|  | /* | 
|  | * fs/f2fs/node.c | 
|  | * | 
|  | * Copyright (c) 2012 Samsung Electronics Co., Ltd. | 
|  | *             http://www.samsung.com/ | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License version 2 as | 
|  | * published by the Free Software Foundation. | 
|  | */ | 
|  | #include <linux/fs.h> | 
|  | #include <linux/f2fs_fs.h> | 
|  | #include <linux/mpage.h> | 
|  | #include <linux/backing-dev.h> | 
|  | #include <linux/blkdev.h> | 
|  | #include <linux/pagevec.h> | 
|  | #include <linux/swap.h> | 
|  |  | 
|  | #include "f2fs.h" | 
|  | #include "node.h" | 
|  | #include "segment.h" | 
|  | #include <trace/events/f2fs.h> | 
|  |  | 
|  | static struct kmem_cache *nat_entry_slab; | 
|  | static struct kmem_cache *free_nid_slab; | 
|  |  | 
|  | static void clear_node_page_dirty(struct page *page) | 
|  | { | 
|  | struct address_space *mapping = page->mapping; | 
|  | struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb); | 
|  | unsigned int long flags; | 
|  |  | 
|  | if (PageDirty(page)) { | 
|  | spin_lock_irqsave(&mapping->tree_lock, flags); | 
|  | radix_tree_tag_clear(&mapping->page_tree, | 
|  | page_index(page), | 
|  | PAGECACHE_TAG_DIRTY); | 
|  | spin_unlock_irqrestore(&mapping->tree_lock, flags); | 
|  |  | 
|  | clear_page_dirty_for_io(page); | 
|  | dec_page_count(sbi, F2FS_DIRTY_NODES); | 
|  | } | 
|  | ClearPageUptodate(page); | 
|  | } | 
|  |  | 
|  | static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid) | 
|  | { | 
|  | pgoff_t index = current_nat_addr(sbi, nid); | 
|  | return get_meta_page(sbi, index); | 
|  | } | 
|  |  | 
|  | static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid) | 
|  | { | 
|  | struct page *src_page; | 
|  | struct page *dst_page; | 
|  | pgoff_t src_off; | 
|  | pgoff_t dst_off; | 
|  | void *src_addr; | 
|  | void *dst_addr; | 
|  | struct f2fs_nm_info *nm_i = NM_I(sbi); | 
|  |  | 
|  | src_off = current_nat_addr(sbi, nid); | 
|  | dst_off = next_nat_addr(sbi, src_off); | 
|  |  | 
|  | /* get current nat block page with lock */ | 
|  | src_page = get_meta_page(sbi, src_off); | 
|  |  | 
|  | /* Dirty src_page means that it is already the new target NAT page. */ | 
|  | if (PageDirty(src_page)) | 
|  | return src_page; | 
|  |  | 
|  | dst_page = grab_meta_page(sbi, dst_off); | 
|  |  | 
|  | src_addr = page_address(src_page); | 
|  | dst_addr = page_address(dst_page); | 
|  | memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE); | 
|  | set_page_dirty(dst_page); | 
|  | f2fs_put_page(src_page, 1); | 
|  |  | 
|  | set_to_next_nat(nm_i, nid); | 
|  |  | 
|  | return dst_page; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Readahead NAT pages | 
|  | */ | 
|  | static void ra_nat_pages(struct f2fs_sb_info *sbi, int nid) | 
|  | { | 
|  | struct address_space *mapping = sbi->meta_inode->i_mapping; | 
|  | struct f2fs_nm_info *nm_i = NM_I(sbi); | 
|  | struct blk_plug plug; | 
|  | struct page *page; | 
|  | pgoff_t index; | 
|  | int i; | 
|  |  | 
|  | blk_start_plug(&plug); | 
|  |  | 
|  | for (i = 0; i < FREE_NID_PAGES; i++, nid += NAT_ENTRY_PER_BLOCK) { | 
|  | if (nid >= nm_i->max_nid) | 
|  | nid = 0; | 
|  | index = current_nat_addr(sbi, nid); | 
|  |  | 
|  | page = grab_cache_page(mapping, index); | 
|  | if (!page) | 
|  | continue; | 
|  | if (PageUptodate(page)) { | 
|  | f2fs_put_page(page, 1); | 
|  | continue; | 
|  | } | 
|  | if (f2fs_readpage(sbi, page, index, READ)) | 
|  | continue; | 
|  |  | 
|  | f2fs_put_page(page, 0); | 
|  | } | 
|  | blk_finish_plug(&plug); | 
|  | } | 
|  |  | 
|  | static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n) | 
|  | { | 
|  | return radix_tree_lookup(&nm_i->nat_root, n); | 
|  | } | 
|  |  | 
|  | static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i, | 
|  | nid_t start, unsigned int nr, struct nat_entry **ep) | 
|  | { | 
|  | return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr); | 
|  | } | 
|  |  | 
|  | static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e) | 
|  | { | 
|  | list_del(&e->list); | 
|  | radix_tree_delete(&nm_i->nat_root, nat_get_nid(e)); | 
|  | nm_i->nat_cnt--; | 
|  | kmem_cache_free(nat_entry_slab, e); | 
|  | } | 
|  |  | 
|  | int is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid) | 
|  | { | 
|  | struct f2fs_nm_info *nm_i = NM_I(sbi); | 
|  | struct nat_entry *e; | 
|  | int is_cp = 1; | 
|  |  | 
|  | read_lock(&nm_i->nat_tree_lock); | 
|  | e = __lookup_nat_cache(nm_i, nid); | 
|  | if (e && !e->checkpointed) | 
|  | is_cp = 0; | 
|  | read_unlock(&nm_i->nat_tree_lock); | 
|  | return is_cp; | 
|  | } | 
|  |  | 
|  | static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid) | 
|  | { | 
|  | struct nat_entry *new; | 
|  |  | 
|  | new = kmem_cache_alloc(nat_entry_slab, GFP_ATOMIC); | 
|  | if (!new) | 
|  | return NULL; | 
|  | if (radix_tree_insert(&nm_i->nat_root, nid, new)) { | 
|  | kmem_cache_free(nat_entry_slab, new); | 
|  | return NULL; | 
|  | } | 
|  | memset(new, 0, sizeof(struct nat_entry)); | 
|  | nat_set_nid(new, nid); | 
|  | list_add_tail(&new->list, &nm_i->nat_entries); | 
|  | nm_i->nat_cnt++; | 
|  | return new; | 
|  | } | 
|  |  | 
|  | static void cache_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid, | 
|  | struct f2fs_nat_entry *ne) | 
|  | { | 
|  | struct nat_entry *e; | 
|  | retry: | 
|  | write_lock(&nm_i->nat_tree_lock); | 
|  | e = __lookup_nat_cache(nm_i, nid); | 
|  | if (!e) { | 
|  | e = grab_nat_entry(nm_i, nid); | 
|  | if (!e) { | 
|  | write_unlock(&nm_i->nat_tree_lock); | 
|  | goto retry; | 
|  | } | 
|  | nat_set_blkaddr(e, le32_to_cpu(ne->block_addr)); | 
|  | nat_set_ino(e, le32_to_cpu(ne->ino)); | 
|  | nat_set_version(e, ne->version); | 
|  | e->checkpointed = true; | 
|  | } | 
|  | write_unlock(&nm_i->nat_tree_lock); | 
|  | } | 
|  |  | 
|  | static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni, | 
|  | block_t new_blkaddr) | 
|  | { | 
|  | struct f2fs_nm_info *nm_i = NM_I(sbi); | 
|  | struct nat_entry *e; | 
|  | retry: | 
|  | write_lock(&nm_i->nat_tree_lock); | 
|  | e = __lookup_nat_cache(nm_i, ni->nid); | 
|  | if (!e) { | 
|  | e = grab_nat_entry(nm_i, ni->nid); | 
|  | if (!e) { | 
|  | write_unlock(&nm_i->nat_tree_lock); | 
|  | goto retry; | 
|  | } | 
|  | e->ni = *ni; | 
|  | e->checkpointed = true; | 
|  | BUG_ON(ni->blk_addr == NEW_ADDR); | 
|  | } else if (new_blkaddr == NEW_ADDR) { | 
|  | /* | 
|  | * when nid is reallocated, | 
|  | * previous nat entry can be remained in nat cache. | 
|  | * So, reinitialize it with new information. | 
|  | */ | 
|  | e->ni = *ni; | 
|  | BUG_ON(ni->blk_addr != NULL_ADDR); | 
|  | } | 
|  |  | 
|  | if (new_blkaddr == NEW_ADDR) | 
|  | e->checkpointed = false; | 
|  |  | 
|  | /* sanity check */ | 
|  | BUG_ON(nat_get_blkaddr(e) != ni->blk_addr); | 
|  | BUG_ON(nat_get_blkaddr(e) == NULL_ADDR && | 
|  | new_blkaddr == NULL_ADDR); | 
|  | BUG_ON(nat_get_blkaddr(e) == NEW_ADDR && | 
|  | new_blkaddr == NEW_ADDR); | 
|  | BUG_ON(nat_get_blkaddr(e) != NEW_ADDR && | 
|  | nat_get_blkaddr(e) != NULL_ADDR && | 
|  | new_blkaddr == NEW_ADDR); | 
|  |  | 
|  | /* increament version no as node is removed */ | 
|  | if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) { | 
|  | unsigned char version = nat_get_version(e); | 
|  | nat_set_version(e, inc_node_version(version)); | 
|  | } | 
|  |  | 
|  | /* change address */ | 
|  | nat_set_blkaddr(e, new_blkaddr); | 
|  | __set_nat_cache_dirty(nm_i, e); | 
|  | write_unlock(&nm_i->nat_tree_lock); | 
|  | } | 
|  |  | 
|  | static int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink) | 
|  | { | 
|  | struct f2fs_nm_info *nm_i = NM_I(sbi); | 
|  |  | 
|  | if (nm_i->nat_cnt <= NM_WOUT_THRESHOLD) | 
|  | return 0; | 
|  |  | 
|  | write_lock(&nm_i->nat_tree_lock); | 
|  | while (nr_shrink && !list_empty(&nm_i->nat_entries)) { | 
|  | struct nat_entry *ne; | 
|  | ne = list_first_entry(&nm_i->nat_entries, | 
|  | struct nat_entry, list); | 
|  | __del_from_nat_cache(nm_i, ne); | 
|  | nr_shrink--; | 
|  | } | 
|  | write_unlock(&nm_i->nat_tree_lock); | 
|  | return nr_shrink; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function returns always success | 
|  | */ | 
|  | void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni) | 
|  | { | 
|  | struct f2fs_nm_info *nm_i = NM_I(sbi); | 
|  | struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); | 
|  | struct f2fs_summary_block *sum = curseg->sum_blk; | 
|  | nid_t start_nid = START_NID(nid); | 
|  | struct f2fs_nat_block *nat_blk; | 
|  | struct page *page = NULL; | 
|  | struct f2fs_nat_entry ne; | 
|  | struct nat_entry *e; | 
|  | int i; | 
|  |  | 
|  | memset(&ne, 0, sizeof(struct f2fs_nat_entry)); | 
|  | ni->nid = nid; | 
|  |  | 
|  | /* Check nat cache */ | 
|  | read_lock(&nm_i->nat_tree_lock); | 
|  | e = __lookup_nat_cache(nm_i, nid); | 
|  | if (e) { | 
|  | ni->ino = nat_get_ino(e); | 
|  | ni->blk_addr = nat_get_blkaddr(e); | 
|  | ni->version = nat_get_version(e); | 
|  | } | 
|  | read_unlock(&nm_i->nat_tree_lock); | 
|  | if (e) | 
|  | return; | 
|  |  | 
|  | /* Check current segment summary */ | 
|  | mutex_lock(&curseg->curseg_mutex); | 
|  | i = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 0); | 
|  | if (i >= 0) { | 
|  | ne = nat_in_journal(sum, i); | 
|  | node_info_from_raw_nat(ni, &ne); | 
|  | } | 
|  | mutex_unlock(&curseg->curseg_mutex); | 
|  | if (i >= 0) | 
|  | goto cache; | 
|  |  | 
|  | /* Fill node_info from nat page */ | 
|  | page = get_current_nat_page(sbi, start_nid); | 
|  | nat_blk = (struct f2fs_nat_block *)page_address(page); | 
|  | ne = nat_blk->entries[nid - start_nid]; | 
|  | node_info_from_raw_nat(ni, &ne); | 
|  | f2fs_put_page(page, 1); | 
|  | cache: | 
|  | /* cache nat entry */ | 
|  | cache_nat_entry(NM_I(sbi), nid, &ne); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The maximum depth is four. | 
|  | * Offset[0] will have raw inode offset. | 
|  | */ | 
|  | static int get_node_path(struct f2fs_inode_info *fi, long block, | 
|  | int offset[4], unsigned int noffset[4]) | 
|  | { | 
|  | const long direct_index = ADDRS_PER_INODE(fi); | 
|  | const long direct_blks = ADDRS_PER_BLOCK; | 
|  | const long dptrs_per_blk = NIDS_PER_BLOCK; | 
|  | const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK; | 
|  | const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK; | 
|  | int n = 0; | 
|  | int level = 0; | 
|  |  | 
|  | noffset[0] = 0; | 
|  |  | 
|  | if (block < direct_index) { | 
|  | offset[n] = block; | 
|  | goto got; | 
|  | } | 
|  | block -= direct_index; | 
|  | if (block < direct_blks) { | 
|  | offset[n++] = NODE_DIR1_BLOCK; | 
|  | noffset[n] = 1; | 
|  | offset[n] = block; | 
|  | level = 1; | 
|  | goto got; | 
|  | } | 
|  | block -= direct_blks; | 
|  | if (block < direct_blks) { | 
|  | offset[n++] = NODE_DIR2_BLOCK; | 
|  | noffset[n] = 2; | 
|  | offset[n] = block; | 
|  | level = 1; | 
|  | goto got; | 
|  | } | 
|  | block -= direct_blks; | 
|  | if (block < indirect_blks) { | 
|  | offset[n++] = NODE_IND1_BLOCK; | 
|  | noffset[n] = 3; | 
|  | offset[n++] = block / direct_blks; | 
|  | noffset[n] = 4 + offset[n - 1]; | 
|  | offset[n] = block % direct_blks; | 
|  | level = 2; | 
|  | goto got; | 
|  | } | 
|  | block -= indirect_blks; | 
|  | if (block < indirect_blks) { | 
|  | offset[n++] = NODE_IND2_BLOCK; | 
|  | noffset[n] = 4 + dptrs_per_blk; | 
|  | offset[n++] = block / direct_blks; | 
|  | noffset[n] = 5 + dptrs_per_blk + offset[n - 1]; | 
|  | offset[n] = block % direct_blks; | 
|  | level = 2; | 
|  | goto got; | 
|  | } | 
|  | block -= indirect_blks; | 
|  | if (block < dindirect_blks) { | 
|  | offset[n++] = NODE_DIND_BLOCK; | 
|  | noffset[n] = 5 + (dptrs_per_blk * 2); | 
|  | offset[n++] = block / indirect_blks; | 
|  | noffset[n] = 6 + (dptrs_per_blk * 2) + | 
|  | offset[n - 1] * (dptrs_per_blk + 1); | 
|  | offset[n++] = (block / direct_blks) % dptrs_per_blk; | 
|  | noffset[n] = 7 + (dptrs_per_blk * 2) + | 
|  | offset[n - 2] * (dptrs_per_blk + 1) + | 
|  | offset[n - 1]; | 
|  | offset[n] = block % direct_blks; | 
|  | level = 3; | 
|  | goto got; | 
|  | } else { | 
|  | BUG(); | 
|  | } | 
|  | got: | 
|  | return level; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Caller should call f2fs_put_dnode(dn). | 
|  | * Also, it should grab and release a mutex by calling mutex_lock_op() and | 
|  | * mutex_unlock_op() only if ro is not set RDONLY_NODE. | 
|  | * In the case of RDONLY_NODE, we don't need to care about mutex. | 
|  | */ | 
|  | int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode) | 
|  | { | 
|  | struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb); | 
|  | struct page *npage[4]; | 
|  | struct page *parent; | 
|  | int offset[4]; | 
|  | unsigned int noffset[4]; | 
|  | nid_t nids[4]; | 
|  | int level, i; | 
|  | int err = 0; | 
|  |  | 
|  | level = get_node_path(F2FS_I(dn->inode), index, offset, noffset); | 
|  |  | 
|  | nids[0] = dn->inode->i_ino; | 
|  | npage[0] = dn->inode_page; | 
|  |  | 
|  | if (!npage[0]) { | 
|  | npage[0] = get_node_page(sbi, nids[0]); | 
|  | if (IS_ERR(npage[0])) | 
|  | return PTR_ERR(npage[0]); | 
|  | } | 
|  | parent = npage[0]; | 
|  | if (level != 0) | 
|  | nids[1] = get_nid(parent, offset[0], true); | 
|  | dn->inode_page = npage[0]; | 
|  | dn->inode_page_locked = true; | 
|  |  | 
|  | /* get indirect or direct nodes */ | 
|  | for (i = 1; i <= level; i++) { | 
|  | bool done = false; | 
|  |  | 
|  | if (!nids[i] && mode == ALLOC_NODE) { | 
|  | /* alloc new node */ | 
|  | if (!alloc_nid(sbi, &(nids[i]))) { | 
|  | err = -ENOSPC; | 
|  | goto release_pages; | 
|  | } | 
|  |  | 
|  | dn->nid = nids[i]; | 
|  | npage[i] = new_node_page(dn, noffset[i], NULL); | 
|  | if (IS_ERR(npage[i])) { | 
|  | alloc_nid_failed(sbi, nids[i]); | 
|  | err = PTR_ERR(npage[i]); | 
|  | goto release_pages; | 
|  | } | 
|  |  | 
|  | set_nid(parent, offset[i - 1], nids[i], i == 1); | 
|  | alloc_nid_done(sbi, nids[i]); | 
|  | done = true; | 
|  | } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) { | 
|  | npage[i] = get_node_page_ra(parent, offset[i - 1]); | 
|  | if (IS_ERR(npage[i])) { | 
|  | err = PTR_ERR(npage[i]); | 
|  | goto release_pages; | 
|  | } | 
|  | done = true; | 
|  | } | 
|  | if (i == 1) { | 
|  | dn->inode_page_locked = false; | 
|  | unlock_page(parent); | 
|  | } else { | 
|  | f2fs_put_page(parent, 1); | 
|  | } | 
|  |  | 
|  | if (!done) { | 
|  | npage[i] = get_node_page(sbi, nids[i]); | 
|  | if (IS_ERR(npage[i])) { | 
|  | err = PTR_ERR(npage[i]); | 
|  | f2fs_put_page(npage[0], 0); | 
|  | goto release_out; | 
|  | } | 
|  | } | 
|  | if (i < level) { | 
|  | parent = npage[i]; | 
|  | nids[i + 1] = get_nid(parent, offset[i], false); | 
|  | } | 
|  | } | 
|  | dn->nid = nids[level]; | 
|  | dn->ofs_in_node = offset[level]; | 
|  | dn->node_page = npage[level]; | 
|  | dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node); | 
|  | return 0; | 
|  |  | 
|  | release_pages: | 
|  | f2fs_put_page(parent, 1); | 
|  | if (i > 1) | 
|  | f2fs_put_page(npage[0], 0); | 
|  | release_out: | 
|  | dn->inode_page = NULL; | 
|  | dn->node_page = NULL; | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static void truncate_node(struct dnode_of_data *dn) | 
|  | { | 
|  | struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb); | 
|  | struct node_info ni; | 
|  |  | 
|  | get_node_info(sbi, dn->nid, &ni); | 
|  | if (dn->inode->i_blocks == 0) { | 
|  | BUG_ON(ni.blk_addr != NULL_ADDR); | 
|  | goto invalidate; | 
|  | } | 
|  | BUG_ON(ni.blk_addr == NULL_ADDR); | 
|  |  | 
|  | /* Deallocate node address */ | 
|  | invalidate_blocks(sbi, ni.blk_addr); | 
|  | dec_valid_node_count(sbi, dn->inode, 1); | 
|  | set_node_addr(sbi, &ni, NULL_ADDR); | 
|  |  | 
|  | if (dn->nid == dn->inode->i_ino) { | 
|  | remove_orphan_inode(sbi, dn->nid); | 
|  | dec_valid_inode_count(sbi); | 
|  | } else { | 
|  | sync_inode_page(dn); | 
|  | } | 
|  | invalidate: | 
|  | clear_node_page_dirty(dn->node_page); | 
|  | F2FS_SET_SB_DIRT(sbi); | 
|  |  | 
|  | f2fs_put_page(dn->node_page, 1); | 
|  | dn->node_page = NULL; | 
|  | trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr); | 
|  | } | 
|  |  | 
|  | static int truncate_dnode(struct dnode_of_data *dn) | 
|  | { | 
|  | struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb); | 
|  | struct page *page; | 
|  |  | 
|  | if (dn->nid == 0) | 
|  | return 1; | 
|  |  | 
|  | /* get direct node */ | 
|  | page = get_node_page(sbi, dn->nid); | 
|  | if (IS_ERR(page) && PTR_ERR(page) == -ENOENT) | 
|  | return 1; | 
|  | else if (IS_ERR(page)) | 
|  | return PTR_ERR(page); | 
|  |  | 
|  | /* Make dnode_of_data for parameter */ | 
|  | dn->node_page = page; | 
|  | dn->ofs_in_node = 0; | 
|  | truncate_data_blocks(dn); | 
|  | truncate_node(dn); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs, | 
|  | int ofs, int depth) | 
|  | { | 
|  | struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb); | 
|  | struct dnode_of_data rdn = *dn; | 
|  | struct page *page; | 
|  | struct f2fs_node *rn; | 
|  | nid_t child_nid; | 
|  | unsigned int child_nofs; | 
|  | int freed = 0; | 
|  | int i, ret; | 
|  |  | 
|  | if (dn->nid == 0) | 
|  | return NIDS_PER_BLOCK + 1; | 
|  |  | 
|  | trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr); | 
|  |  | 
|  | page = get_node_page(sbi, dn->nid); | 
|  | if (IS_ERR(page)) { | 
|  | trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page)); | 
|  | return PTR_ERR(page); | 
|  | } | 
|  |  | 
|  | rn = F2FS_NODE(page); | 
|  | if (depth < 3) { | 
|  | for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) { | 
|  | child_nid = le32_to_cpu(rn->in.nid[i]); | 
|  | if (child_nid == 0) | 
|  | continue; | 
|  | rdn.nid = child_nid; | 
|  | ret = truncate_dnode(&rdn); | 
|  | if (ret < 0) | 
|  | goto out_err; | 
|  | set_nid(page, i, 0, false); | 
|  | } | 
|  | } else { | 
|  | child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1; | 
|  | for (i = ofs; i < NIDS_PER_BLOCK; i++) { | 
|  | child_nid = le32_to_cpu(rn->in.nid[i]); | 
|  | if (child_nid == 0) { | 
|  | child_nofs += NIDS_PER_BLOCK + 1; | 
|  | continue; | 
|  | } | 
|  | rdn.nid = child_nid; | 
|  | ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1); | 
|  | if (ret == (NIDS_PER_BLOCK + 1)) { | 
|  | set_nid(page, i, 0, false); | 
|  | child_nofs += ret; | 
|  | } else if (ret < 0 && ret != -ENOENT) { | 
|  | goto out_err; | 
|  | } | 
|  | } | 
|  | freed = child_nofs; | 
|  | } | 
|  |  | 
|  | if (!ofs) { | 
|  | /* remove current indirect node */ | 
|  | dn->node_page = page; | 
|  | truncate_node(dn); | 
|  | freed++; | 
|  | } else { | 
|  | f2fs_put_page(page, 1); | 
|  | } | 
|  | trace_f2fs_truncate_nodes_exit(dn->inode, freed); | 
|  | return freed; | 
|  |  | 
|  | out_err: | 
|  | f2fs_put_page(page, 1); | 
|  | trace_f2fs_truncate_nodes_exit(dn->inode, ret); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int truncate_partial_nodes(struct dnode_of_data *dn, | 
|  | struct f2fs_inode *ri, int *offset, int depth) | 
|  | { | 
|  | struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb); | 
|  | struct page *pages[2]; | 
|  | nid_t nid[3]; | 
|  | nid_t child_nid; | 
|  | int err = 0; | 
|  | int i; | 
|  | int idx = depth - 2; | 
|  |  | 
|  | nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]); | 
|  | if (!nid[0]) | 
|  | return 0; | 
|  |  | 
|  | /* get indirect nodes in the path */ | 
|  | for (i = 0; i < depth - 1; i++) { | 
|  | /* refernece count'll be increased */ | 
|  | pages[i] = get_node_page(sbi, nid[i]); | 
|  | if (IS_ERR(pages[i])) { | 
|  | depth = i + 1; | 
|  | err = PTR_ERR(pages[i]); | 
|  | goto fail; | 
|  | } | 
|  | nid[i + 1] = get_nid(pages[i], offset[i + 1], false); | 
|  | } | 
|  |  | 
|  | /* free direct nodes linked to a partial indirect node */ | 
|  | for (i = offset[depth - 1]; i < NIDS_PER_BLOCK; i++) { | 
|  | child_nid = get_nid(pages[idx], i, false); | 
|  | if (!child_nid) | 
|  | continue; | 
|  | dn->nid = child_nid; | 
|  | err = truncate_dnode(dn); | 
|  | if (err < 0) | 
|  | goto fail; | 
|  | set_nid(pages[idx], i, 0, false); | 
|  | } | 
|  |  | 
|  | if (offset[depth - 1] == 0) { | 
|  | dn->node_page = pages[idx]; | 
|  | dn->nid = nid[idx]; | 
|  | truncate_node(dn); | 
|  | } else { | 
|  | f2fs_put_page(pages[idx], 1); | 
|  | } | 
|  | offset[idx]++; | 
|  | offset[depth - 1] = 0; | 
|  | fail: | 
|  | for (i = depth - 3; i >= 0; i--) | 
|  | f2fs_put_page(pages[i], 1); | 
|  |  | 
|  | trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * All the block addresses of data and nodes should be nullified. | 
|  | */ | 
|  | int truncate_inode_blocks(struct inode *inode, pgoff_t from) | 
|  | { | 
|  | struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); | 
|  | struct address_space *node_mapping = sbi->node_inode->i_mapping; | 
|  | int err = 0, cont = 1; | 
|  | int level, offset[4], noffset[4]; | 
|  | unsigned int nofs = 0; | 
|  | struct f2fs_node *rn; | 
|  | struct dnode_of_data dn; | 
|  | struct page *page; | 
|  |  | 
|  | trace_f2fs_truncate_inode_blocks_enter(inode, from); | 
|  |  | 
|  | level = get_node_path(F2FS_I(inode), from, offset, noffset); | 
|  | restart: | 
|  | page = get_node_page(sbi, inode->i_ino); | 
|  | if (IS_ERR(page)) { | 
|  | trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page)); | 
|  | return PTR_ERR(page); | 
|  | } | 
|  |  | 
|  | set_new_dnode(&dn, inode, page, NULL, 0); | 
|  | unlock_page(page); | 
|  |  | 
|  | rn = F2FS_NODE(page); | 
|  | switch (level) { | 
|  | case 0: | 
|  | case 1: | 
|  | nofs = noffset[1]; | 
|  | break; | 
|  | case 2: | 
|  | nofs = noffset[1]; | 
|  | if (!offset[level - 1]) | 
|  | goto skip_partial; | 
|  | err = truncate_partial_nodes(&dn, &rn->i, offset, level); | 
|  | if (err < 0 && err != -ENOENT) | 
|  | goto fail; | 
|  | nofs += 1 + NIDS_PER_BLOCK; | 
|  | break; | 
|  | case 3: | 
|  | nofs = 5 + 2 * NIDS_PER_BLOCK; | 
|  | if (!offset[level - 1]) | 
|  | goto skip_partial; | 
|  | err = truncate_partial_nodes(&dn, &rn->i, offset, level); | 
|  | if (err < 0 && err != -ENOENT) | 
|  | goto fail; | 
|  | break; | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | skip_partial: | 
|  | while (cont) { | 
|  | dn.nid = le32_to_cpu(rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK]); | 
|  | switch (offset[0]) { | 
|  | case NODE_DIR1_BLOCK: | 
|  | case NODE_DIR2_BLOCK: | 
|  | err = truncate_dnode(&dn); | 
|  | break; | 
|  |  | 
|  | case NODE_IND1_BLOCK: | 
|  | case NODE_IND2_BLOCK: | 
|  | err = truncate_nodes(&dn, nofs, offset[1], 2); | 
|  | break; | 
|  |  | 
|  | case NODE_DIND_BLOCK: | 
|  | err = truncate_nodes(&dn, nofs, offset[1], 3); | 
|  | cont = 0; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  | if (err < 0 && err != -ENOENT) | 
|  | goto fail; | 
|  | if (offset[1] == 0 && | 
|  | rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK]) { | 
|  | lock_page(page); | 
|  | if (page->mapping != node_mapping) { | 
|  | f2fs_put_page(page, 1); | 
|  | goto restart; | 
|  | } | 
|  | wait_on_page_writeback(page); | 
|  | rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK] = 0; | 
|  | set_page_dirty(page); | 
|  | unlock_page(page); | 
|  | } | 
|  | offset[1] = 0; | 
|  | offset[0]++; | 
|  | nofs += err; | 
|  | } | 
|  | fail: | 
|  | f2fs_put_page(page, 0); | 
|  | trace_f2fs_truncate_inode_blocks_exit(inode, err); | 
|  | return err > 0 ? 0 : err; | 
|  | } | 
|  |  | 
|  | int truncate_xattr_node(struct inode *inode, struct page *page) | 
|  | { | 
|  | struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); | 
|  | nid_t nid = F2FS_I(inode)->i_xattr_nid; | 
|  | struct dnode_of_data dn; | 
|  | struct page *npage; | 
|  |  | 
|  | if (!nid) | 
|  | return 0; | 
|  |  | 
|  | npage = get_node_page(sbi, nid); | 
|  | if (IS_ERR(npage)) | 
|  | return PTR_ERR(npage); | 
|  |  | 
|  | F2FS_I(inode)->i_xattr_nid = 0; | 
|  |  | 
|  | /* need to do checkpoint during fsync */ | 
|  | F2FS_I(inode)->xattr_ver = cur_cp_version(F2FS_CKPT(sbi)); | 
|  |  | 
|  | set_new_dnode(&dn, inode, page, npage, nid); | 
|  |  | 
|  | if (page) | 
|  | dn.inode_page_locked = 1; | 
|  | truncate_node(&dn); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Caller should grab and release a mutex by calling mutex_lock_op() and | 
|  | * mutex_unlock_op(). | 
|  | */ | 
|  | int remove_inode_page(struct inode *inode) | 
|  | { | 
|  | struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); | 
|  | struct page *page; | 
|  | nid_t ino = inode->i_ino; | 
|  | struct dnode_of_data dn; | 
|  | int err; | 
|  |  | 
|  | page = get_node_page(sbi, ino); | 
|  | if (IS_ERR(page)) | 
|  | return PTR_ERR(page); | 
|  |  | 
|  | err = truncate_xattr_node(inode, page); | 
|  | if (err) { | 
|  | f2fs_put_page(page, 1); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* 0 is possible, after f2fs_new_inode() is failed */ | 
|  | BUG_ON(inode->i_blocks != 0 && inode->i_blocks != 1); | 
|  | set_new_dnode(&dn, inode, page, page, ino); | 
|  | truncate_node(&dn); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | struct page *new_inode_page(struct inode *inode, const struct qstr *name) | 
|  | { | 
|  | struct dnode_of_data dn; | 
|  |  | 
|  | /* allocate inode page for new inode */ | 
|  | set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino); | 
|  |  | 
|  | /* caller should f2fs_put_page(page, 1); */ | 
|  | return new_node_page(&dn, 0, NULL); | 
|  | } | 
|  |  | 
|  | struct page *new_node_page(struct dnode_of_data *dn, | 
|  | unsigned int ofs, struct page *ipage) | 
|  | { | 
|  | struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb); | 
|  | struct address_space *mapping = sbi->node_inode->i_mapping; | 
|  | struct node_info old_ni, new_ni; | 
|  | struct page *page; | 
|  | int err; | 
|  |  | 
|  | if (is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)) | 
|  | return ERR_PTR(-EPERM); | 
|  |  | 
|  | page = grab_cache_page(mapping, dn->nid); | 
|  | if (!page) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | if (!inc_valid_node_count(sbi, dn->inode, 1)) { | 
|  | err = -ENOSPC; | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | get_node_info(sbi, dn->nid, &old_ni); | 
|  |  | 
|  | /* Reinitialize old_ni with new node page */ | 
|  | BUG_ON(old_ni.blk_addr != NULL_ADDR); | 
|  | new_ni = old_ni; | 
|  | new_ni.ino = dn->inode->i_ino; | 
|  | set_node_addr(sbi, &new_ni, NEW_ADDR); | 
|  |  | 
|  | fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true); | 
|  | set_cold_node(dn->inode, page); | 
|  | SetPageUptodate(page); | 
|  | set_page_dirty(page); | 
|  |  | 
|  | if (ofs == XATTR_NODE_OFFSET) | 
|  | F2FS_I(dn->inode)->i_xattr_nid = dn->nid; | 
|  |  | 
|  | dn->node_page = page; | 
|  | if (ipage) | 
|  | update_inode(dn->inode, ipage); | 
|  | else | 
|  | sync_inode_page(dn); | 
|  | if (ofs == 0) | 
|  | inc_valid_inode_count(sbi); | 
|  |  | 
|  | return page; | 
|  |  | 
|  | fail: | 
|  | clear_node_page_dirty(page); | 
|  | f2fs_put_page(page, 1); | 
|  | return ERR_PTR(err); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Caller should do after getting the following values. | 
|  | * 0: f2fs_put_page(page, 0) | 
|  | * LOCKED_PAGE: f2fs_put_page(page, 1) | 
|  | * error: nothing | 
|  | */ | 
|  | static int read_node_page(struct page *page, int type) | 
|  | { | 
|  | struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb); | 
|  | struct node_info ni; | 
|  |  | 
|  | get_node_info(sbi, page->index, &ni); | 
|  |  | 
|  | if (ni.blk_addr == NULL_ADDR) { | 
|  | f2fs_put_page(page, 1); | 
|  | return -ENOENT; | 
|  | } | 
|  |  | 
|  | if (PageUptodate(page)) | 
|  | return LOCKED_PAGE; | 
|  |  | 
|  | return f2fs_readpage(sbi, page, ni.blk_addr, type); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Readahead a node page | 
|  | */ | 
|  | void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid) | 
|  | { | 
|  | struct address_space *mapping = sbi->node_inode->i_mapping; | 
|  | struct page *apage; | 
|  | int err; | 
|  |  | 
|  | apage = find_get_page(mapping, nid); | 
|  | if (apage && PageUptodate(apage)) { | 
|  | f2fs_put_page(apage, 0); | 
|  | return; | 
|  | } | 
|  | f2fs_put_page(apage, 0); | 
|  |  | 
|  | apage = grab_cache_page(mapping, nid); | 
|  | if (!apage) | 
|  | return; | 
|  |  | 
|  | err = read_node_page(apage, READA); | 
|  | if (err == 0) | 
|  | f2fs_put_page(apage, 0); | 
|  | else if (err == LOCKED_PAGE) | 
|  | f2fs_put_page(apage, 1); | 
|  | } | 
|  |  | 
|  | struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid) | 
|  | { | 
|  | struct address_space *mapping = sbi->node_inode->i_mapping; | 
|  | struct page *page; | 
|  | int err; | 
|  | repeat: | 
|  | page = grab_cache_page(mapping, nid); | 
|  | if (!page) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | err = read_node_page(page, READ_SYNC); | 
|  | if (err < 0) | 
|  | return ERR_PTR(err); | 
|  | else if (err == LOCKED_PAGE) | 
|  | goto got_it; | 
|  |  | 
|  | lock_page(page); | 
|  | if (!PageUptodate(page)) { | 
|  | f2fs_put_page(page, 1); | 
|  | return ERR_PTR(-EIO); | 
|  | } | 
|  | if (page->mapping != mapping) { | 
|  | f2fs_put_page(page, 1); | 
|  | goto repeat; | 
|  | } | 
|  | got_it: | 
|  | BUG_ON(nid != nid_of_node(page)); | 
|  | mark_page_accessed(page); | 
|  | return page; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return a locked page for the desired node page. | 
|  | * And, readahead MAX_RA_NODE number of node pages. | 
|  | */ | 
|  | struct page *get_node_page_ra(struct page *parent, int start) | 
|  | { | 
|  | struct f2fs_sb_info *sbi = F2FS_SB(parent->mapping->host->i_sb); | 
|  | struct address_space *mapping = sbi->node_inode->i_mapping; | 
|  | struct blk_plug plug; | 
|  | struct page *page; | 
|  | int err, i, end; | 
|  | nid_t nid; | 
|  |  | 
|  | /* First, try getting the desired direct node. */ | 
|  | nid = get_nid(parent, start, false); | 
|  | if (!nid) | 
|  | return ERR_PTR(-ENOENT); | 
|  | repeat: | 
|  | page = grab_cache_page(mapping, nid); | 
|  | if (!page) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | err = read_node_page(page, READ_SYNC); | 
|  | if (err < 0) | 
|  | return ERR_PTR(err); | 
|  | else if (err == LOCKED_PAGE) | 
|  | goto page_hit; | 
|  |  | 
|  | blk_start_plug(&plug); | 
|  |  | 
|  | /* Then, try readahead for siblings of the desired node */ | 
|  | end = start + MAX_RA_NODE; | 
|  | end = min(end, NIDS_PER_BLOCK); | 
|  | for (i = start + 1; i < end; i++) { | 
|  | nid = get_nid(parent, i, false); | 
|  | if (!nid) | 
|  | continue; | 
|  | ra_node_page(sbi, nid); | 
|  | } | 
|  |  | 
|  | blk_finish_plug(&plug); | 
|  |  | 
|  | lock_page(page); | 
|  | if (page->mapping != mapping) { | 
|  | f2fs_put_page(page, 1); | 
|  | goto repeat; | 
|  | } | 
|  | page_hit: | 
|  | if (!PageUptodate(page)) { | 
|  | f2fs_put_page(page, 1); | 
|  | return ERR_PTR(-EIO); | 
|  | } | 
|  | mark_page_accessed(page); | 
|  | return page; | 
|  | } | 
|  |  | 
|  | void sync_inode_page(struct dnode_of_data *dn) | 
|  | { | 
|  | if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) { | 
|  | update_inode(dn->inode, dn->node_page); | 
|  | } else if (dn->inode_page) { | 
|  | if (!dn->inode_page_locked) | 
|  | lock_page(dn->inode_page); | 
|  | update_inode(dn->inode, dn->inode_page); | 
|  | if (!dn->inode_page_locked) | 
|  | unlock_page(dn->inode_page); | 
|  | } else { | 
|  | update_inode_page(dn->inode); | 
|  | } | 
|  | } | 
|  |  | 
|  | int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino, | 
|  | struct writeback_control *wbc) | 
|  | { | 
|  | struct address_space *mapping = sbi->node_inode->i_mapping; | 
|  | pgoff_t index, end; | 
|  | struct pagevec pvec; | 
|  | int step = ino ? 2 : 0; | 
|  | int nwritten = 0, wrote = 0; | 
|  |  | 
|  | pagevec_init(&pvec, 0); | 
|  |  | 
|  | next_step: | 
|  | index = 0; | 
|  | end = LONG_MAX; | 
|  |  | 
|  | while (index <= end) { | 
|  | int i, nr_pages; | 
|  | nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, | 
|  | PAGECACHE_TAG_DIRTY, | 
|  | min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); | 
|  | if (nr_pages == 0) | 
|  | break; | 
|  |  | 
|  | for (i = 0; i < nr_pages; i++) { | 
|  | struct page *page = pvec.pages[i]; | 
|  |  | 
|  | /* | 
|  | * flushing sequence with step: | 
|  | * 0. indirect nodes | 
|  | * 1. dentry dnodes | 
|  | * 2. file dnodes | 
|  | */ | 
|  | if (step == 0 && IS_DNODE(page)) | 
|  | continue; | 
|  | if (step == 1 && (!IS_DNODE(page) || | 
|  | is_cold_node(page))) | 
|  | continue; | 
|  | if (step == 2 && (!IS_DNODE(page) || | 
|  | !is_cold_node(page))) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * If an fsync mode, | 
|  | * we should not skip writing node pages. | 
|  | */ | 
|  | if (ino && ino_of_node(page) == ino) | 
|  | lock_page(page); | 
|  | else if (!trylock_page(page)) | 
|  | continue; | 
|  |  | 
|  | if (unlikely(page->mapping != mapping)) { | 
|  | continue_unlock: | 
|  | unlock_page(page); | 
|  | continue; | 
|  | } | 
|  | if (ino && ino_of_node(page) != ino) | 
|  | goto continue_unlock; | 
|  |  | 
|  | if (!PageDirty(page)) { | 
|  | /* someone wrote it for us */ | 
|  | goto continue_unlock; | 
|  | } | 
|  |  | 
|  | if (!clear_page_dirty_for_io(page)) | 
|  | goto continue_unlock; | 
|  |  | 
|  | /* called by fsync() */ | 
|  | if (ino && IS_DNODE(page)) { | 
|  | int mark = !is_checkpointed_node(sbi, ino); | 
|  | set_fsync_mark(page, 1); | 
|  | if (IS_INODE(page)) | 
|  | set_dentry_mark(page, mark); | 
|  | nwritten++; | 
|  | } else { | 
|  | set_fsync_mark(page, 0); | 
|  | set_dentry_mark(page, 0); | 
|  | } | 
|  | mapping->a_ops->writepage(page, wbc); | 
|  | wrote++; | 
|  |  | 
|  | if (--wbc->nr_to_write == 0) | 
|  | break; | 
|  | } | 
|  | pagevec_release(&pvec); | 
|  | cond_resched(); | 
|  |  | 
|  | if (wbc->nr_to_write == 0) { | 
|  | step = 2; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (step < 2) { | 
|  | step++; | 
|  | goto next_step; | 
|  | } | 
|  |  | 
|  | if (wrote) | 
|  | f2fs_submit_bio(sbi, NODE, wbc->sync_mode == WB_SYNC_ALL); | 
|  |  | 
|  | return nwritten; | 
|  | } | 
|  |  | 
|  | static int f2fs_write_node_page(struct page *page, | 
|  | struct writeback_control *wbc) | 
|  | { | 
|  | struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb); | 
|  | nid_t nid; | 
|  | block_t new_addr; | 
|  | struct node_info ni; | 
|  |  | 
|  | wait_on_page_writeback(page); | 
|  |  | 
|  | /* get old block addr of this node page */ | 
|  | nid = nid_of_node(page); | 
|  | BUG_ON(page->index != nid); | 
|  |  | 
|  | get_node_info(sbi, nid, &ni); | 
|  |  | 
|  | /* This page is already truncated */ | 
|  | if (ni.blk_addr == NULL_ADDR) { | 
|  | dec_page_count(sbi, F2FS_DIRTY_NODES); | 
|  | unlock_page(page); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (wbc->for_reclaim) { | 
|  | dec_page_count(sbi, F2FS_DIRTY_NODES); | 
|  | wbc->pages_skipped++; | 
|  | set_page_dirty(page); | 
|  | return AOP_WRITEPAGE_ACTIVATE; | 
|  | } | 
|  |  | 
|  | mutex_lock(&sbi->node_write); | 
|  | set_page_writeback(page); | 
|  | write_node_page(sbi, page, nid, ni.blk_addr, &new_addr); | 
|  | set_node_addr(sbi, &ni, new_addr); | 
|  | dec_page_count(sbi, F2FS_DIRTY_NODES); | 
|  | mutex_unlock(&sbi->node_write); | 
|  | unlock_page(page); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * It is very important to gather dirty pages and write at once, so that we can | 
|  | * submit a big bio without interfering other data writes. | 
|  | * Be default, 512 pages (2MB) * 3 node types, is more reasonable. | 
|  | */ | 
|  | #define COLLECT_DIRTY_NODES	1536 | 
|  | static int f2fs_write_node_pages(struct address_space *mapping, | 
|  | struct writeback_control *wbc) | 
|  | { | 
|  | struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb); | 
|  | long nr_to_write = wbc->nr_to_write; | 
|  |  | 
|  | /* First check balancing cached NAT entries */ | 
|  | if (try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK)) { | 
|  | f2fs_sync_fs(sbi->sb, true); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* collect a number of dirty node pages and write together */ | 
|  | if (get_pages(sbi, F2FS_DIRTY_NODES) < COLLECT_DIRTY_NODES) | 
|  | return 0; | 
|  |  | 
|  | /* if mounting is failed, skip writing node pages */ | 
|  | wbc->nr_to_write = 3 * max_hw_blocks(sbi); | 
|  | sync_node_pages(sbi, 0, wbc); | 
|  | wbc->nr_to_write = nr_to_write - (3 * max_hw_blocks(sbi) - | 
|  | wbc->nr_to_write); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int f2fs_set_node_page_dirty(struct page *page) | 
|  | { | 
|  | struct address_space *mapping = page->mapping; | 
|  | struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb); | 
|  |  | 
|  | SetPageUptodate(page); | 
|  | if (!PageDirty(page)) { | 
|  | __set_page_dirty_nobuffers(page); | 
|  | inc_page_count(sbi, F2FS_DIRTY_NODES); | 
|  | SetPagePrivate(page); | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void f2fs_invalidate_node_page(struct page *page, unsigned int offset, | 
|  | unsigned int length) | 
|  | { | 
|  | struct inode *inode = page->mapping->host; | 
|  | struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); | 
|  | if (PageDirty(page)) | 
|  | dec_page_count(sbi, F2FS_DIRTY_NODES); | 
|  | ClearPagePrivate(page); | 
|  | } | 
|  |  | 
|  | static int f2fs_release_node_page(struct page *page, gfp_t wait) | 
|  | { | 
|  | ClearPagePrivate(page); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Structure of the f2fs node operations | 
|  | */ | 
|  | const struct address_space_operations f2fs_node_aops = { | 
|  | .writepage	= f2fs_write_node_page, | 
|  | .writepages	= f2fs_write_node_pages, | 
|  | .set_page_dirty	= f2fs_set_node_page_dirty, | 
|  | .invalidatepage	= f2fs_invalidate_node_page, | 
|  | .releasepage	= f2fs_release_node_page, | 
|  | }; | 
|  |  | 
|  | static struct free_nid *__lookup_free_nid_list(nid_t n, struct list_head *head) | 
|  | { | 
|  | struct list_head *this; | 
|  | struct free_nid *i; | 
|  | list_for_each(this, head) { | 
|  | i = list_entry(this, struct free_nid, list); | 
|  | if (i->nid == n) | 
|  | return i; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void __del_from_free_nid_list(struct free_nid *i) | 
|  | { | 
|  | list_del(&i->list); | 
|  | kmem_cache_free(free_nid_slab, i); | 
|  | } | 
|  |  | 
|  | static int add_free_nid(struct f2fs_nm_info *nm_i, nid_t nid, bool build) | 
|  | { | 
|  | struct free_nid *i; | 
|  | struct nat_entry *ne; | 
|  | bool allocated = false; | 
|  |  | 
|  | if (nm_i->fcnt > 2 * MAX_FREE_NIDS) | 
|  | return -1; | 
|  |  | 
|  | /* 0 nid should not be used */ | 
|  | if (nid == 0) | 
|  | return 0; | 
|  |  | 
|  | if (!build) | 
|  | goto retry; | 
|  |  | 
|  | /* do not add allocated nids */ | 
|  | read_lock(&nm_i->nat_tree_lock); | 
|  | ne = __lookup_nat_cache(nm_i, nid); | 
|  | if (ne && nat_get_blkaddr(ne) != NULL_ADDR) | 
|  | allocated = true; | 
|  | read_unlock(&nm_i->nat_tree_lock); | 
|  | if (allocated) | 
|  | return 0; | 
|  | retry: | 
|  | i = kmem_cache_alloc(free_nid_slab, GFP_NOFS); | 
|  | if (!i) { | 
|  | cond_resched(); | 
|  | goto retry; | 
|  | } | 
|  | i->nid = nid; | 
|  | i->state = NID_NEW; | 
|  |  | 
|  | spin_lock(&nm_i->free_nid_list_lock); | 
|  | if (__lookup_free_nid_list(nid, &nm_i->free_nid_list)) { | 
|  | spin_unlock(&nm_i->free_nid_list_lock); | 
|  | kmem_cache_free(free_nid_slab, i); | 
|  | return 0; | 
|  | } | 
|  | list_add_tail(&i->list, &nm_i->free_nid_list); | 
|  | nm_i->fcnt++; | 
|  | spin_unlock(&nm_i->free_nid_list_lock); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid) | 
|  | { | 
|  | struct free_nid *i; | 
|  | spin_lock(&nm_i->free_nid_list_lock); | 
|  | i = __lookup_free_nid_list(nid, &nm_i->free_nid_list); | 
|  | if (i && i->state == NID_NEW) { | 
|  | __del_from_free_nid_list(i); | 
|  | nm_i->fcnt--; | 
|  | } | 
|  | spin_unlock(&nm_i->free_nid_list_lock); | 
|  | } | 
|  |  | 
|  | static void scan_nat_page(struct f2fs_nm_info *nm_i, | 
|  | struct page *nat_page, nid_t start_nid) | 
|  | { | 
|  | struct f2fs_nat_block *nat_blk = page_address(nat_page); | 
|  | block_t blk_addr; | 
|  | int i; | 
|  |  | 
|  | i = start_nid % NAT_ENTRY_PER_BLOCK; | 
|  |  | 
|  | for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) { | 
|  |  | 
|  | if (start_nid >= nm_i->max_nid) | 
|  | break; | 
|  |  | 
|  | blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr); | 
|  | BUG_ON(blk_addr == NEW_ADDR); | 
|  | if (blk_addr == NULL_ADDR) { | 
|  | if (add_free_nid(nm_i, start_nid, true) < 0) | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void build_free_nids(struct f2fs_sb_info *sbi) | 
|  | { | 
|  | struct f2fs_nm_info *nm_i = NM_I(sbi); | 
|  | struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); | 
|  | struct f2fs_summary_block *sum = curseg->sum_blk; | 
|  | int i = 0; | 
|  | nid_t nid = nm_i->next_scan_nid; | 
|  |  | 
|  | /* Enough entries */ | 
|  | if (nm_i->fcnt > NAT_ENTRY_PER_BLOCK) | 
|  | return; | 
|  |  | 
|  | /* readahead nat pages to be scanned */ | 
|  | ra_nat_pages(sbi, nid); | 
|  |  | 
|  | while (1) { | 
|  | struct page *page = get_current_nat_page(sbi, nid); | 
|  |  | 
|  | scan_nat_page(nm_i, page, nid); | 
|  | f2fs_put_page(page, 1); | 
|  |  | 
|  | nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK)); | 
|  | if (nid >= nm_i->max_nid) | 
|  | nid = 0; | 
|  |  | 
|  | if (i++ == FREE_NID_PAGES) | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* go to the next free nat pages to find free nids abundantly */ | 
|  | nm_i->next_scan_nid = nid; | 
|  |  | 
|  | /* find free nids from current sum_pages */ | 
|  | mutex_lock(&curseg->curseg_mutex); | 
|  | for (i = 0; i < nats_in_cursum(sum); i++) { | 
|  | block_t addr = le32_to_cpu(nat_in_journal(sum, i).block_addr); | 
|  | nid = le32_to_cpu(nid_in_journal(sum, i)); | 
|  | if (addr == NULL_ADDR) | 
|  | add_free_nid(nm_i, nid, true); | 
|  | else | 
|  | remove_free_nid(nm_i, nid); | 
|  | } | 
|  | mutex_unlock(&curseg->curseg_mutex); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If this function returns success, caller can obtain a new nid | 
|  | * from second parameter of this function. | 
|  | * The returned nid could be used ino as well as nid when inode is created. | 
|  | */ | 
|  | bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid) | 
|  | { | 
|  | struct f2fs_nm_info *nm_i = NM_I(sbi); | 
|  | struct free_nid *i = NULL; | 
|  | struct list_head *this; | 
|  | retry: | 
|  | if (sbi->total_valid_node_count + 1 >= nm_i->max_nid) | 
|  | return false; | 
|  |  | 
|  | spin_lock(&nm_i->free_nid_list_lock); | 
|  |  | 
|  | /* We should not use stale free nids created by build_free_nids */ | 
|  | if (nm_i->fcnt && !sbi->on_build_free_nids) { | 
|  | BUG_ON(list_empty(&nm_i->free_nid_list)); | 
|  | list_for_each(this, &nm_i->free_nid_list) { | 
|  | i = list_entry(this, struct free_nid, list); | 
|  | if (i->state == NID_NEW) | 
|  | break; | 
|  | } | 
|  |  | 
|  | BUG_ON(i->state != NID_NEW); | 
|  | *nid = i->nid; | 
|  | i->state = NID_ALLOC; | 
|  | nm_i->fcnt--; | 
|  | spin_unlock(&nm_i->free_nid_list_lock); | 
|  | return true; | 
|  | } | 
|  | spin_unlock(&nm_i->free_nid_list_lock); | 
|  |  | 
|  | /* Let's scan nat pages and its caches to get free nids */ | 
|  | mutex_lock(&nm_i->build_lock); | 
|  | sbi->on_build_free_nids = 1; | 
|  | build_free_nids(sbi); | 
|  | sbi->on_build_free_nids = 0; | 
|  | mutex_unlock(&nm_i->build_lock); | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * alloc_nid() should be called prior to this function. | 
|  | */ | 
|  | void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid) | 
|  | { | 
|  | struct f2fs_nm_info *nm_i = NM_I(sbi); | 
|  | struct free_nid *i; | 
|  |  | 
|  | spin_lock(&nm_i->free_nid_list_lock); | 
|  | i = __lookup_free_nid_list(nid, &nm_i->free_nid_list); | 
|  | BUG_ON(!i || i->state != NID_ALLOC); | 
|  | __del_from_free_nid_list(i); | 
|  | spin_unlock(&nm_i->free_nid_list_lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * alloc_nid() should be called prior to this function. | 
|  | */ | 
|  | void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid) | 
|  | { | 
|  | struct f2fs_nm_info *nm_i = NM_I(sbi); | 
|  | struct free_nid *i; | 
|  |  | 
|  | if (!nid) | 
|  | return; | 
|  |  | 
|  | spin_lock(&nm_i->free_nid_list_lock); | 
|  | i = __lookup_free_nid_list(nid, &nm_i->free_nid_list); | 
|  | BUG_ON(!i || i->state != NID_ALLOC); | 
|  | if (nm_i->fcnt > 2 * MAX_FREE_NIDS) { | 
|  | __del_from_free_nid_list(i); | 
|  | } else { | 
|  | i->state = NID_NEW; | 
|  | nm_i->fcnt++; | 
|  | } | 
|  | spin_unlock(&nm_i->free_nid_list_lock); | 
|  | } | 
|  |  | 
|  | void recover_node_page(struct f2fs_sb_info *sbi, struct page *page, | 
|  | struct f2fs_summary *sum, struct node_info *ni, | 
|  | block_t new_blkaddr) | 
|  | { | 
|  | rewrite_node_page(sbi, page, sum, ni->blk_addr, new_blkaddr); | 
|  | set_node_addr(sbi, ni, new_blkaddr); | 
|  | clear_node_page_dirty(page); | 
|  | } | 
|  |  | 
|  | int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page) | 
|  | { | 
|  | struct address_space *mapping = sbi->node_inode->i_mapping; | 
|  | struct f2fs_node *src, *dst; | 
|  | nid_t ino = ino_of_node(page); | 
|  | struct node_info old_ni, new_ni; | 
|  | struct page *ipage; | 
|  |  | 
|  | ipage = grab_cache_page(mapping, ino); | 
|  | if (!ipage) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* Should not use this inode  from free nid list */ | 
|  | remove_free_nid(NM_I(sbi), ino); | 
|  |  | 
|  | get_node_info(sbi, ino, &old_ni); | 
|  | SetPageUptodate(ipage); | 
|  | fill_node_footer(ipage, ino, ino, 0, true); | 
|  |  | 
|  | src = F2FS_NODE(page); | 
|  | dst = F2FS_NODE(ipage); | 
|  |  | 
|  | memcpy(dst, src, (unsigned long)&src->i.i_ext - (unsigned long)&src->i); | 
|  | dst->i.i_size = 0; | 
|  | dst->i.i_blocks = cpu_to_le64(1); | 
|  | dst->i.i_links = cpu_to_le32(1); | 
|  | dst->i.i_xattr_nid = 0; | 
|  |  | 
|  | new_ni = old_ni; | 
|  | new_ni.ino = ino; | 
|  |  | 
|  | if (!inc_valid_node_count(sbi, NULL, 1)) | 
|  | WARN_ON(1); | 
|  | set_node_addr(sbi, &new_ni, NEW_ADDR); | 
|  | inc_valid_inode_count(sbi); | 
|  | f2fs_put_page(ipage, 1); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int restore_node_summary(struct f2fs_sb_info *sbi, | 
|  | unsigned int segno, struct f2fs_summary_block *sum) | 
|  | { | 
|  | struct f2fs_node *rn; | 
|  | struct f2fs_summary *sum_entry; | 
|  | struct page *page; | 
|  | block_t addr; | 
|  | int i, last_offset; | 
|  |  | 
|  | /* alloc temporal page for read node */ | 
|  | page = alloc_page(GFP_NOFS | __GFP_ZERO); | 
|  | if (!page) | 
|  | return -ENOMEM; | 
|  | lock_page(page); | 
|  |  | 
|  | /* scan the node segment */ | 
|  | last_offset = sbi->blocks_per_seg; | 
|  | addr = START_BLOCK(sbi, segno); | 
|  | sum_entry = &sum->entries[0]; | 
|  |  | 
|  | for (i = 0; i < last_offset; i++, sum_entry++) { | 
|  | /* | 
|  | * In order to read next node page, | 
|  | * we must clear PageUptodate flag. | 
|  | */ | 
|  | ClearPageUptodate(page); | 
|  |  | 
|  | if (f2fs_readpage(sbi, page, addr, READ_SYNC)) | 
|  | goto out; | 
|  |  | 
|  | lock_page(page); | 
|  | rn = F2FS_NODE(page); | 
|  | sum_entry->nid = rn->footer.nid; | 
|  | sum_entry->version = 0; | 
|  | sum_entry->ofs_in_node = 0; | 
|  | addr++; | 
|  | } | 
|  | unlock_page(page); | 
|  | out: | 
|  | __free_pages(page, 0); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static bool flush_nats_in_journal(struct f2fs_sb_info *sbi) | 
|  | { | 
|  | struct f2fs_nm_info *nm_i = NM_I(sbi); | 
|  | struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); | 
|  | struct f2fs_summary_block *sum = curseg->sum_blk; | 
|  | int i; | 
|  |  | 
|  | mutex_lock(&curseg->curseg_mutex); | 
|  |  | 
|  | if (nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES) { | 
|  | mutex_unlock(&curseg->curseg_mutex); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < nats_in_cursum(sum); i++) { | 
|  | struct nat_entry *ne; | 
|  | struct f2fs_nat_entry raw_ne; | 
|  | nid_t nid = le32_to_cpu(nid_in_journal(sum, i)); | 
|  |  | 
|  | raw_ne = nat_in_journal(sum, i); | 
|  | retry: | 
|  | write_lock(&nm_i->nat_tree_lock); | 
|  | ne = __lookup_nat_cache(nm_i, nid); | 
|  | if (ne) { | 
|  | __set_nat_cache_dirty(nm_i, ne); | 
|  | write_unlock(&nm_i->nat_tree_lock); | 
|  | continue; | 
|  | } | 
|  | ne = grab_nat_entry(nm_i, nid); | 
|  | if (!ne) { | 
|  | write_unlock(&nm_i->nat_tree_lock); | 
|  | goto retry; | 
|  | } | 
|  | nat_set_blkaddr(ne, le32_to_cpu(raw_ne.block_addr)); | 
|  | nat_set_ino(ne, le32_to_cpu(raw_ne.ino)); | 
|  | nat_set_version(ne, raw_ne.version); | 
|  | __set_nat_cache_dirty(nm_i, ne); | 
|  | write_unlock(&nm_i->nat_tree_lock); | 
|  | } | 
|  | update_nats_in_cursum(sum, -i); | 
|  | mutex_unlock(&curseg->curseg_mutex); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function is called during the checkpointing process. | 
|  | */ | 
|  | void flush_nat_entries(struct f2fs_sb_info *sbi) | 
|  | { | 
|  | struct f2fs_nm_info *nm_i = NM_I(sbi); | 
|  | struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); | 
|  | struct f2fs_summary_block *sum = curseg->sum_blk; | 
|  | struct list_head *cur, *n; | 
|  | struct page *page = NULL; | 
|  | struct f2fs_nat_block *nat_blk = NULL; | 
|  | nid_t start_nid = 0, end_nid = 0; | 
|  | bool flushed; | 
|  |  | 
|  | flushed = flush_nats_in_journal(sbi); | 
|  |  | 
|  | if (!flushed) | 
|  | mutex_lock(&curseg->curseg_mutex); | 
|  |  | 
|  | /* 1) flush dirty nat caches */ | 
|  | list_for_each_safe(cur, n, &nm_i->dirty_nat_entries) { | 
|  | struct nat_entry *ne; | 
|  | nid_t nid; | 
|  | struct f2fs_nat_entry raw_ne; | 
|  | int offset = -1; | 
|  | block_t new_blkaddr; | 
|  |  | 
|  | ne = list_entry(cur, struct nat_entry, list); | 
|  | nid = nat_get_nid(ne); | 
|  |  | 
|  | if (nat_get_blkaddr(ne) == NEW_ADDR) | 
|  | continue; | 
|  | if (flushed) | 
|  | goto to_nat_page; | 
|  |  | 
|  | /* if there is room for nat enries in curseg->sumpage */ | 
|  | offset = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 1); | 
|  | if (offset >= 0) { | 
|  | raw_ne = nat_in_journal(sum, offset); | 
|  | goto flush_now; | 
|  | } | 
|  | to_nat_page: | 
|  | if (!page || (start_nid > nid || nid > end_nid)) { | 
|  | if (page) { | 
|  | f2fs_put_page(page, 1); | 
|  | page = NULL; | 
|  | } | 
|  | start_nid = START_NID(nid); | 
|  | end_nid = start_nid + NAT_ENTRY_PER_BLOCK - 1; | 
|  |  | 
|  | /* | 
|  | * get nat block with dirty flag, increased reference | 
|  | * count, mapped and lock | 
|  | */ | 
|  | page = get_next_nat_page(sbi, start_nid); | 
|  | nat_blk = page_address(page); | 
|  | } | 
|  |  | 
|  | BUG_ON(!nat_blk); | 
|  | raw_ne = nat_blk->entries[nid - start_nid]; | 
|  | flush_now: | 
|  | new_blkaddr = nat_get_blkaddr(ne); | 
|  |  | 
|  | raw_ne.ino = cpu_to_le32(nat_get_ino(ne)); | 
|  | raw_ne.block_addr = cpu_to_le32(new_blkaddr); | 
|  | raw_ne.version = nat_get_version(ne); | 
|  |  | 
|  | if (offset < 0) { | 
|  | nat_blk->entries[nid - start_nid] = raw_ne; | 
|  | } else { | 
|  | nat_in_journal(sum, offset) = raw_ne; | 
|  | nid_in_journal(sum, offset) = cpu_to_le32(nid); | 
|  | } | 
|  |  | 
|  | if (nat_get_blkaddr(ne) == NULL_ADDR && | 
|  | add_free_nid(NM_I(sbi), nid, false) <= 0) { | 
|  | write_lock(&nm_i->nat_tree_lock); | 
|  | __del_from_nat_cache(nm_i, ne); | 
|  | write_unlock(&nm_i->nat_tree_lock); | 
|  | } else { | 
|  | write_lock(&nm_i->nat_tree_lock); | 
|  | __clear_nat_cache_dirty(nm_i, ne); | 
|  | ne->checkpointed = true; | 
|  | write_unlock(&nm_i->nat_tree_lock); | 
|  | } | 
|  | } | 
|  | if (!flushed) | 
|  | mutex_unlock(&curseg->curseg_mutex); | 
|  | f2fs_put_page(page, 1); | 
|  |  | 
|  | /* 2) shrink nat caches if necessary */ | 
|  | try_to_free_nats(sbi, nm_i->nat_cnt - NM_WOUT_THRESHOLD); | 
|  | } | 
|  |  | 
|  | static int init_node_manager(struct f2fs_sb_info *sbi) | 
|  | { | 
|  | struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi); | 
|  | struct f2fs_nm_info *nm_i = NM_I(sbi); | 
|  | unsigned char *version_bitmap; | 
|  | unsigned int nat_segs, nat_blocks; | 
|  |  | 
|  | nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr); | 
|  |  | 
|  | /* segment_count_nat includes pair segment so divide to 2. */ | 
|  | nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1; | 
|  | nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg); | 
|  | nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks; | 
|  | nm_i->fcnt = 0; | 
|  | nm_i->nat_cnt = 0; | 
|  |  | 
|  | INIT_LIST_HEAD(&nm_i->free_nid_list); | 
|  | INIT_RADIX_TREE(&nm_i->nat_root, GFP_ATOMIC); | 
|  | INIT_LIST_HEAD(&nm_i->nat_entries); | 
|  | INIT_LIST_HEAD(&nm_i->dirty_nat_entries); | 
|  |  | 
|  | mutex_init(&nm_i->build_lock); | 
|  | spin_lock_init(&nm_i->free_nid_list_lock); | 
|  | rwlock_init(&nm_i->nat_tree_lock); | 
|  |  | 
|  | nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid); | 
|  | nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP); | 
|  | version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP); | 
|  | if (!version_bitmap) | 
|  | return -EFAULT; | 
|  |  | 
|  | nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size, | 
|  | GFP_KERNEL); | 
|  | if (!nm_i->nat_bitmap) | 
|  | return -ENOMEM; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int build_node_manager(struct f2fs_sb_info *sbi) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL); | 
|  | if (!sbi->nm_info) | 
|  | return -ENOMEM; | 
|  |  | 
|  | err = init_node_manager(sbi); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | build_free_nids(sbi); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void destroy_node_manager(struct f2fs_sb_info *sbi) | 
|  | { | 
|  | struct f2fs_nm_info *nm_i = NM_I(sbi); | 
|  | struct free_nid *i, *next_i; | 
|  | struct nat_entry *natvec[NATVEC_SIZE]; | 
|  | nid_t nid = 0; | 
|  | unsigned int found; | 
|  |  | 
|  | if (!nm_i) | 
|  | return; | 
|  |  | 
|  | /* destroy free nid list */ | 
|  | spin_lock(&nm_i->free_nid_list_lock); | 
|  | list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) { | 
|  | BUG_ON(i->state == NID_ALLOC); | 
|  | __del_from_free_nid_list(i); | 
|  | nm_i->fcnt--; | 
|  | } | 
|  | BUG_ON(nm_i->fcnt); | 
|  | spin_unlock(&nm_i->free_nid_list_lock); | 
|  |  | 
|  | /* destroy nat cache */ | 
|  | write_lock(&nm_i->nat_tree_lock); | 
|  | while ((found = __gang_lookup_nat_cache(nm_i, | 
|  | nid, NATVEC_SIZE, natvec))) { | 
|  | unsigned idx; | 
|  | for (idx = 0; idx < found; idx++) { | 
|  | struct nat_entry *e = natvec[idx]; | 
|  | nid = nat_get_nid(e) + 1; | 
|  | __del_from_nat_cache(nm_i, e); | 
|  | } | 
|  | } | 
|  | BUG_ON(nm_i->nat_cnt); | 
|  | write_unlock(&nm_i->nat_tree_lock); | 
|  |  | 
|  | kfree(nm_i->nat_bitmap); | 
|  | sbi->nm_info = NULL; | 
|  | kfree(nm_i); | 
|  | } | 
|  |  | 
|  | int __init create_node_manager_caches(void) | 
|  | { | 
|  | nat_entry_slab = f2fs_kmem_cache_create("nat_entry", | 
|  | sizeof(struct nat_entry), NULL); | 
|  | if (!nat_entry_slab) | 
|  | return -ENOMEM; | 
|  |  | 
|  | free_nid_slab = f2fs_kmem_cache_create("free_nid", | 
|  | sizeof(struct free_nid), NULL); | 
|  | if (!free_nid_slab) { | 
|  | kmem_cache_destroy(nat_entry_slab); | 
|  | return -ENOMEM; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void destroy_node_manager_caches(void) | 
|  | { | 
|  | kmem_cache_destroy(free_nid_slab); | 
|  | kmem_cache_destroy(nat_entry_slab); | 
|  | } |