| // SPDX-License-Identifier: GPL-2.0-only | 
 | /* linux/arch/arm/mach-exynos4/mct.c | 
 |  * | 
 |  * Copyright (c) 2011 Samsung Electronics Co., Ltd. | 
 |  *		http://www.samsung.com | 
 |  * | 
 |  * Exynos4 MCT(Multi-Core Timer) support | 
 | */ | 
 |  | 
 | #include <linux/interrupt.h> | 
 | #include <linux/irq.h> | 
 | #include <linux/err.h> | 
 | #include <linux/clk.h> | 
 | #include <linux/clockchips.h> | 
 | #include <linux/cpu.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/percpu.h> | 
 | #include <linux/of.h> | 
 | #include <linux/of_irq.h> | 
 | #include <linux/of_address.h> | 
 | #include <linux/clocksource.h> | 
 | #include <linux/sched_clock.h> | 
 |  | 
 | #define EXYNOS4_MCTREG(x)		(x) | 
 | #define EXYNOS4_MCT_G_CNT_L		EXYNOS4_MCTREG(0x100) | 
 | #define EXYNOS4_MCT_G_CNT_U		EXYNOS4_MCTREG(0x104) | 
 | #define EXYNOS4_MCT_G_CNT_WSTAT		EXYNOS4_MCTREG(0x110) | 
 | #define EXYNOS4_MCT_G_COMP0_L		EXYNOS4_MCTREG(0x200) | 
 | #define EXYNOS4_MCT_G_COMP0_U		EXYNOS4_MCTREG(0x204) | 
 | #define EXYNOS4_MCT_G_COMP0_ADD_INCR	EXYNOS4_MCTREG(0x208) | 
 | #define EXYNOS4_MCT_G_TCON		EXYNOS4_MCTREG(0x240) | 
 | #define EXYNOS4_MCT_G_INT_CSTAT		EXYNOS4_MCTREG(0x244) | 
 | #define EXYNOS4_MCT_G_INT_ENB		EXYNOS4_MCTREG(0x248) | 
 | #define EXYNOS4_MCT_G_WSTAT		EXYNOS4_MCTREG(0x24C) | 
 | #define _EXYNOS4_MCT_L_BASE		EXYNOS4_MCTREG(0x300) | 
 | #define EXYNOS4_MCT_L_BASE(x)		(_EXYNOS4_MCT_L_BASE + (0x100 * (x))) | 
 | #define EXYNOS4_MCT_L_MASK		(0xffffff00) | 
 |  | 
 | #define MCT_L_TCNTB_OFFSET		(0x00) | 
 | #define MCT_L_ICNTB_OFFSET		(0x08) | 
 | #define MCT_L_TCON_OFFSET		(0x20) | 
 | #define MCT_L_INT_CSTAT_OFFSET		(0x30) | 
 | #define MCT_L_INT_ENB_OFFSET		(0x34) | 
 | #define MCT_L_WSTAT_OFFSET		(0x40) | 
 | #define MCT_G_TCON_START		(1 << 8) | 
 | #define MCT_G_TCON_COMP0_AUTO_INC	(1 << 1) | 
 | #define MCT_G_TCON_COMP0_ENABLE		(1 << 0) | 
 | #define MCT_L_TCON_INTERVAL_MODE	(1 << 2) | 
 | #define MCT_L_TCON_INT_START		(1 << 1) | 
 | #define MCT_L_TCON_TIMER_START		(1 << 0) | 
 |  | 
 | #define TICK_BASE_CNT	1 | 
 |  | 
 | #ifdef CONFIG_ARM | 
 | /* Use values higher than ARM arch timer. See 6282edb72bed. */ | 
 | #define MCT_CLKSOURCE_RATING		450 | 
 | #define MCT_CLKEVENTS_RATING		500 | 
 | #else | 
 | #define MCT_CLKSOURCE_RATING		350 | 
 | #define MCT_CLKEVENTS_RATING		350 | 
 | #endif | 
 |  | 
 | /* There are four Global timers starting with 0 offset */ | 
 | #define MCT_G0_IRQ	0 | 
 | /* Local timers count starts after global timer count */ | 
 | #define MCT_L0_IRQ	4 | 
 | /* Max number of IRQ as per DT binding document */ | 
 | #define MCT_NR_IRQS	20 | 
 | /* Max number of local timers */ | 
 | #define MCT_NR_LOCAL	(MCT_NR_IRQS - MCT_L0_IRQ) | 
 |  | 
 | enum { | 
 | 	MCT_INT_SPI, | 
 | 	MCT_INT_PPI | 
 | }; | 
 |  | 
 | static void __iomem *reg_base; | 
 | static unsigned long clk_rate; | 
 | static unsigned int mct_int_type; | 
 | static int mct_irqs[MCT_NR_IRQS]; | 
 |  | 
 | struct mct_clock_event_device { | 
 | 	struct clock_event_device evt; | 
 | 	unsigned long base; | 
 | 	/** | 
 | 	 *  The length of the name must be adjusted if number of | 
 | 	 *  local timer interrupts grow over two digits | 
 | 	 */ | 
 | 	char name[11]; | 
 | }; | 
 |  | 
 | static void exynos4_mct_write(unsigned int value, unsigned long offset) | 
 | { | 
 | 	unsigned long stat_addr; | 
 | 	u32 mask; | 
 | 	u32 i; | 
 |  | 
 | 	writel_relaxed(value, reg_base + offset); | 
 |  | 
 | 	if (likely(offset >= EXYNOS4_MCT_L_BASE(0))) { | 
 | 		stat_addr = (offset & EXYNOS4_MCT_L_MASK) + MCT_L_WSTAT_OFFSET; | 
 | 		switch (offset & ~EXYNOS4_MCT_L_MASK) { | 
 | 		case MCT_L_TCON_OFFSET: | 
 | 			mask = 1 << 3;		/* L_TCON write status */ | 
 | 			break; | 
 | 		case MCT_L_ICNTB_OFFSET: | 
 | 			mask = 1 << 1;		/* L_ICNTB write status */ | 
 | 			break; | 
 | 		case MCT_L_TCNTB_OFFSET: | 
 | 			mask = 1 << 0;		/* L_TCNTB write status */ | 
 | 			break; | 
 | 		default: | 
 | 			return; | 
 | 		} | 
 | 	} else { | 
 | 		switch (offset) { | 
 | 		case EXYNOS4_MCT_G_TCON: | 
 | 			stat_addr = EXYNOS4_MCT_G_WSTAT; | 
 | 			mask = 1 << 16;		/* G_TCON write status */ | 
 | 			break; | 
 | 		case EXYNOS4_MCT_G_COMP0_L: | 
 | 			stat_addr = EXYNOS4_MCT_G_WSTAT; | 
 | 			mask = 1 << 0;		/* G_COMP0_L write status */ | 
 | 			break; | 
 | 		case EXYNOS4_MCT_G_COMP0_U: | 
 | 			stat_addr = EXYNOS4_MCT_G_WSTAT; | 
 | 			mask = 1 << 1;		/* G_COMP0_U write status */ | 
 | 			break; | 
 | 		case EXYNOS4_MCT_G_COMP0_ADD_INCR: | 
 | 			stat_addr = EXYNOS4_MCT_G_WSTAT; | 
 | 			mask = 1 << 2;		/* G_COMP0_ADD_INCR w status */ | 
 | 			break; | 
 | 		case EXYNOS4_MCT_G_CNT_L: | 
 | 			stat_addr = EXYNOS4_MCT_G_CNT_WSTAT; | 
 | 			mask = 1 << 0;		/* G_CNT_L write status */ | 
 | 			break; | 
 | 		case EXYNOS4_MCT_G_CNT_U: | 
 | 			stat_addr = EXYNOS4_MCT_G_CNT_WSTAT; | 
 | 			mask = 1 << 1;		/* G_CNT_U write status */ | 
 | 			break; | 
 | 		default: | 
 | 			return; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Wait maximum 1 ms until written values are applied */ | 
 | 	for (i = 0; i < loops_per_jiffy / 1000 * HZ; i++) | 
 | 		if (readl_relaxed(reg_base + stat_addr) & mask) { | 
 | 			writel_relaxed(mask, reg_base + stat_addr); | 
 | 			return; | 
 | 		} | 
 |  | 
 | 	panic("MCT hangs after writing %d (offset:0x%lx)\n", value, offset); | 
 | } | 
 |  | 
 | /* Clocksource handling */ | 
 | static void exynos4_mct_frc_start(void) | 
 | { | 
 | 	u32 reg; | 
 |  | 
 | 	reg = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON); | 
 | 	reg |= MCT_G_TCON_START; | 
 | 	exynos4_mct_write(reg, EXYNOS4_MCT_G_TCON); | 
 | } | 
 |  | 
 | /** | 
 |  * exynos4_read_count_64 - Read all 64-bits of the global counter | 
 |  * | 
 |  * This will read all 64-bits of the global counter taking care to make sure | 
 |  * that the upper and lower half match.  Note that reading the MCT can be quite | 
 |  * slow (hundreds of nanoseconds) so you should use the 32-bit (lower half | 
 |  * only) version when possible. | 
 |  * | 
 |  * Returns the number of cycles in the global counter. | 
 |  */ | 
 | static u64 exynos4_read_count_64(void) | 
 | { | 
 | 	unsigned int lo, hi; | 
 | 	u32 hi2 = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_U); | 
 |  | 
 | 	do { | 
 | 		hi = hi2; | 
 | 		lo = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_L); | 
 | 		hi2 = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_U); | 
 | 	} while (hi != hi2); | 
 |  | 
 | 	return ((u64)hi << 32) | lo; | 
 | } | 
 |  | 
 | /** | 
 |  * exynos4_read_count_32 - Read the lower 32-bits of the global counter | 
 |  * | 
 |  * This will read just the lower 32-bits of the global counter.  This is marked | 
 |  * as notrace so it can be used by the scheduler clock. | 
 |  * | 
 |  * Returns the number of cycles in the global counter (lower 32 bits). | 
 |  */ | 
 | static u32 notrace exynos4_read_count_32(void) | 
 | { | 
 | 	return readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_L); | 
 | } | 
 |  | 
 | static u64 exynos4_frc_read(struct clocksource *cs) | 
 | { | 
 | 	return exynos4_read_count_32(); | 
 | } | 
 |  | 
 | static void exynos4_frc_resume(struct clocksource *cs) | 
 | { | 
 | 	exynos4_mct_frc_start(); | 
 | } | 
 |  | 
 | static struct clocksource mct_frc = { | 
 | 	.name		= "mct-frc", | 
 | 	.rating		= MCT_CLKSOURCE_RATING, | 
 | 	.read		= exynos4_frc_read, | 
 | 	.mask		= CLOCKSOURCE_MASK(32), | 
 | 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS, | 
 | 	.resume		= exynos4_frc_resume, | 
 | }; | 
 |  | 
 | static u64 notrace exynos4_read_sched_clock(void) | 
 | { | 
 | 	return exynos4_read_count_32(); | 
 | } | 
 |  | 
 | #if defined(CONFIG_ARM) | 
 | static struct delay_timer exynos4_delay_timer; | 
 |  | 
 | static cycles_t exynos4_read_current_timer(void) | 
 | { | 
 | 	BUILD_BUG_ON_MSG(sizeof(cycles_t) != sizeof(u32), | 
 | 			 "cycles_t needs to move to 32-bit for ARM64 usage"); | 
 | 	return exynos4_read_count_32(); | 
 | } | 
 | #endif | 
 |  | 
 | static int __init exynos4_clocksource_init(bool frc_shared) | 
 | { | 
 | 	/* | 
 | 	 * When the frc is shared, the main processer should have already | 
 | 	 * turned it on and we shouldn't be writing to TCON. | 
 | 	 */ | 
 | 	if (frc_shared) | 
 | 		mct_frc.resume = NULL; | 
 | 	else | 
 | 		exynos4_mct_frc_start(); | 
 |  | 
 | #if defined(CONFIG_ARM) | 
 | 	exynos4_delay_timer.read_current_timer = &exynos4_read_current_timer; | 
 | 	exynos4_delay_timer.freq = clk_rate; | 
 | 	register_current_timer_delay(&exynos4_delay_timer); | 
 | #endif | 
 |  | 
 | 	if (clocksource_register_hz(&mct_frc, clk_rate)) | 
 | 		panic("%s: can't register clocksource\n", mct_frc.name); | 
 |  | 
 | 	sched_clock_register(exynos4_read_sched_clock, 32, clk_rate); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void exynos4_mct_comp0_stop(void) | 
 | { | 
 | 	unsigned int tcon; | 
 |  | 
 | 	tcon = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON); | 
 | 	tcon &= ~(MCT_G_TCON_COMP0_ENABLE | MCT_G_TCON_COMP0_AUTO_INC); | 
 |  | 
 | 	exynos4_mct_write(tcon, EXYNOS4_MCT_G_TCON); | 
 | 	exynos4_mct_write(0, EXYNOS4_MCT_G_INT_ENB); | 
 | } | 
 |  | 
 | static void exynos4_mct_comp0_start(bool periodic, unsigned long cycles) | 
 | { | 
 | 	unsigned int tcon; | 
 | 	u64 comp_cycle; | 
 |  | 
 | 	tcon = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON); | 
 |  | 
 | 	if (periodic) { | 
 | 		tcon |= MCT_G_TCON_COMP0_AUTO_INC; | 
 | 		exynos4_mct_write(cycles, EXYNOS4_MCT_G_COMP0_ADD_INCR); | 
 | 	} | 
 |  | 
 | 	comp_cycle = exynos4_read_count_64() + cycles; | 
 | 	exynos4_mct_write((u32)comp_cycle, EXYNOS4_MCT_G_COMP0_L); | 
 | 	exynos4_mct_write((u32)(comp_cycle >> 32), EXYNOS4_MCT_G_COMP0_U); | 
 |  | 
 | 	exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_ENB); | 
 |  | 
 | 	tcon |= MCT_G_TCON_COMP0_ENABLE; | 
 | 	exynos4_mct_write(tcon , EXYNOS4_MCT_G_TCON); | 
 | } | 
 |  | 
 | static int exynos4_comp_set_next_event(unsigned long cycles, | 
 | 				       struct clock_event_device *evt) | 
 | { | 
 | 	exynos4_mct_comp0_start(false, cycles); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int mct_set_state_shutdown(struct clock_event_device *evt) | 
 | { | 
 | 	exynos4_mct_comp0_stop(); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int mct_set_state_periodic(struct clock_event_device *evt) | 
 | { | 
 | 	unsigned long cycles_per_jiffy; | 
 |  | 
 | 	cycles_per_jiffy = (((unsigned long long)NSEC_PER_SEC / HZ * evt->mult) | 
 | 			    >> evt->shift); | 
 | 	exynos4_mct_comp0_stop(); | 
 | 	exynos4_mct_comp0_start(true, cycles_per_jiffy); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct clock_event_device mct_comp_device = { | 
 | 	.name			= "mct-comp", | 
 | 	.features		= CLOCK_EVT_FEAT_PERIODIC | | 
 | 				  CLOCK_EVT_FEAT_ONESHOT, | 
 | 	.rating			= 250, | 
 | 	.set_next_event		= exynos4_comp_set_next_event, | 
 | 	.set_state_periodic	= mct_set_state_periodic, | 
 | 	.set_state_shutdown	= mct_set_state_shutdown, | 
 | 	.set_state_oneshot	= mct_set_state_shutdown, | 
 | 	.set_state_oneshot_stopped = mct_set_state_shutdown, | 
 | 	.tick_resume		= mct_set_state_shutdown, | 
 | }; | 
 |  | 
 | static irqreturn_t exynos4_mct_comp_isr(int irq, void *dev_id) | 
 | { | 
 | 	struct clock_event_device *evt = dev_id; | 
 |  | 
 | 	exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_CSTAT); | 
 |  | 
 | 	evt->event_handler(evt); | 
 |  | 
 | 	return IRQ_HANDLED; | 
 | } | 
 |  | 
 | static int exynos4_clockevent_init(void) | 
 | { | 
 | 	mct_comp_device.cpumask = cpumask_of(0); | 
 | 	clockevents_config_and_register(&mct_comp_device, clk_rate, | 
 | 					0xf, 0xffffffff); | 
 | 	if (request_irq(mct_irqs[MCT_G0_IRQ], exynos4_mct_comp_isr, | 
 | 			IRQF_TIMER | IRQF_IRQPOLL, "mct_comp_irq", | 
 | 			&mct_comp_device)) | 
 | 		pr_err("%s: request_irq() failed\n", "mct_comp_irq"); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static DEFINE_PER_CPU(struct mct_clock_event_device, percpu_mct_tick); | 
 |  | 
 | /* Clock event handling */ | 
 | static void exynos4_mct_tick_stop(struct mct_clock_event_device *mevt) | 
 | { | 
 | 	unsigned long tmp; | 
 | 	unsigned long mask = MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START; | 
 | 	unsigned long offset = mevt->base + MCT_L_TCON_OFFSET; | 
 |  | 
 | 	tmp = readl_relaxed(reg_base + offset); | 
 | 	if (tmp & mask) { | 
 | 		tmp &= ~mask; | 
 | 		exynos4_mct_write(tmp, offset); | 
 | 	} | 
 | } | 
 |  | 
 | static void exynos4_mct_tick_start(unsigned long cycles, | 
 | 				   struct mct_clock_event_device *mevt) | 
 | { | 
 | 	unsigned long tmp; | 
 |  | 
 | 	exynos4_mct_tick_stop(mevt); | 
 |  | 
 | 	tmp = (1 << 31) | cycles;	/* MCT_L_UPDATE_ICNTB */ | 
 |  | 
 | 	/* update interrupt count buffer */ | 
 | 	exynos4_mct_write(tmp, mevt->base + MCT_L_ICNTB_OFFSET); | 
 |  | 
 | 	/* enable MCT tick interrupt */ | 
 | 	exynos4_mct_write(0x1, mevt->base + MCT_L_INT_ENB_OFFSET); | 
 |  | 
 | 	tmp = readl_relaxed(reg_base + mevt->base + MCT_L_TCON_OFFSET); | 
 | 	tmp |= MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START | | 
 | 	       MCT_L_TCON_INTERVAL_MODE; | 
 | 	exynos4_mct_write(tmp, mevt->base + MCT_L_TCON_OFFSET); | 
 | } | 
 |  | 
 | static void exynos4_mct_tick_clear(struct mct_clock_event_device *mevt) | 
 | { | 
 | 	/* Clear the MCT tick interrupt */ | 
 | 	if (readl_relaxed(reg_base + mevt->base + MCT_L_INT_CSTAT_OFFSET) & 1) | 
 | 		exynos4_mct_write(0x1, mevt->base + MCT_L_INT_CSTAT_OFFSET); | 
 | } | 
 |  | 
 | static int exynos4_tick_set_next_event(unsigned long cycles, | 
 | 				       struct clock_event_device *evt) | 
 | { | 
 | 	struct mct_clock_event_device *mevt; | 
 |  | 
 | 	mevt = container_of(evt, struct mct_clock_event_device, evt); | 
 | 	exynos4_mct_tick_start(cycles, mevt); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int set_state_shutdown(struct clock_event_device *evt) | 
 | { | 
 | 	struct mct_clock_event_device *mevt; | 
 |  | 
 | 	mevt = container_of(evt, struct mct_clock_event_device, evt); | 
 | 	exynos4_mct_tick_stop(mevt); | 
 | 	exynos4_mct_tick_clear(mevt); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int set_state_periodic(struct clock_event_device *evt) | 
 | { | 
 | 	struct mct_clock_event_device *mevt; | 
 | 	unsigned long cycles_per_jiffy; | 
 |  | 
 | 	mevt = container_of(evt, struct mct_clock_event_device, evt); | 
 | 	cycles_per_jiffy = (((unsigned long long)NSEC_PER_SEC / HZ * evt->mult) | 
 | 			    >> evt->shift); | 
 | 	exynos4_mct_tick_stop(mevt); | 
 | 	exynos4_mct_tick_start(cycles_per_jiffy, mevt); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static irqreturn_t exynos4_mct_tick_isr(int irq, void *dev_id) | 
 | { | 
 | 	struct mct_clock_event_device *mevt = dev_id; | 
 | 	struct clock_event_device *evt = &mevt->evt; | 
 |  | 
 | 	/* | 
 | 	 * This is for supporting oneshot mode. | 
 | 	 * Mct would generate interrupt periodically | 
 | 	 * without explicit stopping. | 
 | 	 */ | 
 | 	if (!clockevent_state_periodic(&mevt->evt)) | 
 | 		exynos4_mct_tick_stop(mevt); | 
 |  | 
 | 	exynos4_mct_tick_clear(mevt); | 
 |  | 
 | 	evt->event_handler(evt); | 
 |  | 
 | 	return IRQ_HANDLED; | 
 | } | 
 |  | 
 | static int exynos4_mct_starting_cpu(unsigned int cpu) | 
 | { | 
 | 	struct mct_clock_event_device *mevt = | 
 | 		per_cpu_ptr(&percpu_mct_tick, cpu); | 
 | 	struct clock_event_device *evt = &mevt->evt; | 
 |  | 
 | 	snprintf(mevt->name, sizeof(mevt->name), "mct_tick%d", cpu); | 
 |  | 
 | 	evt->name = mevt->name; | 
 | 	evt->cpumask = cpumask_of(cpu); | 
 | 	evt->set_next_event = exynos4_tick_set_next_event; | 
 | 	evt->set_state_periodic = set_state_periodic; | 
 | 	evt->set_state_shutdown = set_state_shutdown; | 
 | 	evt->set_state_oneshot = set_state_shutdown; | 
 | 	evt->set_state_oneshot_stopped = set_state_shutdown; | 
 | 	evt->tick_resume = set_state_shutdown; | 
 | 	evt->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT | | 
 | 			CLOCK_EVT_FEAT_PERCPU; | 
 | 	evt->rating = MCT_CLKEVENTS_RATING; | 
 |  | 
 | 	exynos4_mct_write(TICK_BASE_CNT, mevt->base + MCT_L_TCNTB_OFFSET); | 
 |  | 
 | 	if (mct_int_type == MCT_INT_SPI) { | 
 |  | 
 | 		if (evt->irq == -1) | 
 | 			return -EIO; | 
 |  | 
 | 		irq_force_affinity(evt->irq, cpumask_of(cpu)); | 
 | 		enable_irq(evt->irq); | 
 | 	} else { | 
 | 		enable_percpu_irq(mct_irqs[MCT_L0_IRQ], 0); | 
 | 	} | 
 | 	clockevents_config_and_register(evt, clk_rate / (TICK_BASE_CNT + 1), | 
 | 					0xf, 0x7fffffff); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int exynos4_mct_dying_cpu(unsigned int cpu) | 
 | { | 
 | 	struct mct_clock_event_device *mevt = | 
 | 		per_cpu_ptr(&percpu_mct_tick, cpu); | 
 | 	struct clock_event_device *evt = &mevt->evt; | 
 |  | 
 | 	evt->set_state_shutdown(evt); | 
 | 	if (mct_int_type == MCT_INT_SPI) { | 
 | 		if (evt->irq != -1) | 
 | 			disable_irq_nosync(evt->irq); | 
 | 		exynos4_mct_write(0x1, mevt->base + MCT_L_INT_CSTAT_OFFSET); | 
 | 	} else { | 
 | 		disable_percpu_irq(mct_irqs[MCT_L0_IRQ]); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int __init exynos4_timer_resources(struct device_node *np) | 
 | { | 
 | 	struct clk *mct_clk, *tick_clk; | 
 |  | 
 | 	reg_base = of_iomap(np, 0); | 
 | 	if (!reg_base) | 
 | 		panic("%s: unable to ioremap mct address space\n", __func__); | 
 |  | 
 | 	tick_clk = of_clk_get_by_name(np, "fin_pll"); | 
 | 	if (IS_ERR(tick_clk)) | 
 | 		panic("%s: unable to determine tick clock rate\n", __func__); | 
 | 	clk_rate = clk_get_rate(tick_clk); | 
 |  | 
 | 	mct_clk = of_clk_get_by_name(np, "mct"); | 
 | 	if (IS_ERR(mct_clk)) | 
 | 		panic("%s: unable to retrieve mct clock instance\n", __func__); | 
 | 	clk_prepare_enable(mct_clk); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * exynos4_timer_interrupts - initialize MCT interrupts | 
 |  * @np: device node for MCT | 
 |  * @int_type: interrupt type, MCT_INT_PPI or MCT_INT_SPI | 
 |  * @local_idx: array mapping CPU numbers to local timer indices | 
 |  * @nr_local: size of @local_idx array | 
 |  */ | 
 | static int __init exynos4_timer_interrupts(struct device_node *np, | 
 | 					   unsigned int int_type, | 
 | 					   const u32 *local_idx, | 
 | 					   size_t nr_local) | 
 | { | 
 | 	int nr_irqs, i, err, cpu; | 
 |  | 
 | 	mct_int_type = int_type; | 
 |  | 
 | 	/* This driver uses only one global timer interrupt */ | 
 | 	mct_irqs[MCT_G0_IRQ] = irq_of_parse_and_map(np, MCT_G0_IRQ); | 
 |  | 
 | 	/* | 
 | 	 * Find out the number of local irqs specified. The local | 
 | 	 * timer irqs are specified after the four global timer | 
 | 	 * irqs are specified. | 
 | 	 */ | 
 | 	nr_irqs = of_irq_count(np); | 
 | 	if (nr_irqs > ARRAY_SIZE(mct_irqs)) { | 
 | 		pr_err("exynos-mct: too many (%d) interrupts configured in DT\n", | 
 | 			nr_irqs); | 
 | 		nr_irqs = ARRAY_SIZE(mct_irqs); | 
 | 	} | 
 | 	for (i = MCT_L0_IRQ; i < nr_irqs; i++) | 
 | 		mct_irqs[i] = irq_of_parse_and_map(np, i); | 
 |  | 
 | 	if (mct_int_type == MCT_INT_PPI) { | 
 |  | 
 | 		err = request_percpu_irq(mct_irqs[MCT_L0_IRQ], | 
 | 					 exynos4_mct_tick_isr, "MCT", | 
 | 					 &percpu_mct_tick); | 
 | 		WARN(err, "MCT: can't request IRQ %d (%d)\n", | 
 | 		     mct_irqs[MCT_L0_IRQ], err); | 
 | 	} else { | 
 | 		for_each_possible_cpu(cpu) { | 
 | 			int mct_irq; | 
 | 			unsigned int irq_idx; | 
 | 			struct mct_clock_event_device *pcpu_mevt = | 
 | 				per_cpu_ptr(&percpu_mct_tick, cpu); | 
 |  | 
 | 			if (cpu >= nr_local) { | 
 | 				err = -EINVAL; | 
 | 				goto out_irq; | 
 | 			} | 
 |  | 
 | 			irq_idx = MCT_L0_IRQ + local_idx[cpu]; | 
 |  | 
 | 			pcpu_mevt->evt.irq = -1; | 
 | 			if (irq_idx >= ARRAY_SIZE(mct_irqs)) | 
 | 				break; | 
 | 			mct_irq = mct_irqs[irq_idx]; | 
 |  | 
 | 			irq_set_status_flags(mct_irq, IRQ_NOAUTOEN); | 
 | 			if (request_irq(mct_irq, | 
 | 					exynos4_mct_tick_isr, | 
 | 					IRQF_TIMER | IRQF_NOBALANCING, | 
 | 					pcpu_mevt->name, pcpu_mevt)) { | 
 | 				pr_err("exynos-mct: cannot register IRQ (cpu%d)\n", | 
 | 									cpu); | 
 |  | 
 | 				continue; | 
 | 			} | 
 | 			pcpu_mevt->evt.irq = mct_irq; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	for_each_possible_cpu(cpu) { | 
 | 		struct mct_clock_event_device *mevt = per_cpu_ptr(&percpu_mct_tick, cpu); | 
 |  | 
 | 		if (cpu >= nr_local) { | 
 | 			err = -EINVAL; | 
 | 			goto out_irq; | 
 | 		} | 
 |  | 
 | 		mevt->base = EXYNOS4_MCT_L_BASE(local_idx[cpu]); | 
 | 	} | 
 |  | 
 | 	/* Install hotplug callbacks which configure the timer on this CPU */ | 
 | 	err = cpuhp_setup_state(CPUHP_AP_EXYNOS4_MCT_TIMER_STARTING, | 
 | 				"clockevents/exynos4/mct_timer:starting", | 
 | 				exynos4_mct_starting_cpu, | 
 | 				exynos4_mct_dying_cpu); | 
 | 	if (err) | 
 | 		goto out_irq; | 
 |  | 
 | 	return 0; | 
 |  | 
 | out_irq: | 
 | 	if (mct_int_type == MCT_INT_PPI) { | 
 | 		free_percpu_irq(mct_irqs[MCT_L0_IRQ], &percpu_mct_tick); | 
 | 	} else { | 
 | 		for_each_possible_cpu(cpu) { | 
 | 			struct mct_clock_event_device *pcpu_mevt = | 
 | 				per_cpu_ptr(&percpu_mct_tick, cpu); | 
 |  | 
 | 			if (pcpu_mevt->evt.irq != -1) { | 
 | 				free_irq(pcpu_mevt->evt.irq, pcpu_mevt); | 
 | 				pcpu_mevt->evt.irq = -1; | 
 | 			} | 
 | 		} | 
 | 	} | 
 | 	return err; | 
 | } | 
 |  | 
 | static int __init mct_init_dt(struct device_node *np, unsigned int int_type) | 
 | { | 
 | 	bool frc_shared = of_property_read_bool(np, "samsung,frc-shared"); | 
 | 	u32 local_idx[MCT_NR_LOCAL] = {0}; | 
 | 	int nr_local; | 
 | 	int ret; | 
 |  | 
 | 	nr_local = of_property_count_u32_elems(np, "samsung,local-timers"); | 
 | 	if (nr_local == 0) | 
 | 		return -EINVAL; | 
 | 	if (nr_local > 0) { | 
 | 		if (nr_local > ARRAY_SIZE(local_idx)) | 
 | 			return -EINVAL; | 
 |  | 
 | 		ret = of_property_read_u32_array(np, "samsung,local-timers", | 
 | 						 local_idx, nr_local); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 	} else { | 
 | 		int i; | 
 |  | 
 | 		nr_local = ARRAY_SIZE(local_idx); | 
 | 		for (i = 0; i < nr_local; i++) | 
 | 			local_idx[i] = i; | 
 | 	} | 
 |  | 
 | 	ret = exynos4_timer_resources(np); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	ret = exynos4_timer_interrupts(np, int_type, local_idx, nr_local); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	ret = exynos4_clocksource_init(frc_shared); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	/* | 
 | 	 * When the FRC is shared with a main processor, this secondary | 
 | 	 * processor cannot use the global comparator. | 
 | 	 */ | 
 | 	if (frc_shared) | 
 | 		return 0; | 
 |  | 
 | 	return exynos4_clockevent_init(); | 
 | } | 
 |  | 
 |  | 
 | static int __init mct_init_spi(struct device_node *np) | 
 | { | 
 | 	return mct_init_dt(np, MCT_INT_SPI); | 
 | } | 
 |  | 
 | static int __init mct_init_ppi(struct device_node *np) | 
 | { | 
 | 	return mct_init_dt(np, MCT_INT_PPI); | 
 | } | 
 | TIMER_OF_DECLARE(exynos4210, "samsung,exynos4210-mct", mct_init_spi); | 
 | TIMER_OF_DECLARE(exynos4412, "samsung,exynos4412-mct", mct_init_ppi); |