|  | /* | 
|  | *  linux/mm/page_io.c | 
|  | * | 
|  | *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds | 
|  | * | 
|  | *  Swap reorganised 29.12.95, | 
|  | *  Asynchronous swapping added 30.12.95. Stephen Tweedie | 
|  | *  Removed race in async swapping. 14.4.1996. Bruno Haible | 
|  | *  Add swap of shared pages through the page cache. 20.2.1998. Stephen Tweedie | 
|  | *  Always use brw_page, life becomes simpler. 12 May 1998 Eric Biederman | 
|  | */ | 
|  |  | 
|  | #include <linux/mm.h> | 
|  | #include <linux/kernel_stat.h> | 
|  | #include <linux/gfp.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/bio.h> | 
|  | #include <linux/swapops.h> | 
|  | #include <linux/buffer_head.h> | 
|  | #include <linux/writeback.h> | 
|  | #include <linux/frontswap.h> | 
|  | #include <linux/aio.h> | 
|  | #include <linux/blkdev.h> | 
|  | #include <asm/pgtable.h> | 
|  |  | 
|  | static struct bio *get_swap_bio(gfp_t gfp_flags, | 
|  | struct page *page, bio_end_io_t end_io) | 
|  | { | 
|  | struct bio *bio; | 
|  |  | 
|  | bio = bio_alloc(gfp_flags, 1); | 
|  | if (bio) { | 
|  | bio->bi_sector = map_swap_page(page, &bio->bi_bdev); | 
|  | bio->bi_sector <<= PAGE_SHIFT - 9; | 
|  | bio->bi_io_vec[0].bv_page = page; | 
|  | bio->bi_io_vec[0].bv_len = PAGE_SIZE; | 
|  | bio->bi_io_vec[0].bv_offset = 0; | 
|  | bio->bi_vcnt = 1; | 
|  | bio->bi_size = PAGE_SIZE; | 
|  | bio->bi_end_io = end_io; | 
|  | } | 
|  | return bio; | 
|  | } | 
|  |  | 
|  | void end_swap_bio_write(struct bio *bio, int err) | 
|  | { | 
|  | const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); | 
|  | struct page *page = bio->bi_io_vec[0].bv_page; | 
|  |  | 
|  | if (!uptodate) { | 
|  | SetPageError(page); | 
|  | /* | 
|  | * We failed to write the page out to swap-space. | 
|  | * Re-dirty the page in order to avoid it being reclaimed. | 
|  | * Also print a dire warning that things will go BAD (tm) | 
|  | * very quickly. | 
|  | * | 
|  | * Also clear PG_reclaim to avoid rotate_reclaimable_page() | 
|  | */ | 
|  | set_page_dirty(page); | 
|  | printk(KERN_ALERT "Write-error on swap-device (%u:%u:%Lu)\n", | 
|  | imajor(bio->bi_bdev->bd_inode), | 
|  | iminor(bio->bi_bdev->bd_inode), | 
|  | (unsigned long long)bio->bi_sector); | 
|  | ClearPageReclaim(page); | 
|  | } | 
|  | end_page_writeback(page); | 
|  | bio_put(bio); | 
|  | } | 
|  |  | 
|  | void end_swap_bio_read(struct bio *bio, int err) | 
|  | { | 
|  | const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); | 
|  | struct page *page = bio->bi_io_vec[0].bv_page; | 
|  |  | 
|  | if (!uptodate) { | 
|  | SetPageError(page); | 
|  | ClearPageUptodate(page); | 
|  | printk(KERN_ALERT "Read-error on swap-device (%u:%u:%Lu)\n", | 
|  | imajor(bio->bi_bdev->bd_inode), | 
|  | iminor(bio->bi_bdev->bd_inode), | 
|  | (unsigned long long)bio->bi_sector); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | SetPageUptodate(page); | 
|  |  | 
|  | /* | 
|  | * There is no guarantee that the page is in swap cache - the software | 
|  | * suspend code (at least) uses end_swap_bio_read() against a non- | 
|  | * swapcache page.  So we must check PG_swapcache before proceeding with | 
|  | * this optimization. | 
|  | */ | 
|  | if (likely(PageSwapCache(page))) { | 
|  | struct swap_info_struct *sis; | 
|  |  | 
|  | sis = page_swap_info(page); | 
|  | if (sis->flags & SWP_BLKDEV) { | 
|  | /* | 
|  | * The swap subsystem performs lazy swap slot freeing, | 
|  | * expecting that the page will be swapped out again. | 
|  | * So we can avoid an unnecessary write if the page | 
|  | * isn't redirtied. | 
|  | * This is good for real swap storage because we can | 
|  | * reduce unnecessary I/O and enhance wear-leveling | 
|  | * if an SSD is used as the as swap device. | 
|  | * But if in-memory swap device (eg zram) is used, | 
|  | * this causes a duplicated copy between uncompressed | 
|  | * data in VM-owned memory and compressed data in | 
|  | * zram-owned memory.  So let's free zram-owned memory | 
|  | * and make the VM-owned decompressed page *dirty*, | 
|  | * so the page should be swapped out somewhere again if | 
|  | * we again wish to reclaim it. | 
|  | */ | 
|  | struct gendisk *disk = sis->bdev->bd_disk; | 
|  | if (disk->fops->swap_slot_free_notify) { | 
|  | swp_entry_t entry; | 
|  | unsigned long offset; | 
|  |  | 
|  | entry.val = page_private(page); | 
|  | offset = swp_offset(entry); | 
|  |  | 
|  | SetPageDirty(page); | 
|  | disk->fops->swap_slot_free_notify(sis->bdev, | 
|  | offset); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | out: | 
|  | unlock_page(page); | 
|  | bio_put(bio); | 
|  | } | 
|  |  | 
|  | int generic_swapfile_activate(struct swap_info_struct *sis, | 
|  | struct file *swap_file, | 
|  | sector_t *span) | 
|  | { | 
|  | struct address_space *mapping = swap_file->f_mapping; | 
|  | struct inode *inode = mapping->host; | 
|  | unsigned blocks_per_page; | 
|  | unsigned long page_no; | 
|  | unsigned blkbits; | 
|  | sector_t probe_block; | 
|  | sector_t last_block; | 
|  | sector_t lowest_block = -1; | 
|  | sector_t highest_block = 0; | 
|  | int nr_extents = 0; | 
|  | int ret; | 
|  |  | 
|  | blkbits = inode->i_blkbits; | 
|  | blocks_per_page = PAGE_SIZE >> blkbits; | 
|  |  | 
|  | /* | 
|  | * Map all the blocks into the extent list.  This code doesn't try | 
|  | * to be very smart. | 
|  | */ | 
|  | probe_block = 0; | 
|  | page_no = 0; | 
|  | last_block = i_size_read(inode) >> blkbits; | 
|  | while ((probe_block + blocks_per_page) <= last_block && | 
|  | page_no < sis->max) { | 
|  | unsigned block_in_page; | 
|  | sector_t first_block; | 
|  |  | 
|  | first_block = bmap(inode, probe_block); | 
|  | if (first_block == 0) | 
|  | goto bad_bmap; | 
|  |  | 
|  | /* | 
|  | * It must be PAGE_SIZE aligned on-disk | 
|  | */ | 
|  | if (first_block & (blocks_per_page - 1)) { | 
|  | probe_block++; | 
|  | goto reprobe; | 
|  | } | 
|  |  | 
|  | for (block_in_page = 1; block_in_page < blocks_per_page; | 
|  | block_in_page++) { | 
|  | sector_t block; | 
|  |  | 
|  | block = bmap(inode, probe_block + block_in_page); | 
|  | if (block == 0) | 
|  | goto bad_bmap; | 
|  | if (block != first_block + block_in_page) { | 
|  | /* Discontiguity */ | 
|  | probe_block++; | 
|  | goto reprobe; | 
|  | } | 
|  | } | 
|  |  | 
|  | first_block >>= (PAGE_SHIFT - blkbits); | 
|  | if (page_no) {	/* exclude the header page */ | 
|  | if (first_block < lowest_block) | 
|  | lowest_block = first_block; | 
|  | if (first_block > highest_block) | 
|  | highest_block = first_block; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks | 
|  | */ | 
|  | ret = add_swap_extent(sis, page_no, 1, first_block); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | nr_extents += ret; | 
|  | page_no++; | 
|  | probe_block += blocks_per_page; | 
|  | reprobe: | 
|  | continue; | 
|  | } | 
|  | ret = nr_extents; | 
|  | *span = 1 + highest_block - lowest_block; | 
|  | if (page_no == 0) | 
|  | page_no = 1;	/* force Empty message */ | 
|  | sis->max = page_no; | 
|  | sis->pages = page_no - 1; | 
|  | sis->highest_bit = page_no - 1; | 
|  | out: | 
|  | return ret; | 
|  | bad_bmap: | 
|  | printk(KERN_ERR "swapon: swapfile has holes\n"); | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We may have stale swap cache pages in memory: notice | 
|  | * them here and get rid of the unnecessary final write. | 
|  | */ | 
|  | int swap_writepage(struct page *page, struct writeback_control *wbc) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | if (try_to_free_swap(page)) { | 
|  | unlock_page(page); | 
|  | goto out; | 
|  | } | 
|  | if (frontswap_store(page) == 0) { | 
|  | set_page_writeback(page); | 
|  | unlock_page(page); | 
|  | end_page_writeback(page); | 
|  | goto out; | 
|  | } | 
|  | ret = __swap_writepage(page, wbc, end_swap_bio_write); | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int __swap_writepage(struct page *page, struct writeback_control *wbc, | 
|  | void (*end_write_func)(struct bio *, int)) | 
|  | { | 
|  | struct bio *bio; | 
|  | int ret = 0, rw = WRITE; | 
|  | struct swap_info_struct *sis = page_swap_info(page); | 
|  |  | 
|  | if (sis->flags & SWP_FILE) { | 
|  | struct kiocb kiocb; | 
|  | struct file *swap_file = sis->swap_file; | 
|  | struct address_space *mapping = swap_file->f_mapping; | 
|  | struct iovec iov = { | 
|  | .iov_base = kmap(page), | 
|  | .iov_len  = PAGE_SIZE, | 
|  | }; | 
|  |  | 
|  | init_sync_kiocb(&kiocb, swap_file); | 
|  | kiocb.ki_pos = page_file_offset(page); | 
|  | kiocb.ki_nbytes = PAGE_SIZE; | 
|  |  | 
|  | set_page_writeback(page); | 
|  | unlock_page(page); | 
|  | ret = mapping->a_ops->direct_IO(KERNEL_WRITE, | 
|  | &kiocb, &iov, | 
|  | kiocb.ki_pos, 1); | 
|  | kunmap(page); | 
|  | if (ret == PAGE_SIZE) { | 
|  | count_vm_event(PSWPOUT); | 
|  | ret = 0; | 
|  | } else { | 
|  | /* | 
|  | * In the case of swap-over-nfs, this can be a | 
|  | * temporary failure if the system has limited | 
|  | * memory for allocating transmit buffers. | 
|  | * Mark the page dirty and avoid | 
|  | * rotate_reclaimable_page but rate-limit the | 
|  | * messages but do not flag PageError like | 
|  | * the normal direct-to-bio case as it could | 
|  | * be temporary. | 
|  | */ | 
|  | set_page_dirty(page); | 
|  | ClearPageReclaim(page); | 
|  | pr_err_ratelimited("Write error on dio swapfile (%Lu)\n", | 
|  | page_file_offset(page)); | 
|  | } | 
|  | end_page_writeback(page); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | bio = get_swap_bio(GFP_NOIO, page, end_write_func); | 
|  | if (bio == NULL) { | 
|  | set_page_dirty(page); | 
|  | unlock_page(page); | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  | if (wbc->sync_mode == WB_SYNC_ALL) | 
|  | rw |= REQ_SYNC; | 
|  | count_vm_event(PSWPOUT); | 
|  | set_page_writeback(page); | 
|  | unlock_page(page); | 
|  | submit_bio(rw, bio); | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int swap_readpage(struct page *page) | 
|  | { | 
|  | struct bio *bio; | 
|  | int ret = 0; | 
|  | struct swap_info_struct *sis = page_swap_info(page); | 
|  |  | 
|  | VM_BUG_ON(!PageLocked(page)); | 
|  | VM_BUG_ON(PageUptodate(page)); | 
|  | if (frontswap_load(page) == 0) { | 
|  | SetPageUptodate(page); | 
|  | unlock_page(page); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (sis->flags & SWP_FILE) { | 
|  | struct file *swap_file = sis->swap_file; | 
|  | struct address_space *mapping = swap_file->f_mapping; | 
|  |  | 
|  | ret = mapping->a_ops->readpage(swap_file, page); | 
|  | if (!ret) | 
|  | count_vm_event(PSWPIN); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | bio = get_swap_bio(GFP_KERNEL, page, end_swap_bio_read); | 
|  | if (bio == NULL) { | 
|  | unlock_page(page); | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  | count_vm_event(PSWPIN); | 
|  | submit_bio(READ, bio); | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int swap_set_page_dirty(struct page *page) | 
|  | { | 
|  | struct swap_info_struct *sis = page_swap_info(page); | 
|  |  | 
|  | if (sis->flags & SWP_FILE) { | 
|  | struct address_space *mapping = sis->swap_file->f_mapping; | 
|  | return mapping->a_ops->set_page_dirty(page); | 
|  | } else { | 
|  | return __set_page_dirty_no_writeback(page); | 
|  | } | 
|  | } |