|  | /* Copyright (C) 2013 Cisco Systems, Inc, 2013. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU General Public License | 
|  | * as published by the Free Software Foundation; either version 2 | 
|  | * of the License. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | * GNU General Public License for more details. | 
|  | * | 
|  | * Author: Vijay Subramanian <vijaynsu@cisco.com> | 
|  | * Author: Mythili Prabhu <mysuryan@cisco.com> | 
|  | * | 
|  | * ECN support is added by Naeem Khademi <naeemk@ifi.uio.no> | 
|  | * University of Oslo, Norway. | 
|  | * | 
|  | * References: | 
|  | * IETF draft submission: http://tools.ietf.org/html/draft-pan-aqm-pie-00 | 
|  | * IEEE  Conference on High Performance Switching and Routing 2013 : | 
|  | * "PIE: A * Lightweight Control Scheme to Address the Bufferbloat Problem" | 
|  | */ | 
|  |  | 
|  | #include <linux/module.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/skbuff.h> | 
|  | #include <net/pkt_sched.h> | 
|  | #include <net/inet_ecn.h> | 
|  |  | 
|  | #define QUEUE_THRESHOLD 10000 | 
|  | #define DQCOUNT_INVALID -1 | 
|  | #define MAX_PROB  0xffffffff | 
|  | #define PIE_SCALE 8 | 
|  |  | 
|  | /* parameters used */ | 
|  | struct pie_params { | 
|  | psched_time_t target;	/* user specified target delay in pschedtime */ | 
|  | u32 tupdate;		/* timer frequency (in jiffies) */ | 
|  | u32 limit;		/* number of packets that can be enqueued */ | 
|  | u32 alpha;		/* alpha and beta are between 0 and 32 */ | 
|  | u32 beta;		/* and are used for shift relative to 1 */ | 
|  | bool ecn;		/* true if ecn is enabled */ | 
|  | bool bytemode;		/* to scale drop early prob based on pkt size */ | 
|  | }; | 
|  |  | 
|  | /* variables used */ | 
|  | struct pie_vars { | 
|  | u32 prob;		/* probability but scaled by u32 limit. */ | 
|  | psched_time_t burst_time; | 
|  | psched_time_t qdelay; | 
|  | psched_time_t qdelay_old; | 
|  | u64 dq_count;		/* measured in bytes */ | 
|  | psched_time_t dq_tstamp;	/* drain rate */ | 
|  | u32 avg_dq_rate;	/* bytes per pschedtime tick,scaled */ | 
|  | u32 qlen_old;		/* in bytes */ | 
|  | }; | 
|  |  | 
|  | /* statistics gathering */ | 
|  | struct pie_stats { | 
|  | u32 packets_in;		/* total number of packets enqueued */ | 
|  | u32 dropped;		/* packets dropped due to pie_action */ | 
|  | u32 overlimit;		/* dropped due to lack of space in queue */ | 
|  | u32 maxq;		/* maximum queue size */ | 
|  | u32 ecn_mark;		/* packets marked with ECN */ | 
|  | }; | 
|  |  | 
|  | /* private data for the Qdisc */ | 
|  | struct pie_sched_data { | 
|  | struct pie_params params; | 
|  | struct pie_vars vars; | 
|  | struct pie_stats stats; | 
|  | struct timer_list adapt_timer; | 
|  | }; | 
|  |  | 
|  | static void pie_params_init(struct pie_params *params) | 
|  | { | 
|  | params->alpha = 2; | 
|  | params->beta = 20; | 
|  | params->tupdate = usecs_to_jiffies(30 * USEC_PER_MSEC);	/* 30 ms */ | 
|  | params->limit = 1000;	/* default of 1000 packets */ | 
|  | params->target = PSCHED_NS2TICKS(20 * NSEC_PER_MSEC);	/* 20 ms */ | 
|  | params->ecn = false; | 
|  | params->bytemode = false; | 
|  | } | 
|  |  | 
|  | static void pie_vars_init(struct pie_vars *vars) | 
|  | { | 
|  | vars->dq_count = DQCOUNT_INVALID; | 
|  | vars->avg_dq_rate = 0; | 
|  | /* default of 100 ms in pschedtime */ | 
|  | vars->burst_time = PSCHED_NS2TICKS(100 * NSEC_PER_MSEC); | 
|  | } | 
|  |  | 
|  | static bool drop_early(struct Qdisc *sch, u32 packet_size) | 
|  | { | 
|  | struct pie_sched_data *q = qdisc_priv(sch); | 
|  | u32 rnd; | 
|  | u32 local_prob = q->vars.prob; | 
|  | u32 mtu = psched_mtu(qdisc_dev(sch)); | 
|  |  | 
|  | /* If there is still burst allowance left skip random early drop */ | 
|  | if (q->vars.burst_time > 0) | 
|  | return false; | 
|  |  | 
|  | /* If current delay is less than half of target, and | 
|  | * if drop prob is low already, disable early_drop | 
|  | */ | 
|  | if ((q->vars.qdelay < q->params.target / 2) | 
|  | && (q->vars.prob < MAX_PROB / 5)) | 
|  | return false; | 
|  |  | 
|  | /* If we have fewer than 2 mtu-sized packets, disable drop_early, | 
|  | * similar to min_th in RED | 
|  | */ | 
|  | if (sch->qstats.backlog < 2 * mtu) | 
|  | return false; | 
|  |  | 
|  | /* If bytemode is turned on, use packet size to compute new | 
|  | * probablity. Smaller packets will have lower drop prob in this case | 
|  | */ | 
|  | if (q->params.bytemode && packet_size <= mtu) | 
|  | local_prob = (local_prob / mtu) * packet_size; | 
|  | else | 
|  | local_prob = q->vars.prob; | 
|  |  | 
|  | rnd = prandom_u32(); | 
|  | if (rnd < local_prob) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static int pie_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *sch) | 
|  | { | 
|  | struct pie_sched_data *q = qdisc_priv(sch); | 
|  | bool enqueue = false; | 
|  |  | 
|  | if (unlikely(qdisc_qlen(sch) >= sch->limit)) { | 
|  | q->stats.overlimit++; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (!drop_early(sch, skb->len)) { | 
|  | enqueue = true; | 
|  | } else if (q->params.ecn && (q->vars.prob <= MAX_PROB / 10) && | 
|  | INET_ECN_set_ce(skb)) { | 
|  | /* If packet is ecn capable, mark it if drop probability | 
|  | * is lower than 10%, else drop it. | 
|  | */ | 
|  | q->stats.ecn_mark++; | 
|  | enqueue = true; | 
|  | } | 
|  |  | 
|  | /* we can enqueue the packet */ | 
|  | if (enqueue) { | 
|  | q->stats.packets_in++; | 
|  | if (qdisc_qlen(sch) > q->stats.maxq) | 
|  | q->stats.maxq = qdisc_qlen(sch); | 
|  |  | 
|  | return qdisc_enqueue_tail(skb, sch); | 
|  | } | 
|  |  | 
|  | out: | 
|  | q->stats.dropped++; | 
|  | return qdisc_drop(skb, sch); | 
|  | } | 
|  |  | 
|  | static const struct nla_policy pie_policy[TCA_PIE_MAX + 1] = { | 
|  | [TCA_PIE_TARGET] = {.type = NLA_U32}, | 
|  | [TCA_PIE_LIMIT] = {.type = NLA_U32}, | 
|  | [TCA_PIE_TUPDATE] = {.type = NLA_U32}, | 
|  | [TCA_PIE_ALPHA] = {.type = NLA_U32}, | 
|  | [TCA_PIE_BETA] = {.type = NLA_U32}, | 
|  | [TCA_PIE_ECN] = {.type = NLA_U32}, | 
|  | [TCA_PIE_BYTEMODE] = {.type = NLA_U32}, | 
|  | }; | 
|  |  | 
|  | static int pie_change(struct Qdisc *sch, struct nlattr *opt) | 
|  | { | 
|  | struct pie_sched_data *q = qdisc_priv(sch); | 
|  | struct nlattr *tb[TCA_PIE_MAX + 1]; | 
|  | unsigned int qlen, dropped = 0; | 
|  | int err; | 
|  |  | 
|  | if (!opt) | 
|  | return -EINVAL; | 
|  |  | 
|  | err = nla_parse_nested(tb, TCA_PIE_MAX, opt, pie_policy); | 
|  | if (err < 0) | 
|  | return err; | 
|  |  | 
|  | sch_tree_lock(sch); | 
|  |  | 
|  | /* convert from microseconds to pschedtime */ | 
|  | if (tb[TCA_PIE_TARGET]) { | 
|  | /* target is in us */ | 
|  | u32 target = nla_get_u32(tb[TCA_PIE_TARGET]); | 
|  |  | 
|  | /* convert to pschedtime */ | 
|  | q->params.target = PSCHED_NS2TICKS((u64)target * NSEC_PER_USEC); | 
|  | } | 
|  |  | 
|  | /* tupdate is in jiffies */ | 
|  | if (tb[TCA_PIE_TUPDATE]) | 
|  | q->params.tupdate = usecs_to_jiffies(nla_get_u32(tb[TCA_PIE_TUPDATE])); | 
|  |  | 
|  | if (tb[TCA_PIE_LIMIT]) { | 
|  | u32 limit = nla_get_u32(tb[TCA_PIE_LIMIT]); | 
|  |  | 
|  | q->params.limit = limit; | 
|  | sch->limit = limit; | 
|  | } | 
|  |  | 
|  | if (tb[TCA_PIE_ALPHA]) | 
|  | q->params.alpha = nla_get_u32(tb[TCA_PIE_ALPHA]); | 
|  |  | 
|  | if (tb[TCA_PIE_BETA]) | 
|  | q->params.beta = nla_get_u32(tb[TCA_PIE_BETA]); | 
|  |  | 
|  | if (tb[TCA_PIE_ECN]) | 
|  | q->params.ecn = nla_get_u32(tb[TCA_PIE_ECN]); | 
|  |  | 
|  | if (tb[TCA_PIE_BYTEMODE]) | 
|  | q->params.bytemode = nla_get_u32(tb[TCA_PIE_BYTEMODE]); | 
|  |  | 
|  | /* Drop excess packets if new limit is lower */ | 
|  | qlen = sch->q.qlen; | 
|  | while (sch->q.qlen > sch->limit) { | 
|  | struct sk_buff *skb = __skb_dequeue(&sch->q); | 
|  |  | 
|  | dropped += qdisc_pkt_len(skb); | 
|  | qdisc_qstats_backlog_dec(sch, skb); | 
|  | qdisc_drop(skb, sch); | 
|  | } | 
|  | qdisc_tree_reduce_backlog(sch, qlen - sch->q.qlen, dropped); | 
|  |  | 
|  | sch_tree_unlock(sch); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void pie_process_dequeue(struct Qdisc *sch, struct sk_buff *skb) | 
|  | { | 
|  |  | 
|  | struct pie_sched_data *q = qdisc_priv(sch); | 
|  | int qlen = sch->qstats.backlog;	/* current queue size in bytes */ | 
|  |  | 
|  | /* If current queue is about 10 packets or more and dq_count is unset | 
|  | * we have enough packets to calculate the drain rate. Save | 
|  | * current time as dq_tstamp and start measurement cycle. | 
|  | */ | 
|  | if (qlen >= QUEUE_THRESHOLD && q->vars.dq_count == DQCOUNT_INVALID) { | 
|  | q->vars.dq_tstamp = psched_get_time(); | 
|  | q->vars.dq_count = 0; | 
|  | } | 
|  |  | 
|  | /* Calculate the average drain rate from this value.  If queue length | 
|  | * has receded to a small value viz., <= QUEUE_THRESHOLD bytes,reset | 
|  | * the dq_count to -1 as we don't have enough packets to calculate the | 
|  | * drain rate anymore The following if block is entered only when we | 
|  | * have a substantial queue built up (QUEUE_THRESHOLD bytes or more) | 
|  | * and we calculate the drain rate for the threshold here.  dq_count is | 
|  | * in bytes, time difference in psched_time, hence rate is in | 
|  | * bytes/psched_time. | 
|  | */ | 
|  | if (q->vars.dq_count != DQCOUNT_INVALID) { | 
|  | q->vars.dq_count += skb->len; | 
|  |  | 
|  | if (q->vars.dq_count >= QUEUE_THRESHOLD) { | 
|  | psched_time_t now = psched_get_time(); | 
|  | u32 dtime = now - q->vars.dq_tstamp; | 
|  | u32 count = q->vars.dq_count << PIE_SCALE; | 
|  |  | 
|  | if (dtime == 0) | 
|  | return; | 
|  |  | 
|  | count = count / dtime; | 
|  |  | 
|  | if (q->vars.avg_dq_rate == 0) | 
|  | q->vars.avg_dq_rate = count; | 
|  | else | 
|  | q->vars.avg_dq_rate = | 
|  | (q->vars.avg_dq_rate - | 
|  | (q->vars.avg_dq_rate >> 3)) + (count >> 3); | 
|  |  | 
|  | /* If the queue has receded below the threshold, we hold | 
|  | * on to the last drain rate calculated, else we reset | 
|  | * dq_count to 0 to re-enter the if block when the next | 
|  | * packet is dequeued | 
|  | */ | 
|  | if (qlen < QUEUE_THRESHOLD) | 
|  | q->vars.dq_count = DQCOUNT_INVALID; | 
|  | else { | 
|  | q->vars.dq_count = 0; | 
|  | q->vars.dq_tstamp = psched_get_time(); | 
|  | } | 
|  |  | 
|  | if (q->vars.burst_time > 0) { | 
|  | if (q->vars.burst_time > dtime) | 
|  | q->vars.burst_time -= dtime; | 
|  | else | 
|  | q->vars.burst_time = 0; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void calculate_probability(struct Qdisc *sch) | 
|  | { | 
|  | struct pie_sched_data *q = qdisc_priv(sch); | 
|  | u32 qlen = sch->qstats.backlog;	/* queue size in bytes */ | 
|  | psched_time_t qdelay = 0;	/* in pschedtime */ | 
|  | psched_time_t qdelay_old = q->vars.qdelay;	/* in pschedtime */ | 
|  | s32 delta = 0;		/* determines the change in probability */ | 
|  | u32 oldprob; | 
|  | u32 alpha, beta; | 
|  | bool update_prob = true; | 
|  |  | 
|  | q->vars.qdelay_old = q->vars.qdelay; | 
|  |  | 
|  | if (q->vars.avg_dq_rate > 0) | 
|  | qdelay = (qlen << PIE_SCALE) / q->vars.avg_dq_rate; | 
|  | else | 
|  | qdelay = 0; | 
|  |  | 
|  | /* If qdelay is zero and qlen is not, it means qlen is very small, less | 
|  | * than dequeue_rate, so we do not update probabilty in this round | 
|  | */ | 
|  | if (qdelay == 0 && qlen != 0) | 
|  | update_prob = false; | 
|  |  | 
|  | /* In the algorithm, alpha and beta are between 0 and 2 with typical | 
|  | * value for alpha as 0.125. In this implementation, we use values 0-32 | 
|  | * passed from user space to represent this. Also, alpha and beta have | 
|  | * unit of HZ and need to be scaled before they can used to update | 
|  | * probability. alpha/beta are updated locally below by 1) scaling them | 
|  | * appropriately 2) scaling down by 16 to come to 0-2 range. | 
|  | * Please see paper for details. | 
|  | * | 
|  | * We scale alpha and beta differently depending on whether we are in | 
|  | * light, medium or high dropping mode. | 
|  | */ | 
|  | if (q->vars.prob < MAX_PROB / 100) { | 
|  | alpha = | 
|  | (q->params.alpha * (MAX_PROB / PSCHED_TICKS_PER_SEC)) >> 7; | 
|  | beta = | 
|  | (q->params.beta * (MAX_PROB / PSCHED_TICKS_PER_SEC)) >> 7; | 
|  | } else if (q->vars.prob < MAX_PROB / 10) { | 
|  | alpha = | 
|  | (q->params.alpha * (MAX_PROB / PSCHED_TICKS_PER_SEC)) >> 5; | 
|  | beta = | 
|  | (q->params.beta * (MAX_PROB / PSCHED_TICKS_PER_SEC)) >> 5; | 
|  | } else { | 
|  | alpha = | 
|  | (q->params.alpha * (MAX_PROB / PSCHED_TICKS_PER_SEC)) >> 4; | 
|  | beta = | 
|  | (q->params.beta * (MAX_PROB / PSCHED_TICKS_PER_SEC)) >> 4; | 
|  | } | 
|  |  | 
|  | /* alpha and beta should be between 0 and 32, in multiples of 1/16 */ | 
|  | delta += alpha * ((qdelay - q->params.target)); | 
|  | delta += beta * ((qdelay - qdelay_old)); | 
|  |  | 
|  | oldprob = q->vars.prob; | 
|  |  | 
|  | /* to ensure we increase probability in steps of no more than 2% */ | 
|  | if (delta > (s32) (MAX_PROB / (100 / 2)) && | 
|  | q->vars.prob >= MAX_PROB / 10) | 
|  | delta = (MAX_PROB / 100) * 2; | 
|  |  | 
|  | /* Non-linear drop: | 
|  | * Tune drop probability to increase quickly for high delays(>= 250ms) | 
|  | * 250ms is derived through experiments and provides error protection | 
|  | */ | 
|  |  | 
|  | if (qdelay > (PSCHED_NS2TICKS(250 * NSEC_PER_MSEC))) | 
|  | delta += MAX_PROB / (100 / 2); | 
|  |  | 
|  | q->vars.prob += delta; | 
|  |  | 
|  | if (delta > 0) { | 
|  | /* prevent overflow */ | 
|  | if (q->vars.prob < oldprob) { | 
|  | q->vars.prob = MAX_PROB; | 
|  | /* Prevent normalization error. If probability is at | 
|  | * maximum value already, we normalize it here, and | 
|  | * skip the check to do a non-linear drop in the next | 
|  | * section. | 
|  | */ | 
|  | update_prob = false; | 
|  | } | 
|  | } else { | 
|  | /* prevent underflow */ | 
|  | if (q->vars.prob > oldprob) | 
|  | q->vars.prob = 0; | 
|  | } | 
|  |  | 
|  | /* Non-linear drop in probability: Reduce drop probability quickly if | 
|  | * delay is 0 for 2 consecutive Tupdate periods. | 
|  | */ | 
|  |  | 
|  | if ((qdelay == 0) && (qdelay_old == 0) && update_prob) | 
|  | q->vars.prob = (q->vars.prob * 98) / 100; | 
|  |  | 
|  | q->vars.qdelay = qdelay; | 
|  | q->vars.qlen_old = qlen; | 
|  |  | 
|  | /* We restart the measurement cycle if the following conditions are met | 
|  | * 1. If the delay has been low for 2 consecutive Tupdate periods | 
|  | * 2. Calculated drop probability is zero | 
|  | * 3. We have atleast one estimate for the avg_dq_rate ie., | 
|  | *    is a non-zero value | 
|  | */ | 
|  | if ((q->vars.qdelay < q->params.target / 2) && | 
|  | (q->vars.qdelay_old < q->params.target / 2) && | 
|  | (q->vars.prob == 0) && | 
|  | (q->vars.avg_dq_rate > 0)) | 
|  | pie_vars_init(&q->vars); | 
|  | } | 
|  |  | 
|  | static void pie_timer(unsigned long arg) | 
|  | { | 
|  | struct Qdisc *sch = (struct Qdisc *)arg; | 
|  | struct pie_sched_data *q = qdisc_priv(sch); | 
|  | spinlock_t *root_lock = qdisc_lock(qdisc_root_sleeping(sch)); | 
|  |  | 
|  | spin_lock(root_lock); | 
|  | calculate_probability(sch); | 
|  |  | 
|  | /* reset the timer to fire after 'tupdate'. tupdate is in jiffies. */ | 
|  | if (q->params.tupdate) | 
|  | mod_timer(&q->adapt_timer, jiffies + q->params.tupdate); | 
|  | spin_unlock(root_lock); | 
|  |  | 
|  | } | 
|  |  | 
|  | static int pie_init(struct Qdisc *sch, struct nlattr *opt) | 
|  | { | 
|  | struct pie_sched_data *q = qdisc_priv(sch); | 
|  |  | 
|  | pie_params_init(&q->params); | 
|  | pie_vars_init(&q->vars); | 
|  | sch->limit = q->params.limit; | 
|  |  | 
|  | setup_timer(&q->adapt_timer, pie_timer, (unsigned long)sch); | 
|  |  | 
|  | if (opt) { | 
|  | int err = pie_change(sch, opt); | 
|  |  | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  |  | 
|  | mod_timer(&q->adapt_timer, jiffies + HZ / 2); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int pie_dump(struct Qdisc *sch, struct sk_buff *skb) | 
|  | { | 
|  | struct pie_sched_data *q = qdisc_priv(sch); | 
|  | struct nlattr *opts; | 
|  |  | 
|  | opts = nla_nest_start(skb, TCA_OPTIONS); | 
|  | if (opts == NULL) | 
|  | goto nla_put_failure; | 
|  |  | 
|  | /* convert target from pschedtime to us */ | 
|  | if (nla_put_u32(skb, TCA_PIE_TARGET, | 
|  | ((u32) PSCHED_TICKS2NS(q->params.target)) / | 
|  | NSEC_PER_USEC) || | 
|  | nla_put_u32(skb, TCA_PIE_LIMIT, sch->limit) || | 
|  | nla_put_u32(skb, TCA_PIE_TUPDATE, jiffies_to_usecs(q->params.tupdate)) || | 
|  | nla_put_u32(skb, TCA_PIE_ALPHA, q->params.alpha) || | 
|  | nla_put_u32(skb, TCA_PIE_BETA, q->params.beta) || | 
|  | nla_put_u32(skb, TCA_PIE_ECN, q->params.ecn) || | 
|  | nla_put_u32(skb, TCA_PIE_BYTEMODE, q->params.bytemode)) | 
|  | goto nla_put_failure; | 
|  |  | 
|  | return nla_nest_end(skb, opts); | 
|  |  | 
|  | nla_put_failure: | 
|  | nla_nest_cancel(skb, opts); | 
|  | return -1; | 
|  |  | 
|  | } | 
|  |  | 
|  | static int pie_dump_stats(struct Qdisc *sch, struct gnet_dump *d) | 
|  | { | 
|  | struct pie_sched_data *q = qdisc_priv(sch); | 
|  | struct tc_pie_xstats st = { | 
|  | .prob		= q->vars.prob, | 
|  | .delay		= ((u32) PSCHED_TICKS2NS(q->vars.qdelay)) / | 
|  | NSEC_PER_USEC, | 
|  | /* unscale and return dq_rate in bytes per sec */ | 
|  | .avg_dq_rate	= q->vars.avg_dq_rate * | 
|  | (PSCHED_TICKS_PER_SEC) >> PIE_SCALE, | 
|  | .packets_in	= q->stats.packets_in, | 
|  | .overlimit	= q->stats.overlimit, | 
|  | .maxq		= q->stats.maxq, | 
|  | .dropped	= q->stats.dropped, | 
|  | .ecn_mark	= q->stats.ecn_mark, | 
|  | }; | 
|  |  | 
|  | return gnet_stats_copy_app(d, &st, sizeof(st)); | 
|  | } | 
|  |  | 
|  | static struct sk_buff *pie_qdisc_dequeue(struct Qdisc *sch) | 
|  | { | 
|  | struct sk_buff *skb; | 
|  | skb = __qdisc_dequeue_head(sch, &sch->q); | 
|  |  | 
|  | if (!skb) | 
|  | return NULL; | 
|  |  | 
|  | pie_process_dequeue(sch, skb); | 
|  | return skb; | 
|  | } | 
|  |  | 
|  | static void pie_reset(struct Qdisc *sch) | 
|  | { | 
|  | struct pie_sched_data *q = qdisc_priv(sch); | 
|  | qdisc_reset_queue(sch); | 
|  | pie_vars_init(&q->vars); | 
|  | } | 
|  |  | 
|  | static void pie_destroy(struct Qdisc *sch) | 
|  | { | 
|  | struct pie_sched_data *q = qdisc_priv(sch); | 
|  | q->params.tupdate = 0; | 
|  | del_timer_sync(&q->adapt_timer); | 
|  | } | 
|  |  | 
|  | static struct Qdisc_ops pie_qdisc_ops __read_mostly = { | 
|  | .id = "pie", | 
|  | .priv_size	= sizeof(struct pie_sched_data), | 
|  | .enqueue	= pie_qdisc_enqueue, | 
|  | .dequeue	= pie_qdisc_dequeue, | 
|  | .peek		= qdisc_peek_dequeued, | 
|  | .init		= pie_init, | 
|  | .destroy	= pie_destroy, | 
|  | .reset		= pie_reset, | 
|  | .change		= pie_change, | 
|  | .dump		= pie_dump, | 
|  | .dump_stats	= pie_dump_stats, | 
|  | .owner		= THIS_MODULE, | 
|  | }; | 
|  |  | 
|  | static int __init pie_module_init(void) | 
|  | { | 
|  | return register_qdisc(&pie_qdisc_ops); | 
|  | } | 
|  |  | 
|  | static void __exit pie_module_exit(void) | 
|  | { | 
|  | unregister_qdisc(&pie_qdisc_ops); | 
|  | } | 
|  |  | 
|  | module_init(pie_module_init); | 
|  | module_exit(pie_module_exit); | 
|  |  | 
|  | MODULE_DESCRIPTION("Proportional Integral controller Enhanced (PIE) scheduler"); | 
|  | MODULE_AUTHOR("Vijay Subramanian"); | 
|  | MODULE_AUTHOR("Mythili Prabhu"); | 
|  | MODULE_LICENSE("GPL"); |