|  | // SPDX-License-Identifier: GPL-2.0-or-later | 
|  | /* | 
|  | * inet fragments management | 
|  | * | 
|  | * 		Authors:	Pavel Emelyanov <xemul@openvz.org> | 
|  | *				Started as consolidation of ipv4/ip_fragment.c, | 
|  | *				ipv6/reassembly. and ipv6 nf conntrack reassembly | 
|  | */ | 
|  |  | 
|  | #include <linux/list.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/timer.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/random.h> | 
|  | #include <linux/skbuff.h> | 
|  | #include <linux/rtnetlink.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/rhashtable.h> | 
|  |  | 
|  | #include <net/sock.h> | 
|  | #include <net/inet_frag.h> | 
|  | #include <net/inet_ecn.h> | 
|  | #include <net/ip.h> | 
|  | #include <net/ipv6.h> | 
|  |  | 
|  | /* Use skb->cb to track consecutive/adjacent fragments coming at | 
|  | * the end of the queue. Nodes in the rb-tree queue will | 
|  | * contain "runs" of one or more adjacent fragments. | 
|  | * | 
|  | * Invariants: | 
|  | * - next_frag is NULL at the tail of a "run"; | 
|  | * - the head of a "run" has the sum of all fragment lengths in frag_run_len. | 
|  | */ | 
|  | struct ipfrag_skb_cb { | 
|  | union { | 
|  | struct inet_skb_parm	h4; | 
|  | struct inet6_skb_parm	h6; | 
|  | }; | 
|  | struct sk_buff		*next_frag; | 
|  | int			frag_run_len; | 
|  | }; | 
|  |  | 
|  | #define FRAG_CB(skb)		((struct ipfrag_skb_cb *)((skb)->cb)) | 
|  |  | 
|  | static void fragcb_clear(struct sk_buff *skb) | 
|  | { | 
|  | RB_CLEAR_NODE(&skb->rbnode); | 
|  | FRAG_CB(skb)->next_frag = NULL; | 
|  | FRAG_CB(skb)->frag_run_len = skb->len; | 
|  | } | 
|  |  | 
|  | /* Append skb to the last "run". */ | 
|  | static void fragrun_append_to_last(struct inet_frag_queue *q, | 
|  | struct sk_buff *skb) | 
|  | { | 
|  | fragcb_clear(skb); | 
|  |  | 
|  | FRAG_CB(q->last_run_head)->frag_run_len += skb->len; | 
|  | FRAG_CB(q->fragments_tail)->next_frag = skb; | 
|  | q->fragments_tail = skb; | 
|  | } | 
|  |  | 
|  | /* Create a new "run" with the skb. */ | 
|  | static void fragrun_create(struct inet_frag_queue *q, struct sk_buff *skb) | 
|  | { | 
|  | BUILD_BUG_ON(sizeof(struct ipfrag_skb_cb) > sizeof(skb->cb)); | 
|  | fragcb_clear(skb); | 
|  |  | 
|  | if (q->last_run_head) | 
|  | rb_link_node(&skb->rbnode, &q->last_run_head->rbnode, | 
|  | &q->last_run_head->rbnode.rb_right); | 
|  | else | 
|  | rb_link_node(&skb->rbnode, NULL, &q->rb_fragments.rb_node); | 
|  | rb_insert_color(&skb->rbnode, &q->rb_fragments); | 
|  |  | 
|  | q->fragments_tail = skb; | 
|  | q->last_run_head = skb; | 
|  | } | 
|  |  | 
|  | /* Given the OR values of all fragments, apply RFC 3168 5.3 requirements | 
|  | * Value : 0xff if frame should be dropped. | 
|  | *         0 or INET_ECN_CE value, to be ORed in to final iph->tos field | 
|  | */ | 
|  | const u8 ip_frag_ecn_table[16] = { | 
|  | /* at least one fragment had CE, and others ECT_0 or ECT_1 */ | 
|  | [IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0]			= INET_ECN_CE, | 
|  | [IPFRAG_ECN_CE | IPFRAG_ECN_ECT_1]			= INET_ECN_CE, | 
|  | [IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0 | IPFRAG_ECN_ECT_1]	= INET_ECN_CE, | 
|  |  | 
|  | /* invalid combinations : drop frame */ | 
|  | [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE] = 0xff, | 
|  | [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_ECT_0] = 0xff, | 
|  | [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_ECT_1] = 0xff, | 
|  | [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_ECT_0 | IPFRAG_ECN_ECT_1] = 0xff, | 
|  | [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0] = 0xff, | 
|  | [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE | IPFRAG_ECN_ECT_1] = 0xff, | 
|  | [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0 | IPFRAG_ECN_ECT_1] = 0xff, | 
|  | }; | 
|  | EXPORT_SYMBOL(ip_frag_ecn_table); | 
|  |  | 
|  | int inet_frags_init(struct inet_frags *f) | 
|  | { | 
|  | f->frags_cachep = kmem_cache_create(f->frags_cache_name, f->qsize, 0, 0, | 
|  | NULL); | 
|  | if (!f->frags_cachep) | 
|  | return -ENOMEM; | 
|  |  | 
|  | refcount_set(&f->refcnt, 1); | 
|  | init_completion(&f->completion); | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(inet_frags_init); | 
|  |  | 
|  | void inet_frags_fini(struct inet_frags *f) | 
|  | { | 
|  | if (refcount_dec_and_test(&f->refcnt)) | 
|  | complete(&f->completion); | 
|  |  | 
|  | wait_for_completion(&f->completion); | 
|  |  | 
|  | kmem_cache_destroy(f->frags_cachep); | 
|  | f->frags_cachep = NULL; | 
|  | } | 
|  | EXPORT_SYMBOL(inet_frags_fini); | 
|  |  | 
|  | /* called from rhashtable_free_and_destroy() at netns_frags dismantle */ | 
|  | static void inet_frags_free_cb(void *ptr, void *arg) | 
|  | { | 
|  | struct inet_frag_queue *fq = ptr; | 
|  | int count; | 
|  |  | 
|  | count = del_timer_sync(&fq->timer) ? 1 : 0; | 
|  |  | 
|  | spin_lock_bh(&fq->lock); | 
|  | fq->flags |= INET_FRAG_DROP; | 
|  | if (!(fq->flags & INET_FRAG_COMPLETE)) { | 
|  | fq->flags |= INET_FRAG_COMPLETE; | 
|  | count++; | 
|  | } else if (fq->flags & INET_FRAG_HASH_DEAD) { | 
|  | count++; | 
|  | } | 
|  | spin_unlock_bh(&fq->lock); | 
|  |  | 
|  | if (refcount_sub_and_test(count, &fq->refcnt)) | 
|  | inet_frag_destroy(fq); | 
|  | } | 
|  |  | 
|  | static LLIST_HEAD(fqdir_free_list); | 
|  |  | 
|  | static void fqdir_free_fn(struct work_struct *work) | 
|  | { | 
|  | struct llist_node *kill_list; | 
|  | struct fqdir *fqdir, *tmp; | 
|  | struct inet_frags *f; | 
|  |  | 
|  | /* Atomically snapshot the list of fqdirs to free */ | 
|  | kill_list = llist_del_all(&fqdir_free_list); | 
|  |  | 
|  | /* We need to make sure all ongoing call_rcu(..., inet_frag_destroy_rcu) | 
|  | * have completed, since they need to dereference fqdir. | 
|  | * Would it not be nice to have kfree_rcu_barrier() ? :) | 
|  | */ | 
|  | rcu_barrier(); | 
|  |  | 
|  | llist_for_each_entry_safe(fqdir, tmp, kill_list, free_list) { | 
|  | f = fqdir->f; | 
|  | if (refcount_dec_and_test(&f->refcnt)) | 
|  | complete(&f->completion); | 
|  |  | 
|  | kfree(fqdir); | 
|  | } | 
|  | } | 
|  |  | 
|  | static DECLARE_WORK(fqdir_free_work, fqdir_free_fn); | 
|  |  | 
|  | static void fqdir_work_fn(struct work_struct *work) | 
|  | { | 
|  | struct fqdir *fqdir = container_of(work, struct fqdir, destroy_work); | 
|  |  | 
|  | rhashtable_free_and_destroy(&fqdir->rhashtable, inet_frags_free_cb, NULL); | 
|  |  | 
|  | if (llist_add(&fqdir->free_list, &fqdir_free_list)) | 
|  | queue_work(system_wq, &fqdir_free_work); | 
|  | } | 
|  |  | 
|  | int fqdir_init(struct fqdir **fqdirp, struct inet_frags *f, struct net *net) | 
|  | { | 
|  | struct fqdir *fqdir = kzalloc(sizeof(*fqdir), GFP_KERNEL); | 
|  | int res; | 
|  |  | 
|  | if (!fqdir) | 
|  | return -ENOMEM; | 
|  | fqdir->f = f; | 
|  | fqdir->net = net; | 
|  | res = rhashtable_init(&fqdir->rhashtable, &fqdir->f->rhash_params); | 
|  | if (res < 0) { | 
|  | kfree(fqdir); | 
|  | return res; | 
|  | } | 
|  | refcount_inc(&f->refcnt); | 
|  | *fqdirp = fqdir; | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(fqdir_init); | 
|  |  | 
|  | static struct workqueue_struct *inet_frag_wq; | 
|  |  | 
|  | static int __init inet_frag_wq_init(void) | 
|  | { | 
|  | inet_frag_wq = create_workqueue("inet_frag_wq"); | 
|  | if (!inet_frag_wq) | 
|  | panic("Could not create inet frag workq"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | pure_initcall(inet_frag_wq_init); | 
|  |  | 
|  | void fqdir_exit(struct fqdir *fqdir) | 
|  | { | 
|  | INIT_WORK(&fqdir->destroy_work, fqdir_work_fn); | 
|  | queue_work(inet_frag_wq, &fqdir->destroy_work); | 
|  | } | 
|  | EXPORT_SYMBOL(fqdir_exit); | 
|  |  | 
|  | void inet_frag_kill(struct inet_frag_queue *fq) | 
|  | { | 
|  | if (del_timer(&fq->timer)) | 
|  | refcount_dec(&fq->refcnt); | 
|  |  | 
|  | if (!(fq->flags & INET_FRAG_COMPLETE)) { | 
|  | struct fqdir *fqdir = fq->fqdir; | 
|  |  | 
|  | fq->flags |= INET_FRAG_COMPLETE; | 
|  | rcu_read_lock(); | 
|  | /* The RCU read lock provides a memory barrier | 
|  | * guaranteeing that if fqdir->dead is false then | 
|  | * the hash table destruction will not start until | 
|  | * after we unlock.  Paired with fqdir_pre_exit(). | 
|  | */ | 
|  | if (!READ_ONCE(fqdir->dead)) { | 
|  | rhashtable_remove_fast(&fqdir->rhashtable, &fq->node, | 
|  | fqdir->f->rhash_params); | 
|  | refcount_dec(&fq->refcnt); | 
|  | } else { | 
|  | fq->flags |= INET_FRAG_HASH_DEAD; | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(inet_frag_kill); | 
|  |  | 
|  | static void inet_frag_destroy_rcu(struct rcu_head *head) | 
|  | { | 
|  | struct inet_frag_queue *q = container_of(head, struct inet_frag_queue, | 
|  | rcu); | 
|  | struct inet_frags *f = q->fqdir->f; | 
|  |  | 
|  | if (f->destructor) | 
|  | f->destructor(q); | 
|  | kmem_cache_free(f->frags_cachep, q); | 
|  | } | 
|  |  | 
|  | unsigned int inet_frag_rbtree_purge(struct rb_root *root, | 
|  | enum skb_drop_reason reason) | 
|  | { | 
|  | struct rb_node *p = rb_first(root); | 
|  | unsigned int sum = 0; | 
|  |  | 
|  | while (p) { | 
|  | struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode); | 
|  |  | 
|  | p = rb_next(p); | 
|  | rb_erase(&skb->rbnode, root); | 
|  | while (skb) { | 
|  | struct sk_buff *next = FRAG_CB(skb)->next_frag; | 
|  |  | 
|  | sum += skb->truesize; | 
|  | kfree_skb_reason(skb, reason); | 
|  | skb = next; | 
|  | } | 
|  | } | 
|  | return sum; | 
|  | } | 
|  | EXPORT_SYMBOL(inet_frag_rbtree_purge); | 
|  |  | 
|  | void inet_frag_destroy(struct inet_frag_queue *q) | 
|  | { | 
|  | unsigned int sum, sum_truesize = 0; | 
|  | enum skb_drop_reason reason; | 
|  | struct inet_frags *f; | 
|  | struct fqdir *fqdir; | 
|  |  | 
|  | WARN_ON(!(q->flags & INET_FRAG_COMPLETE)); | 
|  | reason = (q->flags & INET_FRAG_DROP) ? | 
|  | SKB_DROP_REASON_FRAG_REASM_TIMEOUT : | 
|  | SKB_CONSUMED; | 
|  | WARN_ON(del_timer(&q->timer) != 0); | 
|  |  | 
|  | /* Release all fragment data. */ | 
|  | fqdir = q->fqdir; | 
|  | f = fqdir->f; | 
|  | sum_truesize = inet_frag_rbtree_purge(&q->rb_fragments, reason); | 
|  | sum = sum_truesize + f->qsize; | 
|  |  | 
|  | call_rcu(&q->rcu, inet_frag_destroy_rcu); | 
|  |  | 
|  | sub_frag_mem_limit(fqdir, sum); | 
|  | } | 
|  | EXPORT_SYMBOL(inet_frag_destroy); | 
|  |  | 
|  | static struct inet_frag_queue *inet_frag_alloc(struct fqdir *fqdir, | 
|  | struct inet_frags *f, | 
|  | void *arg) | 
|  | { | 
|  | struct inet_frag_queue *q; | 
|  |  | 
|  | q = kmem_cache_zalloc(f->frags_cachep, GFP_ATOMIC); | 
|  | if (!q) | 
|  | return NULL; | 
|  |  | 
|  | q->fqdir = fqdir; | 
|  | f->constructor(q, arg); | 
|  | add_frag_mem_limit(fqdir, f->qsize); | 
|  |  | 
|  | timer_setup(&q->timer, f->frag_expire, 0); | 
|  | spin_lock_init(&q->lock); | 
|  | refcount_set(&q->refcnt, 3); | 
|  |  | 
|  | return q; | 
|  | } | 
|  |  | 
|  | static struct inet_frag_queue *inet_frag_create(struct fqdir *fqdir, | 
|  | void *arg, | 
|  | struct inet_frag_queue **prev) | 
|  | { | 
|  | struct inet_frags *f = fqdir->f; | 
|  | struct inet_frag_queue *q; | 
|  |  | 
|  | q = inet_frag_alloc(fqdir, f, arg); | 
|  | if (!q) { | 
|  | *prev = ERR_PTR(-ENOMEM); | 
|  | return NULL; | 
|  | } | 
|  | mod_timer(&q->timer, jiffies + fqdir->timeout); | 
|  |  | 
|  | *prev = rhashtable_lookup_get_insert_key(&fqdir->rhashtable, &q->key, | 
|  | &q->node, f->rhash_params); | 
|  | if (*prev) { | 
|  | q->flags |= INET_FRAG_COMPLETE; | 
|  | inet_frag_kill(q); | 
|  | inet_frag_destroy(q); | 
|  | return NULL; | 
|  | } | 
|  | return q; | 
|  | } | 
|  |  | 
|  | /* TODO : call from rcu_read_lock() and no longer use refcount_inc_not_zero() */ | 
|  | struct inet_frag_queue *inet_frag_find(struct fqdir *fqdir, void *key) | 
|  | { | 
|  | /* This pairs with WRITE_ONCE() in fqdir_pre_exit(). */ | 
|  | long high_thresh = READ_ONCE(fqdir->high_thresh); | 
|  | struct inet_frag_queue *fq = NULL, *prev; | 
|  |  | 
|  | if (!high_thresh || frag_mem_limit(fqdir) > high_thresh) | 
|  | return NULL; | 
|  |  | 
|  | rcu_read_lock(); | 
|  |  | 
|  | prev = rhashtable_lookup(&fqdir->rhashtable, key, fqdir->f->rhash_params); | 
|  | if (!prev) | 
|  | fq = inet_frag_create(fqdir, key, &prev); | 
|  | if (!IS_ERR_OR_NULL(prev)) { | 
|  | fq = prev; | 
|  | if (!refcount_inc_not_zero(&fq->refcnt)) | 
|  | fq = NULL; | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | return fq; | 
|  | } | 
|  | EXPORT_SYMBOL(inet_frag_find); | 
|  |  | 
|  | int inet_frag_queue_insert(struct inet_frag_queue *q, struct sk_buff *skb, | 
|  | int offset, int end) | 
|  | { | 
|  | struct sk_buff *last = q->fragments_tail; | 
|  |  | 
|  | /* RFC5722, Section 4, amended by Errata ID : 3089 | 
|  | *                          When reassembling an IPv6 datagram, if | 
|  | *   one or more its constituent fragments is determined to be an | 
|  | *   overlapping fragment, the entire datagram (and any constituent | 
|  | *   fragments) MUST be silently discarded. | 
|  | * | 
|  | * Duplicates, however, should be ignored (i.e. skb dropped, but the | 
|  | * queue/fragments kept for later reassembly). | 
|  | */ | 
|  | if (!last) | 
|  | fragrun_create(q, skb);  /* First fragment. */ | 
|  | else if (last->ip_defrag_offset + last->len < end) { | 
|  | /* This is the common case: skb goes to the end. */ | 
|  | /* Detect and discard overlaps. */ | 
|  | if (offset < last->ip_defrag_offset + last->len) | 
|  | return IPFRAG_OVERLAP; | 
|  | if (offset == last->ip_defrag_offset + last->len) | 
|  | fragrun_append_to_last(q, skb); | 
|  | else | 
|  | fragrun_create(q, skb); | 
|  | } else { | 
|  | /* Binary search. Note that skb can become the first fragment, | 
|  | * but not the last (covered above). | 
|  | */ | 
|  | struct rb_node **rbn, *parent; | 
|  |  | 
|  | rbn = &q->rb_fragments.rb_node; | 
|  | do { | 
|  | struct sk_buff *curr; | 
|  | int curr_run_end; | 
|  |  | 
|  | parent = *rbn; | 
|  | curr = rb_to_skb(parent); | 
|  | curr_run_end = curr->ip_defrag_offset + | 
|  | FRAG_CB(curr)->frag_run_len; | 
|  | if (end <= curr->ip_defrag_offset) | 
|  | rbn = &parent->rb_left; | 
|  | else if (offset >= curr_run_end) | 
|  | rbn = &parent->rb_right; | 
|  | else if (offset >= curr->ip_defrag_offset && | 
|  | end <= curr_run_end) | 
|  | return IPFRAG_DUP; | 
|  | else | 
|  | return IPFRAG_OVERLAP; | 
|  | } while (*rbn); | 
|  | /* Here we have parent properly set, and rbn pointing to | 
|  | * one of its NULL left/right children. Insert skb. | 
|  | */ | 
|  | fragcb_clear(skb); | 
|  | rb_link_node(&skb->rbnode, parent, rbn); | 
|  | rb_insert_color(&skb->rbnode, &q->rb_fragments); | 
|  | } | 
|  |  | 
|  | skb->ip_defrag_offset = offset; | 
|  |  | 
|  | return IPFRAG_OK; | 
|  | } | 
|  | EXPORT_SYMBOL(inet_frag_queue_insert); | 
|  |  | 
|  | void *inet_frag_reasm_prepare(struct inet_frag_queue *q, struct sk_buff *skb, | 
|  | struct sk_buff *parent) | 
|  | { | 
|  | struct sk_buff *fp, *head = skb_rb_first(&q->rb_fragments); | 
|  | struct sk_buff **nextp; | 
|  | int delta; | 
|  |  | 
|  | if (head != skb) { | 
|  | fp = skb_clone(skb, GFP_ATOMIC); | 
|  | if (!fp) | 
|  | return NULL; | 
|  | FRAG_CB(fp)->next_frag = FRAG_CB(skb)->next_frag; | 
|  | if (RB_EMPTY_NODE(&skb->rbnode)) | 
|  | FRAG_CB(parent)->next_frag = fp; | 
|  | else | 
|  | rb_replace_node(&skb->rbnode, &fp->rbnode, | 
|  | &q->rb_fragments); | 
|  | if (q->fragments_tail == skb) | 
|  | q->fragments_tail = fp; | 
|  | skb_morph(skb, head); | 
|  | FRAG_CB(skb)->next_frag = FRAG_CB(head)->next_frag; | 
|  | rb_replace_node(&head->rbnode, &skb->rbnode, | 
|  | &q->rb_fragments); | 
|  | consume_skb(head); | 
|  | head = skb; | 
|  | } | 
|  | WARN_ON(head->ip_defrag_offset != 0); | 
|  |  | 
|  | delta = -head->truesize; | 
|  |  | 
|  | /* Head of list must not be cloned. */ | 
|  | if (skb_unclone(head, GFP_ATOMIC)) | 
|  | return NULL; | 
|  |  | 
|  | delta += head->truesize; | 
|  | if (delta) | 
|  | add_frag_mem_limit(q->fqdir, delta); | 
|  |  | 
|  | /* If the first fragment is fragmented itself, we split | 
|  | * it to two chunks: the first with data and paged part | 
|  | * and the second, holding only fragments. | 
|  | */ | 
|  | if (skb_has_frag_list(head)) { | 
|  | struct sk_buff *clone; | 
|  | int i, plen = 0; | 
|  |  | 
|  | clone = alloc_skb(0, GFP_ATOMIC); | 
|  | if (!clone) | 
|  | return NULL; | 
|  | skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list; | 
|  | skb_frag_list_init(head); | 
|  | for (i = 0; i < skb_shinfo(head)->nr_frags; i++) | 
|  | plen += skb_frag_size(&skb_shinfo(head)->frags[i]); | 
|  | clone->data_len = head->data_len - plen; | 
|  | clone->len = clone->data_len; | 
|  | head->truesize += clone->truesize; | 
|  | clone->csum = 0; | 
|  | clone->ip_summed = head->ip_summed; | 
|  | add_frag_mem_limit(q->fqdir, clone->truesize); | 
|  | skb_shinfo(head)->frag_list = clone; | 
|  | nextp = &clone->next; | 
|  | } else { | 
|  | nextp = &skb_shinfo(head)->frag_list; | 
|  | } | 
|  |  | 
|  | return nextp; | 
|  | } | 
|  | EXPORT_SYMBOL(inet_frag_reasm_prepare); | 
|  |  | 
|  | void inet_frag_reasm_finish(struct inet_frag_queue *q, struct sk_buff *head, | 
|  | void *reasm_data, bool try_coalesce) | 
|  | { | 
|  | struct sk_buff **nextp = reasm_data; | 
|  | struct rb_node *rbn; | 
|  | struct sk_buff *fp; | 
|  | int sum_truesize; | 
|  |  | 
|  | skb_push(head, head->data - skb_network_header(head)); | 
|  |  | 
|  | /* Traverse the tree in order, to build frag_list. */ | 
|  | fp = FRAG_CB(head)->next_frag; | 
|  | rbn = rb_next(&head->rbnode); | 
|  | rb_erase(&head->rbnode, &q->rb_fragments); | 
|  |  | 
|  | sum_truesize = head->truesize; | 
|  | while (rbn || fp) { | 
|  | /* fp points to the next sk_buff in the current run; | 
|  | * rbn points to the next run. | 
|  | */ | 
|  | /* Go through the current run. */ | 
|  | while (fp) { | 
|  | struct sk_buff *next_frag = FRAG_CB(fp)->next_frag; | 
|  | bool stolen; | 
|  | int delta; | 
|  |  | 
|  | sum_truesize += fp->truesize; | 
|  | if (head->ip_summed != fp->ip_summed) | 
|  | head->ip_summed = CHECKSUM_NONE; | 
|  | else if (head->ip_summed == CHECKSUM_COMPLETE) | 
|  | head->csum = csum_add(head->csum, fp->csum); | 
|  |  | 
|  | if (try_coalesce && skb_try_coalesce(head, fp, &stolen, | 
|  | &delta)) { | 
|  | kfree_skb_partial(fp, stolen); | 
|  | } else { | 
|  | fp->prev = NULL; | 
|  | memset(&fp->rbnode, 0, sizeof(fp->rbnode)); | 
|  | fp->sk = NULL; | 
|  |  | 
|  | head->data_len += fp->len; | 
|  | head->len += fp->len; | 
|  | head->truesize += fp->truesize; | 
|  |  | 
|  | *nextp = fp; | 
|  | nextp = &fp->next; | 
|  | } | 
|  |  | 
|  | fp = next_frag; | 
|  | } | 
|  | /* Move to the next run. */ | 
|  | if (rbn) { | 
|  | struct rb_node *rbnext = rb_next(rbn); | 
|  |  | 
|  | fp = rb_to_skb(rbn); | 
|  | rb_erase(rbn, &q->rb_fragments); | 
|  | rbn = rbnext; | 
|  | } | 
|  | } | 
|  | sub_frag_mem_limit(q->fqdir, sum_truesize); | 
|  |  | 
|  | *nextp = NULL; | 
|  | skb_mark_not_on_list(head); | 
|  | head->prev = NULL; | 
|  | head->tstamp = q->stamp; | 
|  | head->mono_delivery_time = q->mono_delivery_time; | 
|  | } | 
|  | EXPORT_SYMBOL(inet_frag_reasm_finish); | 
|  |  | 
|  | struct sk_buff *inet_frag_pull_head(struct inet_frag_queue *q) | 
|  | { | 
|  | struct sk_buff *head, *skb; | 
|  |  | 
|  | head = skb_rb_first(&q->rb_fragments); | 
|  | if (!head) | 
|  | return NULL; | 
|  | skb = FRAG_CB(head)->next_frag; | 
|  | if (skb) | 
|  | rb_replace_node(&head->rbnode, &skb->rbnode, | 
|  | &q->rb_fragments); | 
|  | else | 
|  | rb_erase(&head->rbnode, &q->rb_fragments); | 
|  | memset(&head->rbnode, 0, sizeof(head->rbnode)); | 
|  | barrier(); | 
|  |  | 
|  | if (head == q->fragments_tail) | 
|  | q->fragments_tail = NULL; | 
|  |  | 
|  | sub_frag_mem_limit(q->fqdir, head->truesize); | 
|  |  | 
|  | return head; | 
|  | } | 
|  | EXPORT_SYMBOL(inet_frag_pull_head); |