| // SPDX-License-Identifier: GPL-2.0-only | 
 | /* | 
 |  * PRU-ICSS remoteproc driver for various TI SoCs | 
 |  * | 
 |  * Copyright (C) 2014-2020 Texas Instruments Incorporated - https://www.ti.com/ | 
 |  * | 
 |  * Author(s): | 
 |  *	Suman Anna <s-anna@ti.com> | 
 |  *	Andrew F. Davis <afd@ti.com> | 
 |  *	Grzegorz Jaszczyk <grzegorz.jaszczyk@linaro.org> for Texas Instruments | 
 |  */ | 
 |  | 
 | #include <linux/bitops.h> | 
 | #include <linux/debugfs.h> | 
 | #include <linux/irqdomain.h> | 
 | #include <linux/module.h> | 
 | #include <linux/of_device.h> | 
 | #include <linux/of_irq.h> | 
 | #include <linux/pruss_driver.h> | 
 | #include <linux/remoteproc.h> | 
 |  | 
 | #include "remoteproc_internal.h" | 
 | #include "remoteproc_elf_helpers.h" | 
 | #include "pru_rproc.h" | 
 |  | 
 | /* PRU_ICSS_PRU_CTRL registers */ | 
 | #define PRU_CTRL_CTRL		0x0000 | 
 | #define PRU_CTRL_STS		0x0004 | 
 | #define PRU_CTRL_WAKEUP_EN	0x0008 | 
 | #define PRU_CTRL_CYCLE		0x000C | 
 | #define PRU_CTRL_STALL		0x0010 | 
 | #define PRU_CTRL_CTBIR0		0x0020 | 
 | #define PRU_CTRL_CTBIR1		0x0024 | 
 | #define PRU_CTRL_CTPPR0		0x0028 | 
 | #define PRU_CTRL_CTPPR1		0x002C | 
 |  | 
 | /* CTRL register bit-fields */ | 
 | #define CTRL_CTRL_SOFT_RST_N	BIT(0) | 
 | #define CTRL_CTRL_EN		BIT(1) | 
 | #define CTRL_CTRL_SLEEPING	BIT(2) | 
 | #define CTRL_CTRL_CTR_EN	BIT(3) | 
 | #define CTRL_CTRL_SINGLE_STEP	BIT(8) | 
 | #define CTRL_CTRL_RUNSTATE	BIT(15) | 
 |  | 
 | /* PRU_ICSS_PRU_DEBUG registers */ | 
 | #define PRU_DEBUG_GPREG(x)	(0x0000 + (x) * 4) | 
 | #define PRU_DEBUG_CT_REG(x)	(0x0080 + (x) * 4) | 
 |  | 
 | /* PRU/RTU/Tx_PRU Core IRAM address masks */ | 
 | #define PRU_IRAM_ADDR_MASK	0x3ffff | 
 | #define PRU0_IRAM_ADDR_MASK	0x34000 | 
 | #define PRU1_IRAM_ADDR_MASK	0x38000 | 
 | #define RTU0_IRAM_ADDR_MASK	0x4000 | 
 | #define RTU1_IRAM_ADDR_MASK	0x6000 | 
 | #define TX_PRU0_IRAM_ADDR_MASK	0xa000 | 
 | #define TX_PRU1_IRAM_ADDR_MASK	0xc000 | 
 |  | 
 | /* PRU device addresses for various type of PRU RAMs */ | 
 | #define PRU_IRAM_DA	0	/* Instruction RAM */ | 
 | #define PRU_PDRAM_DA	0	/* Primary Data RAM */ | 
 | #define PRU_SDRAM_DA	0x2000	/* Secondary Data RAM */ | 
 | #define PRU_SHRDRAM_DA	0x10000 /* Shared Data RAM */ | 
 |  | 
 | #define MAX_PRU_SYS_EVENTS 160 | 
 |  | 
 | /** | 
 |  * enum pru_iomem - PRU core memory/register range identifiers | 
 |  * | 
 |  * @PRU_IOMEM_IRAM: PRU Instruction RAM range | 
 |  * @PRU_IOMEM_CTRL: PRU Control register range | 
 |  * @PRU_IOMEM_DEBUG: PRU Debug register range | 
 |  * @PRU_IOMEM_MAX: just keep this one at the end | 
 |  */ | 
 | enum pru_iomem { | 
 | 	PRU_IOMEM_IRAM = 0, | 
 | 	PRU_IOMEM_CTRL, | 
 | 	PRU_IOMEM_DEBUG, | 
 | 	PRU_IOMEM_MAX, | 
 | }; | 
 |  | 
 | /** | 
 |  * enum pru_type - PRU core type identifier | 
 |  * | 
 |  * @PRU_TYPE_PRU: Programmable Real-time Unit | 
 |  * @PRU_TYPE_RTU: Auxiliary Programmable Real-Time Unit | 
 |  * @PRU_TYPE_TX_PRU: Transmit Programmable Real-Time Unit | 
 |  * @PRU_TYPE_MAX: just keep this one at the end | 
 |  */ | 
 | enum pru_type { | 
 | 	PRU_TYPE_PRU = 0, | 
 | 	PRU_TYPE_RTU, | 
 | 	PRU_TYPE_TX_PRU, | 
 | 	PRU_TYPE_MAX, | 
 | }; | 
 |  | 
 | /** | 
 |  * struct pru_private_data - device data for a PRU core | 
 |  * @type: type of the PRU core (PRU, RTU, Tx_PRU) | 
 |  * @is_k3: flag used to identify the need for special load handling | 
 |  */ | 
 | struct pru_private_data { | 
 | 	enum pru_type type; | 
 | 	unsigned int is_k3 : 1; | 
 | }; | 
 |  | 
 | /** | 
 |  * struct pru_rproc - PRU remoteproc structure | 
 |  * @id: id of the PRU core within the PRUSS | 
 |  * @dev: PRU core device pointer | 
 |  * @pruss: back-reference to parent PRUSS structure | 
 |  * @rproc: remoteproc pointer for this PRU core | 
 |  * @data: PRU core specific data | 
 |  * @mem_regions: data for each of the PRU memory regions | 
 |  * @fw_name: name of firmware image used during loading | 
 |  * @mapped_irq: virtual interrupt numbers of created fw specific mapping | 
 |  * @pru_interrupt_map: pointer to interrupt mapping description (firmware) | 
 |  * @pru_interrupt_map_sz: pru_interrupt_map size | 
 |  * @dbg_single_step: debug state variable to set PRU into single step mode | 
 |  * @dbg_continuous: debug state variable to restore PRU execution mode | 
 |  * @evt_count: number of mapped events | 
 |  */ | 
 | struct pru_rproc { | 
 | 	int id; | 
 | 	struct device *dev; | 
 | 	struct pruss *pruss; | 
 | 	struct rproc *rproc; | 
 | 	const struct pru_private_data *data; | 
 | 	struct pruss_mem_region mem_regions[PRU_IOMEM_MAX]; | 
 | 	const char *fw_name; | 
 | 	unsigned int *mapped_irq; | 
 | 	struct pru_irq_rsc *pru_interrupt_map; | 
 | 	size_t pru_interrupt_map_sz; | 
 | 	u32 dbg_single_step; | 
 | 	u32 dbg_continuous; | 
 | 	u8 evt_count; | 
 | }; | 
 |  | 
 | static inline u32 pru_control_read_reg(struct pru_rproc *pru, unsigned int reg) | 
 | { | 
 | 	return readl_relaxed(pru->mem_regions[PRU_IOMEM_CTRL].va + reg); | 
 | } | 
 |  | 
 | static inline | 
 | void pru_control_write_reg(struct pru_rproc *pru, unsigned int reg, u32 val) | 
 | { | 
 | 	writel_relaxed(val, pru->mem_regions[PRU_IOMEM_CTRL].va + reg); | 
 | } | 
 |  | 
 | static inline u32 pru_debug_read_reg(struct pru_rproc *pru, unsigned int reg) | 
 | { | 
 | 	return readl_relaxed(pru->mem_regions[PRU_IOMEM_DEBUG].va + reg); | 
 | } | 
 |  | 
 | static int regs_show(struct seq_file *s, void *data) | 
 | { | 
 | 	struct rproc *rproc = s->private; | 
 | 	struct pru_rproc *pru = rproc->priv; | 
 | 	int i, nregs = 32; | 
 | 	u32 pru_sts; | 
 | 	int pru_is_running; | 
 |  | 
 | 	seq_puts(s, "============== Control Registers ==============\n"); | 
 | 	seq_printf(s, "CTRL      := 0x%08x\n", | 
 | 		   pru_control_read_reg(pru, PRU_CTRL_CTRL)); | 
 | 	pru_sts = pru_control_read_reg(pru, PRU_CTRL_STS); | 
 | 	seq_printf(s, "STS (PC)  := 0x%08x (0x%08x)\n", pru_sts, pru_sts << 2); | 
 | 	seq_printf(s, "WAKEUP_EN := 0x%08x\n", | 
 | 		   pru_control_read_reg(pru, PRU_CTRL_WAKEUP_EN)); | 
 | 	seq_printf(s, "CYCLE     := 0x%08x\n", | 
 | 		   pru_control_read_reg(pru, PRU_CTRL_CYCLE)); | 
 | 	seq_printf(s, "STALL     := 0x%08x\n", | 
 | 		   pru_control_read_reg(pru, PRU_CTRL_STALL)); | 
 | 	seq_printf(s, "CTBIR0    := 0x%08x\n", | 
 | 		   pru_control_read_reg(pru, PRU_CTRL_CTBIR0)); | 
 | 	seq_printf(s, "CTBIR1    := 0x%08x\n", | 
 | 		   pru_control_read_reg(pru, PRU_CTRL_CTBIR1)); | 
 | 	seq_printf(s, "CTPPR0    := 0x%08x\n", | 
 | 		   pru_control_read_reg(pru, PRU_CTRL_CTPPR0)); | 
 | 	seq_printf(s, "CTPPR1    := 0x%08x\n", | 
 | 		   pru_control_read_reg(pru, PRU_CTRL_CTPPR1)); | 
 |  | 
 | 	seq_puts(s, "=============== Debug Registers ===============\n"); | 
 | 	pru_is_running = pru_control_read_reg(pru, PRU_CTRL_CTRL) & | 
 | 				CTRL_CTRL_RUNSTATE; | 
 | 	if (pru_is_running) { | 
 | 		seq_puts(s, "PRU is executing, cannot print/access debug registers.\n"); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < nregs; i++) { | 
 | 		seq_printf(s, "GPREG%-2d := 0x%08x\tCT_REG%-2d := 0x%08x\n", | 
 | 			   i, pru_debug_read_reg(pru, PRU_DEBUG_GPREG(i)), | 
 | 			   i, pru_debug_read_reg(pru, PRU_DEBUG_CT_REG(i))); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 | DEFINE_SHOW_ATTRIBUTE(regs); | 
 |  | 
 | /* | 
 |  * Control PRU single-step mode | 
 |  * | 
 |  * This is a debug helper function used for controlling the single-step | 
 |  * mode of the PRU. The PRU Debug registers are not accessible when the | 
 |  * PRU is in RUNNING state. | 
 |  * | 
 |  * Writing a non-zero value sets the PRU into single-step mode irrespective | 
 |  * of its previous state. The PRU mode is saved only on the first set into | 
 |  * a single-step mode. Writing a zero value will restore the PRU into its | 
 |  * original mode. | 
 |  */ | 
 | static int pru_rproc_debug_ss_set(void *data, u64 val) | 
 | { | 
 | 	struct rproc *rproc = data; | 
 | 	struct pru_rproc *pru = rproc->priv; | 
 | 	u32 reg_val; | 
 |  | 
 | 	val = val ? 1 : 0; | 
 | 	if (!val && !pru->dbg_single_step) | 
 | 		return 0; | 
 |  | 
 | 	reg_val = pru_control_read_reg(pru, PRU_CTRL_CTRL); | 
 |  | 
 | 	if (val && !pru->dbg_single_step) | 
 | 		pru->dbg_continuous = reg_val; | 
 |  | 
 | 	if (val) | 
 | 		reg_val |= CTRL_CTRL_SINGLE_STEP | CTRL_CTRL_EN; | 
 | 	else | 
 | 		reg_val = pru->dbg_continuous; | 
 |  | 
 | 	pru->dbg_single_step = val; | 
 | 	pru_control_write_reg(pru, PRU_CTRL_CTRL, reg_val); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int pru_rproc_debug_ss_get(void *data, u64 *val) | 
 | { | 
 | 	struct rproc *rproc = data; | 
 | 	struct pru_rproc *pru = rproc->priv; | 
 |  | 
 | 	*val = pru->dbg_single_step; | 
 |  | 
 | 	return 0; | 
 | } | 
 | DEFINE_SIMPLE_ATTRIBUTE(pru_rproc_debug_ss_fops, pru_rproc_debug_ss_get, | 
 | 			pru_rproc_debug_ss_set, "%llu\n"); | 
 |  | 
 | /* | 
 |  * Create PRU-specific debugfs entries | 
 |  * | 
 |  * The entries are created only if the parent remoteproc debugfs directory | 
 |  * exists, and will be cleaned up by the remoteproc core. | 
 |  */ | 
 | static void pru_rproc_create_debug_entries(struct rproc *rproc) | 
 | { | 
 | 	if (!rproc->dbg_dir) | 
 | 		return; | 
 |  | 
 | 	debugfs_create_file("regs", 0400, rproc->dbg_dir, | 
 | 			    rproc, ®s_fops); | 
 | 	debugfs_create_file("single_step", 0600, rproc->dbg_dir, | 
 | 			    rproc, &pru_rproc_debug_ss_fops); | 
 | } | 
 |  | 
 | static void pru_dispose_irq_mapping(struct pru_rproc *pru) | 
 | { | 
 | 	while (pru->evt_count--) { | 
 | 		if (pru->mapped_irq[pru->evt_count] > 0) | 
 | 			irq_dispose_mapping(pru->mapped_irq[pru->evt_count]); | 
 | 	} | 
 |  | 
 | 	kfree(pru->mapped_irq); | 
 | } | 
 |  | 
 | /* | 
 |  * Parse the custom PRU interrupt map resource and configure the INTC | 
 |  * appropriately. | 
 |  */ | 
 | static int pru_handle_intrmap(struct rproc *rproc) | 
 | { | 
 | 	struct device *dev = rproc->dev.parent; | 
 | 	struct pru_rproc *pru = rproc->priv; | 
 | 	struct pru_irq_rsc *rsc = pru->pru_interrupt_map; | 
 | 	struct irq_fwspec fwspec; | 
 | 	struct device_node *irq_parent; | 
 | 	int i, ret = 0; | 
 |  | 
 | 	/* not having pru_interrupt_map is not an error */ | 
 | 	if (!rsc) | 
 | 		return 0; | 
 |  | 
 | 	/* currently supporting only type 0 */ | 
 | 	if (rsc->type != 0) { | 
 | 		dev_err(dev, "unsupported rsc type: %d\n", rsc->type); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (rsc->num_evts > MAX_PRU_SYS_EVENTS) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (sizeof(*rsc) + rsc->num_evts * sizeof(struct pruss_int_map) != | 
 | 	    pru->pru_interrupt_map_sz) | 
 | 		return -EINVAL; | 
 |  | 
 | 	pru->evt_count = rsc->num_evts; | 
 | 	pru->mapped_irq = kcalloc(pru->evt_count, sizeof(unsigned int), | 
 | 				  GFP_KERNEL); | 
 | 	if (!pru->mapped_irq) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	/* | 
 | 	 * parse and fill in system event to interrupt channel and | 
 | 	 * channel-to-host mapping | 
 | 	 */ | 
 | 	irq_parent = of_irq_find_parent(pru->dev->of_node); | 
 | 	if (!irq_parent) { | 
 | 		kfree(pru->mapped_irq); | 
 | 		return -ENODEV; | 
 | 	} | 
 |  | 
 | 	fwspec.fwnode = of_node_to_fwnode(irq_parent); | 
 | 	fwspec.param_count = 3; | 
 | 	for (i = 0; i < pru->evt_count; i++) { | 
 | 		fwspec.param[0] = rsc->pru_intc_map[i].event; | 
 | 		fwspec.param[1] = rsc->pru_intc_map[i].chnl; | 
 | 		fwspec.param[2] = rsc->pru_intc_map[i].host; | 
 |  | 
 | 		dev_dbg(dev, "mapping%d: event %d, chnl %d, host %d\n", | 
 | 			i, fwspec.param[0], fwspec.param[1], fwspec.param[2]); | 
 |  | 
 | 		pru->mapped_irq[i] = irq_create_fwspec_mapping(&fwspec); | 
 | 		if (!pru->mapped_irq[i]) { | 
 | 			dev_err(dev, "failed to get virq\n"); | 
 | 			ret = pru->mapped_irq[i]; | 
 | 			goto map_fail; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return ret; | 
 |  | 
 | map_fail: | 
 | 	pru_dispose_irq_mapping(pru); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int pru_rproc_start(struct rproc *rproc) | 
 | { | 
 | 	struct device *dev = &rproc->dev; | 
 | 	struct pru_rproc *pru = rproc->priv; | 
 | 	const char *names[PRU_TYPE_MAX] = { "PRU", "RTU", "Tx_PRU" }; | 
 | 	u32 val; | 
 | 	int ret; | 
 |  | 
 | 	dev_dbg(dev, "starting %s%d: entry-point = 0x%llx\n", | 
 | 		names[pru->data->type], pru->id, (rproc->bootaddr >> 2)); | 
 |  | 
 | 	ret = pru_handle_intrmap(rproc); | 
 | 	/* | 
 | 	 * reset references to pru interrupt map - they will stop being valid | 
 | 	 * after rproc_start returns | 
 | 	 */ | 
 | 	pru->pru_interrupt_map = NULL; | 
 | 	pru->pru_interrupt_map_sz = 0; | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	val = CTRL_CTRL_EN | ((rproc->bootaddr >> 2) << 16); | 
 | 	pru_control_write_reg(pru, PRU_CTRL_CTRL, val); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int pru_rproc_stop(struct rproc *rproc) | 
 | { | 
 | 	struct device *dev = &rproc->dev; | 
 | 	struct pru_rproc *pru = rproc->priv; | 
 | 	const char *names[PRU_TYPE_MAX] = { "PRU", "RTU", "Tx_PRU" }; | 
 | 	u32 val; | 
 |  | 
 | 	dev_dbg(dev, "stopping %s%d\n", names[pru->data->type], pru->id); | 
 |  | 
 | 	val = pru_control_read_reg(pru, PRU_CTRL_CTRL); | 
 | 	val &= ~CTRL_CTRL_EN; | 
 | 	pru_control_write_reg(pru, PRU_CTRL_CTRL, val); | 
 |  | 
 | 	/* dispose irq mapping - new firmware can provide new mapping */ | 
 | 	if (pru->mapped_irq) | 
 | 		pru_dispose_irq_mapping(pru); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Convert PRU device address (data spaces only) to kernel virtual address. | 
 |  * | 
 |  * Each PRU has access to all data memories within the PRUSS, accessible at | 
 |  * different ranges. So, look through both its primary and secondary Data | 
 |  * RAMs as well as any shared Data RAM to convert a PRU device address to | 
 |  * kernel virtual address. Data RAM0 is primary Data RAM for PRU0 and Data | 
 |  * RAM1 is primary Data RAM for PRU1. | 
 |  */ | 
 | static void *pru_d_da_to_va(struct pru_rproc *pru, u32 da, size_t len) | 
 | { | 
 | 	struct pruss_mem_region dram0, dram1, shrd_ram; | 
 | 	struct pruss *pruss = pru->pruss; | 
 | 	u32 offset; | 
 | 	void *va = NULL; | 
 |  | 
 | 	if (len == 0) | 
 | 		return NULL; | 
 |  | 
 | 	dram0 = pruss->mem_regions[PRUSS_MEM_DRAM0]; | 
 | 	dram1 = pruss->mem_regions[PRUSS_MEM_DRAM1]; | 
 | 	/* PRU1 has its local RAM addresses reversed */ | 
 | 	if (pru->id == 1) | 
 | 		swap(dram0, dram1); | 
 | 	shrd_ram = pruss->mem_regions[PRUSS_MEM_SHRD_RAM2]; | 
 |  | 
 | 	if (da >= PRU_PDRAM_DA && da + len <= PRU_PDRAM_DA + dram0.size) { | 
 | 		offset = da - PRU_PDRAM_DA; | 
 | 		va = (__force void *)(dram0.va + offset); | 
 | 	} else if (da >= PRU_SDRAM_DA && | 
 | 		   da + len <= PRU_SDRAM_DA + dram1.size) { | 
 | 		offset = da - PRU_SDRAM_DA; | 
 | 		va = (__force void *)(dram1.va + offset); | 
 | 	} else if (da >= PRU_SHRDRAM_DA && | 
 | 		   da + len <= PRU_SHRDRAM_DA + shrd_ram.size) { | 
 | 		offset = da - PRU_SHRDRAM_DA; | 
 | 		va = (__force void *)(shrd_ram.va + offset); | 
 | 	} | 
 |  | 
 | 	return va; | 
 | } | 
 |  | 
 | /* | 
 |  * Convert PRU device address (instruction space) to kernel virtual address. | 
 |  * | 
 |  * A PRU does not have an unified address space. Each PRU has its very own | 
 |  * private Instruction RAM, and its device address is identical to that of | 
 |  * its primary Data RAM device address. | 
 |  */ | 
 | static void *pru_i_da_to_va(struct pru_rproc *pru, u32 da, size_t len) | 
 | { | 
 | 	u32 offset; | 
 | 	void *va = NULL; | 
 |  | 
 | 	if (len == 0) | 
 | 		return NULL; | 
 |  | 
 | 	if (da >= PRU_IRAM_DA && | 
 | 	    da + len <= PRU_IRAM_DA + pru->mem_regions[PRU_IOMEM_IRAM].size) { | 
 | 		offset = da - PRU_IRAM_DA; | 
 | 		va = (__force void *)(pru->mem_regions[PRU_IOMEM_IRAM].va + | 
 | 				      offset); | 
 | 	} | 
 |  | 
 | 	return va; | 
 | } | 
 |  | 
 | /* | 
 |  * Provide address translations for only PRU Data RAMs through the remoteproc | 
 |  * core for any PRU client drivers. The PRU Instruction RAM access is restricted | 
 |  * only to the PRU loader code. | 
 |  */ | 
 | static void *pru_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len) | 
 | { | 
 | 	struct pru_rproc *pru = rproc->priv; | 
 |  | 
 | 	return pru_d_da_to_va(pru, da, len); | 
 | } | 
 |  | 
 | /* PRU-specific address translator used by PRU loader. */ | 
 | static void *pru_da_to_va(struct rproc *rproc, u64 da, size_t len, bool is_iram) | 
 | { | 
 | 	struct pru_rproc *pru = rproc->priv; | 
 | 	void *va; | 
 |  | 
 | 	if (is_iram) | 
 | 		va = pru_i_da_to_va(pru, da, len); | 
 | 	else | 
 | 		va = pru_d_da_to_va(pru, da, len); | 
 |  | 
 | 	return va; | 
 | } | 
 |  | 
 | static struct rproc_ops pru_rproc_ops = { | 
 | 	.start		= pru_rproc_start, | 
 | 	.stop		= pru_rproc_stop, | 
 | 	.da_to_va	= pru_rproc_da_to_va, | 
 | }; | 
 |  | 
 | /* | 
 |  * Custom memory copy implementation for ICSSG PRU/RTU/Tx_PRU Cores | 
 |  * | 
 |  * The ICSSG PRU/RTU/Tx_PRU cores have a memory copying issue with IRAM | 
 |  * memories, that is not seen on previous generation SoCs. The data is reflected | 
 |  * properly in the IRAM memories only for integer (4-byte) copies. Any unaligned | 
 |  * copies result in all the other pre-existing bytes zeroed out within that | 
 |  * 4-byte boundary, thereby resulting in wrong text/code in the IRAMs. Also, the | 
 |  * IRAM memory port interface does not allow any 8-byte copies (as commonly used | 
 |  * by ARM64 memcpy implementation) and throws an exception. The DRAM memory | 
 |  * ports do not show this behavior. | 
 |  */ | 
 | static int pru_rproc_memcpy(void *dest, const void *src, size_t count) | 
 | { | 
 | 	const u32 *s = src; | 
 | 	u32 *d = dest; | 
 | 	size_t size = count / 4; | 
 | 	u32 *tmp_src = NULL; | 
 |  | 
 | 	/* | 
 | 	 * TODO: relax limitation of 4-byte aligned dest addresses and copy | 
 | 	 * sizes | 
 | 	 */ | 
 | 	if ((long)dest % 4 || count % 4) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* src offsets in ELF firmware image can be non-aligned */ | 
 | 	if ((long)src % 4) { | 
 | 		tmp_src = kmemdup(src, count, GFP_KERNEL); | 
 | 		if (!tmp_src) | 
 | 			return -ENOMEM; | 
 | 		s = tmp_src; | 
 | 	} | 
 |  | 
 | 	while (size--) | 
 | 		*d++ = *s++; | 
 |  | 
 | 	kfree(tmp_src); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int | 
 | pru_rproc_load_elf_segments(struct rproc *rproc, const struct firmware *fw) | 
 | { | 
 | 	struct pru_rproc *pru = rproc->priv; | 
 | 	struct device *dev = &rproc->dev; | 
 | 	struct elf32_hdr *ehdr; | 
 | 	struct elf32_phdr *phdr; | 
 | 	int i, ret = 0; | 
 | 	const u8 *elf_data = fw->data; | 
 |  | 
 | 	ehdr = (struct elf32_hdr *)elf_data; | 
 | 	phdr = (struct elf32_phdr *)(elf_data + ehdr->e_phoff); | 
 |  | 
 | 	/* go through the available ELF segments */ | 
 | 	for (i = 0; i < ehdr->e_phnum; i++, phdr++) { | 
 | 		u32 da = phdr->p_paddr; | 
 | 		u32 memsz = phdr->p_memsz; | 
 | 		u32 filesz = phdr->p_filesz; | 
 | 		u32 offset = phdr->p_offset; | 
 | 		bool is_iram; | 
 | 		void *ptr; | 
 |  | 
 | 		if (phdr->p_type != PT_LOAD || !filesz) | 
 | 			continue; | 
 |  | 
 | 		dev_dbg(dev, "phdr: type %d da 0x%x memsz 0x%x filesz 0x%x\n", | 
 | 			phdr->p_type, da, memsz, filesz); | 
 |  | 
 | 		if (filesz > memsz) { | 
 | 			dev_err(dev, "bad phdr filesz 0x%x memsz 0x%x\n", | 
 | 				filesz, memsz); | 
 | 			ret = -EINVAL; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		if (offset + filesz > fw->size) { | 
 | 			dev_err(dev, "truncated fw: need 0x%x avail 0x%zx\n", | 
 | 				offset + filesz, fw->size); | 
 | 			ret = -EINVAL; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		/* grab the kernel address for this device address */ | 
 | 		is_iram = phdr->p_flags & PF_X; | 
 | 		ptr = pru_da_to_va(rproc, da, memsz, is_iram); | 
 | 		if (!ptr) { | 
 | 			dev_err(dev, "bad phdr da 0x%x mem 0x%x\n", da, memsz); | 
 | 			ret = -EINVAL; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		if (pru->data->is_k3 && is_iram) { | 
 | 			ret = pru_rproc_memcpy(ptr, elf_data + phdr->p_offset, | 
 | 					       filesz); | 
 | 			if (ret) { | 
 | 				dev_err(dev, "PRU memory copy failed for da 0x%x memsz 0x%x\n", | 
 | 					da, memsz); | 
 | 				break; | 
 | 			} | 
 | 		} else { | 
 | 			memcpy(ptr, elf_data + phdr->p_offset, filesz); | 
 | 		} | 
 |  | 
 | 		/* skip the memzero logic performed by remoteproc ELF loader */ | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static const void * | 
 | pru_rproc_find_interrupt_map(struct device *dev, const struct firmware *fw) | 
 | { | 
 | 	struct elf32_shdr *shdr, *name_table_shdr; | 
 | 	const char *name_table; | 
 | 	const u8 *elf_data = fw->data; | 
 | 	struct elf32_hdr *ehdr = (struct elf32_hdr *)elf_data; | 
 | 	u16 shnum = ehdr->e_shnum; | 
 | 	u16 shstrndx = ehdr->e_shstrndx; | 
 | 	int i; | 
 |  | 
 | 	/* first, get the section header */ | 
 | 	shdr = (struct elf32_shdr *)(elf_data + ehdr->e_shoff); | 
 | 	/* compute name table section header entry in shdr array */ | 
 | 	name_table_shdr = shdr + shstrndx; | 
 | 	/* finally, compute the name table section address in elf */ | 
 | 	name_table = elf_data + name_table_shdr->sh_offset; | 
 |  | 
 | 	for (i = 0; i < shnum; i++, shdr++) { | 
 | 		u32 size = shdr->sh_size; | 
 | 		u32 offset = shdr->sh_offset; | 
 | 		u32 name = shdr->sh_name; | 
 |  | 
 | 		if (strcmp(name_table + name, ".pru_irq_map")) | 
 | 			continue; | 
 |  | 
 | 		/* make sure we have the entire irq map */ | 
 | 		if (offset + size > fw->size || offset + size < size) { | 
 | 			dev_err(dev, ".pru_irq_map section truncated\n"); | 
 | 			return ERR_PTR(-EINVAL); | 
 | 		} | 
 |  | 
 | 		/* make sure irq map has at least the header */ | 
 | 		if (sizeof(struct pru_irq_rsc) > size) { | 
 | 			dev_err(dev, "header-less .pru_irq_map section\n"); | 
 | 			return ERR_PTR(-EINVAL); | 
 | 		} | 
 |  | 
 | 		return shdr; | 
 | 	} | 
 |  | 
 | 	dev_dbg(dev, "no .pru_irq_map section found for this fw\n"); | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * Use a custom parse_fw callback function for dealing with PRU firmware | 
 |  * specific sections. | 
 |  * | 
 |  * The firmware blob can contain optional ELF sections: .resource_table section | 
 |  * and .pru_irq_map one. The second one contains the PRUSS interrupt mapping | 
 |  * description, which needs to be setup before powering on the PRU core. To | 
 |  * avoid RAM wastage this ELF section is not mapped to any ELF segment (by the | 
 |  * firmware linker) and therefore is not loaded to PRU memory. | 
 |  */ | 
 | static int pru_rproc_parse_fw(struct rproc *rproc, const struct firmware *fw) | 
 | { | 
 | 	struct device *dev = &rproc->dev; | 
 | 	struct pru_rproc *pru = rproc->priv; | 
 | 	const u8 *elf_data = fw->data; | 
 | 	const void *shdr; | 
 | 	u8 class = fw_elf_get_class(fw); | 
 | 	u64 sh_offset; | 
 | 	int ret; | 
 |  | 
 | 	/* load optional rsc table */ | 
 | 	ret = rproc_elf_load_rsc_table(rproc, fw); | 
 | 	if (ret == -EINVAL) | 
 | 		dev_dbg(&rproc->dev, "no resource table found for this fw\n"); | 
 | 	else if (ret) | 
 | 		return ret; | 
 |  | 
 | 	/* find .pru_interrupt_map section, not having it is not an error */ | 
 | 	shdr = pru_rproc_find_interrupt_map(dev, fw); | 
 | 	if (IS_ERR(shdr)) | 
 | 		return PTR_ERR(shdr); | 
 |  | 
 | 	if (!shdr) | 
 | 		return 0; | 
 |  | 
 | 	/* preserve pointer to PRU interrupt map together with it size */ | 
 | 	sh_offset = elf_shdr_get_sh_offset(class, shdr); | 
 | 	pru->pru_interrupt_map = (struct pru_irq_rsc *)(elf_data + sh_offset); | 
 | 	pru->pru_interrupt_map_sz = elf_shdr_get_sh_size(class, shdr); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Compute PRU id based on the IRAM addresses. The PRU IRAMs are | 
 |  * always at a particular offset within the PRUSS address space. | 
 |  */ | 
 | static int pru_rproc_set_id(struct pru_rproc *pru) | 
 | { | 
 | 	int ret = 0; | 
 |  | 
 | 	switch (pru->mem_regions[PRU_IOMEM_IRAM].pa & PRU_IRAM_ADDR_MASK) { | 
 | 	case TX_PRU0_IRAM_ADDR_MASK: | 
 | 		fallthrough; | 
 | 	case RTU0_IRAM_ADDR_MASK: | 
 | 		fallthrough; | 
 | 	case PRU0_IRAM_ADDR_MASK: | 
 | 		pru->id = 0; | 
 | 		break; | 
 | 	case TX_PRU1_IRAM_ADDR_MASK: | 
 | 		fallthrough; | 
 | 	case RTU1_IRAM_ADDR_MASK: | 
 | 		fallthrough; | 
 | 	case PRU1_IRAM_ADDR_MASK: | 
 | 		pru->id = 1; | 
 | 		break; | 
 | 	default: | 
 | 		ret = -EINVAL; | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int pru_rproc_probe(struct platform_device *pdev) | 
 | { | 
 | 	struct device *dev = &pdev->dev; | 
 | 	struct device_node *np = dev->of_node; | 
 | 	struct platform_device *ppdev = to_platform_device(dev->parent); | 
 | 	struct pru_rproc *pru; | 
 | 	const char *fw_name; | 
 | 	struct rproc *rproc = NULL; | 
 | 	struct resource *res; | 
 | 	int i, ret; | 
 | 	const struct pru_private_data *data; | 
 | 	const char *mem_names[PRU_IOMEM_MAX] = { "iram", "control", "debug" }; | 
 |  | 
 | 	data = of_device_get_match_data(&pdev->dev); | 
 | 	if (!data) | 
 | 		return -ENODEV; | 
 |  | 
 | 	ret = of_property_read_string(np, "firmware-name", &fw_name); | 
 | 	if (ret) { | 
 | 		dev_err(dev, "unable to retrieve firmware-name %d\n", ret); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	rproc = devm_rproc_alloc(dev, pdev->name, &pru_rproc_ops, fw_name, | 
 | 				 sizeof(*pru)); | 
 | 	if (!rproc) { | 
 | 		dev_err(dev, "rproc_alloc failed\n"); | 
 | 		return -ENOMEM; | 
 | 	} | 
 | 	/* use a custom load function to deal with PRU-specific quirks */ | 
 | 	rproc->ops->load = pru_rproc_load_elf_segments; | 
 |  | 
 | 	/* use a custom parse function to deal with PRU-specific resources */ | 
 | 	rproc->ops->parse_fw = pru_rproc_parse_fw; | 
 |  | 
 | 	/* error recovery is not supported for PRUs */ | 
 | 	rproc->recovery_disabled = true; | 
 |  | 
 | 	/* | 
 | 	 * rproc_add will auto-boot the processor normally, but this is not | 
 | 	 * desired with PRU client driven boot-flow methodology. A PRU | 
 | 	 * application/client driver will boot the corresponding PRU | 
 | 	 * remote-processor as part of its state machine either through the | 
 | 	 * remoteproc sysfs interface or through the equivalent kernel API. | 
 | 	 */ | 
 | 	rproc->auto_boot = false; | 
 |  | 
 | 	pru = rproc->priv; | 
 | 	pru->dev = dev; | 
 | 	pru->data = data; | 
 | 	pru->pruss = platform_get_drvdata(ppdev); | 
 | 	pru->rproc = rproc; | 
 | 	pru->fw_name = fw_name; | 
 |  | 
 | 	for (i = 0; i < ARRAY_SIZE(mem_names); i++) { | 
 | 		res = platform_get_resource_byname(pdev, IORESOURCE_MEM, | 
 | 						   mem_names[i]); | 
 | 		pru->mem_regions[i].va = devm_ioremap_resource(dev, res); | 
 | 		if (IS_ERR(pru->mem_regions[i].va)) { | 
 | 			dev_err(dev, "failed to parse and map memory resource %d %s\n", | 
 | 				i, mem_names[i]); | 
 | 			ret = PTR_ERR(pru->mem_regions[i].va); | 
 | 			return ret; | 
 | 		} | 
 | 		pru->mem_regions[i].pa = res->start; | 
 | 		pru->mem_regions[i].size = resource_size(res); | 
 |  | 
 | 		dev_dbg(dev, "memory %8s: pa %pa size 0x%zx va %pK\n", | 
 | 			mem_names[i], &pru->mem_regions[i].pa, | 
 | 			pru->mem_regions[i].size, pru->mem_regions[i].va); | 
 | 	} | 
 |  | 
 | 	ret = pru_rproc_set_id(pru); | 
 | 	if (ret < 0) | 
 | 		return ret; | 
 |  | 
 | 	platform_set_drvdata(pdev, rproc); | 
 |  | 
 | 	ret = devm_rproc_add(dev, pru->rproc); | 
 | 	if (ret) { | 
 | 		dev_err(dev, "rproc_add failed: %d\n", ret); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	pru_rproc_create_debug_entries(rproc); | 
 |  | 
 | 	dev_dbg(dev, "PRU rproc node %pOF probed successfully\n", np); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int pru_rproc_remove(struct platform_device *pdev) | 
 | { | 
 | 	struct device *dev = &pdev->dev; | 
 | 	struct rproc *rproc = platform_get_drvdata(pdev); | 
 |  | 
 | 	dev_dbg(dev, "%s: removing rproc %s\n", __func__, rproc->name); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static const struct pru_private_data pru_data = { | 
 | 	.type = PRU_TYPE_PRU, | 
 | }; | 
 |  | 
 | static const struct pru_private_data k3_pru_data = { | 
 | 	.type = PRU_TYPE_PRU, | 
 | 	.is_k3 = 1, | 
 | }; | 
 |  | 
 | static const struct pru_private_data k3_rtu_data = { | 
 | 	.type = PRU_TYPE_RTU, | 
 | 	.is_k3 = 1, | 
 | }; | 
 |  | 
 | static const struct pru_private_data k3_tx_pru_data = { | 
 | 	.type = PRU_TYPE_TX_PRU, | 
 | 	.is_k3 = 1, | 
 | }; | 
 |  | 
 | static const struct of_device_id pru_rproc_match[] = { | 
 | 	{ .compatible = "ti,am3356-pru",	.data = &pru_data }, | 
 | 	{ .compatible = "ti,am4376-pru",	.data = &pru_data }, | 
 | 	{ .compatible = "ti,am5728-pru",	.data = &pru_data }, | 
 | 	{ .compatible = "ti,k2g-pru",		.data = &pru_data }, | 
 | 	{ .compatible = "ti,am654-pru",		.data = &k3_pru_data }, | 
 | 	{ .compatible = "ti,am654-rtu",		.data = &k3_rtu_data }, | 
 | 	{ .compatible = "ti,am654-tx-pru",	.data = &k3_tx_pru_data }, | 
 | 	{ .compatible = "ti,j721e-pru",		.data = &k3_pru_data }, | 
 | 	{ .compatible = "ti,j721e-rtu",		.data = &k3_rtu_data }, | 
 | 	{ .compatible = "ti,j721e-tx-pru",	.data = &k3_tx_pru_data }, | 
 | 	{}, | 
 | }; | 
 | MODULE_DEVICE_TABLE(of, pru_rproc_match); | 
 |  | 
 | static struct platform_driver pru_rproc_driver = { | 
 | 	.driver = { | 
 | 		.name   = "pru-rproc", | 
 | 		.of_match_table = pru_rproc_match, | 
 | 		.suppress_bind_attrs = true, | 
 | 	}, | 
 | 	.probe  = pru_rproc_probe, | 
 | 	.remove = pru_rproc_remove, | 
 | }; | 
 | module_platform_driver(pru_rproc_driver); | 
 |  | 
 | MODULE_AUTHOR("Suman Anna <s-anna@ti.com>"); | 
 | MODULE_AUTHOR("Andrew F. Davis <afd@ti.com>"); | 
 | MODULE_AUTHOR("Grzegorz Jaszczyk <grzegorz.jaszczyk@linaro.org>"); | 
 | MODULE_DESCRIPTION("PRU-ICSS Remote Processor Driver"); | 
 | MODULE_LICENSE("GPL v2"); |