|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * Adiantum length-preserving encryption mode | 
|  | * | 
|  | * Copyright 2018 Google LLC | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Adiantum is a tweakable, length-preserving encryption mode designed for fast | 
|  | * and secure disk encryption, especially on CPUs without dedicated crypto | 
|  | * instructions.  Adiantum encrypts each sector using the XChaCha12 stream | 
|  | * cipher, two passes of an ε-almost-∆-universal (ε-∆U) hash function based on | 
|  | * NH and Poly1305, and an invocation of the AES-256 block cipher on a single | 
|  | * 16-byte block.  See the paper for details: | 
|  | * | 
|  | *	Adiantum: length-preserving encryption for entry-level processors | 
|  | *      (https://eprint.iacr.org/2018/720.pdf) | 
|  | * | 
|  | * For flexibility, this implementation also allows other ciphers: | 
|  | * | 
|  | *	- Stream cipher: XChaCha12 or XChaCha20 | 
|  | *	- Block cipher: any with a 128-bit block size and 256-bit key | 
|  | * | 
|  | * This implementation doesn't currently allow other ε-∆U hash functions, i.e. | 
|  | * HPolyC is not supported.  This is because Adiantum is ~20% faster than HPolyC | 
|  | * but still provably as secure, and also the ε-∆U hash function of HBSH is | 
|  | * formally defined to take two inputs (tweak, message) which makes it difficult | 
|  | * to wrap with the crypto_shash API.  Rather, some details need to be handled | 
|  | * here.  Nevertheless, if needed in the future, support for other ε-∆U hash | 
|  | * functions could be added here. | 
|  | */ | 
|  |  | 
|  | #include <crypto/b128ops.h> | 
|  | #include <crypto/chacha.h> | 
|  | #include <crypto/internal/cipher.h> | 
|  | #include <crypto/internal/hash.h> | 
|  | #include <crypto/internal/poly1305.h> | 
|  | #include <crypto/internal/skcipher.h> | 
|  | #include <crypto/nhpoly1305.h> | 
|  | #include <crypto/scatterwalk.h> | 
|  | #include <linux/module.h> | 
|  |  | 
|  | /* | 
|  | * Size of right-hand part of input data, in bytes; also the size of the block | 
|  | * cipher's block size and the hash function's output. | 
|  | */ | 
|  | #define BLOCKCIPHER_BLOCK_SIZE		16 | 
|  |  | 
|  | /* Size of the block cipher key (K_E) in bytes */ | 
|  | #define BLOCKCIPHER_KEY_SIZE		32 | 
|  |  | 
|  | /* Size of the hash key (K_H) in bytes */ | 
|  | #define HASH_KEY_SIZE		(POLY1305_BLOCK_SIZE + NHPOLY1305_KEY_SIZE) | 
|  |  | 
|  | /* | 
|  | * The specification allows variable-length tweaks, but Linux's crypto API | 
|  | * currently only allows algorithms to support a single length.  The "natural" | 
|  | * tweak length for Adiantum is 16, since that fits into one Poly1305 block for | 
|  | * the best performance.  But longer tweaks are useful for fscrypt, to avoid | 
|  | * needing to derive per-file keys.  So instead we use two blocks, or 32 bytes. | 
|  | */ | 
|  | #define TWEAK_SIZE		32 | 
|  |  | 
|  | struct adiantum_instance_ctx { | 
|  | struct crypto_skcipher_spawn streamcipher_spawn; | 
|  | struct crypto_cipher_spawn blockcipher_spawn; | 
|  | struct crypto_shash_spawn hash_spawn; | 
|  | }; | 
|  |  | 
|  | struct adiantum_tfm_ctx { | 
|  | struct crypto_skcipher *streamcipher; | 
|  | struct crypto_cipher *blockcipher; | 
|  | struct crypto_shash *hash; | 
|  | struct poly1305_core_key header_hash_key; | 
|  | }; | 
|  |  | 
|  | struct adiantum_request_ctx { | 
|  |  | 
|  | /* | 
|  | * Buffer for right-hand part of data, i.e. | 
|  | * | 
|  | *    P_L => P_M => C_M => C_R when encrypting, or | 
|  | *    C_R => C_M => P_M => P_L when decrypting. | 
|  | * | 
|  | * Also used to build the IV for the stream cipher. | 
|  | */ | 
|  | union { | 
|  | u8 bytes[XCHACHA_IV_SIZE]; | 
|  | __le32 words[XCHACHA_IV_SIZE / sizeof(__le32)]; | 
|  | le128 bignum;	/* interpret as element of Z/(2^{128}Z) */ | 
|  | } rbuf; | 
|  |  | 
|  | bool enc; /* true if encrypting, false if decrypting */ | 
|  |  | 
|  | /* | 
|  | * The result of the Poly1305 ε-∆U hash function applied to | 
|  | * (bulk length, tweak) | 
|  | */ | 
|  | le128 header_hash; | 
|  |  | 
|  | /* Sub-requests, must be last */ | 
|  | union { | 
|  | struct shash_desc hash_desc; | 
|  | struct skcipher_request streamcipher_req; | 
|  | } u; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Given the XChaCha stream key K_S, derive the block cipher key K_E and the | 
|  | * hash key K_H as follows: | 
|  | * | 
|  | *     K_E || K_H || ... = XChaCha(key=K_S, nonce=1||0^191) | 
|  | * | 
|  | * Note that this denotes using bits from the XChaCha keystream, which here we | 
|  | * get indirectly by encrypting a buffer containing all 0's. | 
|  | */ | 
|  | static int adiantum_setkey(struct crypto_skcipher *tfm, const u8 *key, | 
|  | unsigned int keylen) | 
|  | { | 
|  | struct adiantum_tfm_ctx *tctx = crypto_skcipher_ctx(tfm); | 
|  | struct { | 
|  | u8 iv[XCHACHA_IV_SIZE]; | 
|  | u8 derived_keys[BLOCKCIPHER_KEY_SIZE + HASH_KEY_SIZE]; | 
|  | struct scatterlist sg; | 
|  | struct crypto_wait wait; | 
|  | struct skcipher_request req; /* must be last */ | 
|  | } *data; | 
|  | u8 *keyp; | 
|  | int err; | 
|  |  | 
|  | /* Set the stream cipher key (K_S) */ | 
|  | crypto_skcipher_clear_flags(tctx->streamcipher, CRYPTO_TFM_REQ_MASK); | 
|  | crypto_skcipher_set_flags(tctx->streamcipher, | 
|  | crypto_skcipher_get_flags(tfm) & | 
|  | CRYPTO_TFM_REQ_MASK); | 
|  | err = crypto_skcipher_setkey(tctx->streamcipher, key, keylen); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | /* Derive the subkeys */ | 
|  | data = kzalloc(sizeof(*data) + | 
|  | crypto_skcipher_reqsize(tctx->streamcipher), GFP_KERNEL); | 
|  | if (!data) | 
|  | return -ENOMEM; | 
|  | data->iv[0] = 1; | 
|  | sg_init_one(&data->sg, data->derived_keys, sizeof(data->derived_keys)); | 
|  | crypto_init_wait(&data->wait); | 
|  | skcipher_request_set_tfm(&data->req, tctx->streamcipher); | 
|  | skcipher_request_set_callback(&data->req, CRYPTO_TFM_REQ_MAY_SLEEP | | 
|  | CRYPTO_TFM_REQ_MAY_BACKLOG, | 
|  | crypto_req_done, &data->wait); | 
|  | skcipher_request_set_crypt(&data->req, &data->sg, &data->sg, | 
|  | sizeof(data->derived_keys), data->iv); | 
|  | err = crypto_wait_req(crypto_skcipher_encrypt(&data->req), &data->wait); | 
|  | if (err) | 
|  | goto out; | 
|  | keyp = data->derived_keys; | 
|  |  | 
|  | /* Set the block cipher key (K_E) */ | 
|  | crypto_cipher_clear_flags(tctx->blockcipher, CRYPTO_TFM_REQ_MASK); | 
|  | crypto_cipher_set_flags(tctx->blockcipher, | 
|  | crypto_skcipher_get_flags(tfm) & | 
|  | CRYPTO_TFM_REQ_MASK); | 
|  | err = crypto_cipher_setkey(tctx->blockcipher, keyp, | 
|  | BLOCKCIPHER_KEY_SIZE); | 
|  | if (err) | 
|  | goto out; | 
|  | keyp += BLOCKCIPHER_KEY_SIZE; | 
|  |  | 
|  | /* Set the hash key (K_H) */ | 
|  | poly1305_core_setkey(&tctx->header_hash_key, keyp); | 
|  | keyp += POLY1305_BLOCK_SIZE; | 
|  |  | 
|  | crypto_shash_clear_flags(tctx->hash, CRYPTO_TFM_REQ_MASK); | 
|  | crypto_shash_set_flags(tctx->hash, crypto_skcipher_get_flags(tfm) & | 
|  | CRYPTO_TFM_REQ_MASK); | 
|  | err = crypto_shash_setkey(tctx->hash, keyp, NHPOLY1305_KEY_SIZE); | 
|  | keyp += NHPOLY1305_KEY_SIZE; | 
|  | WARN_ON(keyp != &data->derived_keys[ARRAY_SIZE(data->derived_keys)]); | 
|  | out: | 
|  | kfree_sensitive(data); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* Addition in Z/(2^{128}Z) */ | 
|  | static inline void le128_add(le128 *r, const le128 *v1, const le128 *v2) | 
|  | { | 
|  | u64 x = le64_to_cpu(v1->b); | 
|  | u64 y = le64_to_cpu(v2->b); | 
|  |  | 
|  | r->b = cpu_to_le64(x + y); | 
|  | r->a = cpu_to_le64(le64_to_cpu(v1->a) + le64_to_cpu(v2->a) + | 
|  | (x + y < x)); | 
|  | } | 
|  |  | 
|  | /* Subtraction in Z/(2^{128}Z) */ | 
|  | static inline void le128_sub(le128 *r, const le128 *v1, const le128 *v2) | 
|  | { | 
|  | u64 x = le64_to_cpu(v1->b); | 
|  | u64 y = le64_to_cpu(v2->b); | 
|  |  | 
|  | r->b = cpu_to_le64(x - y); | 
|  | r->a = cpu_to_le64(le64_to_cpu(v1->a) - le64_to_cpu(v2->a) - | 
|  | (x - y > x)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Apply the Poly1305 ε-∆U hash function to (bulk length, tweak) and save the | 
|  | * result to rctx->header_hash.  This is the calculation | 
|  | * | 
|  | *	H_T ← Poly1305_{K_T}(bin_{128}(|L|) || T) | 
|  | * | 
|  | * from the procedure in section 6.4 of the Adiantum paper.  The resulting value | 
|  | * is reused in both the first and second hash steps.  Specifically, it's added | 
|  | * to the result of an independently keyed ε-∆U hash function (for equal length | 
|  | * inputs only) taken over the left-hand part (the "bulk") of the message, to | 
|  | * give the overall Adiantum hash of the (tweak, left-hand part) pair. | 
|  | */ | 
|  | static void adiantum_hash_header(struct skcipher_request *req) | 
|  | { | 
|  | struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); | 
|  | const struct adiantum_tfm_ctx *tctx = crypto_skcipher_ctx(tfm); | 
|  | struct adiantum_request_ctx *rctx = skcipher_request_ctx(req); | 
|  | const unsigned int bulk_len = req->cryptlen - BLOCKCIPHER_BLOCK_SIZE; | 
|  | struct { | 
|  | __le64 message_bits; | 
|  | __le64 padding; | 
|  | } header = { | 
|  | .message_bits = cpu_to_le64((u64)bulk_len * 8) | 
|  | }; | 
|  | struct poly1305_state state; | 
|  |  | 
|  | poly1305_core_init(&state); | 
|  |  | 
|  | BUILD_BUG_ON(sizeof(header) % POLY1305_BLOCK_SIZE != 0); | 
|  | poly1305_core_blocks(&state, &tctx->header_hash_key, | 
|  | &header, sizeof(header) / POLY1305_BLOCK_SIZE, 1); | 
|  |  | 
|  | BUILD_BUG_ON(TWEAK_SIZE % POLY1305_BLOCK_SIZE != 0); | 
|  | poly1305_core_blocks(&state, &tctx->header_hash_key, req->iv, | 
|  | TWEAK_SIZE / POLY1305_BLOCK_SIZE, 1); | 
|  |  | 
|  | poly1305_core_emit(&state, NULL, &rctx->header_hash); | 
|  | } | 
|  |  | 
|  | /* Hash the left-hand part (the "bulk") of the message using NHPoly1305 */ | 
|  | static int adiantum_hash_message(struct skcipher_request *req, | 
|  | struct scatterlist *sgl, unsigned int nents, | 
|  | le128 *digest) | 
|  | { | 
|  | struct adiantum_request_ctx *rctx = skcipher_request_ctx(req); | 
|  | const unsigned int bulk_len = req->cryptlen - BLOCKCIPHER_BLOCK_SIZE; | 
|  | struct shash_desc *hash_desc = &rctx->u.hash_desc; | 
|  | struct sg_mapping_iter miter; | 
|  | unsigned int i, n; | 
|  | int err; | 
|  |  | 
|  | err = crypto_shash_init(hash_desc); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | sg_miter_start(&miter, sgl, nents, SG_MITER_FROM_SG | SG_MITER_ATOMIC); | 
|  | for (i = 0; i < bulk_len; i += n) { | 
|  | sg_miter_next(&miter); | 
|  | n = min_t(unsigned int, miter.length, bulk_len - i); | 
|  | err = crypto_shash_update(hash_desc, miter.addr, n); | 
|  | if (err) | 
|  | break; | 
|  | } | 
|  | sg_miter_stop(&miter); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | return crypto_shash_final(hash_desc, (u8 *)digest); | 
|  | } | 
|  |  | 
|  | /* Continue Adiantum encryption/decryption after the stream cipher step */ | 
|  | static int adiantum_finish(struct skcipher_request *req) | 
|  | { | 
|  | struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); | 
|  | const struct adiantum_tfm_ctx *tctx = crypto_skcipher_ctx(tfm); | 
|  | struct adiantum_request_ctx *rctx = skcipher_request_ctx(req); | 
|  | const unsigned int bulk_len = req->cryptlen - BLOCKCIPHER_BLOCK_SIZE; | 
|  | struct scatterlist *dst = req->dst; | 
|  | const unsigned int dst_nents = sg_nents(dst); | 
|  | le128 digest; | 
|  | int err; | 
|  |  | 
|  | /* If decrypting, decrypt C_M with the block cipher to get P_M */ | 
|  | if (!rctx->enc) | 
|  | crypto_cipher_decrypt_one(tctx->blockcipher, rctx->rbuf.bytes, | 
|  | rctx->rbuf.bytes); | 
|  |  | 
|  | /* | 
|  | * Second hash step | 
|  | *	enc: C_R = C_M - H_{K_H}(T, C_L) | 
|  | *	dec: P_R = P_M - H_{K_H}(T, P_L) | 
|  | */ | 
|  | rctx->u.hash_desc.tfm = tctx->hash; | 
|  | le128_sub(&rctx->rbuf.bignum, &rctx->rbuf.bignum, &rctx->header_hash); | 
|  | if (dst_nents == 1 && dst->offset + req->cryptlen <= PAGE_SIZE) { | 
|  | /* Fast path for single-page destination */ | 
|  | struct page *page = sg_page(dst); | 
|  | void *virt = kmap_local_page(page) + dst->offset; | 
|  |  | 
|  | err = crypto_shash_digest(&rctx->u.hash_desc, virt, bulk_len, | 
|  | (u8 *)&digest); | 
|  | if (err) { | 
|  | kunmap_local(virt); | 
|  | return err; | 
|  | } | 
|  | le128_sub(&rctx->rbuf.bignum, &rctx->rbuf.bignum, &digest); | 
|  | memcpy(virt + bulk_len, &rctx->rbuf.bignum, sizeof(le128)); | 
|  | flush_dcache_page(page); | 
|  | kunmap_local(virt); | 
|  | } else { | 
|  | /* Slow path that works for any destination scatterlist */ | 
|  | err = adiantum_hash_message(req, dst, dst_nents, &digest); | 
|  | if (err) | 
|  | return err; | 
|  | le128_sub(&rctx->rbuf.bignum, &rctx->rbuf.bignum, &digest); | 
|  | scatterwalk_map_and_copy(&rctx->rbuf.bignum, dst, | 
|  | bulk_len, sizeof(le128), 1); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void adiantum_streamcipher_done(void *data, int err) | 
|  | { | 
|  | struct skcipher_request *req = data; | 
|  |  | 
|  | if (!err) | 
|  | err = adiantum_finish(req); | 
|  |  | 
|  | skcipher_request_complete(req, err); | 
|  | } | 
|  |  | 
|  | static int adiantum_crypt(struct skcipher_request *req, bool enc) | 
|  | { | 
|  | struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); | 
|  | const struct adiantum_tfm_ctx *tctx = crypto_skcipher_ctx(tfm); | 
|  | struct adiantum_request_ctx *rctx = skcipher_request_ctx(req); | 
|  | const unsigned int bulk_len = req->cryptlen - BLOCKCIPHER_BLOCK_SIZE; | 
|  | struct scatterlist *src = req->src; | 
|  | const unsigned int src_nents = sg_nents(src); | 
|  | unsigned int stream_len; | 
|  | le128 digest; | 
|  | int err; | 
|  |  | 
|  | if (req->cryptlen < BLOCKCIPHER_BLOCK_SIZE) | 
|  | return -EINVAL; | 
|  |  | 
|  | rctx->enc = enc; | 
|  |  | 
|  | /* | 
|  | * First hash step | 
|  | *	enc: P_M = P_R + H_{K_H}(T, P_L) | 
|  | *	dec: C_M = C_R + H_{K_H}(T, C_L) | 
|  | */ | 
|  | adiantum_hash_header(req); | 
|  | rctx->u.hash_desc.tfm = tctx->hash; | 
|  | if (src_nents == 1 && src->offset + req->cryptlen <= PAGE_SIZE) { | 
|  | /* Fast path for single-page source */ | 
|  | void *virt = kmap_local_page(sg_page(src)) + src->offset; | 
|  |  | 
|  | err = crypto_shash_digest(&rctx->u.hash_desc, virt, bulk_len, | 
|  | (u8 *)&digest); | 
|  | memcpy(&rctx->rbuf.bignum, virt + bulk_len, sizeof(le128)); | 
|  | kunmap_local(virt); | 
|  | } else { | 
|  | /* Slow path that works for any source scatterlist */ | 
|  | err = adiantum_hash_message(req, src, src_nents, &digest); | 
|  | scatterwalk_map_and_copy(&rctx->rbuf.bignum, src, | 
|  | bulk_len, sizeof(le128), 0); | 
|  | } | 
|  | if (err) | 
|  | return err; | 
|  | le128_add(&rctx->rbuf.bignum, &rctx->rbuf.bignum, &rctx->header_hash); | 
|  | le128_add(&rctx->rbuf.bignum, &rctx->rbuf.bignum, &digest); | 
|  |  | 
|  | /* If encrypting, encrypt P_M with the block cipher to get C_M */ | 
|  | if (enc) | 
|  | crypto_cipher_encrypt_one(tctx->blockcipher, rctx->rbuf.bytes, | 
|  | rctx->rbuf.bytes); | 
|  |  | 
|  | /* Initialize the rest of the XChaCha IV (first part is C_M) */ | 
|  | BUILD_BUG_ON(BLOCKCIPHER_BLOCK_SIZE != 16); | 
|  | BUILD_BUG_ON(XCHACHA_IV_SIZE != 32);	/* nonce || stream position */ | 
|  | rctx->rbuf.words[4] = cpu_to_le32(1); | 
|  | rctx->rbuf.words[5] = 0; | 
|  | rctx->rbuf.words[6] = 0; | 
|  | rctx->rbuf.words[7] = 0; | 
|  |  | 
|  | /* | 
|  | * XChaCha needs to be done on all the data except the last 16 bytes; | 
|  | * for disk encryption that usually means 4080 or 496 bytes.  But ChaCha | 
|  | * implementations tend to be most efficient when passed a whole number | 
|  | * of 64-byte ChaCha blocks, or sometimes even a multiple of 256 bytes. | 
|  | * And here it doesn't matter whether the last 16 bytes are written to, | 
|  | * as the second hash step will overwrite them.  Thus, round the XChaCha | 
|  | * length up to the next 64-byte boundary if possible. | 
|  | */ | 
|  | stream_len = bulk_len; | 
|  | if (round_up(stream_len, CHACHA_BLOCK_SIZE) <= req->cryptlen) | 
|  | stream_len = round_up(stream_len, CHACHA_BLOCK_SIZE); | 
|  |  | 
|  | skcipher_request_set_tfm(&rctx->u.streamcipher_req, tctx->streamcipher); | 
|  | skcipher_request_set_crypt(&rctx->u.streamcipher_req, req->src, | 
|  | req->dst, stream_len, &rctx->rbuf); | 
|  | skcipher_request_set_callback(&rctx->u.streamcipher_req, | 
|  | req->base.flags, | 
|  | adiantum_streamcipher_done, req); | 
|  | return crypto_skcipher_encrypt(&rctx->u.streamcipher_req) ?: | 
|  | adiantum_finish(req); | 
|  | } | 
|  |  | 
|  | static int adiantum_encrypt(struct skcipher_request *req) | 
|  | { | 
|  | return adiantum_crypt(req, true); | 
|  | } | 
|  |  | 
|  | static int adiantum_decrypt(struct skcipher_request *req) | 
|  | { | 
|  | return adiantum_crypt(req, false); | 
|  | } | 
|  |  | 
|  | static int adiantum_init_tfm(struct crypto_skcipher *tfm) | 
|  | { | 
|  | struct skcipher_instance *inst = skcipher_alg_instance(tfm); | 
|  | struct adiantum_instance_ctx *ictx = skcipher_instance_ctx(inst); | 
|  | struct adiantum_tfm_ctx *tctx = crypto_skcipher_ctx(tfm); | 
|  | struct crypto_skcipher *streamcipher; | 
|  | struct crypto_cipher *blockcipher; | 
|  | struct crypto_shash *hash; | 
|  | unsigned int subreq_size; | 
|  | int err; | 
|  |  | 
|  | streamcipher = crypto_spawn_skcipher(&ictx->streamcipher_spawn); | 
|  | if (IS_ERR(streamcipher)) | 
|  | return PTR_ERR(streamcipher); | 
|  |  | 
|  | blockcipher = crypto_spawn_cipher(&ictx->blockcipher_spawn); | 
|  | if (IS_ERR(blockcipher)) { | 
|  | err = PTR_ERR(blockcipher); | 
|  | goto err_free_streamcipher; | 
|  | } | 
|  |  | 
|  | hash = crypto_spawn_shash(&ictx->hash_spawn); | 
|  | if (IS_ERR(hash)) { | 
|  | err = PTR_ERR(hash); | 
|  | goto err_free_blockcipher; | 
|  | } | 
|  |  | 
|  | tctx->streamcipher = streamcipher; | 
|  | tctx->blockcipher = blockcipher; | 
|  | tctx->hash = hash; | 
|  |  | 
|  | BUILD_BUG_ON(offsetofend(struct adiantum_request_ctx, u) != | 
|  | sizeof(struct adiantum_request_ctx)); | 
|  | subreq_size = max(sizeof_field(struct adiantum_request_ctx, | 
|  | u.hash_desc) + | 
|  | crypto_shash_descsize(hash), | 
|  | sizeof_field(struct adiantum_request_ctx, | 
|  | u.streamcipher_req) + | 
|  | crypto_skcipher_reqsize(streamcipher)); | 
|  |  | 
|  | crypto_skcipher_set_reqsize(tfm, | 
|  | offsetof(struct adiantum_request_ctx, u) + | 
|  | subreq_size); | 
|  | return 0; | 
|  |  | 
|  | err_free_blockcipher: | 
|  | crypto_free_cipher(blockcipher); | 
|  | err_free_streamcipher: | 
|  | crypto_free_skcipher(streamcipher); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static void adiantum_exit_tfm(struct crypto_skcipher *tfm) | 
|  | { | 
|  | struct adiantum_tfm_ctx *tctx = crypto_skcipher_ctx(tfm); | 
|  |  | 
|  | crypto_free_skcipher(tctx->streamcipher); | 
|  | crypto_free_cipher(tctx->blockcipher); | 
|  | crypto_free_shash(tctx->hash); | 
|  | } | 
|  |  | 
|  | static void adiantum_free_instance(struct skcipher_instance *inst) | 
|  | { | 
|  | struct adiantum_instance_ctx *ictx = skcipher_instance_ctx(inst); | 
|  |  | 
|  | crypto_drop_skcipher(&ictx->streamcipher_spawn); | 
|  | crypto_drop_cipher(&ictx->blockcipher_spawn); | 
|  | crypto_drop_shash(&ictx->hash_spawn); | 
|  | kfree(inst); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check for a supported set of inner algorithms. | 
|  | * See the comment at the beginning of this file. | 
|  | */ | 
|  | static bool adiantum_supported_algorithms(struct skcipher_alg_common *streamcipher_alg, | 
|  | struct crypto_alg *blockcipher_alg, | 
|  | struct shash_alg *hash_alg) | 
|  | { | 
|  | if (strcmp(streamcipher_alg->base.cra_name, "xchacha12") != 0 && | 
|  | strcmp(streamcipher_alg->base.cra_name, "xchacha20") != 0) | 
|  | return false; | 
|  |  | 
|  | if (blockcipher_alg->cra_cipher.cia_min_keysize > BLOCKCIPHER_KEY_SIZE || | 
|  | blockcipher_alg->cra_cipher.cia_max_keysize < BLOCKCIPHER_KEY_SIZE) | 
|  | return false; | 
|  | if (blockcipher_alg->cra_blocksize != BLOCKCIPHER_BLOCK_SIZE) | 
|  | return false; | 
|  |  | 
|  | if (strcmp(hash_alg->base.cra_name, "nhpoly1305") != 0) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static int adiantum_create(struct crypto_template *tmpl, struct rtattr **tb) | 
|  | { | 
|  | u32 mask; | 
|  | const char *nhpoly1305_name; | 
|  | struct skcipher_instance *inst; | 
|  | struct adiantum_instance_ctx *ictx; | 
|  | struct skcipher_alg_common *streamcipher_alg; | 
|  | struct crypto_alg *blockcipher_alg; | 
|  | struct shash_alg *hash_alg; | 
|  | int err; | 
|  |  | 
|  | err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_SKCIPHER, &mask); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | inst = kzalloc(sizeof(*inst) + sizeof(*ictx), GFP_KERNEL); | 
|  | if (!inst) | 
|  | return -ENOMEM; | 
|  | ictx = skcipher_instance_ctx(inst); | 
|  |  | 
|  | /* Stream cipher, e.g. "xchacha12" */ | 
|  | err = crypto_grab_skcipher(&ictx->streamcipher_spawn, | 
|  | skcipher_crypto_instance(inst), | 
|  | crypto_attr_alg_name(tb[1]), 0, mask); | 
|  | if (err) | 
|  | goto err_free_inst; | 
|  | streamcipher_alg = crypto_spawn_skcipher_alg_common(&ictx->streamcipher_spawn); | 
|  |  | 
|  | /* Block cipher, e.g. "aes" */ | 
|  | err = crypto_grab_cipher(&ictx->blockcipher_spawn, | 
|  | skcipher_crypto_instance(inst), | 
|  | crypto_attr_alg_name(tb[2]), 0, mask); | 
|  | if (err) | 
|  | goto err_free_inst; | 
|  | blockcipher_alg = crypto_spawn_cipher_alg(&ictx->blockcipher_spawn); | 
|  |  | 
|  | /* NHPoly1305 ε-∆U hash function */ | 
|  | nhpoly1305_name = crypto_attr_alg_name(tb[3]); | 
|  | if (nhpoly1305_name == ERR_PTR(-ENOENT)) | 
|  | nhpoly1305_name = "nhpoly1305"; | 
|  | err = crypto_grab_shash(&ictx->hash_spawn, | 
|  | skcipher_crypto_instance(inst), | 
|  | nhpoly1305_name, 0, mask); | 
|  | if (err) | 
|  | goto err_free_inst; | 
|  | hash_alg = crypto_spawn_shash_alg(&ictx->hash_spawn); | 
|  |  | 
|  | /* Check the set of algorithms */ | 
|  | if (!adiantum_supported_algorithms(streamcipher_alg, blockcipher_alg, | 
|  | hash_alg)) { | 
|  | pr_warn("Unsupported Adiantum instantiation: (%s,%s,%s)\n", | 
|  | streamcipher_alg->base.cra_name, | 
|  | blockcipher_alg->cra_name, hash_alg->base.cra_name); | 
|  | err = -EINVAL; | 
|  | goto err_free_inst; | 
|  | } | 
|  |  | 
|  | /* Instance fields */ | 
|  |  | 
|  | err = -ENAMETOOLONG; | 
|  | if (snprintf(inst->alg.base.cra_name, CRYPTO_MAX_ALG_NAME, | 
|  | "adiantum(%s,%s)", streamcipher_alg->base.cra_name, | 
|  | blockcipher_alg->cra_name) >= CRYPTO_MAX_ALG_NAME) | 
|  | goto err_free_inst; | 
|  | if (snprintf(inst->alg.base.cra_driver_name, CRYPTO_MAX_ALG_NAME, | 
|  | "adiantum(%s,%s,%s)", | 
|  | streamcipher_alg->base.cra_driver_name, | 
|  | blockcipher_alg->cra_driver_name, | 
|  | hash_alg->base.cra_driver_name) >= CRYPTO_MAX_ALG_NAME) | 
|  | goto err_free_inst; | 
|  |  | 
|  | inst->alg.base.cra_blocksize = BLOCKCIPHER_BLOCK_SIZE; | 
|  | inst->alg.base.cra_ctxsize = sizeof(struct adiantum_tfm_ctx); | 
|  | inst->alg.base.cra_alignmask = streamcipher_alg->base.cra_alignmask; | 
|  | /* | 
|  | * The block cipher is only invoked once per message, so for long | 
|  | * messages (e.g. sectors for disk encryption) its performance doesn't | 
|  | * matter as much as that of the stream cipher and hash function.  Thus, | 
|  | * weigh the block cipher's ->cra_priority less. | 
|  | */ | 
|  | inst->alg.base.cra_priority = (4 * streamcipher_alg->base.cra_priority + | 
|  | 2 * hash_alg->base.cra_priority + | 
|  | blockcipher_alg->cra_priority) / 7; | 
|  |  | 
|  | inst->alg.setkey = adiantum_setkey; | 
|  | inst->alg.encrypt = adiantum_encrypt; | 
|  | inst->alg.decrypt = adiantum_decrypt; | 
|  | inst->alg.init = adiantum_init_tfm; | 
|  | inst->alg.exit = adiantum_exit_tfm; | 
|  | inst->alg.min_keysize = streamcipher_alg->min_keysize; | 
|  | inst->alg.max_keysize = streamcipher_alg->max_keysize; | 
|  | inst->alg.ivsize = TWEAK_SIZE; | 
|  |  | 
|  | inst->free = adiantum_free_instance; | 
|  |  | 
|  | err = skcipher_register_instance(tmpl, inst); | 
|  | if (err) { | 
|  | err_free_inst: | 
|  | adiantum_free_instance(inst); | 
|  | } | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* adiantum(streamcipher_name, blockcipher_name [, nhpoly1305_name]) */ | 
|  | static struct crypto_template adiantum_tmpl = { | 
|  | .name = "adiantum", | 
|  | .create = adiantum_create, | 
|  | .module = THIS_MODULE, | 
|  | }; | 
|  |  | 
|  | static int __init adiantum_module_init(void) | 
|  | { | 
|  | return crypto_register_template(&adiantum_tmpl); | 
|  | } | 
|  |  | 
|  | static void __exit adiantum_module_exit(void) | 
|  | { | 
|  | crypto_unregister_template(&adiantum_tmpl); | 
|  | } | 
|  |  | 
|  | subsys_initcall(adiantum_module_init); | 
|  | module_exit(adiantum_module_exit); | 
|  |  | 
|  | MODULE_DESCRIPTION("Adiantum length-preserving encryption mode"); | 
|  | MODULE_LICENSE("GPL v2"); | 
|  | MODULE_AUTHOR("Eric Biggers <ebiggers@google.com>"); | 
|  | MODULE_ALIAS_CRYPTO("adiantum"); | 
|  | MODULE_IMPORT_NS(CRYPTO_INTERNAL); |