_deferred_bios(). | 
|  | */ | 
|  | spin_lock_irqsave(&pool->lock, flags); | 
|  | bio_list_add(&pool->deferred_flush_bios, bio); | 
|  | spin_unlock_irqrestore(&pool->lock, flags); | 
|  | } | 
|  |  | 
|  | static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio) | 
|  | { | 
|  | remap_to_origin(tc, bio); | 
|  | issue(tc, bio); | 
|  | } | 
|  |  | 
|  | static void remap_and_issue(struct thin_c *tc, struct bio *bio, | 
|  | dm_block_t block) | 
|  | { | 
|  | remap(tc, bio, block); | 
|  | issue(tc, bio); | 
|  | } | 
|  |  | 
|  | /*----------------------------------------------------------------*/ | 
|  |  | 
|  | /* | 
|  | * Bio endio functions. | 
|  | */ | 
|  | struct dm_thin_new_mapping { | 
|  | struct list_head list; | 
|  |  | 
|  | unsigned quiesced:1; | 
|  | unsigned prepared:1; | 
|  | unsigned pass_discard:1; | 
|  |  | 
|  | struct thin_c *tc; | 
|  | dm_block_t virt_block; | 
|  | dm_block_t data_block; | 
|  | struct dm_bio_prison_cell *cell, *cell2; | 
|  | int err; | 
|  |  | 
|  | /* | 
|  | * If the bio covers the whole area of a block then we can avoid | 
|  | * zeroing or copying.  Instead this bio is hooked.  The bio will | 
|  | * still be in the cell, so care has to be taken to avoid issuing | 
|  | * the bio twice. | 
|  | */ | 
|  | struct bio *bio; | 
|  | bio_end_io_t *saved_bi_end_io; | 
|  | }; | 
|  |  | 
|  | static void __maybe_add_mapping(struct dm_thin_new_mapping *m) | 
|  | { | 
|  | struct pool *pool = m->tc->pool; | 
|  |  | 
|  | if (m->quiesced && m->prepared) { | 
|  | list_add(&m->list, &pool->prepared_mappings); | 
|  | wake_worker(pool); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void copy_complete(int read_err, unsigned long write_err, void *context) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct dm_thin_new_mapping *m = context; | 
|  | struct pool *pool = m->tc->pool; | 
|  |  | 
|  | m->err = read_err || write_err ? -EIO : 0; | 
|  |  | 
|  | spin_lock_irqsave(&pool->lock, flags); | 
|  | m->prepared = 1; | 
|  | __maybe_add_mapping(m); | 
|  | spin_unlock_irqrestore(&pool->lock, flags); | 
|  | } | 
|  |  | 
|  | static void overwrite_endio(struct bio *bio, int err) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); | 
|  | struct dm_thin_new_mapping *m = h->overwrite_mapping; | 
|  | struct pool *pool = m->tc->pool; | 
|  |  | 
|  | m->err = err; | 
|  |  | 
|  | spin_lock_irqsave(&pool->lock, flags); | 
|  | m->prepared = 1; | 
|  | __maybe_add_mapping(m); | 
|  | spin_unlock_irqrestore(&pool->lock, flags); | 
|  | } | 
|  |  | 
|  | /*----------------------------------------------------------------*/ | 
|  |  | 
|  | /* | 
|  | * Workqueue. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Prepared mapping jobs. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * This sends the bios in the cell back to the deferred_bios list. | 
|  | */ | 
|  | static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell) | 
|  | { | 
|  | struct pool *pool = tc->pool; | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&pool->lock, flags); | 
|  | cell_release(pool, cell, &pool->deferred_bios); | 
|  | spin_unlock_irqrestore(&tc->pool->lock, flags); | 
|  |  | 
|  | wake_worker(pool); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Same as cell_defer above, except it omits the original holder of the cell. | 
|  | */ | 
|  | static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell) | 
|  | { | 
|  | struct pool *pool = tc->pool; | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&pool->lock, flags); | 
|  | cell_release_no_holder(pool, cell, &pool->deferred_bios); | 
|  | spin_unlock_irqrestore(&pool->lock, flags); | 
|  |  | 
|  | wake_worker(pool); | 
|  | } | 
|  |  | 
|  | static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m) | 
|  | { | 
|  | if (m->bio) | 
|  | m->bio->bi_end_io = m->saved_bi_end_io; | 
|  | cell_error(m->tc->pool, m->cell); | 
|  | list_del(&m->list); | 
|  | mempool_free(m, m->tc->pool->mapping_pool); | 
|  | } | 
|  |  | 
|  | static void process_prepared_mapping(struct dm_thin_new_mapping *m) | 
|  | { | 
|  | struct thin_c *tc = m->tc; | 
|  | struct pool *pool = tc->pool; | 
|  | struct bio *bio; | 
|  | int r; | 
|  |  | 
|  | bio = m->bio; | 
|  | if (bio) | 
|  | bio->bi_end_io = m->saved_bi_end_io; | 
|  |  | 
|  | if (m->err) { | 
|  | cell_error(pool, m->cell); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Commit the prepared block into the mapping btree. | 
|  | * Any I/O for this block arriving after this point will get | 
|  | * remapped to it directly. | 
|  | */ | 
|  | r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block); | 
|  | if (r) { | 
|  | DMERR_LIMIT("dm_thin_insert_block() failed"); | 
|  | cell_error(pool, m->cell); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Release any bios held while the block was being provisioned. | 
|  | * If we are processing a write bio that completely covers the block, | 
|  | * we already processed it so can ignore it now when processing | 
|  | * the bios in the cell. | 
|  | */ | 
|  | if (bio) { | 
|  | cell_defer_no_holder(tc, m->cell); | 
|  | bio_endio(bio, 0); | 
|  | } else | 
|  | cell_defer(tc, m->cell); | 
|  |  | 
|  | out: | 
|  | list_del(&m->list); | 
|  | mempool_free(m, pool->mapping_pool); | 
|  | } | 
|  |  | 
|  | static void process_prepared_discard_fail(struct dm_thin_new_mapping *m) | 
|  | { | 
|  | struct thin_c *tc = m->tc; | 
|  |  | 
|  | bio_io_error(m->bio); | 
|  | cell_defer_no_holder(tc, m->cell); | 
|  | cell_defer_no_holder(tc, m->cell2); | 
|  | mempool_free(m, tc->pool->mapping_pool); | 
|  | } | 
|  |  | 
|  | static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m) | 
|  | { | 
|  | struct thin_c *tc = m->tc; | 
|  |  | 
|  | inc_all_io_entry(tc->pool, m->bio); | 
|  | cell_defer_no_holder(tc, m->cell); | 
|  | cell_defer_no_holder(tc, m->cell2); | 
|  |  | 
|  | if (m->pass_discard) | 
|  | remap_and_issue(tc, m->bio, m->data_block); | 
|  | else | 
|  | bio_endio(m->bio, 0); | 
|  |  | 
|  | mempool_free(m, tc->pool->mapping_pool); | 
|  | } | 
|  |  | 
|  | static void process_prepared_discard(struct dm_thin_new_mapping *m) | 
|  | { | 
|  | int r; | 
|  | struct thin_c *tc = m->tc; | 
|  |  | 
|  | r = dm_thin_remove_block(tc->td, m->virt_block); | 
|  | if (r) | 
|  | DMERR_LIMIT("dm_thin_remove_block() failed"); | 
|  |  | 
|  | process_prepared_discard_passdown(m); | 
|  | } | 
|  |  | 
|  | static void process_prepared(struct pool *pool, struct list_head *head, | 
|  | process_mapping_fn *fn) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct list_head maps; | 
|  | struct dm_thin_new_mapping *m, *tmp; | 
|  |  | 
|  | INIT_LIST_HEAD(&maps); | 
|  | spin_lock_irqsave(&pool->lock, flags); | 
|  | list_splice_init(head, &maps); | 
|  | spin_unlock_irqrestore(&pool->lock, flags); | 
|  |  | 
|  | list_for_each_entry_safe(m, tmp, &maps, list) | 
|  | (*fn)(m); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Deferred bio jobs. | 
|  | */ | 
|  | static int io_overlaps_block(struct pool *pool, struct bio *bio) | 
|  | { | 
|  | return bio->bi_size == (pool->sectors_per_block << SECTOR_SHIFT); | 
|  | } | 
|  |  | 
|  | static int io_overwrites_block(struct pool *pool, struct bio *bio) | 
|  | { | 
|  | return (bio_data_dir(bio) == WRITE) && | 
|  | io_overlaps_block(pool, bio); | 
|  | } | 
|  |  | 
|  | static void save_and_set_endio(struct bio *bio, bio_end_io_t **save, | 
|  | bio_end_io_t *fn) | 
|  | { | 
|  | *save = bio->bi_end_io; | 
|  | bio->bi_end_io = fn; | 
|  | } | 
|  |  | 
|  | static int ensure_next_mapping(struct pool *pool) | 
|  | { | 
|  | if (pool->next_mapping) | 
|  | return 0; | 
|  |  | 
|  | pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC); | 
|  |  | 
|  | return pool->next_mapping ? 0 : -ENOMEM; | 
|  | } | 
|  |  | 
|  | static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool) | 
|  | { | 
|  | struct dm_thin_new_mapping *r = pool->next_mapping; | 
|  |  | 
|  | BUG_ON(!pool->next_mapping); | 
|  |  | 
|  | pool->next_mapping = NULL; | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static void schedule_copy(struct thin_c *tc, dm_block_t virt_block, | 
|  | struct dm_dev *origin, dm_block_t data_origin, | 
|  | dm_block_t data_dest, | 
|  | struct dm_bio_prison_cell *cell, struct bio *bio) | 
|  | { | 
|  | int r; | 
|  | struct pool *pool = tc->pool; | 
|  | struct dm_thin_new_mapping *m = get_next_mapping(pool); | 
|  |  | 
|  | INIT_LIST_HEAD(&m->list); | 
|  | m->quiesced = 0; | 
|  | m->prepared = 0; | 
|  | m->tc = tc; | 
|  | m->virt_block = virt_block; | 
|  | m->data_block = data_dest; | 
|  | m->cell = cell; | 
|  | m->err = 0; | 
|  | m->bio = NULL; | 
|  |  | 
|  | if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list)) | 
|  | m->quiesced = 1; | 
|  |  | 
|  | /* | 
|  | * IO to pool_dev remaps to the pool target's data_dev. | 
|  | * | 
|  | * If the whole block of data is being overwritten, we can issue the | 
|  | * bio immediately. Otherwise we use kcopyd to clone the data first. | 
|  | */ | 
|  | if (io_overwrites_block(pool, bio)) { | 
|  | struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); | 
|  |  | 
|  | h->overwrite_mapping = m; | 
|  | m->bio = bio; | 
|  | save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio); | 
|  | inc_all_io_entry(pool, bio); | 
|  | remap_and_issue(tc, bio, data_dest); | 
|  | } else { | 
|  | struct dm_io_region from, to; | 
|  |  | 
|  | from.bdev = origin->bdev; | 
|  | from.sector = data_origin * pool->sectors_per_block; | 
|  | from.count = pool->sectors_per_block; | 
|  |  | 
|  | to.bdev = tc->pool_dev->bdev; | 
|  | to.sector = data_dest * pool->sectors_per_block; | 
|  | to.count = pool->sectors_per_block; | 
|  |  | 
|  | r = dm_kcopyd_copy(pool->copier, &from, 1, &to, | 
|  | 0, copy_complete, m); | 
|  | if (r < 0) { | 
|  | mempool_free(m, pool->mapping_pool); | 
|  | DMERR_LIMIT("dm_kcopyd_copy() failed"); | 
|  | cell_error(pool, cell); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block, | 
|  | dm_block_t data_origin, dm_block_t data_dest, | 
|  | struct dm_bio_prison_cell *cell, struct bio *bio) | 
|  | { | 
|  | schedule_copy(tc, virt_block, tc->pool_dev, | 
|  | data_origin, data_dest, cell, bio); | 
|  | } | 
|  |  | 
|  | static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block, | 
|  | dm_block_t data_dest, | 
|  | struct dm_bio_prison_cell *cell, struct bio *bio) | 
|  | { | 
|  | schedule_copy(tc, virt_block, tc->origin_dev, | 
|  | virt_block, data_dest, cell, bio); | 
|  | } | 
|  |  | 
|  | static void schedule_zero(struct thin_c *tc, dm_block_t virt_block, | 
|  | dm_block_t data_block, struct dm_bio_prison_cell *cell, | 
|  | struct bio *bio) | 
|  | { | 
|  | struct pool *pool = tc->pool; | 
|  | struct dm_thin_new_mapping *m = get_next_mapping(pool); | 
|  |  | 
|  | INIT_LIST_HEAD(&m->list); | 
|  | m->quiesced = 1; | 
|  | m->prepared = 0; | 
|  | m->tc = tc; | 
|  | m->virt_block = virt_block; | 
|  | m->data_block = data_block; | 
|  | m->cell = cell; | 
|  | m->err = 0; | 
|  | m->bio = NULL; | 
|  |  | 
|  | /* | 
|  | * If the whole block of data is being overwritten or we are not | 
|  | * zeroing pre-existing data, we can issue the bio immediately. | 
|  | * Otherwise we use kcopyd to zero the data first. | 
|  | */ | 
|  | if (!pool->pf.zero_new_blocks) | 
|  | process_prepared_mapping(m); | 
|  |  | 
|  | else if (io_overwrites_block(pool, bio)) { | 
|  | struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); | 
|  |  | 
|  | h->overwrite_mapping = m; | 
|  | m->bio = bio; | 
|  | save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio); | 
|  | inc_all_io_entry(pool, bio); | 
|  | remap_and_issue(tc, bio, data_block); | 
|  | } else { | 
|  | int r; | 
|  | struct dm_io_region to; | 
|  |  | 
|  | to.bdev = tc->pool_dev->bdev; | 
|  | to.sector = data_block * pool->sectors_per_block; | 
|  | to.count = pool->sectors_per_block; | 
|  |  | 
|  | r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m); | 
|  | if (r < 0) { | 
|  | mempool_free(m, pool->mapping_pool); | 
|  | DMERR_LIMIT("dm_kcopyd_zero() failed"); | 
|  | cell_error(pool, cell); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static int commit(struct pool *pool) | 
|  | { | 
|  | int r; | 
|  |  | 
|  | r = dm_pool_commit_metadata(pool->pmd); | 
|  | if (r) | 
|  | DMERR_LIMIT("%s: commit failed: error = %d", | 
|  | dm_device_name(pool->pool_md), r); | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * A non-zero return indicates read_only or fail_io mode. | 
|  | * Many callers don't care about the return value. | 
|  | */ | 
|  | static int commit_or_fallback(struct pool *pool) | 
|  | { | 
|  | int r; | 
|  |  | 
|  | if (get_pool_mode(pool) != PM_WRITE) | 
|  | return -EINVAL; | 
|  |  | 
|  | r = commit(pool); | 
|  | if (r) | 
|  | set_pool_mode(pool, PM_READ_ONLY); | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static int alloc_data_block(struct thin_c *tc, dm_block_t *result) | 
|  | { | 
|  | int r; | 
|  | dm_block_t free_blocks; | 
|  | unsigned long flags; | 
|  | struct pool *pool = tc->pool; | 
|  |  | 
|  | /* | 
|  | * Once no_free_space is set we must not allow allocation to succeed. | 
|  | * Otherwise it is difficult to explain, debug, test and support. | 
|  | */ | 
|  | if (pool->no_free_space) | 
|  | return -ENOSPC; | 
|  |  | 
|  | r = dm_pool_get_free_block_count(pool->pmd, &free_blocks); | 
|  | if (r) | 
|  | return r; | 
|  |  | 
|  | if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) { | 
|  | DMWARN("%s: reached low water mark for data device: sending event.", | 
|  | dm_device_name(pool->pool_md)); | 
|  | spin_lock_irqsave(&pool->lock, flags); | 
|  | pool->low_water_triggered = 1; | 
|  | spin_unlock_irqrestore(&pool->lock, flags); | 
|  | dm_table_event(pool->ti->table); | 
|  | } | 
|  |  | 
|  | if (!free_blocks) { | 
|  | /* | 
|  | * Try to commit to see if that will free up some | 
|  | * more space. | 
|  | */ | 
|  | (void) commit_or_fallback(pool); | 
|  |  | 
|  | r = dm_pool_get_free_block_count(pool->pmd, &free_blocks); | 
|  | if (r) | 
|  | return r; | 
|  |  | 
|  | /* | 
|  | * If we still have no space we set a flag to avoid | 
|  | * doing all this checking and return -ENOSPC.  This | 
|  | * flag serves as a latch that disallows allocations from | 
|  | * this pool until the admin takes action (e.g. resize or | 
|  | * table reload). | 
|  | */ | 
|  | if (!free_blocks) { | 
|  | DMWARN("%s: no free space available.", | 
|  | dm_device_name(pool->pool_md)); | 
|  | spin_lock_irqsave(&pool->lock, flags); | 
|  | pool->no_free_space = 1; | 
|  | spin_unlock_irqrestore(&pool->lock, flags); | 
|  | return -ENOSPC; | 
|  | } | 
|  | } | 
|  |  | 
|  | r = dm_pool_alloc_data_block(pool->pmd, result); | 
|  | if (r) | 
|  | return r; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we have run out of space, queue bios until the device is | 
|  | * resumed, presumably after having been reloaded with more space. | 
|  | */ | 
|  | static void retry_on_resume(struct bio *bio) | 
|  | { | 
|  | struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); | 
|  | struct thin_c *tc = h->tc; | 
|  | struct pool *pool = tc->pool; | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&pool->lock, flags); | 
|  | bio_list_add(&pool->retry_on_resume_list, bio); | 
|  | spin_unlock_irqrestore(&pool->lock, flags); | 
|  | } | 
|  |  | 
|  | static void no_space(struct pool *pool, struct dm_bio_prison_cell *cell) | 
|  | { | 
|  | struct bio *bio; | 
|  | struct bio_list bios; | 
|  |  | 
|  | bio_list_init(&bios); | 
|  | cell_release(pool, cell, &bios); | 
|  |  | 
|  | while ((bio = bio_list_pop(&bios))) | 
|  | retry_on_resume(bio); | 
|  | } | 
|  |  | 
|  | static void process_discard(struct thin_c *tc, struct bio *bio) | 
|  | { | 
|  | int r; | 
|  | unsigned long flags; | 
|  | struct pool *pool = tc->pool; | 
|  | struct dm_bio_prison_cell *cell, *cell2; | 
|  | struct dm_cell_key key, key2; | 
|  | dm_block_t block = get_bio_block(tc, bio); | 
|  | struct dm_thin_lookup_result lookup_result; | 
|  | struct dm_thin_new_mapping *m; | 
|  |  | 
|  | build_virtual_key(tc->td, block, &key); | 
|  | if (bio_detain(tc->pool, &key, bio, &cell)) | 
|  | return; | 
|  |  | 
|  | r = dm_thin_find_block(tc->td, block, 1, &lookup_result); | 
|  | switch (r) { | 
|  | case 0: | 
|  | /* | 
|  | * Check nobody is fiddling with this pool block.  This can | 
|  | * happen if someone's in the process of breaking sharing | 
|  | * on this block. | 
|  | */ | 
|  | build_data_key(tc->td, lookup_result.block, &key2); | 
|  | if (bio_detain(tc->pool, &key2, bio, &cell2)) { | 
|  | cell_defer_no_holder(tc, cell); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (io_overlaps_block(pool, bio)) { | 
|  | /* | 
|  | * IO may still be going to the destination block.  We must | 
|  | * quiesce before we can do the removal. | 
|  | */ | 
|  | m = get_next_mapping(pool); | 
|  | m->tc = tc; | 
|  | m->pass_discard = (!lookup_result.shared) && pool->pf.discard_passdown; | 
|  | m->virt_block = block; | 
|  | m->data_block = lookup_result.block; | 
|  | m->cell = cell; | 
|  | m->cell2 = cell2; | 
|  | m->err = 0; | 
|  | m->bio = bio; | 
|  |  | 
|  | if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) { | 
|  | spin_lock_irqsave(&pool->lock, flags); | 
|  | list_add(&m->list, &pool->prepared_discards); | 
|  | spin_unlock_irqrestore(&pool->lock, flags); | 
|  | wake_worker(pool); | 
|  | } | 
|  | } else { | 
|  | inc_all_io_entry(pool, bio); | 
|  | cell_defer_no_holder(tc, cell); | 
|  | cell_defer_no_holder(tc, cell2); | 
|  |  | 
|  | /* | 
|  | * The DM core makes sure that the discard doesn't span | 
|  | * a block boundary.  So we submit the discard of a | 
|  | * partial block appropriately. | 
|  | */ | 
|  | if ((!lookup_result.shared) && pool->pf.discard_passdown) | 
|  | remap_and_issue(tc, bio, lookup_result.block); | 
|  | else | 
|  | bio_endio(bio, 0); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case -ENODATA: | 
|  | /* | 
|  | * It isn't provisioned, just forget it. | 
|  | */ | 
|  | cell_defer_no_holder(tc, cell); | 
|  | bio_endio(bio, 0); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d", | 
|  | __func__, r); | 
|  | cell_defer_no_holder(tc, cell); | 
|  | bio_io_error(bio); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block, | 
|  | struct dm_cell_key *key, | 
|  | struct dm_thin_lookup_result *lookup_result, | 
|  | struct dm_bio_prison_cell *cell) | 
|  | { | 
|  | int r; | 
|  | dm_block_t data_block; | 
|  | struct pool *pool = tc->pool; | 
|  |  | 
|  | r = alloc_data_block(tc, &data_block); | 
|  | switch (r) { | 
|  | case 0: | 
|  | schedule_internal_copy(tc, block, lookup_result->block, | 
|  | data_block, cell, bio); | 
|  | break; | 
|  |  | 
|  | case -ENOSPC: | 
|  | no_space(pool, cell); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | DMERR_LIMIT("%s: alloc_data_block() failed: error = %d", | 
|  | __func__, r); | 
|  | set_pool_mode(pool, PM_READ_ONLY); | 
|  | cell_error(pool, cell); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void process_shared_bio(struct thin_c *tc, struct bio *bio, | 
|  | dm_block_t block, | 
|  | struct dm_thin_lookup_result *lookup_result) | 
|  | { | 
|  | struct dm_bio_prison_cell *cell; | 
|  | struct pool *pool = tc->pool; | 
|  | struct dm_cell_key key; | 
|  |  | 
|  | /* | 
|  | * If cell is already occupied, then sharing is already in the process | 
|  | * of being broken so we have nothing further to do here. | 
|  | */ | 
|  | build_data_key(tc->td, lookup_result->block, &key); | 
|  | if (bio_detain(pool, &key, bio, &cell)) | 
|  | return; | 
|  |  | 
|  | if (bio_data_dir(bio) == WRITE && bio->bi_size) | 
|  | break_sharing(tc, bio, block, &key, lookup_result, cell); | 
|  | else { | 
|  | struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); | 
|  |  | 
|  | h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds); | 
|  | inc_all_io_entry(pool, bio); | 
|  | cell_defer_no_holder(tc, cell); | 
|  |  | 
|  | remap_and_issue(tc, bio, lookup_result->block); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block, | 
|  | struct dm_bio_prison_cell *cell) | 
|  | { | 
|  | int r; | 
|  | dm_block_t data_block; | 
|  | struct pool *pool = tc->pool; | 
|  |  | 
|  | /* | 
|  | * Remap empty bios (flushes) immediately, without provisioning. | 
|  | */ | 
|  | if (!bio->bi_size) { | 
|  | inc_all_io_entry(pool, bio); | 
|  | cell_defer_no_holder(tc, cell); | 
|  |  | 
|  | remap_and_issue(tc, bio, 0); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Fill read bios with zeroes and complete them immediately. | 
|  | */ | 
|  | if (bio_data_dir(bio) == READ) { | 
|  | zero_fill_bio(bio); | 
|  | cell_defer_no_holder(tc, cell); | 
|  | bio_endio(bio, 0); | 
|  | return; | 
|  | } | 
|  |  | 
|  | r = alloc_data_block(tc, &data_block); | 
|  | switch (r) { | 
|  | case 0: | 
|  | if (tc->origin_dev) | 
|  | schedule_external_copy(tc, block, data_block, cell, bio); | 
|  | else | 
|  | schedule_zero(tc, block, data_block, cell, bio); | 
|  | break; | 
|  |  | 
|  | case -ENOSPC: | 
|  | no_space(pool, cell); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | DMERR_LIMIT("%s: alloc_data_block() failed: error = %d", | 
|  | __func__, r); | 
|  | set_pool_mode(pool, PM_READ_ONLY); | 
|  | cell_error(pool, cell); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void process_bio(struct thin_c *tc, struct bio *bio) | 
|  | { | 
|  | int r; | 
|  | struct pool *pool = tc->pool; | 
|  | dm_block_t block = get_bio_block(tc, bio); | 
|  | struct dm_bio_prison_cell *cell; | 
|  | struct dm_cell_key key; | 
|  | struct dm_thin_lookup_result lookup_result; | 
|  |  | 
|  | /* | 
|  | * If cell is already occupied, then the block is already | 
|  | * being provisioned so we have nothing further to do here. | 
|  | */ | 
|  | build_virtual_key(tc->td, block, &key); | 
|  | if (bio_detain(pool, &key, bio, &cell)) | 
|  | return; | 
|  |  | 
|  | r = dm_thin_find_block(tc->td, block, 1, &lookup_result); | 
|  | switch (r) { | 
|  | case 0: | 
|  | if (lookup_result.shared) { | 
|  | process_shared_bio(tc, bio, block, &lookup_result); | 
|  | cell_defer_no_holder(tc, cell); /* FIXME: pass this cell into process_shared? */ | 
|  | } else { | 
|  | inc_all_io_entry(pool, bio); | 
|  | cell_defer_no_holder(tc, cell); | 
|  |  | 
|  | remap_and_issue(tc, bio, lookup_result.block); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case -ENODATA: | 
|  | if (bio_data_dir(bio) == READ && tc->origin_dev) { | 
|  | inc_all_io_entry(pool, bio); | 
|  | cell_defer_no_holder(tc, cell); | 
|  |  | 
|  | remap_to_origin_and_issue(tc, bio); | 
|  | } else | 
|  | provision_block(tc, bio, block, cell); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d", | 
|  | __func__, r); | 
|  | cell_defer_no_holder(tc, cell); | 
|  | bio_io_error(bio); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void process_bio_read_only(struct thin_c *tc, struct bio *bio) | 
|  | { | 
|  | int r; | 
|  | int rw = bio_data_dir(bio); | 
|  | dm_block_t block = get_bio_block(tc, bio); | 
|  | struct dm_thin_lookup_result lookup_result; | 
|  |  | 
|  | r = dm_thin_find_block(tc->td, block, 1, &lookup_result); | 
|  | switch (r) { | 
|  | case 0: | 
|  | if (lookup_result.shared && (rw == WRITE) && bio->bi_size) | 
|  | bio_io_error(bio); | 
|  | else { | 
|  | inc_all_io_entry(tc->pool, bio); | 
|  | remap_and_issue(tc, bio, lookup_result.block); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case -ENODATA: | 
|  | if (rw != READ) { | 
|  | bio_io_error(bio); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (tc->origin_dev) { | 
|  | inc_all_io_entry(tc->pool, bio); | 
|  | remap_to_origin_and_issue(tc, bio); | 
|  | break; | 
|  | } | 
|  |  | 
|  | zero_fill_bio(bio); | 
|  | bio_endio(bio, 0); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d", | 
|  | __func__, r); | 
|  | bio_io_error(bio); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void process_bio_fail(struct thin_c *tc, struct bio *bio) | 
|  | { | 
|  | bio_io_error(bio); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * FIXME: should we also commit due to size of transaction, measured in | 
|  | * metadata blocks? | 
|  | */ | 
|  | static int need_commit_due_to_time(struct pool *pool) | 
|  | { | 
|  | return jiffies < pool->last_commit_jiffies || | 
|  | jiffies > pool->last_commit_jiffies + COMMIT_PERIOD; | 
|  | } | 
|  |  | 
|  | static void process_deferred_bios(struct pool *pool) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct bio *bio; | 
|  | struct bio_list bios; | 
|  |  | 
|  | bio_list_init(&bios); | 
|  |  | 
|  | spin_lock_irqsave(&pool->lock, flags); | 
|  | bio_list_merge(&bios, &pool->deferred_bios); | 
|  | bio_list_init(&pool->deferred_bios); | 
|  | spin_unlock_irqrestore(&pool->lock, flags); | 
|  |  | 
|  | while ((bio = bio_list_pop(&bios))) { | 
|  | struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); | 
|  | struct thin_c *tc = h->tc; | 
|  |  | 
|  | /* | 
|  | * If we've got no free new_mapping structs, and processing | 
|  | * this bio might require one, we pause until there are some | 
|  | * prepared mappings to process. | 
|  | */ | 
|  | if (ensure_next_mapping(pool)) { | 
|  | spin_lock_irqsave(&pool->lock, flags); | 
|  | bio_list_merge(&pool->deferred_bios, &bios); | 
|  | spin_unlock_irqrestore(&pool->lock, flags); | 
|  |  | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (bio->bi_rw & REQ_DISCARD) | 
|  | pool->process_discard(tc, bio); | 
|  | else | 
|  | pool->process_bio(tc, bio); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If there are any deferred flush bios, we must commit | 
|  | * the metadata before issuing them. | 
|  | */ | 
|  | bio_list_init(&bios); | 
|  | spin_lock_irqsave(&pool->lock, flags); | 
|  | bio_list_merge(&bios, &pool->deferred_flush_bios); | 
|  | bio_list_init(&pool->deferred_flush_bios); | 
|  | spin_unlock_irqrestore(&pool->lock, flags); | 
|  |  | 
|  | if (bio_list_empty(&bios) && !need_commit_due_to_time(pool)) | 
|  | return; | 
|  |  | 
|  | if (commit_or_fallback(pool)) { | 
|  | while ((bio = bio_list_pop(&bios))) | 
|  | bio_io_error(bio); | 
|  | return; | 
|  | } | 
|  | pool->last_commit_jiffies = jiffies; | 
|  |  | 
|  | while ((bio = bio_list_pop(&bios))) | 
|  | generic_make_request(bio); | 
|  | } | 
|  |  | 
|  | static void do_worker(struct work_struct *ws) | 
|  | { | 
|  | struct pool *pool = container_of(ws, struct pool, worker); | 
|  |  | 
|  | process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping); | 
|  | process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard); | 
|  | process_deferred_bios(pool); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We want to commit periodically so that not too much | 
|  | * unwritten data builds up. | 
|  | */ | 
|  | static void do_waker(struct work_struct *ws) | 
|  | { | 
|  | struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker); | 
|  | wake_worker(pool); | 
|  | queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD); | 
|  | } | 
|  |  | 
|  | /*----------------------------------------------------------------*/ | 
|  |  | 
|  | static enum pool_mode get_pool_mode(struct pool *pool) | 
|  | { | 
|  | return pool->pf.mode; | 
|  | } | 
|  |  | 
|  | static void set_pool_mode(struct pool *pool, enum pool_mode mode) | 
|  | { | 
|  | int r; | 
|  |  | 
|  | pool->pf.mode = mode; | 
|  |  | 
|  | switch (mode) { | 
|  | case PM_FAIL: | 
|  | DMERR("%s: switching pool to failure mode", | 
|  | dm_device_name(pool->pool_md)); | 
|  | pool->process_bio = process_bio_fail; | 
|  | pool->process_discard = process_bio_fail; | 
|  | pool->process_prepared_mapping = process_prepared_mapping_fail; | 
|  | pool->process_prepared_discard = process_prepared_discard_fail; | 
|  | break; | 
|  |  | 
|  | case PM_READ_ONLY: | 
|  | DMERR("%s: switching pool to read-only mode", | 
|  | dm_device_name(pool->pool_md)); | 
|  | r = dm_pool_abort_metadata(pool->pmd); | 
|  | if (r) { | 
|  | DMERR("%s: aborting transaction failed", | 
|  | dm_device_name(pool->pool_md)); | 
|  | set_pool_mode(pool, PM_FAIL); | 
|  | } else { | 
|  | dm_pool_metadata_read_only(pool->pmd); | 
|  | pool->process_bio = process_bio_read_only; | 
|  | pool->process_discard = process_discard; | 
|  | pool->process_prepared_mapping = process_prepared_mapping_fail; | 
|  | pool->process_prepared_discard = process_prepared_discard_passdown; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case PM_WRITE: | 
|  | pool->process_bio = process_bio; | 
|  | pool->process_discard = process_discard; | 
|  | pool->process_prepared_mapping = process_prepared_mapping; | 
|  | pool->process_prepared_discard = process_prepared_discard; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /*----------------------------------------------------------------*/ | 
|  |  | 
|  | /* | 
|  | * Mapping functions. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Called only while mapping a thin bio to hand it over to the workqueue. | 
|  | */ | 
|  | static void thin_defer_bio(struct thin_c *tc, struct bio *bio) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct pool *pool = tc->pool; | 
|  |  | 
|  | spin_lock_irqsave(&pool->lock, flags); | 
|  | bio_list_add(&pool->deferred_bios, bio); | 
|  | spin_unlock_irqrestore(&pool->lock, flags); | 
|  |  | 
|  | wake_worker(pool); | 
|  | } | 
|  |  | 
|  | static void thin_hook_bio(struct thin_c *tc, struct bio *bio) | 
|  | { | 
|  | struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); | 
|  |  | 
|  | h->tc = tc; | 
|  | h->shared_read_entry = NULL; | 
|  | h->all_io_entry = NULL; | 
|  | h->overwrite_mapping = NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Non-blocking function called from the thin target's map function. | 
|  | */ | 
|  | static int thin_bio_map(struct dm_target *ti, struct bio *bio) | 
|  | { | 
|  | int r; | 
|  | struct thin_c *tc = ti->private; | 
|  | dm_block_t block = get_bio_block(tc, bio); | 
|  | struct dm_thin_device *td = tc->td; | 
|  | struct dm_thin_lookup_result result; | 
|  | struct dm_bio_prison_cell cell1, cell2; | 
|  | struct dm_bio_prison_cell *cell_result; | 
|  | struct dm_cell_key key; | 
|  |  | 
|  | thin_hook_bio(tc, bio); | 
|  |  | 
|  | if (get_pool_mode(tc->pool) == PM_FAIL) { | 
|  | bio_io_error(bio); | 
|  | return DM_MAPIO_SUBMITTED; | 
|  | } | 
|  |  | 
|  | if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) { | 
|  | thin_defer_bio(tc, bio); | 
|  | return DM_MAPIO_SUBMITTED; | 
|  | } | 
|  |  | 
|  | r = dm_thin_find_block(td, block, 0, &result); | 
|  |  | 
|  | /* | 
|  | * Note that we defer readahead too. | 
|  | */ | 
|  | switch (r) { | 
|  | case 0: | 
|  | if (unlikely(result.shared)) { | 
|  | /* | 
|  | * We have a race condition here between the | 
|  | * result.shared value returned by the lookup and | 
|  | * snapshot creation, which may cause new | 
|  | * sharing. | 
|  | * | 
|  | * To avoid this always quiesce the origin before | 
|  | * taking the snap.  You want to do this anyway to | 
|  | * ensure a consistent application view | 
|  | * (i.e. lockfs). | 
|  | * | 
|  | * More distant ancestors are irrelevant. The | 
|  | * shared flag will be set in their case. | 
|  | */ | 
|  | thin_defer_bio(tc, bio); | 
|  | return DM_MAPIO_SUBMITTED; | 
|  | } | 
|  |  | 
|  | build_virtual_key(tc->td, block, &key); | 
|  | if (dm_bio_detain(tc->pool->prison, &key, bio, &cell1, &cell_result)) | 
|  | return DM_MAPIO_SUBMITTED; | 
|  |  | 
|  | build_data_key(tc->td, result.block, &key); | 
|  | if (dm_bio_detain(tc->pool->prison, &key, bio, &cell2, &cell_result)) { | 
|  | cell_defer_no_holder_no_free(tc, &cell1); | 
|  | return DM_MAPIO_SUBMITTED; | 
|  | } | 
|  |  | 
|  | inc_all_io_entry(tc->pool, bio); | 
|  | cell_defer_no_holder_no_free(tc, &cell2); | 
|  | cell_defer_no_holder_no_free(tc, &cell1); | 
|  |  | 
|  | remap(tc, bio, result.block); | 
|  | return DM_MAPIO_REMAPPED; | 
|  |  | 
|  | case -ENODATA: | 
|  | if (get_pool_mode(tc->pool) == PM_READ_ONLY) { | 
|  | /* | 
|  | * This block isn't provisioned, and we have no way | 
|  | * of doing so.  Just error it. | 
|  | */ | 
|  | bio_io_error(bio); | 
|  | return DM_MAPIO_SUBMITTED; | 
|  | } | 
|  | /* fall through */ | 
|  |  | 
|  | case -EWOULDBLOCK: | 
|  | /* | 
|  | * In future, the failed dm_thin_find_block above could | 
|  | * provide the hint to load the metadata into cache. | 
|  | */ | 
|  | thin_defer_bio(tc, bio); | 
|  | return DM_MAPIO_SUBMITTED; | 
|  |  | 
|  | default: | 
|  | /* | 
|  | * Must always call bio_io_error on failure. | 
|  | * dm_thin_find_block can fail with -EINVAL if the | 
|  | * pool is switched to fail-io mode. | 
|  | */ | 
|  | bio_io_error(bio); | 
|  | return DM_MAPIO_SUBMITTED; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits) | 
|  | { | 
|  | int r; | 
|  | unsigned long flags; | 
|  | struct pool_c *pt = container_of(cb, struct pool_c, callbacks); | 
|  |  | 
|  | spin_lock_irqsave(&pt->pool->lock, flags); | 
|  | r = !bio_list_empty(&pt->pool->retry_on_resume_list); | 
|  | spin_unlock_irqrestore(&pt->pool->lock, flags); | 
|  |  | 
|  | if (!r) { | 
|  | struct request_queue *q = bdev_get_queue(pt->data_dev->bdev); | 
|  | r = bdi_congested(&q->backing_dev_info, bdi_bits); | 
|  | } | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static void __requeue_bios(struct pool *pool) | 
|  | { | 
|  | bio_list_merge(&pool->deferred_bios, &pool->retry_on_resume_list); | 
|  | bio_list_init(&pool->retry_on_resume_list); | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------- | 
|  | * Binding of control targets to a pool object | 
|  | *--------------------------------------------------------------*/ | 
|  | static bool data_dev_supports_discard(struct pool_c *pt) | 
|  | { | 
|  | struct request_queue *q = bdev_get_queue(pt->data_dev->bdev); | 
|  |  | 
|  | return q && blk_queue_discard(q); | 
|  | } | 
|  |  | 
|  | static bool is_factor(sector_t block_size, uint32_t n) | 
|  | { | 
|  | return !sector_div(block_size, n); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If discard_passdown was enabled verify that the data device | 
|  | * supports discards.  Disable discard_passdown if not. | 
|  | */ | 
|  | static void disable_passdown_if_not_supported(struct pool_c *pt) | 
|  | { | 
|  | struct pool *pool = pt->pool; | 
|  | struct block_device *data_bdev = pt->data_dev->bdev; | 
|  | struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits; | 
|  | sector_t block_size = pool->sectors_per_block << SECTOR_SHIFT; | 
|  | const char *reason = NULL; | 
|  | char buf[BDEVNAME_SIZE]; | 
|  |  | 
|  | if (!pt->adjusted_pf.discard_passdown) | 
|  | return; | 
|  |  | 
|  | if (!data_dev_supports_discard(pt)) | 
|  | reason = "discard unsupported"; | 
|  |  | 
|  | else if (data_limits->max_discard_sectors < pool->sectors_per_block) | 
|  | reason = "max discard sectors smaller than a block"; | 
|  |  | 
|  | else if (data_limits->discard_granularity > block_size) | 
|  | reason = "discard granularity larger than a block"; | 
|  |  | 
|  | else if (!is_factor(block_size, data_limits->discard_granularity)) | 
|  | reason = "discard granularity not a factor of block size"; | 
|  |  | 
|  | if (reason) { | 
|  | DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason); | 
|  | pt->adjusted_pf.discard_passdown = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int bind_control_target(struct pool *pool, struct dm_target *ti) | 
|  | { | 
|  | struct pool_c *pt = ti->private; | 
|  |  | 
|  | /* | 
|  | * We want to make sure that degraded pools are never upgraded. | 
|  | */ | 
|  | enum pool_mode old_mode = pool->pf.mode; | 
|  | enum pool_mode new_mode = pt->adjusted_pf.mode; | 
|  |  | 
|  | if (old_mode > new_mode) | 
|  | new_mode = old_mode; | 
|  |  | 
|  | pool->ti = ti; | 
|  | pool->low_water_blocks = pt->low_water_blocks; | 
|  | pool->pf = pt->adjusted_pf; | 
|  |  | 
|  | set_pool_mode(pool, new_mode); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void unbind_control_target(struct pool *pool, struct dm_target *ti) | 
|  | { | 
|  | if (pool->ti == ti) | 
|  | pool->ti = NULL; | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------- | 
|  | * Pool creation | 
|  | *--------------------------------------------------------------*/ | 
|  | /* Initialize pool features. */ | 
|  | static void pool_features_init(struct pool_features *pf) | 
|  | { | 
|  | pf->mode = PM_WRITE; | 
|  | pf->zero_new_blocks = true; | 
|  | pf->discard_enabled = true; | 
|  | pf->discard_passdown = true; | 
|  | } | 
|  |  | 
|  | static void __pool_destroy(struct pool *pool) | 
|  | { | 
|  | __pool_table_remove(pool); | 
|  |  | 
|  | if (dm_pool_metadata_close(pool->pmd) < 0) | 
|  | DMWARN("%s: dm_pool_metadata_close() failed.", __func__); | 
|  |  | 
|  | dm_bio_prison_destroy(pool->prison); | 
|  | dm_kcopyd_client_destroy(pool->copier); | 
|  |  | 
|  | if (pool->wq) | 
|  | destroy_workqueue(pool->wq); | 
|  |  | 
|  | if (pool->next_mapping) | 
|  | mempool_free(pool->next_mapping, pool->mapping_pool); | 
|  | mempool_destroy(pool->mapping_pool); | 
|  | dm_deferred_set_destroy(pool->shared_read_ds); | 
|  | dm_deferred_set_destroy(pool->all_io_ds); | 
|  | kfree(pool); | 
|  | } | 
|  |  | 
|  | static struct kmem_cache *_new_mapping_cache; | 
|  |  | 
|  | static struct pool *pool_create(struct mapped_device *pool_md, | 
|  | struct block_device *metadata_dev, | 
|  | unsigned long block_size, | 
|  | int read_only, char **error) | 
|  | { | 
|  | int r; | 
|  | void *err_p; | 
|  | struct pool *pool; | 
|  | struct dm_pool_metadata *pmd; | 
|  | bool format_device = read_only ? false : true; | 
|  |  | 
|  | pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device); | 
|  | if (IS_ERR(pmd)) { | 
|  | *error = "Error creating metadata object"; | 
|  | return (struct pool *)pmd; | 
|  | } | 
|  |  | 
|  | pool = kmalloc(sizeof(*pool), GFP_KERNEL); | 
|  | if (!pool) { | 
|  | *error = "Error allocating memory for pool"; | 
|  | err_p = ERR_PTR(-ENOMEM); | 
|  | goto bad_pool; | 
|  | } | 
|  |  | 
|  | pool->pmd = pmd; | 
|  | pool->sectors_per_block = block_size; | 
|  | if (block_size & (block_size - 1)) | 
|  | pool->sectors_per_block_shift = -1; | 
|  | else | 
|  | pool->sectors_per_block_shift = __ffs(block_size); | 
|  | pool->low_water_blocks = 0; | 
|  | pool_features_init(&pool->pf); | 
|  | pool->prison = dm_bio_prison_create(PRISON_CELLS); | 
|  | if (!pool->prison) { | 
|  | *error = "Error creating pool's bio prison"; | 
|  | err_p = ERR_PTR(-ENOMEM); | 
|  | goto bad_prison; | 
|  | } | 
|  |  | 
|  | pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle); | 
|  | if (IS_ERR(pool->copier)) { | 
|  | r = PTR_ERR(pool->copier); | 
|  | *error = "Error creating pool's kcopyd client"; | 
|  | err_p = ERR_PTR(r); | 
|  | goto bad_kcopyd_client; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Create singlethreaded workqueue that will service all devices | 
|  | * that use this metadata. | 
|  | */ | 
|  | pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM); | 
|  | if (!pool->wq) { | 
|  | *error = "Error creating pool's workqueue"; | 
|  | err_p = ERR_PTR(-ENOMEM); | 
|  | goto bad_wq; | 
|  | } | 
|  |  | 
|  | INIT_WORK(&pool->worker, do_worker); | 
|  | INIT_DELAYED_WORK(&pool->waker, do_waker); | 
|  | spin_lock_init(&pool->lock); | 
|  | bio_list_init(&pool->deferred_bios); | 
|  | bio_list_init(&pool->deferred_flush_bios); | 
|  | INIT_LIST_HEAD(&pool->prepared_mappings); | 
|  | INIT_LIST_HEAD(&pool->prepared_discards); | 
|  | pool->low_water_triggered = 0; | 
|  | pool->no_free_space = 0; | 
|  | bio_list_init(&pool->retry_on_resume_list); | 
|  |  | 
|  | pool->shared_read_ds = dm_deferred_set_create(); | 
|  | if (!pool->shared_read_ds) { | 
|  | *error = "Error creating pool's shared read deferred set"; | 
|  | err_p = ERR_PTR(-ENOMEM); | 
|  | goto bad_shared_read_ds; | 
|  | } | 
|  |  | 
|  | pool->all_io_ds = dm_deferred_set_create(); | 
|  | if (!pool->all_io_ds) { | 
|  | *error = "Error creating pool's all io deferred set"; | 
|  | err_p = ERR_PTR(-ENOMEM); | 
|  | goto bad_all_io_ds; | 
|  | } | 
|  |  | 
|  | pool->next_mapping = NULL; | 
|  | pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE, | 
|  | _new_mapping_cache); | 
|  | if (!pool->mapping_pool) { | 
|  | *error = "Error creating pool's mapping mempool"; | 
|  | err_p = ERR_PTR(-ENOMEM); | 
|  | goto bad_mapping_pool; | 
|  | } | 
|  |  | 
|  | pool->ref_count = 1; | 
|  | pool->last_commit_jiffies = jiffies; | 
|  | pool->pool_md = pool_md; | 
|  | pool->md_dev = metadata_dev; | 
|  | __pool_table_insert(pool); | 
|  |  | 
|  | return pool; | 
|  |  | 
|  | bad_mapping_pool: | 
|  | dm_deferred_set_destroy(pool->all_io_ds); | 
|  | bad_all_io_ds: | 
|  | dm_deferred_set_destroy(pool->shared_read_ds); | 
|  | bad_shared_read_ds: | 
|  | destroy_workqueue(pool->wq); | 
|  | bad_wq: | 
|  | dm_kcopyd_client_destroy(pool->copier); | 
|  | bad_kcopyd_client: | 
|  | dm_bio_prison_destroy(pool->prison); | 
|  | bad_prison: | 
|  | kfree(pool); | 
|  | bad_pool: | 
|  | if (dm_pool_metadata_close(pmd)) | 
|  | DMWARN("%s: dm_pool_metadata_close() failed.", __func__); | 
|  |  | 
|  | return err_p; | 
|  | } | 
|  |  | 
|  | static void __pool_inc(struct pool *pool) | 
|  | { | 
|  | BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); | 
|  | pool->ref_count++; | 
|  | } | 
|  |  | 
|  | static void __pool_dec(struct pool *pool) | 
|  | { | 
|  | BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); | 
|  | BUG_ON(!pool->ref_count); | 
|  | if (!--pool->ref_count) | 
|  | __pool_destroy(pool); | 
|  | } | 
|  |  | 
|  | static struct pool *__pool_find(struct mapped_device *pool_md, | 
|  | struct block_device *metadata_dev, | 
|  | unsigned long block_size, int read_only, | 
|  | char **error, int *created) | 
|  | { | 
|  | struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev); | 
|  |  | 
|  | if (pool) { | 
|  | if (pool->pool_md != pool_md) { | 
|  | *error = "metadata device already in use by a pool"; | 
|  | return ERR_PTR(-EBUSY); | 
|  | } | 
|  | __pool_inc(pool); | 
|  |  | 
|  | } else { | 
|  | pool = __pool_table_lookup(pool_md); | 
|  | if (pool) { | 
|  | if (pool->md_dev != metadata_dev) { | 
|  | *error = "different pool cannot replace a pool"; | 
|  | return ERR_PTR(-EINVAL); | 
|  | } | 
|  | __pool_inc(pool); | 
|  |  | 
|  | } else { | 
|  | pool = pool_create(pool_md, metadata_dev, block_size, read_only, error); | 
|  | *created = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | return pool; | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------- | 
|  | * Pool target methods | 
|  | *--------------------------------------------------------------*/ | 
|  | static void pool_dtr(struct dm_target *ti) | 
|  | { | 
|  | struct pool_c *pt = ti->private; | 
|  |  | 
|  | mutex_lock(&dm_thin_pool_table.mutex); | 
|  |  | 
|  | unbind_control_target(pt->pool, ti); | 
|  | __pool_dec(pt->pool); | 
|  | dm_put_device(ti, pt->metadata_dev); | 
|  | dm_put_device(ti, pt->data_dev); | 
|  | kfree(pt); | 
|  |  | 
|  | mutex_unlock(&dm_thin_pool_table.mutex); | 
|  | } | 
|  |  | 
|  | static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf, | 
|  | struct dm_target *ti) | 
|  | { | 
|  | int r; | 
|  | unsigned argc; | 
|  | const char *arg_name; | 
|  |  | 
|  | static struct dm_arg _args[] = { | 
|  | {0, 3, "Invalid number of pool feature arguments"}, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * No feature arguments supplied. | 
|  | */ | 
|  | if (!as->argc) | 
|  | return 0; | 
|  |  | 
|  | r = dm_read_arg_group(_args, as, &argc, &ti->error); | 
|  | if (r) | 
|  | return -EINVAL; | 
|  |  | 
|  | while (argc && !r) { | 
|  | arg_name = dm_shift_arg(as); | 
|  | argc--; | 
|  |  | 
|  | if (!strcasecmp(arg_name, "skip_block_zeroing")) | 
|  | pf->zero_new_blocks = false; | 
|  |  | 
|  | else if (!strcasecmp(arg_name, "ignore_discard")) | 
|  | pf->discard_enabled = false; | 
|  |  | 
|  | else if (!strcasecmp(arg_name, "no_discard_passdown")) | 
|  | pf->discard_passdown = false; | 
|  |  | 
|  | else if (!strcasecmp(arg_name, "read_only")) | 
|  | pf->mode = PM_READ_ONLY; | 
|  |  | 
|  | else { | 
|  | ti->error = "Unrecognised pool feature requested"; | 
|  | r = -EINVAL; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static void metadata_low_callback(void *context) | 
|  | { | 
|  | struct pool *pool = context; | 
|  |  | 
|  | DMWARN("%s: reached low water mark for metadata device: sending event.", | 
|  | dm_device_name(pool->pool_md)); | 
|  |  | 
|  | dm_table_event(pool->ti->table); | 
|  | } | 
|  |  | 
|  | static sector_t get_metadata_dev_size(struct block_device *bdev) | 
|  | { | 
|  | sector_t metadata_dev_size = i_size_read(bdev->bd_inode) >> SECTOR_SHIFT; | 
|  | char buffer[BDEVNAME_SIZE]; | 
|  |  | 
|  | if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING) { | 
|  | DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.", | 
|  | bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS); | 
|  | metadata_dev_size = THIN_METADATA_MAX_SECTORS_WARNING; | 
|  | } | 
|  |  | 
|  | return metadata_dev_size; | 
|  | } | 
|  |  | 
|  | static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev) | 
|  | { | 
|  | sector_t metadata_dev_size = get_metadata_dev_size(bdev); | 
|  |  | 
|  | sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE >> SECTOR_SHIFT); | 
|  |  | 
|  | return metadata_dev_size; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When a metadata threshold is crossed a dm event is triggered, and | 
|  | * userland should respond by growing the metadata device.  We could let | 
|  | * userland set the threshold, like we do with the data threshold, but I'm | 
|  | * not sure they know enough to do this well. | 
|  | */ | 
|  | static dm_block_t calc_metadata_threshold(struct pool_c *pt) | 
|  | { | 
|  | /* | 
|  | * 4M is ample for all ops with the possible exception of thin | 
|  | * device deletion which is harmless if it fails (just retry the | 
|  | * delete after you've grown the device). | 
|  | */ | 
|  | dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4; | 
|  | return min((dm_block_t)1024ULL /* 4M */, quarter); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * thin-pool <metadata dev> <data dev> | 
|  | *	     <data block size (sectors)> | 
|  | *	     <low water mark (blocks)> | 
|  | *	     [<#feature args> [<arg>]*] | 
|  | * | 
|  | * Optional feature arguments are: | 
|  | *	     skip_block_zeroing: skips the zeroing of newly-provisioned blocks. | 
|  | *	     ignore_discard: disable discard | 
|  | *	     no_discard_passdown: don't pass discards down to the data device | 
|  | */ | 
|  | static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv) | 
|  | { | 
|  | int r, pool_created = 0; | 
|  | struct pool_c *pt; | 
|  | struct pool *pool; | 
|  | struct pool_features pf; | 
|  | struct dm_arg_set as; | 
|  | struct dm_dev *data_dev; | 
|  | unsigned long block_size; | 
|  | dm_block_t low_water_blocks; | 
|  | struct dm_dev *metadata_dev; | 
|  | fmode_t metadata_mode; | 
|  |  | 
|  | /* | 
|  | * FIXME Remove validation from scope of lock. | 
|  | */ | 
|  | mutex_lock(&dm_thin_pool_table.mutex); | 
|  |  | 
|  | if (argc < 4) { | 
|  | ti->error = "Invalid argument count"; | 
|  | r = -EINVAL; | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | as.argc = argc; | 
|  | as.argv = argv; | 
|  |  | 
|  | /* | 
|  | * Set default pool features. | 
|  | */ | 
|  | pool_features_init(&pf); | 
|  |  | 
|  | dm_consume_args(&as, 4); | 
|  | r = parse_pool_features(&as, &pf, ti); | 
|  | if (r) | 
|  | goto out_unlock; | 
|  |  | 
|  | metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE); | 
|  | r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev); | 
|  | if (r) { | 
|  | ti->error = "Error opening metadata block device"; | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Run for the side-effect of possibly issuing a warning if the | 
|  | * device is too big. | 
|  | */ | 
|  | (void) get_metadata_dev_size(metadata_dev->bdev); | 
|  |  | 
|  | r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev); | 
|  | if (r) { | 
|  | ti->error = "Error getting data device"; | 
|  | goto out_metadata; | 
|  | } | 
|  |  | 
|  | if (kstrtoul(argv[2], 10, &block_size) || !block_size || | 
|  | block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS || | 
|  | block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS || | 
|  | block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) { | 
|  | ti->error = "Invalid block size"; | 
|  | r = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) { | 
|  | ti->error = "Invalid low water mark"; | 
|  | r = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | pt = kzalloc(sizeof(*pt), GFP_KERNEL); | 
|  | if (!pt) { | 
|  | r = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev, | 
|  | block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created); | 
|  | if (IS_ERR(pool)) { | 
|  | r = PTR_ERR(pool); | 
|  | goto out_free_pt; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * 'pool_created' reflects whether this is the first table load. | 
|  | * Top level discard support is not allowed to be changed after | 
|  | * initial load.  This would require a pool reload to trigger thin | 
|  | * device changes. | 
|  | */ | 
|  | if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) { | 
|  | ti->error = "Discard support cannot be disabled once enabled"; | 
|  | r = -EINVAL; | 
|  | goto out_flags_changed; | 
|  | } | 
|  |  | 
|  | pt->pool = pool; | 
|  | pt->ti = ti; | 
|  | pt->metadata_dev = metadata_dev; | 
|  | pt->data_dev = data_dev; | 
|  | pt->low_water_blocks = low_water_blocks; | 
|  | pt->adjusted_pf = pt->requested_pf = pf; | 
|  | ti->num_flush_bios = 1; | 
|  |  | 
|  | /* | 
|  | * Only need to enable discards if the pool should pass | 
|  | * them down to the data device.  The thin device's discard | 
|  | * processing will cause mappings to be removed from the btree. | 
|  | */ | 
|  | ti->discard_zeroes_data_unsupported = true; | 
|  | if (pf.discard_enabled && pf.discard_passdown) { | 
|  | ti->num_discard_bios = 1; | 
|  |  | 
|  | /* | 
|  | * Setting 'discards_supported' circumvents the normal | 
|  | * stacking of discard limits (this keeps the pool and | 
|  | * thin devices' discard limits consistent). | 
|  | */ | 
|  | ti->discards_supported = true; | 
|  | } | 
|  | ti->private = pt; | 
|  |  | 
|  | r = dm_pool_register_metadata_threshold(pt->pool->pmd, | 
|  | calc_metadata_threshold(pt), | 
|  | metadata_low_callback, | 
|  | pool); | 
|  | if (r) | 
|  | goto out_free_pt; | 
|  |  | 
|  | pt->callbacks.congested_fn = pool_is_congested; | 
|  | dm_table_add_target_callbacks(ti->table, &pt->callbacks); | 
|  |  | 
|  | mutex_unlock(&dm_thin_pool_table.mutex); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out_flags_changed: | 
|  | __pool_dec(pool); | 
|  | out_free_pt: | 
|  | kfree(pt); | 
|  | out: | 
|  | dm_put_device(ti, data_dev); | 
|  | out_metadata: | 
|  | dm_put_device(ti, metadata_dev); | 
|  | out_unlock: | 
|  | mutex_unlock(&dm_thin_pool_table.mutex); | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static int pool_map(struct dm_target *ti, struct bio *bio) | 
|  | { | 
|  | int r; | 
|  | struct pool_c *pt = ti->private; | 
|  | struct pool *pool = pt->pool; | 
|  | unsigned long flags; | 
|  |  | 
|  | /* | 
|  | * As this is a singleton target, ti->begin is always zero. | 
|  | */ | 
|  | spin_lock_irqsave(&pool->lock, flags); | 
|  | bio->bi_bdev = pt->data_dev->bdev; | 
|  | r = DM_MAPIO_REMAPPED; | 
|  | spin_unlock_irqrestore(&pool->lock, flags); | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit) | 
|  | { | 
|  | int r; | 
|  | struct pool_c *pt = ti->private; | 
|  | struct pool *pool = pt->pool; | 
|  | sector_t data_size = ti->len; | 
|  | dm_block_t sb_data_size; | 
|  |  | 
|  | *need_commit = false; | 
|  |  | 
|  | (void) sector_div(data_size, pool->sectors_per_block); | 
|  |  | 
|  | r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size); | 
|  | if (r) { | 
|  | DMERR("%s: failed to retrieve data device size", | 
|  | dm_device_name(pool->pool_md)); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | if (data_size < sb_data_size) { | 
|  | DMERR("%s: pool target (%llu blocks) too small: expected %llu", | 
|  | dm_device_name(pool->pool_md), | 
|  | (unsigned long long)data_size, sb_data_size); | 
|  | return -EINVAL; | 
|  |  | 
|  | } else if (data_size > sb_data_size) { | 
|  | r = dm_pool_resize_data_dev(pool->pmd, data_size); | 
|  | if (r) { | 
|  | DMERR("%s: failed to resize data device", | 
|  | dm_device_name(pool->pool_md)); | 
|  | set_pool_mode(pool, PM_READ_ONLY); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | *need_commit = true; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit) | 
|  | { | 
|  | int r; | 
|  | struct pool_c *pt = ti->private; | 
|  | struct pool *pool = pt->pool; | 
|  | dm_block_t metadata_dev_size, sb_metadata_dev_size; | 
|  |  | 
|  | *need_commit = false; | 
|  |  | 
|  | metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev); | 
|  |  | 
|  | r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size); | 
|  | if (r) { | 
|  | DMERR("%s: failed to retrieve metadata device size", | 
|  | dm_device_name(pool->pool_md)); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | if (metadata_dev_size < sb_metadata_dev_size) { | 
|  | DMERR("%s: metadata device (%llu blocks) too small: expected %llu", | 
|  | dm_device_name(pool->pool_md), | 
|  | metadata_dev_size, sb_metadata_dev_size); | 
|  | return -EINVAL; | 
|  |  | 
|  | } else if (metadata_dev_size > sb_metadata_dev_size) { | 
|  | r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size); | 
|  | if (r) { | 
|  | DMERR("%s: failed to resize metadata device", | 
|  | dm_device_name(pool->pool_md)); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | *need_commit = true; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Retrieves the number of blocks of the data device from | 
|  | * the superblock and compares it to the actual device size, | 
|  | * thus resizing the data device in case it has grown. | 
|  | * | 
|  | * This both copes with opening preallocated data devices in the ctr | 
|  | * being followed by a resume | 
|  | * -and- | 
|  | * calling the resume method individually after userspace has | 
|  | * grown the data device in reaction to a table event. | 
|  | */ | 
|  | static int pool_preresume(struct dm_target *ti) | 
|  | { | 
|  | int r; | 
|  | bool need_commit1, need_commit2; | 
|  | struct pool_c *pt = ti->private; | 
|  | struct pool *pool = pt->pool; | 
|  |  | 
|  | /* | 
|  | * Take control of the pool object. | 
|  | */ | 
|  | r = bind_control_target(pool, ti); | 
|  | if (r) | 
|  | return r; | 
|  |  | 
|  | r = maybe_resize_data_dev(ti, &need_commit1); | 
|  | if (r) | 
|  | return r; | 
|  |  | 
|  | r = maybe_resize_metadata_dev(ti, &need_commit2); | 
|  | if (r) | 
|  | return r; | 
|  |  | 
|  | if (need_commit1 || need_commit2) | 
|  | (void) commit_or_fallback(pool); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void pool_resume(struct dm_target *ti) | 
|  | { | 
|  | struct pool_c *pt = ti->private; | 
|  | struct pool *pool = pt->pool; | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&pool->lock, flags); | 
|  | pool->low_water_triggered = 0; | 
|  | pool->no_free_space = 0; | 
|  | __requeue_bios(pool); | 
|  | spin_unlock_irqrestore(&pool->lock, flags); | 
|  |  | 
|  | do_waker(&pool->waker.work); | 
|  | } | 
|  |  | 
|  | static void pool_postsuspend(struct dm_target *ti) | 
|  | { | 
|  | struct pool_c *pt = ti->private; | 
|  | struct pool *pool = pt->pool; | 
|  |  | 
|  | cancel_delayed_work(&pool->waker); | 
|  | flush_workqueue(pool->wq); | 
|  | (void) commit_or_fallback(pool); | 
|  | } | 
|  |  | 
|  | static int check_arg_count(unsigned argc, unsigned args_required) | 
|  | { | 
|  | if (argc != args_required) { | 
|  | DMWARN("Message received with %u arguments instead of %u.", | 
|  | argc, args_required); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning) | 
|  | { | 
|  | if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) && | 
|  | *dev_id <= MAX_DEV_ID) | 
|  | return 0; | 
|  |  | 
|  | if (warning) | 
|  | DMWARN("Message received with invalid device id: %s", arg); | 
|  |  | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool) | 
|  | { | 
|  | dm_thin_id dev_id; | 
|  | int r; | 
|  |  | 
|  | r = check_arg_count(argc, 2); | 
|  | if (r) | 
|  | return r; | 
|  |  | 
|  | r = read_dev_id(argv[1], &dev_id, 1); | 
|  | if (r) | 
|  | return r; | 
|  |  | 
|  | r = dm_pool_create_thin(pool->pmd, dev_id); | 
|  | if (r) { | 
|  | DMWARN("Creation of new thinly-provisioned device with id %s failed.", | 
|  | argv[1]); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool) | 
|  | { | 
|  | dm_thin_id dev_id; | 
|  | dm_thin_id origin_dev_id; | 
|  | int r; | 
|  |  | 
|  | r = check_arg_count(argc, 3); | 
|  | if (r) | 
|  | return r; | 
|  |  | 
|  | r = read_dev_id(argv[1], &dev_id, 1); | 
|  | if (r) | 
|  | return r; | 
|  |  | 
|  | r = read_dev_id(argv[2], &origin_dev_id, 1); | 
|  | if (r) | 
|  | return r; | 
|  |  | 
|  | r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id); | 
|  | if (r) { | 
|  | DMWARN("Creation of new snapshot %s of device %s failed.", | 
|  | argv[1], argv[2]); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool) | 
|  | { | 
|  | dm_thin_id dev_id; | 
|  | int r; | 
|  |  | 
|  | r = check_arg_count(argc, 2); | 
|  | if (r) | 
|  | return r; | 
|  |  | 
|  | r = read_dev_id(argv[1], &dev_id, 1); | 
|  | if (r) | 
|  | return r; | 
|  |  | 
|  | r = dm_pool_delete_thin_device(pool->pmd, dev_id); | 
|  | if (r) | 
|  | DMWARN("Deletion of thin device %s failed.", argv[1]); | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool) | 
|  | { | 
|  | dm_thin_id old_id, new_id; | 
|  | int r; | 
|  |  | 
|  | r = check_arg_count(argc, 3); | 
|  | if (r) | 
|  | return r; | 
|  |  | 
|  | if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) { | 
|  | DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) { | 
|  | DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id); | 
|  | if (r) { | 
|  | DMWARN("Failed to change transaction id from %s to %s.", | 
|  | argv[1], argv[2]); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool) | 
|  | { | 
|  | int r; | 
|  |  | 
|  | r = check_arg_count(argc, 1); | 
|  | if (r) | 
|  | return r; | 
|  |  | 
|  | (void) commit_or_fallback(pool); | 
|  |  | 
|  | r = dm_pool_reserve_metadata_snap(pool->pmd); | 
|  | if (r) | 
|  | DMWARN("reserve_metadata_snap message failed."); | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool) | 
|  | { | 
|  | int r; | 
|  |  | 
|  | r = check_arg_count(argc, 1); | 
|  | if (r) | 
|  | return r; | 
|  |  | 
|  | r = dm_pool_release_metadata_snap(pool->pmd); | 
|  | if (r) | 
|  | DMWARN("release_metadata_snap message failed."); | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Messages supported: | 
|  | *   create_thin	<dev_id> | 
|  | *   create_snap	<dev_id> <origin_id> | 
|  | *   delete		<dev_id> | 
|  | *   trim		<dev_id> <new_size_in_sectors> | 
|  | *   set_transaction_id <current_trans_id> <new_trans_id> | 
|  | *   reserve_metadata_snap | 
|  | *   release_metadata_snap | 
|  | */ | 
|  | static int pool_message(struct dm_target *ti, unsigned argc, char **argv) | 
|  | { | 
|  | int r = -EINVAL; | 
|  | struct pool_c *pt = ti->private; | 
|  | struct pool *pool = pt->pool; | 
|  |  | 
|  | if (!strcasecmp(argv[0], "create_thin")) | 
|  | r = process_create_thin_mesg(argc, argv, pool); | 
|  |  | 
|  | else if (!strcasecmp(argv[0], "create_snap")) | 
|  | r = process_create_snap_mesg(argc, argv, pool); | 
|  |  | 
|  | else if (!strcasecmp(argv[0], "delete")) | 
|  | r = process_delete_mesg(argc, argv, pool); | 
|  |  | 
|  | else if (!strcasecmp(argv[0], "set_transaction_id")) | 
|  | r = process_set_transaction_id_mesg(argc, argv, pool); | 
|  |  | 
|  | else if (!strcasecmp(argv[0], "reserve_metadata_snap")) | 
|  | r = process_reserve_metadata_snap_mesg(argc, argv, pool); | 
|  |  | 
|  | else if (!strcasecmp(argv[0], "release_metadata_snap")) | 
|  | r = process_release_metadata_snap_mesg(argc, argv, pool); | 
|  |  | 
|  | else | 
|  | DMWARN("Unrecognised thin pool target message received: %s", argv[0]); | 
|  |  | 
|  | if (!r) | 
|  | (void) commit_or_fallback(pool); | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static void emit_flags(struct pool_features *pf, char *result, | 
|  | unsigned sz, unsigned maxlen) | 
|  | { | 
|  | unsigned count = !pf->zero_new_blocks + !pf->discard_enabled + | 
|  | !pf->discard_passdown + (pf->mode == PM_READ_ONLY); | 
|  | DMEMIT("%u ", count); | 
|  |  | 
|  | if (!pf->zero_new_blocks) | 
|  | DMEMIT("skip_block_zeroing "); | 
|  |  | 
|  | if (!pf->discard_enabled) | 
|  | DMEMIT("ignore_discard "); | 
|  |  | 
|  | if (!pf->discard_passdown) | 
|  | DMEMIT("no_discard_passdown "); | 
|  |  | 
|  | if (pf->mode == PM_READ_ONLY) | 
|  | DMEMIT("read_only "); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Status line is: | 
|  | *    <transaction id> <used metadata sectors>/<total metadata sectors> | 
|  | *    <used data sectors>/<total data sectors> <held metadata root> | 
|  | */ | 
|  | static void pool_status(struct dm_target *ti, status_type_t type, | 
|  | unsigned status_flags, char *result, unsigned maxlen) | 
|  | { | 
|  | int r; | 
|  | unsigned sz = 0; | 
|  | uint64_t transaction_id; | 
|  | dm_block_t nr_free_blocks_data; | 
|  | dm_block_t nr_free_blocks_metadata; | 
|  | dm_block_t nr_blocks_data; | 
|  | dm_block_t nr_blocks_metadata; | 
|  | dm_block_t held_root; | 
|  | char buf[BDEVNAME_SIZE]; | 
|  | char buf2[BDEVNAME_SIZE]; | 
|  | struct pool_c *pt = ti->private; | 
|  | struct pool *pool = pt->pool; | 
|  |  | 
|  | switch (type) { | 
|  | case STATUSTYPE_INFO: | 
|  | if (get_pool_mode(pool) == PM_FAIL) { | 
|  | DMEMIT("Fail"); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Commit to ensure statistics aren't out-of-date */ | 
|  | if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti)) | 
|  | (void) commit_or_fallback(pool); | 
|  |  | 
|  | r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id); | 
|  | if (r) { | 
|  | DMERR("%s: dm_pool_get_metadata_transaction_id returned %d", | 
|  | dm_device_name(pool->pool_md), r); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata); | 
|  | if (r) { | 
|  | DMERR("%s: dm_pool_get_free_metadata_block_count returned %d", | 
|  | dm_device_name(pool->pool_md), r); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata); | 
|  | if (r) { | 
|  | DMERR("%s: dm_pool_get_metadata_dev_size returned %d", | 
|  | dm_device_name(pool->pool_md), r); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data); | 
|  | if (r) { | 
|  | DMERR("%s: dm_pool_get_free_block_count returned %d", | 
|  | dm_device_name(pool->pool_md), r); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data); | 
|  | if (r) { | 
|  | DMERR("%s: dm_pool_get_data_dev_size returned %d", | 
|  | dm_device_name(pool->pool_md), r); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | r = dm_pool_get_metadata_snap(pool->pmd, &held_root); | 
|  | if (r) { | 
|  | DMERR("%s: dm_pool_get_metadata_snap returned %d", | 
|  | dm_device_name(pool->pool_md), r); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | DMEMIT("%llu %llu/%llu %llu/%llu ", | 
|  | (unsigned long long)transaction_id, | 
|  | (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata), | 
|  | (unsigned long long)nr_blocks_metadata, | 
|  | (unsigned long long)(nr_blocks_data - nr_free_blocks_data), | 
|  | (unsigned long long)nr_blocks_data); | 
|  |  | 
|  | if (held_root) | 
|  | DMEMIT("%llu ", held_root); | 
|  | else | 
|  | DMEMIT("- "); | 
|  |  | 
|  | if (pool->pf.mode == PM_READ_ONLY) | 
|  | DMEMIT("ro "); | 
|  | else | 
|  | DMEMIT("rw "); | 
|  |  | 
|  | if (!pool->pf.discard_enabled) | 
|  | DMEMIT("ignore_discard"); | 
|  | else if (pool->pf.discard_passdown) | 
|  | DMEMIT("discard_passdown"); | 
|  | else | 
|  | DMEMIT("no_discard_passdown"); | 
|  |  | 
|  | break; | 
|  |  | 
|  | case STATUSTYPE_TABLE: | 
|  | DMEMIT("%s %s %lu %llu ", | 
|  | format_dev_t(buf, pt->metadata_dev->bdev->bd_dev), | 
|  | format_dev_t(buf2, pt->data_dev->bdev->bd_dev), | 
|  | (unsigned long)pool->sectors_per_block, | 
|  | (unsigned long long)pt->low_water_blocks); | 
|  | emit_flags(&pt->requested_pf, result, sz, maxlen); | 
|  | break; | 
|  | } | 
|  | return; | 
|  |  | 
|  | err: | 
|  | DMEMIT("Error"); | 
|  | } | 
|  |  | 
|  | static int pool_iterate_devices(struct dm_target *ti, | 
|  | iterate_devices_callout_fn fn, void *data) | 
|  | { | 
|  | struct pool_c *pt = ti->private; | 
|  |  | 
|  | return fn(ti, pt->data_dev, 0, ti->len, data); | 
|  | } | 
|  |  | 
|  | static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm, | 
|  | struct bio_vec *biovec, int max_size) | 
|  | { | 
|  | struct pool_c *pt = ti->private; | 
|  | struct request_queue *q = bdev_get_queue(pt->data_dev->bdev); | 
|  |  | 
|  | if (!q->merge_bvec_fn) | 
|  | return max_size; | 
|  |  | 
|  | bvm->bi_bdev = pt->data_dev->bdev; | 
|  |  | 
|  | return min(max_size, q->merge_bvec_fn(q, bvm, biovec)); | 
|  | } | 
|  |  | 
|  | static void set_discard_limits(struct pool_c *pt, struct queue_limits *limits) | 
|  | { | 
|  | struct pool *pool = pt->pool; | 
|  | struct queue_limits *data_limits; | 
|  |  | 
|  | limits->max_discard_sectors = pool->sectors_per_block; | 
|  |  | 
|  | /* | 
|  | * discard_granularity is just a hint, and not enforced. | 
|  | */ | 
|  | if (pt->adjusted_pf.discard_passdown) { | 
|  | data_limits = &bdev_get_queue(pt->data_dev->bdev)->limits; | 
|  | limits->discard_granularity = data_limits->discard_granularity; | 
|  | } else | 
|  | limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT; | 
|  | } | 
|  |  | 
|  | static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits) | 
|  | { | 
|  | struct pool_c *pt = ti->private; | 
|  | struct pool *pool = pt->pool; | 
|  | uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT; | 
|  |  | 
|  | /* | 
|  | * If the system-determined stacked limits are compatible with the | 
|  | * pool's blocksize (io_opt is a factor) do not override them. | 
|  | */ | 
|  | if (io_opt_sectors < pool->sectors_per_block || | 
|  | do_div(io_opt_sectors, pool->sectors_per_block)) { | 
|  | blk_limits_io_min(limits, 0); | 
|  | blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * pt->adjusted_pf is a staging area for the actual features to use. | 
|  | * They get transferred to the live pool in bind_control_target() | 
|  | * called from pool_preresume(). | 
|  | */ | 
|  | if (!pt->adjusted_pf.discard_enabled) { | 
|  | /* | 
|  | * Must explicitly disallow stacking discard limits otherwise the | 
|  | * block layer will stack them if pool's data device has support. | 
|  | * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the | 
|  | * user to see that, so make sure to set all discard limits to 0. | 
|  | */ | 
|  | limits->discard_granularity = 0; | 
|  | return; | 
|  | } | 
|  |  | 
|  | disable_passdown_if_not_supported(pt); | 
|  |  | 
|  | set_discard_limits(pt, limits); | 
|  | } | 
|  |  | 
|  | static struct target_type pool_target = { | 
|  | .name = "thin-pool", | 
|  | .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE | | 
|  | DM_TARGET_IMMUTABLE, | 
|  | .version = {1, 9, 0}, | 
|  | .module = THIS_MODULE, | 
|  | .ctr = pool_ctr, | 
|  | .dtr = pool_dtr, | 
|  | .map = pool_map, | 
|  | .postsuspend = pool_postsuspend, | 
|  | .preresume = pool_preresume, | 
|  | .resume = pool_resume, | 
|  | .message = pool_message, | 
|  | .status = pool_status, | 
|  | .merge = pool_merge, | 
|  | .iterate_devices = pool_iterate_devices, | 
|  | .io_hints = pool_io_hints, | 
|  | }; | 
|  |  | 
|  | /*---------------------------------------------------------------- | 
|  | * Thin target methods | 
|  | *--------------------------------------------------------------*/ | 
|  | static void thin_dtr(struct dm_target *ti) | 
|  | { | 
|  | struct thin_c *tc = ti->private; | 
|  |  | 
|  | mutex_lock(&dm_thin_pool_table.mutex); | 
|  |  | 
|  | __pool_dec(tc->pool); | 
|  | dm_pool_close_thin_device(tc->td); | 
|  | dm_put_device(ti, tc->pool_dev); | 
|  | if (tc->origin_dev) | 
|  | dm_put_device(ti, tc->origin_dev); | 
|  | kfree(tc); | 
|  |  | 
|  | mutex_unlock(&dm_thin_pool_table.mutex); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Thin target parameters: | 
|  | * | 
|  | * <pool_dev> <dev_id> [origin_dev] | 
|  | * | 
|  | * pool_dev: the path to the pool (eg, /dev/mapper/my_pool) | 
|  | * dev_id: the internal device identifier | 
|  | * origin_dev: a device external to the pool that should act as the origin | 
|  | * | 
|  | * If the pool device has discards disabled, they get disabled for the thin | 
|  | * device as well. | 
|  | */ | 
|  | static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv) | 
|  | { | 
|  | int r; | 
|  | struct thin_c *tc; | 
|  | struct dm_dev *pool_dev, *origin_dev; | 
|  | struct mapped_device *pool_md; | 
|  |  | 
|  | mutex_lock(&dm_thin_pool_table.mutex); | 
|  |  | 
|  | if (argc != 2 && argc != 3) { | 
|  | ti->error = "Invalid argument count"; | 
|  | r = -EINVAL; | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL); | 
|  | if (!tc) { | 
|  | ti->error = "Out of memory"; | 
|  | r = -ENOMEM; | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | if (argc == 3) { | 
|  | r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev); | 
|  | if (r) { | 
|  | ti->error = "Error opening origin device"; | 
|  | goto bad_origin_dev; | 
|  | } | 
|  | tc->origin_dev = origin_dev; | 
|  | } | 
|  |  | 
|  | r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev); | 
|  | if (r) { | 
|  | ti->error = "Error opening pool device"; | 
|  | goto bad_pool_dev; | 
|  | } | 
|  | tc->pool_dev = pool_dev; | 
|  |  | 
|  | if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) { | 
|  | ti->error = "Invalid device id"; | 
|  | r = -EINVAL; | 
|  | goto bad_common; | 
|  | } | 
|  |  | 
|  | pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev); | 
|  | if (!pool_md) { | 
|  | ti->error = "Couldn't get pool mapped device"; | 
|  | r = -EINVAL; | 
|  | goto bad_common; | 
|  | } | 
|  |  | 
|  | tc->pool = __pool_table_lookup(pool_md); | 
|  | if (!tc->pool) { | 
|  | ti->error = "Couldn't find pool object"; | 
|  | r = -EINVAL; | 
|  | goto bad_pool_lookup; | 
|  | } | 
|  | __pool_inc(tc->pool); | 
|  |  | 
|  | if (get_pool_mode(tc->pool) == PM_FAIL) { | 
|  | ti->error = "Couldn't open thin device, Pool is in fail mode"; | 
|  | goto bad_thin_open; | 
|  | } | 
|  |  | 
|  | r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td); | 
|  | if (r) { | 
|  | ti->error = "Couldn't open thin internal device"; | 
|  | goto bad_thin_open; | 
|  | } | 
|  |  | 
|  | r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block); | 
|  | if (r) | 
|  | goto bad_thin_open; | 
|  |  | 
|  | ti->num_flush_bios = 1; | 
|  | ti->flush_supported = true; | 
|  | ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook); | 
|  |  | 
|  | /* In case the pool supports discards, pass them on. */ | 
|  | ti->discard_zeroes_data_unsupported = true; | 
|  | if (tc->pool->pf.discard_enabled) { | 
|  | ti->discards_supported = true; | 
|  | ti->num_discard_bios = 1; | 
|  | /* Discard bios must be split on a block boundary */ | 
|  | ti->split_discard_bios = true; | 
|  | } | 
|  |  | 
|  | dm_put(pool_md); | 
|  |  | 
|  | mutex_unlock(&dm_thin_pool_table.mutex); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | bad_thin_open: | 
|  | __pool_dec(tc->pool); | 
|  | bad_pool_lookup: | 
|  | dm_put(pool_md); | 
|  | bad_common: | 
|  | dm_put_device(ti, tc->pool_dev); | 
|  | bad_pool_dev: | 
|  | if (tc->origin_dev) | 
|  | dm_put_device(ti, tc->origin_dev); | 
|  | bad_origin_dev: | 
|  | kfree(tc); | 
|  | out_unlock: | 
|  | mutex_unlock(&dm_thin_pool_table.mutex); | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static int thin_map(struct dm_target *ti, struct bio *bio) | 
|  | { | 
|  | bio->bi_sector = dm_target_offset(ti, bio->bi_sector); | 
|  |  | 
|  | return thin_bio_map(ti, bio); | 
|  | } | 
|  |  | 
|  | static int thin_endio(struct dm_target *ti, struct bio *bio, int err) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); | 
|  | struct list_head work; | 
|  | struct dm_thin_new_mapping *m, *tmp; | 
|  | struct pool *pool = h->tc->pool; | 
|  |  | 
|  | if (h->shared_read_entry) { | 
|  | INIT_LIST_HEAD(&work); | 
|  | dm_deferred_entry_dec(h->shared_read_entry, &work); | 
|  |  | 
|  | spin_lock_irqsave(&pool->lock, flags); | 
|  | list_for_each_entry_safe(m, tmp, &work, list) { | 
|  | list_del(&m->list); | 
|  | m->quiesced = 1; | 
|  | __maybe_add_mapping(m); | 
|  | } | 
|  | spin_unlock_irqrestore(&pool->lock, flags); | 
|  | } | 
|  |  | 
|  | if (h->all_io_entry) { | 
|  | INIT_LIST_HEAD(&work); | 
|  | dm_deferred_entry_dec(h->all_io_entry, &work); | 
|  | if (!list_empty(&work)) { | 
|  | spin_lock_irqsave(&pool->lock, flags); | 
|  | list_for_each_entry_safe(m, tmp, &work, list) | 
|  | list_add(&m->list, &pool->prepared_discards); | 
|  | spin_unlock_irqrestore(&pool->lock, flags); | 
|  | wake_worker(pool); | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void thin_postsuspend(struct dm_target *ti) | 
|  | { | 
|  | if (dm_noflush_suspending(ti)) | 
|  | requeue_io((struct thin_c *)ti->private); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * <nr mapped sectors> <highest mapped sector> | 
|  | */ | 
|  | static void thin_status(struct dm_target *ti, status_type_t type, | 
|  | unsigned status_flags, char *result, unsigned maxlen) | 
|  | { | 
|  | int r; | 
|  | ssize_t sz = 0; | 
|  | dm_block_t mapped, highest; | 
|  | char buf[BDEVNAME_SIZE]; | 
|  | struct thin_c *tc = ti->private; | 
|  |  | 
|  | if (get_pool_mode(tc->pool) == PM_FAIL) { | 
|  | DMEMIT("Fail"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!tc->td) | 
|  | DMEMIT("-"); | 
|  | else { | 
|  | switch (type) { | 
|  | case STATUSTYPE_INFO: | 
|  | r = dm_thin_get_mapped_count(tc->td, &mapped); | 
|  | if (r) { | 
|  | DMERR("dm_thin_get_mapped_count returned %d", r); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | r = dm_thin_get_highest_mapped_block(tc->td, &highest); | 
|  | if (r < 0) { | 
|  | DMERR("dm_thin_get_highest_mapped_block returned %d", r); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | DMEMIT("%llu ", mapped * tc->pool->sectors_per_block); | 
|  | if (r) | 
|  | DMEMIT("%llu", ((highest + 1) * | 
|  | tc->pool->sectors_per_block) - 1); | 
|  | else | 
|  | DMEMIT("-"); | 
|  | break; | 
|  |  | 
|  | case STATUSTYPE_TABLE: | 
|  | DMEMIT("%s %lu", | 
|  | format_dev_t(buf, tc->pool_dev->bdev->bd_dev), | 
|  | (unsigned long) tc->dev_id); | 
|  | if (tc->origin_dev) | 
|  | DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev)); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return; | 
|  |  | 
|  | err: | 
|  | DMEMIT("Error"); | 
|  | } | 
|  |  | 
|  | static int thin_iterate_devices(struct dm_target *ti, | 
|  | iterate_devices_callout_fn fn, void *data) | 
|  | { | 
|  | sector_t blocks; | 
|  | struct thin_c *tc = ti->private; | 
|  | struct pool *pool = tc->pool; | 
|  |  | 
|  | /* | 
|  | * We can't call dm_pool_get_data_dev_size() since that blocks.  So | 
|  | * we follow a more convoluted path through to the pool's target. | 
|  | */ | 
|  | if (!pool->ti) | 
|  | return 0;	/* nothing is bound */ | 
|  |  | 
|  | blocks = pool->ti->len; | 
|  | (void) sector_div(blocks, pool->sectors_per_block); | 
|  | if (blocks) | 
|  | return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct target_type thin_target = { | 
|  | .name = "thin", | 
|  | .version = {1, 9, 0}, | 
|  | .module	= THIS_MODULE, | 
|  | .ctr = thin_ctr, | 
|  | .dtr = thin_dtr, | 
|  | .map = thin_map, | 
|  | .end_io = thin_endio, | 
|  | .postsuspend = thin_postsuspend, | 
|  | .status = thin_status, | 
|  | .iterate_devices = thin_iterate_devices, | 
|  | }; | 
|  |  | 
|  | /*----------------------------------------------------------------*/ | 
|  |  | 
|  | static int __init dm_thin_init(void) | 
|  | { | 
|  | int r; | 
|  |  | 
|  | pool_table_init(); | 
|  |  | 
|  | r = dm_register_target(&thin_target); | 
|  | if (r) | 
|  | return r; | 
|  |  | 
|  | r = dm_register_target(&pool_target); | 
|  | if (r) | 
|  | goto bad_pool_target; | 
|  |  | 
|  | r = -ENOMEM; | 
|  |  | 
|  | _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0); | 
|  | if (!_new_mapping_cache) | 
|  | goto bad_new_mapping_cache; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | bad_new_mapping_cache: | 
|  | dm_unregister_target(&pool_target); | 
|  | bad_pool_target: | 
|  | dm_unregister_target(&thin_target); | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static void dm_thin_exit(void) | 
|  | { | 
|  | dm_unregister_target(&thin_target); | 
|  | dm_unregister_target(&pool_target); | 
|  |  | 
|  | kmem_cache_destroy(_new_mapping_cache); | 
|  | } | 
|  |  | 
|  | module_init(dm_thin_init); | 
|  | module_exit(dm_thin_exit); | 
|  |  | 
|  | MODULE_DESCRIPTION(DM_NAME " thin provisioning target"); | 
|  | MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); | 
|  | MODULE_LICENSE("GPL"); |