| /* linux/arch/arm/mach-exynos4/platsmp.c | 
 |  * | 
 |  * Copyright (c) 2010-2011 Samsung Electronics Co., Ltd. | 
 |  *		http://www.samsung.com | 
 |  * | 
 |  * Cloned from linux/arch/arm/mach-vexpress/platsmp.c | 
 |  * | 
 |  *  Copyright (C) 2002 ARM Ltd. | 
 |  *  All Rights Reserved | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify | 
 |  * it under the terms of the GNU General Public License version 2 as | 
 |  * published by the Free Software Foundation. | 
 | */ | 
 |  | 
 | #include <linux/init.h> | 
 | #include <linux/errno.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/device.h> | 
 | #include <linux/jiffies.h> | 
 | #include <linux/smp.h> | 
 | #include <linux/io.h> | 
 |  | 
 | #include <asm/cacheflush.h> | 
 | #include <asm/smp_plat.h> | 
 | #include <asm/smp_scu.h> | 
 | #include <asm/firmware.h> | 
 |  | 
 | #include <mach/hardware.h> | 
 | #include <mach/regs-clock.h> | 
 | #include <mach/regs-pmu.h> | 
 |  | 
 | #include <plat/cpu.h> | 
 |  | 
 | #include "common.h" | 
 |  | 
 | extern void exynos4_secondary_startup(void); | 
 |  | 
 | static inline void __iomem *cpu_boot_reg_base(void) | 
 | { | 
 | 	if (soc_is_exynos4210() && samsung_rev() == EXYNOS4210_REV_1_1) | 
 | 		return S5P_INFORM5; | 
 | 	return S5P_VA_SYSRAM; | 
 | } | 
 |  | 
 | static inline void __iomem *cpu_boot_reg(int cpu) | 
 | { | 
 | 	void __iomem *boot_reg; | 
 |  | 
 | 	boot_reg = cpu_boot_reg_base(); | 
 | 	if (soc_is_exynos4412()) | 
 | 		boot_reg += 4*cpu; | 
 | 	else if (soc_is_exynos5420()) | 
 | 		boot_reg += 4; | 
 | 	return boot_reg; | 
 | } | 
 |  | 
 | /* | 
 |  * Write pen_release in a way that is guaranteed to be visible to all | 
 |  * observers, irrespective of whether they're taking part in coherency | 
 |  * or not.  This is necessary for the hotplug code to work reliably. | 
 |  */ | 
 | static void write_pen_release(int val) | 
 | { | 
 | 	pen_release = val; | 
 | 	smp_wmb(); | 
 | 	__cpuc_flush_dcache_area((void *)&pen_release, sizeof(pen_release)); | 
 | 	outer_clean_range(__pa(&pen_release), __pa(&pen_release + 1)); | 
 | } | 
 |  | 
 | static void __iomem *scu_base_addr(void) | 
 | { | 
 | 	return (void __iomem *)(S5P_VA_SCU); | 
 | } | 
 |  | 
 | static DEFINE_SPINLOCK(boot_lock); | 
 |  | 
 | static void exynos_secondary_init(unsigned int cpu) | 
 | { | 
 | 	/* | 
 | 	 * let the primary processor know we're out of the | 
 | 	 * pen, then head off into the C entry point | 
 | 	 */ | 
 | 	write_pen_release(-1); | 
 |  | 
 | 	/* | 
 | 	 * Synchronise with the boot thread. | 
 | 	 */ | 
 | 	spin_lock(&boot_lock); | 
 | 	spin_unlock(&boot_lock); | 
 | } | 
 |  | 
 | static int exynos_boot_secondary(unsigned int cpu, struct task_struct *idle) | 
 | { | 
 | 	unsigned long timeout; | 
 | 	unsigned long phys_cpu = cpu_logical_map(cpu); | 
 |  | 
 | 	/* | 
 | 	 * Set synchronisation state between this boot processor | 
 | 	 * and the secondary one | 
 | 	 */ | 
 | 	spin_lock(&boot_lock); | 
 |  | 
 | 	/* | 
 | 	 * The secondary processor is waiting to be released from | 
 | 	 * the holding pen - release it, then wait for it to flag | 
 | 	 * that it has been released by resetting pen_release. | 
 | 	 * | 
 | 	 * Note that "pen_release" is the hardware CPU ID, whereas | 
 | 	 * "cpu" is Linux's internal ID. | 
 | 	 */ | 
 | 	write_pen_release(phys_cpu); | 
 |  | 
 | 	if (!(__raw_readl(S5P_ARM_CORE1_STATUS) & S5P_CORE_LOCAL_PWR_EN)) { | 
 | 		__raw_writel(S5P_CORE_LOCAL_PWR_EN, | 
 | 			     S5P_ARM_CORE1_CONFIGURATION); | 
 |  | 
 | 		timeout = 10; | 
 |  | 
 | 		/* wait max 10 ms until cpu1 is on */ | 
 | 		while ((__raw_readl(S5P_ARM_CORE1_STATUS) | 
 | 			& S5P_CORE_LOCAL_PWR_EN) != S5P_CORE_LOCAL_PWR_EN) { | 
 | 			if (timeout-- == 0) | 
 | 				break; | 
 |  | 
 | 			mdelay(1); | 
 | 		} | 
 |  | 
 | 		if (timeout == 0) { | 
 | 			printk(KERN_ERR "cpu1 power enable failed"); | 
 | 			spin_unlock(&boot_lock); | 
 | 			return -ETIMEDOUT; | 
 | 		} | 
 | 	} | 
 | 	/* | 
 | 	 * Send the secondary CPU a soft interrupt, thereby causing | 
 | 	 * the boot monitor to read the system wide flags register, | 
 | 	 * and branch to the address found there. | 
 | 	 */ | 
 |  | 
 | 	timeout = jiffies + (1 * HZ); | 
 | 	while (time_before(jiffies, timeout)) { | 
 | 		unsigned long boot_addr; | 
 |  | 
 | 		smp_rmb(); | 
 |  | 
 | 		boot_addr = virt_to_phys(exynos4_secondary_startup); | 
 |  | 
 | 		/* | 
 | 		 * Try to set boot address using firmware first | 
 | 		 * and fall back to boot register if it fails. | 
 | 		 */ | 
 | 		if (call_firmware_op(set_cpu_boot_addr, phys_cpu, boot_addr)) | 
 | 			__raw_writel(boot_addr, cpu_boot_reg(phys_cpu)); | 
 |  | 
 | 		call_firmware_op(cpu_boot, phys_cpu); | 
 |  | 
 | 		arch_send_wakeup_ipi_mask(cpumask_of(cpu)); | 
 |  | 
 | 		if (pen_release == -1) | 
 | 			break; | 
 |  | 
 | 		udelay(10); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * now the secondary core is starting up let it run its | 
 | 	 * calibrations, then wait for it to finish | 
 | 	 */ | 
 | 	spin_unlock(&boot_lock); | 
 |  | 
 | 	return pen_release != -1 ? -ENOSYS : 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Initialise the CPU possible map early - this describes the CPUs | 
 |  * which may be present or become present in the system. | 
 |  */ | 
 |  | 
 | static void __init exynos_smp_init_cpus(void) | 
 | { | 
 | 	void __iomem *scu_base = scu_base_addr(); | 
 | 	unsigned int i, ncores; | 
 |  | 
 | 	if (read_cpuid_part_number() == ARM_CPU_PART_CORTEX_A9) | 
 | 		ncores = scu_base ? scu_get_core_count(scu_base) : 1; | 
 | 	else | 
 | 		/* | 
 | 		 * CPU Nodes are passed thru DT and set_cpu_possible | 
 | 		 * is set by "arm_dt_init_cpu_maps". | 
 | 		 */ | 
 | 		return; | 
 |  | 
 | 	/* sanity check */ | 
 | 	if (ncores > nr_cpu_ids) { | 
 | 		pr_warn("SMP: %u cores greater than maximum (%u), clipping\n", | 
 | 			ncores, nr_cpu_ids); | 
 | 		ncores = nr_cpu_ids; | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < ncores; i++) | 
 | 		set_cpu_possible(i, true); | 
 | } | 
 |  | 
 | static void __init exynos_smp_prepare_cpus(unsigned int max_cpus) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	if (read_cpuid_part_number() == ARM_CPU_PART_CORTEX_A9) | 
 | 		scu_enable(scu_base_addr()); | 
 |  | 
 | 	/* | 
 | 	 * Write the address of secondary startup into the | 
 | 	 * system-wide flags register. The boot monitor waits | 
 | 	 * until it receives a soft interrupt, and then the | 
 | 	 * secondary CPU branches to this address. | 
 | 	 * | 
 | 	 * Try using firmware operation first and fall back to | 
 | 	 * boot register if it fails. | 
 | 	 */ | 
 | 	for (i = 1; i < max_cpus; ++i) { | 
 | 		unsigned long phys_cpu; | 
 | 		unsigned long boot_addr; | 
 |  | 
 | 		phys_cpu = cpu_logical_map(i); | 
 | 		boot_addr = virt_to_phys(exynos4_secondary_startup); | 
 |  | 
 | 		if (call_firmware_op(set_cpu_boot_addr, phys_cpu, boot_addr)) | 
 | 			__raw_writel(boot_addr, cpu_boot_reg(phys_cpu)); | 
 | 	} | 
 | } | 
 |  | 
 | struct smp_operations exynos_smp_ops __initdata = { | 
 | 	.smp_init_cpus		= exynos_smp_init_cpus, | 
 | 	.smp_prepare_cpus	= exynos_smp_prepare_cpus, | 
 | 	.smp_secondary_init	= exynos_secondary_init, | 
 | 	.smp_boot_secondary	= exynos_boot_secondary, | 
 | #ifdef CONFIG_HOTPLUG_CPU | 
 | 	.cpu_die		= exynos_cpu_die, | 
 | #endif | 
 | }; |