blob: 5ddf585abb66699db0b292468097f81b414bc24d [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Adiantum length-preserving encryption mode
*
* Copyright 2018 Google LLC
*/
/*
* Adiantum is a tweakable, length-preserving encryption mode designed for fast
* and secure disk encryption, especially on CPUs without dedicated crypto
* instructions. Adiantum encrypts each sector using the XChaCha12 stream
* cipher, two passes of an ε-almost-∆-universal (ε-∆U) hash function based on
* NH and Poly1305, and an invocation of the AES-256 block cipher on a single
* 16-byte block. See the paper for details:
*
* Adiantum: length-preserving encryption for entry-level processors
* (https://eprint.iacr.org/2018/720.pdf)
*
* For flexibility, this implementation also allows other ciphers:
*
* - Stream cipher: XChaCha12 or XChaCha20
* - Block cipher: any with a 128-bit block size and 256-bit key
*/
#include <crypto/b128ops.h>
#include <crypto/chacha.h>
#include <crypto/internal/cipher.h>
#include <crypto/internal/poly1305.h>
#include <crypto/internal/skcipher.h>
#include <crypto/nh.h>
#include <crypto/scatterwalk.h>
#include <linux/module.h>
/*
* Size of right-hand part of input data, in bytes; also the size of the block
* cipher's block size and the hash function's output.
*/
#define BLOCKCIPHER_BLOCK_SIZE 16
/* Size of the block cipher key (K_E) in bytes */
#define BLOCKCIPHER_KEY_SIZE 32
/* Size of the hash key (K_H) in bytes */
#define HASH_KEY_SIZE (2 * POLY1305_BLOCK_SIZE + NH_KEY_BYTES)
/*
* The specification allows variable-length tweaks, but Linux's crypto API
* currently only allows algorithms to support a single length. The "natural"
* tweak length for Adiantum is 16, since that fits into one Poly1305 block for
* the best performance. But longer tweaks are useful for fscrypt, to avoid
* needing to derive per-file keys. So instead we use two blocks, or 32 bytes.
*/
#define TWEAK_SIZE 32
struct adiantum_instance_ctx {
struct crypto_skcipher_spawn streamcipher_spawn;
struct crypto_cipher_spawn blockcipher_spawn;
};
struct adiantum_tfm_ctx {
struct crypto_skcipher *streamcipher;
struct crypto_cipher *blockcipher;
struct poly1305_core_key header_hash_key;
struct poly1305_core_key msg_poly_key;
u32 nh_key[NH_KEY_WORDS];
};
struct nhpoly1305_ctx {
/* Running total of polynomial evaluation */
struct poly1305_state poly_state;
/* Partial block buffer */
u8 buffer[NH_MESSAGE_UNIT];
unsigned int buflen;
/*
* Number of bytes remaining until the current NH message reaches
* NH_MESSAGE_BYTES. When nonzero, 'nh_hash' holds the partial NH hash.
*/
unsigned int nh_remaining;
__le64 nh_hash[NH_NUM_PASSES];
};
struct adiantum_request_ctx {
/*
* skcipher sub-request size is unknown at compile-time, so it needs to
* go after the members with known sizes.
*/
union {
struct nhpoly1305_ctx hash_ctx;
struct skcipher_request streamcipher_req;
} u;
};
/*
* Given the XChaCha stream key K_S, derive the block cipher key K_E and the
* hash key K_H as follows:
*
* K_E || K_H || ... = XChaCha(key=K_S, nonce=1||0^191)
*
* Note that this denotes using bits from the XChaCha keystream, which here we
* get indirectly by encrypting a buffer containing all 0's.
*/
static int adiantum_setkey(struct crypto_skcipher *tfm, const u8 *key,
unsigned int keylen)
{
struct adiantum_tfm_ctx *tctx = crypto_skcipher_ctx(tfm);
struct {
u8 iv[XCHACHA_IV_SIZE];
u8 derived_keys[BLOCKCIPHER_KEY_SIZE + HASH_KEY_SIZE];
struct scatterlist sg;
struct crypto_wait wait;
struct skcipher_request req; /* must be last */
} *data;
u8 *keyp;
int err;
/* Set the stream cipher key (K_S) */
crypto_skcipher_clear_flags(tctx->streamcipher, CRYPTO_TFM_REQ_MASK);
crypto_skcipher_set_flags(tctx->streamcipher,
crypto_skcipher_get_flags(tfm) &
CRYPTO_TFM_REQ_MASK);
err = crypto_skcipher_setkey(tctx->streamcipher, key, keylen);
if (err)
return err;
/* Derive the subkeys */
data = kzalloc(sizeof(*data) +
crypto_skcipher_reqsize(tctx->streamcipher), GFP_KERNEL);
if (!data)
return -ENOMEM;
data->iv[0] = 1;
sg_init_one(&data->sg, data->derived_keys, sizeof(data->derived_keys));
crypto_init_wait(&data->wait);
skcipher_request_set_tfm(&data->req, tctx->streamcipher);
skcipher_request_set_callback(&data->req, CRYPTO_TFM_REQ_MAY_SLEEP |
CRYPTO_TFM_REQ_MAY_BACKLOG,
crypto_req_done, &data->wait);
skcipher_request_set_crypt(&data->req, &data->sg, &data->sg,
sizeof(data->derived_keys), data->iv);
err = crypto_wait_req(crypto_skcipher_encrypt(&data->req), &data->wait);
if (err)
goto out;
keyp = data->derived_keys;
/* Set the block cipher key (K_E) */
crypto_cipher_clear_flags(tctx->blockcipher, CRYPTO_TFM_REQ_MASK);
crypto_cipher_set_flags(tctx->blockcipher,
crypto_skcipher_get_flags(tfm) &
CRYPTO_TFM_REQ_MASK);
err = crypto_cipher_setkey(tctx->blockcipher, keyp,
BLOCKCIPHER_KEY_SIZE);
if (err)
goto out;
keyp += BLOCKCIPHER_KEY_SIZE;
/* Set the hash key (K_H) */
poly1305_core_setkey(&tctx->header_hash_key, keyp);
keyp += POLY1305_BLOCK_SIZE;
poly1305_core_setkey(&tctx->msg_poly_key, keyp);
keyp += POLY1305_BLOCK_SIZE;
for (int i = 0; i < NH_KEY_WORDS; i++)
tctx->nh_key[i] = get_unaligned_le32(&keyp[i * 4]);
keyp += NH_KEY_BYTES;
WARN_ON(keyp != &data->derived_keys[ARRAY_SIZE(data->derived_keys)]);
out:
kfree_sensitive(data);
return err;
}
/* Addition in Z/(2^{128}Z) */
static inline void le128_add(le128 *r, const le128 *v1, const le128 *v2)
{
u64 x = le64_to_cpu(v1->b);
u64 y = le64_to_cpu(v2->b);
r->b = cpu_to_le64(x + y);
r->a = cpu_to_le64(le64_to_cpu(v1->a) + le64_to_cpu(v2->a) +
(x + y < x));
}
/* Subtraction in Z/(2^{128}Z) */
static inline void le128_sub(le128 *r, const le128 *v1, const le128 *v2)
{
u64 x = le64_to_cpu(v1->b);
u64 y = le64_to_cpu(v2->b);
r->b = cpu_to_le64(x - y);
r->a = cpu_to_le64(le64_to_cpu(v1->a) - le64_to_cpu(v2->a) -
(x - y > x));
}
/*
* Apply the Poly1305 ε-∆U hash function to (bulk length, tweak) and save the
* result to @out. This is the calculation
*
* H_T ← Poly1305_{K_T}(bin_{128}(|L|) || T)
*
* from the procedure in section 6.4 of the Adiantum paper. The resulting value
* is reused in both the first and second hash steps. Specifically, it's added
* to the result of an independently keyed ε-∆U hash function (for equal length
* inputs only) taken over the left-hand part (the "bulk") of the message, to
* give the overall Adiantum hash of the (tweak, left-hand part) pair.
*/
static void adiantum_hash_header(struct skcipher_request *req, le128 *out)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
const struct adiantum_tfm_ctx *tctx = crypto_skcipher_ctx(tfm);
const unsigned int bulk_len = req->cryptlen - BLOCKCIPHER_BLOCK_SIZE;
struct {
__le64 message_bits;
__le64 padding;
} header = {
.message_bits = cpu_to_le64((u64)bulk_len * 8)
};
struct poly1305_state state;
poly1305_core_init(&state);
BUILD_BUG_ON(sizeof(header) % POLY1305_BLOCK_SIZE != 0);
poly1305_core_blocks(&state, &tctx->header_hash_key,
&header, sizeof(header) / POLY1305_BLOCK_SIZE, 1);
BUILD_BUG_ON(TWEAK_SIZE % POLY1305_BLOCK_SIZE != 0);
poly1305_core_blocks(&state, &tctx->header_hash_key, req->iv,
TWEAK_SIZE / POLY1305_BLOCK_SIZE, 1);
poly1305_core_emit(&state, NULL, out);
}
/* Pass the next NH hash value through Poly1305 */
static void process_nh_hash_value(struct nhpoly1305_ctx *ctx,
const struct adiantum_tfm_ctx *key)
{
static_assert(NH_HASH_BYTES % POLY1305_BLOCK_SIZE == 0);
poly1305_core_blocks(&ctx->poly_state, &key->msg_poly_key, ctx->nh_hash,
NH_HASH_BYTES / POLY1305_BLOCK_SIZE, 1);
}
/*
* Feed the next portion of the message data, as a whole number of 16-byte
* "NH message units", through NH and Poly1305. Each NH hash is taken over
* 1024 bytes, except possibly the final one which is taken over a multiple of
* 16 bytes up to 1024. Also, in the case where data is passed in misaligned
* chunks, we combine partial hashes; the end result is the same either way.
*/
static void nhpoly1305_units(struct nhpoly1305_ctx *ctx,
const struct adiantum_tfm_ctx *key,
const u8 *data, size_t len)
{
do {
unsigned int bytes;
if (ctx->nh_remaining == 0) {
/* Starting a new NH message */
bytes = min(len, NH_MESSAGE_BYTES);
nh(key->nh_key, data, bytes, ctx->nh_hash);
ctx->nh_remaining = NH_MESSAGE_BYTES - bytes;
} else {
/* Continuing a previous NH message */
__le64 tmp_hash[NH_NUM_PASSES];
unsigned int pos;
pos = NH_MESSAGE_BYTES - ctx->nh_remaining;
bytes = min(len, ctx->nh_remaining);
nh(&key->nh_key[pos / 4], data, bytes, tmp_hash);
for (int i = 0; i < NH_NUM_PASSES; i++)
le64_add_cpu(&ctx->nh_hash[i],
le64_to_cpu(tmp_hash[i]));
ctx->nh_remaining -= bytes;
}
if (ctx->nh_remaining == 0)
process_nh_hash_value(ctx, key);
data += bytes;
len -= bytes;
} while (len);
}
static void nhpoly1305_init(struct nhpoly1305_ctx *ctx)
{
poly1305_core_init(&ctx->poly_state);
ctx->buflen = 0;
ctx->nh_remaining = 0;
}
static void nhpoly1305_update(struct nhpoly1305_ctx *ctx,
const struct adiantum_tfm_ctx *key,
const u8 *data, size_t len)
{
unsigned int bytes;
if (ctx->buflen) {
bytes = min(len, (int)NH_MESSAGE_UNIT - ctx->buflen);
memcpy(&ctx->buffer[ctx->buflen], data, bytes);
ctx->buflen += bytes;
if (ctx->buflen < NH_MESSAGE_UNIT)
return;
nhpoly1305_units(ctx, key, ctx->buffer, NH_MESSAGE_UNIT);
ctx->buflen = 0;
data += bytes;
len -= bytes;
}
if (len >= NH_MESSAGE_UNIT) {
bytes = round_down(len, NH_MESSAGE_UNIT);
nhpoly1305_units(ctx, key, data, bytes);
data += bytes;
len -= bytes;
}
if (len) {
memcpy(ctx->buffer, data, len);
ctx->buflen = len;
}
}
static void nhpoly1305_final(struct nhpoly1305_ctx *ctx,
const struct adiantum_tfm_ctx *key, le128 *out)
{
if (ctx->buflen) {
memset(&ctx->buffer[ctx->buflen], 0,
NH_MESSAGE_UNIT - ctx->buflen);
nhpoly1305_units(ctx, key, ctx->buffer, NH_MESSAGE_UNIT);
}
if (ctx->nh_remaining)
process_nh_hash_value(ctx, key);
poly1305_core_emit(&ctx->poly_state, NULL, out);
}
/*
* Hash the left-hand part (the "bulk") of the message as follows:
*
* H_L ← Poly1305_{K_L}(NH_{K_N}(pad_{128}(L)))
*
* See section 6.4 of the Adiantum paper. This is an ε-almost-∆-universal
* (ε-∆U) hash function for equal-length inputs over Z/(2^{128}Z), where the "∆"
* operation is addition. It hashes 1024-byte chunks of the input with the NH
* hash function, reducing the input length by 32x. The resulting NH hashes are
* evaluated as a polynomial in GF(2^{130}-5), like in the Poly1305 MAC. Note
* that the polynomial evaluation by itself would suffice to achieve the ε-∆U
* property; NH is used for performance since it's much faster than Poly1305.
*/
static void adiantum_hash_message(struct skcipher_request *req,
struct scatterlist *sgl, le128 *out)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
const struct adiantum_tfm_ctx *tctx = crypto_skcipher_ctx(tfm);
struct adiantum_request_ctx *rctx = skcipher_request_ctx(req);
unsigned int len = req->cryptlen - BLOCKCIPHER_BLOCK_SIZE;
struct scatter_walk walk;
nhpoly1305_init(&rctx->u.hash_ctx);
scatterwalk_start(&walk, sgl);
while (len) {
unsigned int n = scatterwalk_next(&walk, len);
nhpoly1305_update(&rctx->u.hash_ctx, tctx, walk.addr, n);
scatterwalk_done_src(&walk, n);
len -= n;
}
nhpoly1305_final(&rctx->u.hash_ctx, tctx, out);
}
static int adiantum_crypt(struct skcipher_request *req, bool enc)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
const struct adiantum_tfm_ctx *tctx = crypto_skcipher_ctx(tfm);
struct adiantum_request_ctx *rctx = skcipher_request_ctx(req);
const unsigned int bulk_len = req->cryptlen - BLOCKCIPHER_BLOCK_SIZE;
struct scatterlist *src = req->src, *dst = req->dst;
/*
* Buffer for right-hand part of data, i.e.
*
* P_L => P_M => C_M => C_R when encrypting, or
* C_R => C_M => P_M => P_L when decrypting.
*
* Also used to build the IV for the stream cipher.
*/
union {
u8 bytes[XCHACHA_IV_SIZE];
__le32 words[XCHACHA_IV_SIZE / sizeof(__le32)];
le128 bignum; /* interpret as element of Z/(2^{128}Z) */
} rbuf;
le128 header_hash, msg_hash;
unsigned int stream_len;
int err;
if (req->cryptlen < BLOCKCIPHER_BLOCK_SIZE)
return -EINVAL;
/*
* First hash step
* enc: P_M = P_R + H_{K_H}(T, P_L)
* dec: C_M = C_R + H_{K_H}(T, C_L)
*/
adiantum_hash_header(req, &header_hash);
if (src->length >= req->cryptlen &&
src->offset + req->cryptlen <= PAGE_SIZE) {
/* Fast path for single-page source */
void *virt = kmap_local_page(sg_page(src)) + src->offset;
nhpoly1305_init(&rctx->u.hash_ctx);
nhpoly1305_update(&rctx->u.hash_ctx, tctx, virt, bulk_len);
nhpoly1305_final(&rctx->u.hash_ctx, tctx, &msg_hash);
memcpy(&rbuf.bignum, virt + bulk_len, sizeof(le128));
kunmap_local(virt);
} else {
/* Slow path that works for any source scatterlist */
adiantum_hash_message(req, src, &msg_hash);
memcpy_from_sglist(&rbuf.bignum, src, bulk_len, sizeof(le128));
}
le128_add(&rbuf.bignum, &rbuf.bignum, &header_hash);
le128_add(&rbuf.bignum, &rbuf.bignum, &msg_hash);
/* If encrypting, encrypt P_M with the block cipher to get C_M */
if (enc)
crypto_cipher_encrypt_one(tctx->blockcipher, rbuf.bytes,
rbuf.bytes);
/* Initialize the rest of the XChaCha IV (first part is C_M) */
BUILD_BUG_ON(BLOCKCIPHER_BLOCK_SIZE != 16);
BUILD_BUG_ON(XCHACHA_IV_SIZE != 32); /* nonce || stream position */
rbuf.words[4] = cpu_to_le32(1);
rbuf.words[5] = 0;
rbuf.words[6] = 0;
rbuf.words[7] = 0;
/*
* XChaCha needs to be done on all the data except the last 16 bytes;
* for disk encryption that usually means 4080 or 496 bytes. But ChaCha
* implementations tend to be most efficient when passed a whole number
* of 64-byte ChaCha blocks, or sometimes even a multiple of 256 bytes.
* And here it doesn't matter whether the last 16 bytes are written to,
* as the second hash step will overwrite them. Thus, round the XChaCha
* length up to the next 64-byte boundary if possible.
*/
stream_len = bulk_len;
if (round_up(stream_len, CHACHA_BLOCK_SIZE) <= req->cryptlen)
stream_len = round_up(stream_len, CHACHA_BLOCK_SIZE);
skcipher_request_set_tfm(&rctx->u.streamcipher_req, tctx->streamcipher);
skcipher_request_set_crypt(&rctx->u.streamcipher_req, req->src,
req->dst, stream_len, &rbuf);
skcipher_request_set_callback(&rctx->u.streamcipher_req,
req->base.flags, NULL, NULL);
err = crypto_skcipher_encrypt(&rctx->u.streamcipher_req);
if (err)
return err;
/* If decrypting, decrypt C_M with the block cipher to get P_M */
if (!enc)
crypto_cipher_decrypt_one(tctx->blockcipher, rbuf.bytes,
rbuf.bytes);
/*
* Second hash step
* enc: C_R = C_M - H_{K_H}(T, C_L)
* dec: P_R = P_M - H_{K_H}(T, P_L)
*/
le128_sub(&rbuf.bignum, &rbuf.bignum, &header_hash);
if (dst->length >= req->cryptlen &&
dst->offset + req->cryptlen <= PAGE_SIZE) {
/* Fast path for single-page destination */
struct page *page = sg_page(dst);
void *virt = kmap_local_page(page) + dst->offset;
nhpoly1305_init(&rctx->u.hash_ctx);
nhpoly1305_update(&rctx->u.hash_ctx, tctx, virt, bulk_len);
nhpoly1305_final(&rctx->u.hash_ctx, tctx, &msg_hash);
le128_sub(&rbuf.bignum, &rbuf.bignum, &msg_hash);
memcpy(virt + bulk_len, &rbuf.bignum, sizeof(le128));
flush_dcache_page(page);
kunmap_local(virt);
} else {
/* Slow path that works for any destination scatterlist */
adiantum_hash_message(req, dst, &msg_hash);
le128_sub(&rbuf.bignum, &rbuf.bignum, &msg_hash);
memcpy_to_sglist(dst, bulk_len, &rbuf.bignum, sizeof(le128));
}
return 0;
}
static int adiantum_encrypt(struct skcipher_request *req)
{
return adiantum_crypt(req, true);
}
static int adiantum_decrypt(struct skcipher_request *req)
{
return adiantum_crypt(req, false);
}
static int adiantum_init_tfm(struct crypto_skcipher *tfm)
{
struct skcipher_instance *inst = skcipher_alg_instance(tfm);
struct adiantum_instance_ctx *ictx = skcipher_instance_ctx(inst);
struct adiantum_tfm_ctx *tctx = crypto_skcipher_ctx(tfm);
struct crypto_skcipher *streamcipher;
struct crypto_cipher *blockcipher;
int err;
streamcipher = crypto_spawn_skcipher(&ictx->streamcipher_spawn);
if (IS_ERR(streamcipher))
return PTR_ERR(streamcipher);
blockcipher = crypto_spawn_cipher(&ictx->blockcipher_spawn);
if (IS_ERR(blockcipher)) {
err = PTR_ERR(blockcipher);
goto err_free_streamcipher;
}
tctx->streamcipher = streamcipher;
tctx->blockcipher = blockcipher;
BUILD_BUG_ON(offsetofend(struct adiantum_request_ctx, u) !=
sizeof(struct adiantum_request_ctx));
crypto_skcipher_set_reqsize(
tfm, max(sizeof(struct adiantum_request_ctx),
offsetofend(struct adiantum_request_ctx,
u.streamcipher_req) +
crypto_skcipher_reqsize(streamcipher)));
return 0;
err_free_streamcipher:
crypto_free_skcipher(streamcipher);
return err;
}
static void adiantum_exit_tfm(struct crypto_skcipher *tfm)
{
struct adiantum_tfm_ctx *tctx = crypto_skcipher_ctx(tfm);
crypto_free_skcipher(tctx->streamcipher);
crypto_free_cipher(tctx->blockcipher);
}
static void adiantum_free_instance(struct skcipher_instance *inst)
{
struct adiantum_instance_ctx *ictx = skcipher_instance_ctx(inst);
crypto_drop_skcipher(&ictx->streamcipher_spawn);
crypto_drop_cipher(&ictx->blockcipher_spawn);
kfree(inst);
}
/*
* Check for a supported set of inner algorithms.
* See the comment at the beginning of this file.
*/
static bool
adiantum_supported_algorithms(struct skcipher_alg_common *streamcipher_alg,
struct crypto_alg *blockcipher_alg)
{
if (strcmp(streamcipher_alg->base.cra_name, "xchacha12") != 0 &&
strcmp(streamcipher_alg->base.cra_name, "xchacha20") != 0)
return false;
if (blockcipher_alg->cra_cipher.cia_min_keysize > BLOCKCIPHER_KEY_SIZE ||
blockcipher_alg->cra_cipher.cia_max_keysize < BLOCKCIPHER_KEY_SIZE)
return false;
if (blockcipher_alg->cra_blocksize != BLOCKCIPHER_BLOCK_SIZE)
return false;
return true;
}
static int adiantum_create(struct crypto_template *tmpl, struct rtattr **tb)
{
u32 mask;
struct skcipher_instance *inst;
struct adiantum_instance_ctx *ictx;
struct skcipher_alg_common *streamcipher_alg;
struct crypto_alg *blockcipher_alg;
int err;
err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_SKCIPHER, &mask);
if (err)
return err;
inst = kzalloc(sizeof(*inst) + sizeof(*ictx), GFP_KERNEL);
if (!inst)
return -ENOMEM;
ictx = skcipher_instance_ctx(inst);
/* Stream cipher, e.g. "xchacha12" */
err = crypto_grab_skcipher(&ictx->streamcipher_spawn,
skcipher_crypto_instance(inst),
crypto_attr_alg_name(tb[1]), 0,
mask | CRYPTO_ALG_ASYNC /* sync only */);
if (err)
goto err_free_inst;
streamcipher_alg = crypto_spawn_skcipher_alg_common(&ictx->streamcipher_spawn);
/* Block cipher, e.g. "aes" */
err = crypto_grab_cipher(&ictx->blockcipher_spawn,
skcipher_crypto_instance(inst),
crypto_attr_alg_name(tb[2]), 0, mask);
if (err)
goto err_free_inst;
blockcipher_alg = crypto_spawn_cipher_alg(&ictx->blockcipher_spawn);
/*
* Originally there was an optional third parameter, for requesting a
* specific implementation of "nhpoly1305" for message hashing. This is
* no longer supported. The best implementation is just always used.
*/
if (crypto_attr_alg_name(tb[3]) != ERR_PTR(-ENOENT)) {
err = -ENOENT;
goto err_free_inst;
}
/* Check the set of algorithms */
if (!adiantum_supported_algorithms(streamcipher_alg, blockcipher_alg)) {
pr_warn("Unsupported Adiantum instantiation: (%s,%s)\n",
streamcipher_alg->base.cra_name,
blockcipher_alg->cra_name);
err = -EINVAL;
goto err_free_inst;
}
/* Instance fields */
err = -ENAMETOOLONG;
if (snprintf(inst->alg.base.cra_name, CRYPTO_MAX_ALG_NAME,
"adiantum(%s,%s)", streamcipher_alg->base.cra_name,
blockcipher_alg->cra_name) >= CRYPTO_MAX_ALG_NAME)
goto err_free_inst;
if (snprintf(inst->alg.base.cra_driver_name, CRYPTO_MAX_ALG_NAME,
"adiantum(%s,%s)", streamcipher_alg->base.cra_driver_name,
blockcipher_alg->cra_driver_name) >= CRYPTO_MAX_ALG_NAME)
goto err_free_inst;
inst->alg.base.cra_blocksize = BLOCKCIPHER_BLOCK_SIZE;
inst->alg.base.cra_ctxsize = sizeof(struct adiantum_tfm_ctx);
inst->alg.base.cra_alignmask = streamcipher_alg->base.cra_alignmask;
/*
* The block cipher is only invoked once per message, so for long
* messages (e.g. sectors for disk encryption) its performance doesn't
* matter as much as that of the stream cipher. Thus, weigh the block
* cipher's ->cra_priority less.
*/
inst->alg.base.cra_priority = (4 * streamcipher_alg->base.cra_priority +
blockcipher_alg->cra_priority) /
5;
inst->alg.setkey = adiantum_setkey;
inst->alg.encrypt = adiantum_encrypt;
inst->alg.decrypt = adiantum_decrypt;
inst->alg.init = adiantum_init_tfm;
inst->alg.exit = adiantum_exit_tfm;
inst->alg.min_keysize = streamcipher_alg->min_keysize;
inst->alg.max_keysize = streamcipher_alg->max_keysize;
inst->alg.ivsize = TWEAK_SIZE;
inst->free = adiantum_free_instance;
err = skcipher_register_instance(tmpl, inst);
if (err) {
err_free_inst:
adiantum_free_instance(inst);
}
return err;
}
/* adiantum(streamcipher_name, blockcipher_name) */
static struct crypto_template adiantum_tmpl = {
.name = "adiantum",
.create = adiantum_create,
.module = THIS_MODULE,
};
static int __init adiantum_module_init(void)
{
return crypto_register_template(&adiantum_tmpl);
}
static void __exit adiantum_module_exit(void)
{
crypto_unregister_template(&adiantum_tmpl);
}
module_init(adiantum_module_init);
module_exit(adiantum_module_exit);
MODULE_DESCRIPTION("Adiantum length-preserving encryption mode");
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Eric Biggers <ebiggers@google.com>");
MODULE_ALIAS_CRYPTO("adiantum");
MODULE_IMPORT_NS("CRYPTO_INTERNAL");