| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Adiantum length-preserving encryption mode |
| * |
| * Copyright 2018 Google LLC |
| */ |
| |
| /* |
| * Adiantum is a tweakable, length-preserving encryption mode designed for fast |
| * and secure disk encryption, especially on CPUs without dedicated crypto |
| * instructions. Adiantum encrypts each sector using the XChaCha12 stream |
| * cipher, two passes of an ε-almost-∆-universal (ε-∆U) hash function based on |
| * NH and Poly1305, and an invocation of the AES-256 block cipher on a single |
| * 16-byte block. See the paper for details: |
| * |
| * Adiantum: length-preserving encryption for entry-level processors |
| * (https://eprint.iacr.org/2018/720.pdf) |
| * |
| * For flexibility, this implementation also allows other ciphers: |
| * |
| * - Stream cipher: XChaCha12 or XChaCha20 |
| * - Block cipher: any with a 128-bit block size and 256-bit key |
| */ |
| |
| #include <crypto/b128ops.h> |
| #include <crypto/chacha.h> |
| #include <crypto/internal/cipher.h> |
| #include <crypto/internal/poly1305.h> |
| #include <crypto/internal/skcipher.h> |
| #include <crypto/nh.h> |
| #include <crypto/scatterwalk.h> |
| #include <linux/module.h> |
| |
| /* |
| * Size of right-hand part of input data, in bytes; also the size of the block |
| * cipher's block size and the hash function's output. |
| */ |
| #define BLOCKCIPHER_BLOCK_SIZE 16 |
| |
| /* Size of the block cipher key (K_E) in bytes */ |
| #define BLOCKCIPHER_KEY_SIZE 32 |
| |
| /* Size of the hash key (K_H) in bytes */ |
| #define HASH_KEY_SIZE (2 * POLY1305_BLOCK_SIZE + NH_KEY_BYTES) |
| |
| /* |
| * The specification allows variable-length tweaks, but Linux's crypto API |
| * currently only allows algorithms to support a single length. The "natural" |
| * tweak length for Adiantum is 16, since that fits into one Poly1305 block for |
| * the best performance. But longer tweaks are useful for fscrypt, to avoid |
| * needing to derive per-file keys. So instead we use two blocks, or 32 bytes. |
| */ |
| #define TWEAK_SIZE 32 |
| |
| struct adiantum_instance_ctx { |
| struct crypto_skcipher_spawn streamcipher_spawn; |
| struct crypto_cipher_spawn blockcipher_spawn; |
| }; |
| |
| struct adiantum_tfm_ctx { |
| struct crypto_skcipher *streamcipher; |
| struct crypto_cipher *blockcipher; |
| struct poly1305_core_key header_hash_key; |
| struct poly1305_core_key msg_poly_key; |
| u32 nh_key[NH_KEY_WORDS]; |
| }; |
| |
| struct nhpoly1305_ctx { |
| /* Running total of polynomial evaluation */ |
| struct poly1305_state poly_state; |
| |
| /* Partial block buffer */ |
| u8 buffer[NH_MESSAGE_UNIT]; |
| unsigned int buflen; |
| |
| /* |
| * Number of bytes remaining until the current NH message reaches |
| * NH_MESSAGE_BYTES. When nonzero, 'nh_hash' holds the partial NH hash. |
| */ |
| unsigned int nh_remaining; |
| |
| __le64 nh_hash[NH_NUM_PASSES]; |
| }; |
| |
| struct adiantum_request_ctx { |
| /* |
| * skcipher sub-request size is unknown at compile-time, so it needs to |
| * go after the members with known sizes. |
| */ |
| union { |
| struct nhpoly1305_ctx hash_ctx; |
| struct skcipher_request streamcipher_req; |
| } u; |
| }; |
| |
| /* |
| * Given the XChaCha stream key K_S, derive the block cipher key K_E and the |
| * hash key K_H as follows: |
| * |
| * K_E || K_H || ... = XChaCha(key=K_S, nonce=1||0^191) |
| * |
| * Note that this denotes using bits from the XChaCha keystream, which here we |
| * get indirectly by encrypting a buffer containing all 0's. |
| */ |
| static int adiantum_setkey(struct crypto_skcipher *tfm, const u8 *key, |
| unsigned int keylen) |
| { |
| struct adiantum_tfm_ctx *tctx = crypto_skcipher_ctx(tfm); |
| struct { |
| u8 iv[XCHACHA_IV_SIZE]; |
| u8 derived_keys[BLOCKCIPHER_KEY_SIZE + HASH_KEY_SIZE]; |
| struct scatterlist sg; |
| struct crypto_wait wait; |
| struct skcipher_request req; /* must be last */ |
| } *data; |
| u8 *keyp; |
| int err; |
| |
| /* Set the stream cipher key (K_S) */ |
| crypto_skcipher_clear_flags(tctx->streamcipher, CRYPTO_TFM_REQ_MASK); |
| crypto_skcipher_set_flags(tctx->streamcipher, |
| crypto_skcipher_get_flags(tfm) & |
| CRYPTO_TFM_REQ_MASK); |
| err = crypto_skcipher_setkey(tctx->streamcipher, key, keylen); |
| if (err) |
| return err; |
| |
| /* Derive the subkeys */ |
| data = kzalloc(sizeof(*data) + |
| crypto_skcipher_reqsize(tctx->streamcipher), GFP_KERNEL); |
| if (!data) |
| return -ENOMEM; |
| data->iv[0] = 1; |
| sg_init_one(&data->sg, data->derived_keys, sizeof(data->derived_keys)); |
| crypto_init_wait(&data->wait); |
| skcipher_request_set_tfm(&data->req, tctx->streamcipher); |
| skcipher_request_set_callback(&data->req, CRYPTO_TFM_REQ_MAY_SLEEP | |
| CRYPTO_TFM_REQ_MAY_BACKLOG, |
| crypto_req_done, &data->wait); |
| skcipher_request_set_crypt(&data->req, &data->sg, &data->sg, |
| sizeof(data->derived_keys), data->iv); |
| err = crypto_wait_req(crypto_skcipher_encrypt(&data->req), &data->wait); |
| if (err) |
| goto out; |
| keyp = data->derived_keys; |
| |
| /* Set the block cipher key (K_E) */ |
| crypto_cipher_clear_flags(tctx->blockcipher, CRYPTO_TFM_REQ_MASK); |
| crypto_cipher_set_flags(tctx->blockcipher, |
| crypto_skcipher_get_flags(tfm) & |
| CRYPTO_TFM_REQ_MASK); |
| err = crypto_cipher_setkey(tctx->blockcipher, keyp, |
| BLOCKCIPHER_KEY_SIZE); |
| if (err) |
| goto out; |
| keyp += BLOCKCIPHER_KEY_SIZE; |
| |
| /* Set the hash key (K_H) */ |
| poly1305_core_setkey(&tctx->header_hash_key, keyp); |
| keyp += POLY1305_BLOCK_SIZE; |
| poly1305_core_setkey(&tctx->msg_poly_key, keyp); |
| keyp += POLY1305_BLOCK_SIZE; |
| for (int i = 0; i < NH_KEY_WORDS; i++) |
| tctx->nh_key[i] = get_unaligned_le32(&keyp[i * 4]); |
| keyp += NH_KEY_BYTES; |
| WARN_ON(keyp != &data->derived_keys[ARRAY_SIZE(data->derived_keys)]); |
| out: |
| kfree_sensitive(data); |
| return err; |
| } |
| |
| /* Addition in Z/(2^{128}Z) */ |
| static inline void le128_add(le128 *r, const le128 *v1, const le128 *v2) |
| { |
| u64 x = le64_to_cpu(v1->b); |
| u64 y = le64_to_cpu(v2->b); |
| |
| r->b = cpu_to_le64(x + y); |
| r->a = cpu_to_le64(le64_to_cpu(v1->a) + le64_to_cpu(v2->a) + |
| (x + y < x)); |
| } |
| |
| /* Subtraction in Z/(2^{128}Z) */ |
| static inline void le128_sub(le128 *r, const le128 *v1, const le128 *v2) |
| { |
| u64 x = le64_to_cpu(v1->b); |
| u64 y = le64_to_cpu(v2->b); |
| |
| r->b = cpu_to_le64(x - y); |
| r->a = cpu_to_le64(le64_to_cpu(v1->a) - le64_to_cpu(v2->a) - |
| (x - y > x)); |
| } |
| |
| /* |
| * Apply the Poly1305 ε-∆U hash function to (bulk length, tweak) and save the |
| * result to @out. This is the calculation |
| * |
| * H_T ← Poly1305_{K_T}(bin_{128}(|L|) || T) |
| * |
| * from the procedure in section 6.4 of the Adiantum paper. The resulting value |
| * is reused in both the first and second hash steps. Specifically, it's added |
| * to the result of an independently keyed ε-∆U hash function (for equal length |
| * inputs only) taken over the left-hand part (the "bulk") of the message, to |
| * give the overall Adiantum hash of the (tweak, left-hand part) pair. |
| */ |
| static void adiantum_hash_header(struct skcipher_request *req, le128 *out) |
| { |
| struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); |
| const struct adiantum_tfm_ctx *tctx = crypto_skcipher_ctx(tfm); |
| const unsigned int bulk_len = req->cryptlen - BLOCKCIPHER_BLOCK_SIZE; |
| struct { |
| __le64 message_bits; |
| __le64 padding; |
| } header = { |
| .message_bits = cpu_to_le64((u64)bulk_len * 8) |
| }; |
| struct poly1305_state state; |
| |
| poly1305_core_init(&state); |
| |
| BUILD_BUG_ON(sizeof(header) % POLY1305_BLOCK_SIZE != 0); |
| poly1305_core_blocks(&state, &tctx->header_hash_key, |
| &header, sizeof(header) / POLY1305_BLOCK_SIZE, 1); |
| |
| BUILD_BUG_ON(TWEAK_SIZE % POLY1305_BLOCK_SIZE != 0); |
| poly1305_core_blocks(&state, &tctx->header_hash_key, req->iv, |
| TWEAK_SIZE / POLY1305_BLOCK_SIZE, 1); |
| |
| poly1305_core_emit(&state, NULL, out); |
| } |
| |
| /* Pass the next NH hash value through Poly1305 */ |
| static void process_nh_hash_value(struct nhpoly1305_ctx *ctx, |
| const struct adiantum_tfm_ctx *key) |
| { |
| static_assert(NH_HASH_BYTES % POLY1305_BLOCK_SIZE == 0); |
| |
| poly1305_core_blocks(&ctx->poly_state, &key->msg_poly_key, ctx->nh_hash, |
| NH_HASH_BYTES / POLY1305_BLOCK_SIZE, 1); |
| } |
| |
| /* |
| * Feed the next portion of the message data, as a whole number of 16-byte |
| * "NH message units", through NH and Poly1305. Each NH hash is taken over |
| * 1024 bytes, except possibly the final one which is taken over a multiple of |
| * 16 bytes up to 1024. Also, in the case where data is passed in misaligned |
| * chunks, we combine partial hashes; the end result is the same either way. |
| */ |
| static void nhpoly1305_units(struct nhpoly1305_ctx *ctx, |
| const struct adiantum_tfm_ctx *key, |
| const u8 *data, size_t len) |
| { |
| do { |
| unsigned int bytes; |
| |
| if (ctx->nh_remaining == 0) { |
| /* Starting a new NH message */ |
| bytes = min(len, NH_MESSAGE_BYTES); |
| nh(key->nh_key, data, bytes, ctx->nh_hash); |
| ctx->nh_remaining = NH_MESSAGE_BYTES - bytes; |
| } else { |
| /* Continuing a previous NH message */ |
| __le64 tmp_hash[NH_NUM_PASSES]; |
| unsigned int pos; |
| |
| pos = NH_MESSAGE_BYTES - ctx->nh_remaining; |
| bytes = min(len, ctx->nh_remaining); |
| nh(&key->nh_key[pos / 4], data, bytes, tmp_hash); |
| for (int i = 0; i < NH_NUM_PASSES; i++) |
| le64_add_cpu(&ctx->nh_hash[i], |
| le64_to_cpu(tmp_hash[i])); |
| ctx->nh_remaining -= bytes; |
| } |
| if (ctx->nh_remaining == 0) |
| process_nh_hash_value(ctx, key); |
| data += bytes; |
| len -= bytes; |
| } while (len); |
| } |
| |
| static void nhpoly1305_init(struct nhpoly1305_ctx *ctx) |
| { |
| poly1305_core_init(&ctx->poly_state); |
| ctx->buflen = 0; |
| ctx->nh_remaining = 0; |
| } |
| |
| static void nhpoly1305_update(struct nhpoly1305_ctx *ctx, |
| const struct adiantum_tfm_ctx *key, |
| const u8 *data, size_t len) |
| { |
| unsigned int bytes; |
| |
| if (ctx->buflen) { |
| bytes = min(len, (int)NH_MESSAGE_UNIT - ctx->buflen); |
| memcpy(&ctx->buffer[ctx->buflen], data, bytes); |
| ctx->buflen += bytes; |
| if (ctx->buflen < NH_MESSAGE_UNIT) |
| return; |
| nhpoly1305_units(ctx, key, ctx->buffer, NH_MESSAGE_UNIT); |
| ctx->buflen = 0; |
| data += bytes; |
| len -= bytes; |
| } |
| |
| if (len >= NH_MESSAGE_UNIT) { |
| bytes = round_down(len, NH_MESSAGE_UNIT); |
| nhpoly1305_units(ctx, key, data, bytes); |
| data += bytes; |
| len -= bytes; |
| } |
| |
| if (len) { |
| memcpy(ctx->buffer, data, len); |
| ctx->buflen = len; |
| } |
| } |
| |
| static void nhpoly1305_final(struct nhpoly1305_ctx *ctx, |
| const struct adiantum_tfm_ctx *key, le128 *out) |
| { |
| if (ctx->buflen) { |
| memset(&ctx->buffer[ctx->buflen], 0, |
| NH_MESSAGE_UNIT - ctx->buflen); |
| nhpoly1305_units(ctx, key, ctx->buffer, NH_MESSAGE_UNIT); |
| } |
| |
| if (ctx->nh_remaining) |
| process_nh_hash_value(ctx, key); |
| |
| poly1305_core_emit(&ctx->poly_state, NULL, out); |
| } |
| |
| /* |
| * Hash the left-hand part (the "bulk") of the message as follows: |
| * |
| * H_L ← Poly1305_{K_L}(NH_{K_N}(pad_{128}(L))) |
| * |
| * See section 6.4 of the Adiantum paper. This is an ε-almost-∆-universal |
| * (ε-∆U) hash function for equal-length inputs over Z/(2^{128}Z), where the "∆" |
| * operation is addition. It hashes 1024-byte chunks of the input with the NH |
| * hash function, reducing the input length by 32x. The resulting NH hashes are |
| * evaluated as a polynomial in GF(2^{130}-5), like in the Poly1305 MAC. Note |
| * that the polynomial evaluation by itself would suffice to achieve the ε-∆U |
| * property; NH is used for performance since it's much faster than Poly1305. |
| */ |
| static void adiantum_hash_message(struct skcipher_request *req, |
| struct scatterlist *sgl, le128 *out) |
| { |
| struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); |
| const struct adiantum_tfm_ctx *tctx = crypto_skcipher_ctx(tfm); |
| struct adiantum_request_ctx *rctx = skcipher_request_ctx(req); |
| unsigned int len = req->cryptlen - BLOCKCIPHER_BLOCK_SIZE; |
| struct scatter_walk walk; |
| |
| nhpoly1305_init(&rctx->u.hash_ctx); |
| scatterwalk_start(&walk, sgl); |
| while (len) { |
| unsigned int n = scatterwalk_next(&walk, len); |
| |
| nhpoly1305_update(&rctx->u.hash_ctx, tctx, walk.addr, n); |
| scatterwalk_done_src(&walk, n); |
| len -= n; |
| } |
| nhpoly1305_final(&rctx->u.hash_ctx, tctx, out); |
| } |
| |
| static int adiantum_crypt(struct skcipher_request *req, bool enc) |
| { |
| struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); |
| const struct adiantum_tfm_ctx *tctx = crypto_skcipher_ctx(tfm); |
| struct adiantum_request_ctx *rctx = skcipher_request_ctx(req); |
| const unsigned int bulk_len = req->cryptlen - BLOCKCIPHER_BLOCK_SIZE; |
| struct scatterlist *src = req->src, *dst = req->dst; |
| /* |
| * Buffer for right-hand part of data, i.e. |
| * |
| * P_L => P_M => C_M => C_R when encrypting, or |
| * C_R => C_M => P_M => P_L when decrypting. |
| * |
| * Also used to build the IV for the stream cipher. |
| */ |
| union { |
| u8 bytes[XCHACHA_IV_SIZE]; |
| __le32 words[XCHACHA_IV_SIZE / sizeof(__le32)]; |
| le128 bignum; /* interpret as element of Z/(2^{128}Z) */ |
| } rbuf; |
| le128 header_hash, msg_hash; |
| unsigned int stream_len; |
| int err; |
| |
| if (req->cryptlen < BLOCKCIPHER_BLOCK_SIZE) |
| return -EINVAL; |
| |
| /* |
| * First hash step |
| * enc: P_M = P_R + H_{K_H}(T, P_L) |
| * dec: C_M = C_R + H_{K_H}(T, C_L) |
| */ |
| adiantum_hash_header(req, &header_hash); |
| if (src->length >= req->cryptlen && |
| src->offset + req->cryptlen <= PAGE_SIZE) { |
| /* Fast path for single-page source */ |
| void *virt = kmap_local_page(sg_page(src)) + src->offset; |
| |
| nhpoly1305_init(&rctx->u.hash_ctx); |
| nhpoly1305_update(&rctx->u.hash_ctx, tctx, virt, bulk_len); |
| nhpoly1305_final(&rctx->u.hash_ctx, tctx, &msg_hash); |
| memcpy(&rbuf.bignum, virt + bulk_len, sizeof(le128)); |
| kunmap_local(virt); |
| } else { |
| /* Slow path that works for any source scatterlist */ |
| adiantum_hash_message(req, src, &msg_hash); |
| memcpy_from_sglist(&rbuf.bignum, src, bulk_len, sizeof(le128)); |
| } |
| le128_add(&rbuf.bignum, &rbuf.bignum, &header_hash); |
| le128_add(&rbuf.bignum, &rbuf.bignum, &msg_hash); |
| |
| /* If encrypting, encrypt P_M with the block cipher to get C_M */ |
| if (enc) |
| crypto_cipher_encrypt_one(tctx->blockcipher, rbuf.bytes, |
| rbuf.bytes); |
| |
| /* Initialize the rest of the XChaCha IV (first part is C_M) */ |
| BUILD_BUG_ON(BLOCKCIPHER_BLOCK_SIZE != 16); |
| BUILD_BUG_ON(XCHACHA_IV_SIZE != 32); /* nonce || stream position */ |
| rbuf.words[4] = cpu_to_le32(1); |
| rbuf.words[5] = 0; |
| rbuf.words[6] = 0; |
| rbuf.words[7] = 0; |
| |
| /* |
| * XChaCha needs to be done on all the data except the last 16 bytes; |
| * for disk encryption that usually means 4080 or 496 bytes. But ChaCha |
| * implementations tend to be most efficient when passed a whole number |
| * of 64-byte ChaCha blocks, or sometimes even a multiple of 256 bytes. |
| * And here it doesn't matter whether the last 16 bytes are written to, |
| * as the second hash step will overwrite them. Thus, round the XChaCha |
| * length up to the next 64-byte boundary if possible. |
| */ |
| stream_len = bulk_len; |
| if (round_up(stream_len, CHACHA_BLOCK_SIZE) <= req->cryptlen) |
| stream_len = round_up(stream_len, CHACHA_BLOCK_SIZE); |
| |
| skcipher_request_set_tfm(&rctx->u.streamcipher_req, tctx->streamcipher); |
| skcipher_request_set_crypt(&rctx->u.streamcipher_req, req->src, |
| req->dst, stream_len, &rbuf); |
| skcipher_request_set_callback(&rctx->u.streamcipher_req, |
| req->base.flags, NULL, NULL); |
| err = crypto_skcipher_encrypt(&rctx->u.streamcipher_req); |
| if (err) |
| return err; |
| |
| /* If decrypting, decrypt C_M with the block cipher to get P_M */ |
| if (!enc) |
| crypto_cipher_decrypt_one(tctx->blockcipher, rbuf.bytes, |
| rbuf.bytes); |
| |
| /* |
| * Second hash step |
| * enc: C_R = C_M - H_{K_H}(T, C_L) |
| * dec: P_R = P_M - H_{K_H}(T, P_L) |
| */ |
| le128_sub(&rbuf.bignum, &rbuf.bignum, &header_hash); |
| if (dst->length >= req->cryptlen && |
| dst->offset + req->cryptlen <= PAGE_SIZE) { |
| /* Fast path for single-page destination */ |
| struct page *page = sg_page(dst); |
| void *virt = kmap_local_page(page) + dst->offset; |
| |
| nhpoly1305_init(&rctx->u.hash_ctx); |
| nhpoly1305_update(&rctx->u.hash_ctx, tctx, virt, bulk_len); |
| nhpoly1305_final(&rctx->u.hash_ctx, tctx, &msg_hash); |
| le128_sub(&rbuf.bignum, &rbuf.bignum, &msg_hash); |
| memcpy(virt + bulk_len, &rbuf.bignum, sizeof(le128)); |
| flush_dcache_page(page); |
| kunmap_local(virt); |
| } else { |
| /* Slow path that works for any destination scatterlist */ |
| adiantum_hash_message(req, dst, &msg_hash); |
| le128_sub(&rbuf.bignum, &rbuf.bignum, &msg_hash); |
| memcpy_to_sglist(dst, bulk_len, &rbuf.bignum, sizeof(le128)); |
| } |
| return 0; |
| } |
| |
| static int adiantum_encrypt(struct skcipher_request *req) |
| { |
| return adiantum_crypt(req, true); |
| } |
| |
| static int adiantum_decrypt(struct skcipher_request *req) |
| { |
| return adiantum_crypt(req, false); |
| } |
| |
| static int adiantum_init_tfm(struct crypto_skcipher *tfm) |
| { |
| struct skcipher_instance *inst = skcipher_alg_instance(tfm); |
| struct adiantum_instance_ctx *ictx = skcipher_instance_ctx(inst); |
| struct adiantum_tfm_ctx *tctx = crypto_skcipher_ctx(tfm); |
| struct crypto_skcipher *streamcipher; |
| struct crypto_cipher *blockcipher; |
| int err; |
| |
| streamcipher = crypto_spawn_skcipher(&ictx->streamcipher_spawn); |
| if (IS_ERR(streamcipher)) |
| return PTR_ERR(streamcipher); |
| |
| blockcipher = crypto_spawn_cipher(&ictx->blockcipher_spawn); |
| if (IS_ERR(blockcipher)) { |
| err = PTR_ERR(blockcipher); |
| goto err_free_streamcipher; |
| } |
| |
| tctx->streamcipher = streamcipher; |
| tctx->blockcipher = blockcipher; |
| |
| BUILD_BUG_ON(offsetofend(struct adiantum_request_ctx, u) != |
| sizeof(struct adiantum_request_ctx)); |
| crypto_skcipher_set_reqsize( |
| tfm, max(sizeof(struct adiantum_request_ctx), |
| offsetofend(struct adiantum_request_ctx, |
| u.streamcipher_req) + |
| crypto_skcipher_reqsize(streamcipher))); |
| return 0; |
| |
| err_free_streamcipher: |
| crypto_free_skcipher(streamcipher); |
| return err; |
| } |
| |
| static void adiantum_exit_tfm(struct crypto_skcipher *tfm) |
| { |
| struct adiantum_tfm_ctx *tctx = crypto_skcipher_ctx(tfm); |
| |
| crypto_free_skcipher(tctx->streamcipher); |
| crypto_free_cipher(tctx->blockcipher); |
| } |
| |
| static void adiantum_free_instance(struct skcipher_instance *inst) |
| { |
| struct adiantum_instance_ctx *ictx = skcipher_instance_ctx(inst); |
| |
| crypto_drop_skcipher(&ictx->streamcipher_spawn); |
| crypto_drop_cipher(&ictx->blockcipher_spawn); |
| kfree(inst); |
| } |
| |
| /* |
| * Check for a supported set of inner algorithms. |
| * See the comment at the beginning of this file. |
| */ |
| static bool |
| adiantum_supported_algorithms(struct skcipher_alg_common *streamcipher_alg, |
| struct crypto_alg *blockcipher_alg) |
| { |
| if (strcmp(streamcipher_alg->base.cra_name, "xchacha12") != 0 && |
| strcmp(streamcipher_alg->base.cra_name, "xchacha20") != 0) |
| return false; |
| |
| if (blockcipher_alg->cra_cipher.cia_min_keysize > BLOCKCIPHER_KEY_SIZE || |
| blockcipher_alg->cra_cipher.cia_max_keysize < BLOCKCIPHER_KEY_SIZE) |
| return false; |
| if (blockcipher_alg->cra_blocksize != BLOCKCIPHER_BLOCK_SIZE) |
| return false; |
| |
| return true; |
| } |
| |
| static int adiantum_create(struct crypto_template *tmpl, struct rtattr **tb) |
| { |
| u32 mask; |
| struct skcipher_instance *inst; |
| struct adiantum_instance_ctx *ictx; |
| struct skcipher_alg_common *streamcipher_alg; |
| struct crypto_alg *blockcipher_alg; |
| int err; |
| |
| err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_SKCIPHER, &mask); |
| if (err) |
| return err; |
| |
| inst = kzalloc(sizeof(*inst) + sizeof(*ictx), GFP_KERNEL); |
| if (!inst) |
| return -ENOMEM; |
| ictx = skcipher_instance_ctx(inst); |
| |
| /* Stream cipher, e.g. "xchacha12" */ |
| err = crypto_grab_skcipher(&ictx->streamcipher_spawn, |
| skcipher_crypto_instance(inst), |
| crypto_attr_alg_name(tb[1]), 0, |
| mask | CRYPTO_ALG_ASYNC /* sync only */); |
| if (err) |
| goto err_free_inst; |
| streamcipher_alg = crypto_spawn_skcipher_alg_common(&ictx->streamcipher_spawn); |
| |
| /* Block cipher, e.g. "aes" */ |
| err = crypto_grab_cipher(&ictx->blockcipher_spawn, |
| skcipher_crypto_instance(inst), |
| crypto_attr_alg_name(tb[2]), 0, mask); |
| if (err) |
| goto err_free_inst; |
| blockcipher_alg = crypto_spawn_cipher_alg(&ictx->blockcipher_spawn); |
| |
| /* |
| * Originally there was an optional third parameter, for requesting a |
| * specific implementation of "nhpoly1305" for message hashing. This is |
| * no longer supported. The best implementation is just always used. |
| */ |
| if (crypto_attr_alg_name(tb[3]) != ERR_PTR(-ENOENT)) { |
| err = -ENOENT; |
| goto err_free_inst; |
| } |
| |
| /* Check the set of algorithms */ |
| if (!adiantum_supported_algorithms(streamcipher_alg, blockcipher_alg)) { |
| pr_warn("Unsupported Adiantum instantiation: (%s,%s)\n", |
| streamcipher_alg->base.cra_name, |
| blockcipher_alg->cra_name); |
| err = -EINVAL; |
| goto err_free_inst; |
| } |
| |
| /* Instance fields */ |
| |
| err = -ENAMETOOLONG; |
| if (snprintf(inst->alg.base.cra_name, CRYPTO_MAX_ALG_NAME, |
| "adiantum(%s,%s)", streamcipher_alg->base.cra_name, |
| blockcipher_alg->cra_name) >= CRYPTO_MAX_ALG_NAME) |
| goto err_free_inst; |
| if (snprintf(inst->alg.base.cra_driver_name, CRYPTO_MAX_ALG_NAME, |
| "adiantum(%s,%s)", streamcipher_alg->base.cra_driver_name, |
| blockcipher_alg->cra_driver_name) >= CRYPTO_MAX_ALG_NAME) |
| goto err_free_inst; |
| |
| inst->alg.base.cra_blocksize = BLOCKCIPHER_BLOCK_SIZE; |
| inst->alg.base.cra_ctxsize = sizeof(struct adiantum_tfm_ctx); |
| inst->alg.base.cra_alignmask = streamcipher_alg->base.cra_alignmask; |
| /* |
| * The block cipher is only invoked once per message, so for long |
| * messages (e.g. sectors for disk encryption) its performance doesn't |
| * matter as much as that of the stream cipher. Thus, weigh the block |
| * cipher's ->cra_priority less. |
| */ |
| inst->alg.base.cra_priority = (4 * streamcipher_alg->base.cra_priority + |
| blockcipher_alg->cra_priority) / |
| 5; |
| |
| inst->alg.setkey = adiantum_setkey; |
| inst->alg.encrypt = adiantum_encrypt; |
| inst->alg.decrypt = adiantum_decrypt; |
| inst->alg.init = adiantum_init_tfm; |
| inst->alg.exit = adiantum_exit_tfm; |
| inst->alg.min_keysize = streamcipher_alg->min_keysize; |
| inst->alg.max_keysize = streamcipher_alg->max_keysize; |
| inst->alg.ivsize = TWEAK_SIZE; |
| |
| inst->free = adiantum_free_instance; |
| |
| err = skcipher_register_instance(tmpl, inst); |
| if (err) { |
| err_free_inst: |
| adiantum_free_instance(inst); |
| } |
| return err; |
| } |
| |
| /* adiantum(streamcipher_name, blockcipher_name) */ |
| static struct crypto_template adiantum_tmpl = { |
| .name = "adiantum", |
| .create = adiantum_create, |
| .module = THIS_MODULE, |
| }; |
| |
| static int __init adiantum_module_init(void) |
| { |
| return crypto_register_template(&adiantum_tmpl); |
| } |
| |
| static void __exit adiantum_module_exit(void) |
| { |
| crypto_unregister_template(&adiantum_tmpl); |
| } |
| |
| module_init(adiantum_module_init); |
| module_exit(adiantum_module_exit); |
| |
| MODULE_DESCRIPTION("Adiantum length-preserving encryption mode"); |
| MODULE_LICENSE("GPL v2"); |
| MODULE_AUTHOR("Eric Biggers <ebiggers@google.com>"); |
| MODULE_ALIAS_CRYPTO("adiantum"); |
| MODULE_IMPORT_NS("CRYPTO_INTERNAL"); |