| /* | 
 |  * Calxeda Highbank AHCI SATA platform driver | 
 |  * Copyright 2012 Calxeda, Inc. | 
 |  * | 
 |  * based on the AHCI SATA platform driver by Jeff Garzik and Anton Vorontsov | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify it | 
 |  * under the terms and conditions of the GNU General Public License, | 
 |  * version 2, as published by the Free Software Foundation. | 
 |  * | 
 |  * This program is distributed in the hope it will be useful, but WITHOUT | 
 |  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
 |  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for | 
 |  * more details. | 
 |  * | 
 |  * You should have received a copy of the GNU General Public License along with | 
 |  * this program.  If not, see <http://www.gnu.org/licenses/>. | 
 |  */ | 
 | #include <linux/kernel.h> | 
 | #include <linux/gfp.h> | 
 | #include <linux/module.h> | 
 | #include <linux/init.h> | 
 | #include <linux/types.h> | 
 | #include <linux/err.h> | 
 | #include <linux/io.h> | 
 | #include <linux/spinlock.h> | 
 | #include <linux/device.h> | 
 | #include <linux/of_device.h> | 
 | #include <linux/of_address.h> | 
 | #include <linux/platform_device.h> | 
 | #include <linux/libata.h> | 
 | #include <linux/ahci_platform.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/export.h> | 
 | #include <linux/gpio.h> | 
 | #include <linux/of_gpio.h> | 
 |  | 
 | #include "ahci.h" | 
 |  | 
 | #define CPHY_MAP(dev, addr) ((((dev) & 0x1f) << 7) | (((addr) >> 9) & 0x7f)) | 
 | #define CPHY_ADDR(addr) (((addr) & 0x1ff) << 2) | 
 | #define SERDES_CR_CTL			0x80a0 | 
 | #define SERDES_CR_ADDR			0x80a1 | 
 | #define SERDES_CR_DATA			0x80a2 | 
 | #define CR_BUSY				0x0001 | 
 | #define CR_START			0x0001 | 
 | #define CR_WR_RDN			0x0002 | 
 | #define CPHY_TX_INPUT_STS		0x2001 | 
 | #define CPHY_RX_INPUT_STS		0x2002 | 
 | #define CPHY_SATA_TX_OVERRIDE		0x8000 | 
 | #define CPHY_SATA_RX_OVERRIDE	 	0x4000 | 
 | #define CPHY_TX_OVERRIDE		0x2004 | 
 | #define CPHY_RX_OVERRIDE		0x2005 | 
 | #define SPHY_LANE			0x100 | 
 | #define SPHY_HALF_RATE			0x0001 | 
 | #define CPHY_SATA_DPLL_MODE		0x0700 | 
 | #define CPHY_SATA_DPLL_SHIFT		8 | 
 | #define CPHY_SATA_DPLL_RESET		(1 << 11) | 
 | #define CPHY_SATA_TX_ATTEN		0x1c00 | 
 | #define CPHY_SATA_TX_ATTEN_SHIFT	10 | 
 | #define CPHY_PHY_COUNT			6 | 
 | #define CPHY_LANE_COUNT			4 | 
 | #define CPHY_PORT_COUNT			(CPHY_PHY_COUNT * CPHY_LANE_COUNT) | 
 |  | 
 | static DEFINE_SPINLOCK(cphy_lock); | 
 | /* Each of the 6 phys can have up to 4 sata ports attached to i. Map 0-based | 
 |  * sata ports to their phys and then to their lanes within the phys | 
 |  */ | 
 | struct phy_lane_info { | 
 | 	void __iomem *phy_base; | 
 | 	u8 lane_mapping; | 
 | 	u8 phy_devs; | 
 | 	u8 tx_atten; | 
 | }; | 
 | static struct phy_lane_info port_data[CPHY_PORT_COUNT]; | 
 |  | 
 | static DEFINE_SPINLOCK(sgpio_lock); | 
 | #define SCLOCK				0 | 
 | #define SLOAD				1 | 
 | #define SDATA				2 | 
 | #define SGPIO_PINS			3 | 
 | #define SGPIO_PORTS			8 | 
 |  | 
 | struct ecx_plat_data { | 
 | 	u32		n_ports; | 
 | 	/* number of extra clocks that the SGPIO PIC controller expects */ | 
 | 	u32		pre_clocks; | 
 | 	u32		post_clocks; | 
 | 	unsigned	sgpio_gpio[SGPIO_PINS]; | 
 | 	u32		sgpio_pattern; | 
 | 	u32		port_to_sgpio[SGPIO_PORTS]; | 
 | }; | 
 |  | 
 | #define SGPIO_SIGNALS			3 | 
 | #define ECX_ACTIVITY_BITS		0x300000 | 
 | #define ECX_ACTIVITY_SHIFT		0 | 
 | #define ECX_LOCATE_BITS			0x80000 | 
 | #define ECX_LOCATE_SHIFT		1 | 
 | #define ECX_FAULT_BITS			0x400000 | 
 | #define ECX_FAULT_SHIFT			2 | 
 | static inline int sgpio_bit_shift(struct ecx_plat_data *pdata, u32 port, | 
 | 				u32 shift) | 
 | { | 
 | 	return 1 << (3 * pdata->port_to_sgpio[port] + shift); | 
 | } | 
 |  | 
 | static void ecx_parse_sgpio(struct ecx_plat_data *pdata, u32 port, u32 state) | 
 | { | 
 | 	if (state & ECX_ACTIVITY_BITS) | 
 | 		pdata->sgpio_pattern |= sgpio_bit_shift(pdata, port, | 
 | 						ECX_ACTIVITY_SHIFT); | 
 | 	else | 
 | 		pdata->sgpio_pattern &= ~sgpio_bit_shift(pdata, port, | 
 | 						ECX_ACTIVITY_SHIFT); | 
 | 	if (state & ECX_LOCATE_BITS) | 
 | 		pdata->sgpio_pattern |= sgpio_bit_shift(pdata, port, | 
 | 						ECX_LOCATE_SHIFT); | 
 | 	else | 
 | 		pdata->sgpio_pattern &= ~sgpio_bit_shift(pdata, port, | 
 | 						ECX_LOCATE_SHIFT); | 
 | 	if (state & ECX_FAULT_BITS) | 
 | 		pdata->sgpio_pattern |= sgpio_bit_shift(pdata, port, | 
 | 						ECX_FAULT_SHIFT); | 
 | 	else | 
 | 		pdata->sgpio_pattern &= ~sgpio_bit_shift(pdata, port, | 
 | 						ECX_FAULT_SHIFT); | 
 | } | 
 |  | 
 | /* | 
 |  * Tell the LED controller that the signal has changed by raising the clock | 
 |  * line for 50 uS and then lowering it for 50 uS. | 
 |  */ | 
 | static void ecx_led_cycle_clock(struct ecx_plat_data *pdata) | 
 | { | 
 | 	gpio_set_value(pdata->sgpio_gpio[SCLOCK], 1); | 
 | 	udelay(50); | 
 | 	gpio_set_value(pdata->sgpio_gpio[SCLOCK], 0); | 
 | 	udelay(50); | 
 | } | 
 |  | 
 | static ssize_t ecx_transmit_led_message(struct ata_port *ap, u32 state, | 
 | 					ssize_t size) | 
 | { | 
 | 	struct ahci_host_priv *hpriv =  ap->host->private_data; | 
 | 	struct ecx_plat_data *pdata = (struct ecx_plat_data *) hpriv->plat_data; | 
 | 	struct ahci_port_priv *pp = ap->private_data; | 
 | 	unsigned long flags; | 
 | 	int pmp, i; | 
 | 	struct ahci_em_priv *emp; | 
 | 	u32 sgpio_out; | 
 |  | 
 | 	/* get the slot number from the message */ | 
 | 	pmp = (state & EM_MSG_LED_PMP_SLOT) >> 8; | 
 | 	if (pmp < EM_MAX_SLOTS) | 
 | 		emp = &pp->em_priv[pmp]; | 
 | 	else | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (!(hpriv->em_msg_type & EM_MSG_TYPE_LED)) | 
 | 		return size; | 
 |  | 
 | 	spin_lock_irqsave(&sgpio_lock, flags); | 
 | 	ecx_parse_sgpio(pdata, ap->port_no, state); | 
 | 	sgpio_out = pdata->sgpio_pattern; | 
 | 	for (i = 0; i < pdata->pre_clocks; i++) | 
 | 		ecx_led_cycle_clock(pdata); | 
 |  | 
 | 	gpio_set_value(pdata->sgpio_gpio[SLOAD], 1); | 
 | 	ecx_led_cycle_clock(pdata); | 
 | 	gpio_set_value(pdata->sgpio_gpio[SLOAD], 0); | 
 | 	/* | 
 | 	 * bit-bang out the SGPIO pattern, by consuming a bit and then | 
 | 	 * clocking it out. | 
 | 	 */ | 
 | 	for (i = 0; i < (SGPIO_SIGNALS * pdata->n_ports); i++) { | 
 | 		gpio_set_value(pdata->sgpio_gpio[SDATA], sgpio_out & 1); | 
 | 		sgpio_out >>= 1; | 
 | 		ecx_led_cycle_clock(pdata); | 
 | 	} | 
 | 	for (i = 0; i < pdata->post_clocks; i++) | 
 | 		ecx_led_cycle_clock(pdata); | 
 |  | 
 | 	/* save off new led state for port/slot */ | 
 | 	emp->led_state = state; | 
 |  | 
 | 	spin_unlock_irqrestore(&sgpio_lock, flags); | 
 | 	return size; | 
 | } | 
 |  | 
 | static void highbank_set_em_messages(struct device *dev, | 
 | 					struct ahci_host_priv *hpriv, | 
 | 					struct ata_port_info *pi) | 
 | { | 
 | 	struct device_node *np = dev->of_node; | 
 | 	struct ecx_plat_data *pdata = hpriv->plat_data; | 
 | 	int i; | 
 | 	int err; | 
 |  | 
 | 	for (i = 0; i < SGPIO_PINS; i++) { | 
 | 		err = of_get_named_gpio(np, "calxeda,sgpio-gpio", i); | 
 | 		if (IS_ERR_VALUE(err)) | 
 | 			return; | 
 |  | 
 | 		pdata->sgpio_gpio[i] = err; | 
 | 		err = gpio_request(pdata->sgpio_gpio[i], "CX SGPIO"); | 
 | 		if (err) { | 
 | 			pr_err("sata_highbank gpio_request %d failed: %d\n", | 
 | 					i, err); | 
 | 			return; | 
 | 		} | 
 | 		gpio_direction_output(pdata->sgpio_gpio[i], 1); | 
 | 	} | 
 | 	of_property_read_u32_array(np, "calxeda,led-order", | 
 | 						pdata->port_to_sgpio, | 
 | 						pdata->n_ports); | 
 | 	if (of_property_read_u32(np, "calxeda,pre-clocks", &pdata->pre_clocks)) | 
 | 		pdata->pre_clocks = 0; | 
 | 	if (of_property_read_u32(np, "calxeda,post-clocks", | 
 | 				&pdata->post_clocks)) | 
 | 		pdata->post_clocks = 0; | 
 |  | 
 | 	/* store em_loc */ | 
 | 	hpriv->em_loc = 0; | 
 | 	hpriv->em_buf_sz = 4; | 
 | 	hpriv->em_msg_type = EM_MSG_TYPE_LED; | 
 | 	pi->flags |= ATA_FLAG_EM | ATA_FLAG_SW_ACTIVITY; | 
 | } | 
 |  | 
 | static u32 __combo_phy_reg_read(u8 sata_port, u32 addr) | 
 | { | 
 | 	u32 data; | 
 | 	u8 dev = port_data[sata_port].phy_devs; | 
 | 	spin_lock(&cphy_lock); | 
 | 	writel(CPHY_MAP(dev, addr), port_data[sata_port].phy_base + 0x800); | 
 | 	data = readl(port_data[sata_port].phy_base + CPHY_ADDR(addr)); | 
 | 	spin_unlock(&cphy_lock); | 
 | 	return data; | 
 | } | 
 |  | 
 | static void __combo_phy_reg_write(u8 sata_port, u32 addr, u32 data) | 
 | { | 
 | 	u8 dev = port_data[sata_port].phy_devs; | 
 | 	spin_lock(&cphy_lock); | 
 | 	writel(CPHY_MAP(dev, addr), port_data[sata_port].phy_base + 0x800); | 
 | 	writel(data, port_data[sata_port].phy_base + CPHY_ADDR(addr)); | 
 | 	spin_unlock(&cphy_lock); | 
 | } | 
 |  | 
 | static void combo_phy_wait_for_ready(u8 sata_port) | 
 | { | 
 | 	while (__combo_phy_reg_read(sata_port, SERDES_CR_CTL) & CR_BUSY) | 
 | 		udelay(5); | 
 | } | 
 |  | 
 | static u32 combo_phy_read(u8 sata_port, u32 addr) | 
 | { | 
 | 	combo_phy_wait_for_ready(sata_port); | 
 | 	__combo_phy_reg_write(sata_port, SERDES_CR_ADDR, addr); | 
 | 	__combo_phy_reg_write(sata_port, SERDES_CR_CTL, CR_START); | 
 | 	combo_phy_wait_for_ready(sata_port); | 
 | 	return __combo_phy_reg_read(sata_port, SERDES_CR_DATA); | 
 | } | 
 |  | 
 | static void combo_phy_write(u8 sata_port, u32 addr, u32 data) | 
 | { | 
 | 	combo_phy_wait_for_ready(sata_port); | 
 | 	__combo_phy_reg_write(sata_port, SERDES_CR_ADDR, addr); | 
 | 	__combo_phy_reg_write(sata_port, SERDES_CR_DATA, data); | 
 | 	__combo_phy_reg_write(sata_port, SERDES_CR_CTL, CR_WR_RDN | CR_START); | 
 | } | 
 |  | 
 | static void highbank_cphy_disable_overrides(u8 sata_port) | 
 | { | 
 | 	u8 lane = port_data[sata_port].lane_mapping; | 
 | 	u32 tmp; | 
 | 	if (unlikely(port_data[sata_port].phy_base == NULL)) | 
 | 		return; | 
 | 	tmp = combo_phy_read(sata_port, CPHY_RX_INPUT_STS + lane * SPHY_LANE); | 
 | 	tmp &= ~CPHY_SATA_RX_OVERRIDE; | 
 | 	combo_phy_write(sata_port, CPHY_RX_OVERRIDE + lane * SPHY_LANE, tmp); | 
 | } | 
 |  | 
 | static void cphy_override_tx_attenuation(u8 sata_port, u32 val) | 
 | { | 
 | 	u8 lane = port_data[sata_port].lane_mapping; | 
 | 	u32 tmp; | 
 |  | 
 | 	if (val & 0x8) | 
 | 		return; | 
 |  | 
 | 	tmp = combo_phy_read(sata_port, CPHY_TX_INPUT_STS + lane * SPHY_LANE); | 
 | 	tmp &= ~CPHY_SATA_TX_OVERRIDE; | 
 | 	combo_phy_write(sata_port, CPHY_TX_OVERRIDE + lane * SPHY_LANE, tmp); | 
 |  | 
 | 	tmp |= CPHY_SATA_TX_OVERRIDE; | 
 | 	combo_phy_write(sata_port, CPHY_TX_OVERRIDE + lane * SPHY_LANE, tmp); | 
 |  | 
 | 	tmp |= (val << CPHY_SATA_TX_ATTEN_SHIFT) & CPHY_SATA_TX_ATTEN; | 
 | 	combo_phy_write(sata_port, CPHY_TX_OVERRIDE + lane * SPHY_LANE, tmp); | 
 | } | 
 |  | 
 | static void cphy_override_rx_mode(u8 sata_port, u32 val) | 
 | { | 
 | 	u8 lane = port_data[sata_port].lane_mapping; | 
 | 	u32 tmp; | 
 | 	tmp = combo_phy_read(sata_port, CPHY_RX_INPUT_STS + lane * SPHY_LANE); | 
 | 	tmp &= ~CPHY_SATA_RX_OVERRIDE; | 
 | 	combo_phy_write(sata_port, CPHY_RX_OVERRIDE + lane * SPHY_LANE, tmp); | 
 |  | 
 | 	tmp |= CPHY_SATA_RX_OVERRIDE; | 
 | 	combo_phy_write(sata_port, CPHY_RX_OVERRIDE + lane * SPHY_LANE, tmp); | 
 |  | 
 | 	tmp &= ~CPHY_SATA_DPLL_MODE; | 
 | 	tmp |= val << CPHY_SATA_DPLL_SHIFT; | 
 | 	combo_phy_write(sata_port, CPHY_RX_OVERRIDE + lane * SPHY_LANE, tmp); | 
 |  | 
 | 	tmp |= CPHY_SATA_DPLL_RESET; | 
 | 	combo_phy_write(sata_port, CPHY_RX_OVERRIDE + lane * SPHY_LANE, tmp); | 
 |  | 
 | 	tmp &= ~CPHY_SATA_DPLL_RESET; | 
 | 	combo_phy_write(sata_port, CPHY_RX_OVERRIDE + lane * SPHY_LANE, tmp); | 
 |  | 
 | 	msleep(15); | 
 | } | 
 |  | 
 | static void highbank_cphy_override_lane(u8 sata_port) | 
 | { | 
 | 	u8 lane = port_data[sata_port].lane_mapping; | 
 | 	u32 tmp, k = 0; | 
 |  | 
 | 	if (unlikely(port_data[sata_port].phy_base == NULL)) | 
 | 		return; | 
 | 	do { | 
 | 		tmp = combo_phy_read(sata_port, CPHY_RX_INPUT_STS + | 
 | 						lane * SPHY_LANE); | 
 | 	} while ((tmp & SPHY_HALF_RATE) && (k++ < 1000)); | 
 | 	cphy_override_rx_mode(sata_port, 3); | 
 | 	cphy_override_tx_attenuation(sata_port, port_data[sata_port].tx_atten); | 
 | } | 
 |  | 
 | static int highbank_initialize_phys(struct device *dev, void __iomem *addr) | 
 | { | 
 | 	struct device_node *sata_node = dev->of_node; | 
 | 	int phy_count = 0, phy, port = 0, i; | 
 | 	void __iomem *cphy_base[CPHY_PHY_COUNT]; | 
 | 	struct device_node *phy_nodes[CPHY_PHY_COUNT]; | 
 | 	u32 tx_atten[CPHY_PORT_COUNT]; | 
 |  | 
 | 	memset(port_data, 0, sizeof(struct phy_lane_info) * CPHY_PORT_COUNT); | 
 | 	memset(phy_nodes, 0, sizeof(struct device_node*) * CPHY_PHY_COUNT); | 
 | 	memset(tx_atten, 0xff, CPHY_PORT_COUNT); | 
 |  | 
 | 	do { | 
 | 		u32 tmp; | 
 | 		struct of_phandle_args phy_data; | 
 | 		if (of_parse_phandle_with_args(sata_node, | 
 | 				"calxeda,port-phys", "#phy-cells", | 
 | 				port, &phy_data)) | 
 | 			break; | 
 | 		for (phy = 0; phy < phy_count; phy++) { | 
 | 			if (phy_nodes[phy] == phy_data.np) | 
 | 				break; | 
 | 		} | 
 | 		if (phy_nodes[phy] == NULL) { | 
 | 			phy_nodes[phy] = phy_data.np; | 
 | 			cphy_base[phy] = of_iomap(phy_nodes[phy], 0); | 
 | 			if (cphy_base[phy] == NULL) { | 
 | 				return 0; | 
 | 			} | 
 | 			phy_count += 1; | 
 | 		} | 
 | 		port_data[port].lane_mapping = phy_data.args[0]; | 
 | 		of_property_read_u32(phy_nodes[phy], "phydev", &tmp); | 
 | 		port_data[port].phy_devs = tmp; | 
 | 		port_data[port].phy_base = cphy_base[phy]; | 
 | 		of_node_put(phy_data.np); | 
 | 		port += 1; | 
 | 	} while (port < CPHY_PORT_COUNT); | 
 | 	of_property_read_u32_array(sata_node, "calxeda,tx-atten", | 
 | 				tx_atten, port); | 
 | 	for (i = 0; i < port; i++) | 
 | 		port_data[i].tx_atten = (u8) tx_atten[i]; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * The Calxeda SATA phy intermittently fails to bring up a link with Gen3 | 
 |  * Retrying the phy hard reset can work around the issue, but the drive | 
 |  * may fail again. In less than 150 out of 15000 test runs, it took more | 
 |  * than 10 tries for the link to be established (but never more than 35). | 
 |  * Triple the maximum observed retry count to provide plenty of margin for | 
 |  * rare events and to guarantee that the link is established. | 
 |  * | 
 |  * Also, the default 2 second time-out on a failed drive is too long in | 
 |  * this situation. The uboot implementation of the same driver function | 
 |  * uses a much shorter time-out period and never experiences a time out | 
 |  * issue. Reducing the time-out to 500ms improves the responsiveness. | 
 |  * The other timing constants were kept the same as the stock AHCI driver. | 
 |  * This change was also tested 15000 times on 24 drives and none of them | 
 |  * experienced a time out. | 
 |  */ | 
 | static int ahci_highbank_hardreset(struct ata_link *link, unsigned int *class, | 
 | 				unsigned long deadline) | 
 | { | 
 | 	static const unsigned long timing[] = { 5, 100, 500}; | 
 | 	struct ata_port *ap = link->ap; | 
 | 	struct ahci_port_priv *pp = ap->private_data; | 
 | 	u8 *d2h_fis = pp->rx_fis + RX_FIS_D2H_REG; | 
 | 	struct ata_taskfile tf; | 
 | 	bool online; | 
 | 	u32 sstatus; | 
 | 	int rc; | 
 | 	int retry = 100; | 
 |  | 
 | 	ahci_stop_engine(ap); | 
 |  | 
 | 	/* clear D2H reception area to properly wait for D2H FIS */ | 
 | 	ata_tf_init(link->device, &tf); | 
 | 	tf.command = ATA_BUSY; | 
 | 	ata_tf_to_fis(&tf, 0, 0, d2h_fis); | 
 |  | 
 | 	do { | 
 | 		highbank_cphy_disable_overrides(link->ap->port_no); | 
 | 		rc = sata_link_hardreset(link, timing, deadline, &online, NULL); | 
 | 		highbank_cphy_override_lane(link->ap->port_no); | 
 |  | 
 | 		/* If the status is 1, we are connected, but the link did not | 
 | 		 * come up. So retry resetting the link again. | 
 | 		 */ | 
 | 		if (sata_scr_read(link, SCR_STATUS, &sstatus)) | 
 | 			break; | 
 | 		if (!(sstatus & 0x3)) | 
 | 			break; | 
 | 	} while (!online && retry--); | 
 |  | 
 | 	ahci_start_engine(ap); | 
 |  | 
 | 	if (online) | 
 | 		*class = ahci_dev_classify(ap); | 
 |  | 
 | 	return rc; | 
 | } | 
 |  | 
 | static struct ata_port_operations ahci_highbank_ops = { | 
 | 	.inherits		= &ahci_ops, | 
 | 	.hardreset		= ahci_highbank_hardreset, | 
 | 	.transmit_led_message   = ecx_transmit_led_message, | 
 | }; | 
 |  | 
 | static const struct ata_port_info ahci_highbank_port_info = { | 
 | 	.flags          = AHCI_FLAG_COMMON, | 
 | 	.pio_mask       = ATA_PIO4, | 
 | 	.udma_mask      = ATA_UDMA6, | 
 | 	.port_ops       = &ahci_highbank_ops, | 
 | }; | 
 |  | 
 | static struct scsi_host_template ahci_highbank_platform_sht = { | 
 | 	AHCI_SHT("sata_highbank"), | 
 | }; | 
 |  | 
 | static const struct of_device_id ahci_of_match[] = { | 
 | 	{ .compatible = "calxeda,hb-ahci" }, | 
 | 	{}, | 
 | }; | 
 | MODULE_DEVICE_TABLE(of, ahci_of_match); | 
 |  | 
 | static int ahci_highbank_probe(struct platform_device *pdev) | 
 | { | 
 | 	struct device *dev = &pdev->dev; | 
 | 	struct ahci_host_priv *hpriv; | 
 | 	struct ecx_plat_data *pdata; | 
 | 	struct ata_host *host; | 
 | 	struct resource *mem; | 
 | 	int irq; | 
 | 	int i; | 
 | 	int rc; | 
 | 	u32 n_ports; | 
 | 	struct ata_port_info pi = ahci_highbank_port_info; | 
 | 	const struct ata_port_info *ppi[] = { &pi, NULL }; | 
 |  | 
 | 	mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); | 
 | 	if (!mem) { | 
 | 		dev_err(dev, "no mmio space\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	irq = platform_get_irq(pdev, 0); | 
 | 	if (irq <= 0) { | 
 | 		dev_err(dev, "no irq\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	hpriv = devm_kzalloc(dev, sizeof(*hpriv), GFP_KERNEL); | 
 | 	if (!hpriv) { | 
 | 		dev_err(dev, "can't alloc ahci_host_priv\n"); | 
 | 		return -ENOMEM; | 
 | 	} | 
 | 	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL); | 
 | 	if (!pdata) { | 
 | 		dev_err(dev, "can't alloc ecx_plat_data\n"); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	hpriv->flags |= (unsigned long)pi.private_data; | 
 |  | 
 | 	hpriv->mmio = devm_ioremap(dev, mem->start, resource_size(mem)); | 
 | 	if (!hpriv->mmio) { | 
 | 		dev_err(dev, "can't map %pR\n", mem); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	rc = highbank_initialize_phys(dev, hpriv->mmio); | 
 | 	if (rc) | 
 | 		return rc; | 
 |  | 
 |  | 
 | 	ahci_save_initial_config(dev, hpriv, 0, 0); | 
 |  | 
 | 	/* prepare host */ | 
 | 	if (hpriv->cap & HOST_CAP_NCQ) | 
 | 		pi.flags |= ATA_FLAG_NCQ; | 
 |  | 
 | 	if (hpriv->cap & HOST_CAP_PMP) | 
 | 		pi.flags |= ATA_FLAG_PMP; | 
 |  | 
 | 	if (hpriv->cap & HOST_CAP_64) | 
 | 		dma_set_coherent_mask(dev, DMA_BIT_MASK(64)); | 
 |  | 
 | 	/* CAP.NP sometimes indicate the index of the last enabled | 
 | 	 * port, at other times, that of the last possible port, so | 
 | 	 * determining the maximum port number requires looking at | 
 | 	 * both CAP.NP and port_map. | 
 | 	 */ | 
 | 	n_ports = max(ahci_nr_ports(hpriv->cap), fls(hpriv->port_map)); | 
 |  | 
 | 	pdata->n_ports = n_ports; | 
 | 	hpriv->plat_data = pdata; | 
 | 	highbank_set_em_messages(dev, hpriv, &pi); | 
 |  | 
 | 	host = ata_host_alloc_pinfo(dev, ppi, n_ports); | 
 | 	if (!host) { | 
 | 		rc = -ENOMEM; | 
 | 		goto err0; | 
 | 	} | 
 |  | 
 | 	host->private_data = hpriv; | 
 |  | 
 | 	if (!(hpriv->cap & HOST_CAP_SSS) || ahci_ignore_sss) | 
 | 		host->flags |= ATA_HOST_PARALLEL_SCAN; | 
 |  | 
 | 	for (i = 0; i < host->n_ports; i++) { | 
 | 		struct ata_port *ap = host->ports[i]; | 
 |  | 
 | 		ata_port_desc(ap, "mmio %pR", mem); | 
 | 		ata_port_desc(ap, "port 0x%x", 0x100 + ap->port_no * 0x80); | 
 |  | 
 | 		/* set enclosure management message type */ | 
 | 		if (ap->flags & ATA_FLAG_EM) | 
 | 			ap->em_message_type = hpriv->em_msg_type; | 
 |  | 
 | 		/* disabled/not-implemented port */ | 
 | 		if (!(hpriv->port_map & (1 << i))) | 
 | 			ap->ops = &ata_dummy_port_ops; | 
 | 	} | 
 |  | 
 | 	rc = ahci_reset_controller(host); | 
 | 	if (rc) | 
 | 		goto err0; | 
 |  | 
 | 	ahci_init_controller(host); | 
 | 	ahci_print_info(host, "platform"); | 
 |  | 
 | 	rc = ata_host_activate(host, irq, ahci_interrupt, 0, | 
 | 					&ahci_highbank_platform_sht); | 
 | 	if (rc) | 
 | 		goto err0; | 
 |  | 
 | 	return 0; | 
 | err0: | 
 | 	return rc; | 
 | } | 
 |  | 
 | #ifdef CONFIG_PM_SLEEP | 
 | static int ahci_highbank_suspend(struct device *dev) | 
 | { | 
 | 	struct ata_host *host = dev_get_drvdata(dev); | 
 | 	struct ahci_host_priv *hpriv = host->private_data; | 
 | 	void __iomem *mmio = hpriv->mmio; | 
 | 	u32 ctl; | 
 | 	int rc; | 
 |  | 
 | 	if (hpriv->flags & AHCI_HFLAG_NO_SUSPEND) { | 
 | 		dev_err(dev, "firmware update required for suspend/resume\n"); | 
 | 		return -EIO; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * AHCI spec rev1.1 section 8.3.3: | 
 | 	 * Software must disable interrupts prior to requesting a | 
 | 	 * transition of the HBA to D3 state. | 
 | 	 */ | 
 | 	ctl = readl(mmio + HOST_CTL); | 
 | 	ctl &= ~HOST_IRQ_EN; | 
 | 	writel(ctl, mmio + HOST_CTL); | 
 | 	readl(mmio + HOST_CTL); /* flush */ | 
 |  | 
 | 	rc = ata_host_suspend(host, PMSG_SUSPEND); | 
 | 	if (rc) | 
 | 		return rc; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int ahci_highbank_resume(struct device *dev) | 
 | { | 
 | 	struct ata_host *host = dev_get_drvdata(dev); | 
 | 	int rc; | 
 |  | 
 | 	if (dev->power.power_state.event == PM_EVENT_SUSPEND) { | 
 | 		rc = ahci_reset_controller(host); | 
 | 		if (rc) | 
 | 			return rc; | 
 |  | 
 | 		ahci_init_controller(host); | 
 | 	} | 
 |  | 
 | 	ata_host_resume(host); | 
 |  | 
 | 	return 0; | 
 | } | 
 | #endif | 
 |  | 
 | static SIMPLE_DEV_PM_OPS(ahci_highbank_pm_ops, | 
 | 		  ahci_highbank_suspend, ahci_highbank_resume); | 
 |  | 
 | static struct platform_driver ahci_highbank_driver = { | 
 | 	.remove = ata_platform_remove_one, | 
 |         .driver = { | 
 |                 .name = "highbank-ahci", | 
 |                 .owner = THIS_MODULE, | 
 |                 .of_match_table = ahci_of_match, | 
 |                 .pm = &ahci_highbank_pm_ops, | 
 |         }, | 
 | 	.probe = ahci_highbank_probe, | 
 | }; | 
 |  | 
 | module_platform_driver(ahci_highbank_driver); | 
 |  | 
 | MODULE_DESCRIPTION("Calxeda Highbank AHCI SATA platform driver"); | 
 | MODULE_AUTHOR("Mark Langsdorf <mark.langsdorf@calxeda.com>"); | 
 | MODULE_LICENSE("GPL"); | 
 | MODULE_ALIAS("sata:highbank"); |