| /* | 
 |  * mm/rmap.c - physical to virtual reverse mappings | 
 |  * | 
 |  * Copyright 2001, Rik van Riel <riel@conectiva.com.br> | 
 |  * Released under the General Public License (GPL). | 
 |  * | 
 |  * Simple, low overhead reverse mapping scheme. | 
 |  * Please try to keep this thing as modular as possible. | 
 |  * | 
 |  * Provides methods for unmapping each kind of mapped page: | 
 |  * the anon methods track anonymous pages, and | 
 |  * the file methods track pages belonging to an inode. | 
 |  * | 
 |  * Original design by Rik van Riel <riel@conectiva.com.br> 2001 | 
 |  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004 | 
 |  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004 | 
 |  * Contributions by Hugh Dickins 2003, 2004 | 
 |  */ | 
 |  | 
 | /* | 
 |  * Lock ordering in mm: | 
 |  * | 
 |  * inode->i_rwsem	(while writing or truncating, not reading or faulting) | 
 |  *   mm->mmap_lock | 
 |  *     mapping->invalidate_lock (in filemap_fault) | 
 |  *       folio_lock | 
 |  *         hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share, see hugetlbfs below) | 
 |  *           vma_start_write | 
 |  *             mapping->i_mmap_rwsem | 
 |  *               anon_vma->rwsem | 
 |  *                 mm->page_table_lock or pte_lock | 
 |  *                   swap_lock (in swap_duplicate, swap_info_get) | 
 |  *                     mmlist_lock (in mmput, drain_mmlist and others) | 
 |  *                     mapping->private_lock (in block_dirty_folio) | 
 |  *                         i_pages lock (widely used) | 
 |  *                           lruvec->lru_lock (in folio_lruvec_lock_irq) | 
 |  *                     inode->i_lock (in set_page_dirty's __mark_inode_dirty) | 
 |  *                     bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty) | 
 |  *                       sb_lock (within inode_lock in fs/fs-writeback.c) | 
 |  *                       i_pages lock (widely used, in set_page_dirty, | 
 |  *                                 in arch-dependent flush_dcache_mmap_lock, | 
 |  *                                 within bdi.wb->list_lock in __sync_single_inode) | 
 |  * | 
 |  * anon_vma->rwsem,mapping->i_mmap_rwsem   (memory_failure, collect_procs_anon) | 
 |  *   ->tasklist_lock | 
 |  *     pte map lock | 
 |  * | 
 |  * hugetlbfs PageHuge() take locks in this order: | 
 |  *   hugetlb_fault_mutex (hugetlbfs specific page fault mutex) | 
 |  *     vma_lock (hugetlb specific lock for pmd_sharing) | 
 |  *       mapping->i_mmap_rwsem (also used for hugetlb pmd sharing) | 
 |  *         folio_lock | 
 |  */ | 
 |  | 
 | #include <linux/mm.h> | 
 | #include <linux/sched/mm.h> | 
 | #include <linux/sched/task.h> | 
 | #include <linux/pagemap.h> | 
 | #include <linux/swap.h> | 
 | #include <linux/swapops.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/init.h> | 
 | #include <linux/ksm.h> | 
 | #include <linux/rmap.h> | 
 | #include <linux/rcupdate.h> | 
 | #include <linux/export.h> | 
 | #include <linux/memcontrol.h> | 
 | #include <linux/mmu_notifier.h> | 
 | #include <linux/migrate.h> | 
 | #include <linux/hugetlb.h> | 
 | #include <linux/huge_mm.h> | 
 | #include <linux/backing-dev.h> | 
 | #include <linux/page_idle.h> | 
 | #include <linux/memremap.h> | 
 | #include <linux/userfaultfd_k.h> | 
 | #include <linux/mm_inline.h> | 
 | #include <linux/oom.h> | 
 |  | 
 | #include <asm/tlbflush.h> | 
 |  | 
 | #define CREATE_TRACE_POINTS | 
 | #include <trace/events/tlb.h> | 
 | #include <trace/events/migrate.h> | 
 |  | 
 | #include "internal.h" | 
 |  | 
 | static struct kmem_cache *anon_vma_cachep; | 
 | static struct kmem_cache *anon_vma_chain_cachep; | 
 |  | 
 | static inline struct anon_vma *anon_vma_alloc(void) | 
 | { | 
 | 	struct anon_vma *anon_vma; | 
 |  | 
 | 	anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL); | 
 | 	if (anon_vma) { | 
 | 		atomic_set(&anon_vma->refcount, 1); | 
 | 		anon_vma->num_children = 0; | 
 | 		anon_vma->num_active_vmas = 0; | 
 | 		anon_vma->parent = anon_vma; | 
 | 		/* | 
 | 		 * Initialise the anon_vma root to point to itself. If called | 
 | 		 * from fork, the root will be reset to the parents anon_vma. | 
 | 		 */ | 
 | 		anon_vma->root = anon_vma; | 
 | 	} | 
 |  | 
 | 	return anon_vma; | 
 | } | 
 |  | 
 | static inline void anon_vma_free(struct anon_vma *anon_vma) | 
 | { | 
 | 	VM_BUG_ON(atomic_read(&anon_vma->refcount)); | 
 |  | 
 | 	/* | 
 | 	 * Synchronize against folio_lock_anon_vma_read() such that | 
 | 	 * we can safely hold the lock without the anon_vma getting | 
 | 	 * freed. | 
 | 	 * | 
 | 	 * Relies on the full mb implied by the atomic_dec_and_test() from | 
 | 	 * put_anon_vma() against the acquire barrier implied by | 
 | 	 * down_read_trylock() from folio_lock_anon_vma_read(). This orders: | 
 | 	 * | 
 | 	 * folio_lock_anon_vma_read()	VS	put_anon_vma() | 
 | 	 *   down_read_trylock()		  atomic_dec_and_test() | 
 | 	 *   LOCK				  MB | 
 | 	 *   atomic_read()			  rwsem_is_locked() | 
 | 	 * | 
 | 	 * LOCK should suffice since the actual taking of the lock must | 
 | 	 * happen _before_ what follows. | 
 | 	 */ | 
 | 	might_sleep(); | 
 | 	if (rwsem_is_locked(&anon_vma->root->rwsem)) { | 
 | 		anon_vma_lock_write(anon_vma); | 
 | 		anon_vma_unlock_write(anon_vma); | 
 | 	} | 
 |  | 
 | 	kmem_cache_free(anon_vma_cachep, anon_vma); | 
 | } | 
 |  | 
 | static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp) | 
 | { | 
 | 	return kmem_cache_alloc(anon_vma_chain_cachep, gfp); | 
 | } | 
 |  | 
 | static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain) | 
 | { | 
 | 	kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain); | 
 | } | 
 |  | 
 | static void anon_vma_chain_link(struct vm_area_struct *vma, | 
 | 				struct anon_vma_chain *avc, | 
 | 				struct anon_vma *anon_vma) | 
 | { | 
 | 	avc->vma = vma; | 
 | 	avc->anon_vma = anon_vma; | 
 | 	list_add(&avc->same_vma, &vma->anon_vma_chain); | 
 | 	anon_vma_interval_tree_insert(avc, &anon_vma->rb_root); | 
 | } | 
 |  | 
 | /** | 
 |  * __anon_vma_prepare - attach an anon_vma to a memory region | 
 |  * @vma: the memory region in question | 
 |  * | 
 |  * This makes sure the memory mapping described by 'vma' has | 
 |  * an 'anon_vma' attached to it, so that we can associate the | 
 |  * anonymous pages mapped into it with that anon_vma. | 
 |  * | 
 |  * The common case will be that we already have one, which | 
 |  * is handled inline by anon_vma_prepare(). But if | 
 |  * not we either need to find an adjacent mapping that we | 
 |  * can re-use the anon_vma from (very common when the only | 
 |  * reason for splitting a vma has been mprotect()), or we | 
 |  * allocate a new one. | 
 |  * | 
 |  * Anon-vma allocations are very subtle, because we may have | 
 |  * optimistically looked up an anon_vma in folio_lock_anon_vma_read() | 
 |  * and that may actually touch the rwsem even in the newly | 
 |  * allocated vma (it depends on RCU to make sure that the | 
 |  * anon_vma isn't actually destroyed). | 
 |  * | 
 |  * As a result, we need to do proper anon_vma locking even | 
 |  * for the new allocation. At the same time, we do not want | 
 |  * to do any locking for the common case of already having | 
 |  * an anon_vma. | 
 |  */ | 
 | int __anon_vma_prepare(struct vm_area_struct *vma) | 
 | { | 
 | 	struct mm_struct *mm = vma->vm_mm; | 
 | 	struct anon_vma *anon_vma, *allocated; | 
 | 	struct anon_vma_chain *avc; | 
 |  | 
 | 	mmap_assert_locked(mm); | 
 | 	might_sleep(); | 
 |  | 
 | 	avc = anon_vma_chain_alloc(GFP_KERNEL); | 
 | 	if (!avc) | 
 | 		goto out_enomem; | 
 |  | 
 | 	anon_vma = find_mergeable_anon_vma(vma); | 
 | 	allocated = NULL; | 
 | 	if (!anon_vma) { | 
 | 		anon_vma = anon_vma_alloc(); | 
 | 		if (unlikely(!anon_vma)) | 
 | 			goto out_enomem_free_avc; | 
 | 		anon_vma->num_children++; /* self-parent link for new root */ | 
 | 		allocated = anon_vma; | 
 | 	} | 
 |  | 
 | 	anon_vma_lock_write(anon_vma); | 
 | 	/* page_table_lock to protect against threads */ | 
 | 	spin_lock(&mm->page_table_lock); | 
 | 	if (likely(!vma->anon_vma)) { | 
 | 		vma->anon_vma = anon_vma; | 
 | 		anon_vma_chain_link(vma, avc, anon_vma); | 
 | 		anon_vma->num_active_vmas++; | 
 | 		allocated = NULL; | 
 | 		avc = NULL; | 
 | 	} | 
 | 	spin_unlock(&mm->page_table_lock); | 
 | 	anon_vma_unlock_write(anon_vma); | 
 |  | 
 | 	if (unlikely(allocated)) | 
 | 		put_anon_vma(allocated); | 
 | 	if (unlikely(avc)) | 
 | 		anon_vma_chain_free(avc); | 
 |  | 
 | 	return 0; | 
 |  | 
 |  out_enomem_free_avc: | 
 | 	anon_vma_chain_free(avc); | 
 |  out_enomem: | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | /* | 
 |  * This is a useful helper function for locking the anon_vma root as | 
 |  * we traverse the vma->anon_vma_chain, looping over anon_vma's that | 
 |  * have the same vma. | 
 |  * | 
 |  * Such anon_vma's should have the same root, so you'd expect to see | 
 |  * just a single mutex_lock for the whole traversal. | 
 |  */ | 
 | static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma) | 
 | { | 
 | 	struct anon_vma *new_root = anon_vma->root; | 
 | 	if (new_root != root) { | 
 | 		if (WARN_ON_ONCE(root)) | 
 | 			up_write(&root->rwsem); | 
 | 		root = new_root; | 
 | 		down_write(&root->rwsem); | 
 | 	} | 
 | 	return root; | 
 | } | 
 |  | 
 | static inline void unlock_anon_vma_root(struct anon_vma *root) | 
 | { | 
 | 	if (root) | 
 | 		up_write(&root->rwsem); | 
 | } | 
 |  | 
 | /* | 
 |  * Attach the anon_vmas from src to dst. | 
 |  * Returns 0 on success, -ENOMEM on failure. | 
 |  * | 
 |  * anon_vma_clone() is called by vma_expand(), vma_merge(), __split_vma(), | 
 |  * copy_vma() and anon_vma_fork(). The first four want an exact copy of src, | 
 |  * while the last one, anon_vma_fork(), may try to reuse an existing anon_vma to | 
 |  * prevent endless growth of anon_vma. Since dst->anon_vma is set to NULL before | 
 |  * call, we can identify this case by checking (!dst->anon_vma && | 
 |  * src->anon_vma). | 
 |  * | 
 |  * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find | 
 |  * and reuse existing anon_vma which has no vmas and only one child anon_vma. | 
 |  * This prevents degradation of anon_vma hierarchy to endless linear chain in | 
 |  * case of constantly forking task. On the other hand, an anon_vma with more | 
 |  * than one child isn't reused even if there was no alive vma, thus rmap | 
 |  * walker has a good chance of avoiding scanning the whole hierarchy when it | 
 |  * searches where page is mapped. | 
 |  */ | 
 | int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src) | 
 | { | 
 | 	struct anon_vma_chain *avc, *pavc; | 
 | 	struct anon_vma *root = NULL; | 
 |  | 
 | 	list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) { | 
 | 		struct anon_vma *anon_vma; | 
 |  | 
 | 		avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN); | 
 | 		if (unlikely(!avc)) { | 
 | 			unlock_anon_vma_root(root); | 
 | 			root = NULL; | 
 | 			avc = anon_vma_chain_alloc(GFP_KERNEL); | 
 | 			if (!avc) | 
 | 				goto enomem_failure; | 
 | 		} | 
 | 		anon_vma = pavc->anon_vma; | 
 | 		root = lock_anon_vma_root(root, anon_vma); | 
 | 		anon_vma_chain_link(dst, avc, anon_vma); | 
 |  | 
 | 		/* | 
 | 		 * Reuse existing anon_vma if it has no vma and only one | 
 | 		 * anon_vma child. | 
 | 		 * | 
 | 		 * Root anon_vma is never reused: | 
 | 		 * it has self-parent reference and at least one child. | 
 | 		 */ | 
 | 		if (!dst->anon_vma && src->anon_vma && | 
 | 		    anon_vma->num_children < 2 && | 
 | 		    anon_vma->num_active_vmas == 0) | 
 | 			dst->anon_vma = anon_vma; | 
 | 	} | 
 | 	if (dst->anon_vma) | 
 | 		dst->anon_vma->num_active_vmas++; | 
 | 	unlock_anon_vma_root(root); | 
 | 	return 0; | 
 |  | 
 |  enomem_failure: | 
 | 	/* | 
 | 	 * dst->anon_vma is dropped here otherwise its num_active_vmas can | 
 | 	 * be incorrectly decremented in unlink_anon_vmas(). | 
 | 	 * We can safely do this because callers of anon_vma_clone() don't care | 
 | 	 * about dst->anon_vma if anon_vma_clone() failed. | 
 | 	 */ | 
 | 	dst->anon_vma = NULL; | 
 | 	unlink_anon_vmas(dst); | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | /* | 
 |  * Attach vma to its own anon_vma, as well as to the anon_vmas that | 
 |  * the corresponding VMA in the parent process is attached to. | 
 |  * Returns 0 on success, non-zero on failure. | 
 |  */ | 
 | int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma) | 
 | { | 
 | 	struct anon_vma_chain *avc; | 
 | 	struct anon_vma *anon_vma; | 
 | 	int error; | 
 |  | 
 | 	/* Don't bother if the parent process has no anon_vma here. */ | 
 | 	if (!pvma->anon_vma) | 
 | 		return 0; | 
 |  | 
 | 	/* Drop inherited anon_vma, we'll reuse existing or allocate new. */ | 
 | 	vma->anon_vma = NULL; | 
 |  | 
 | 	/* | 
 | 	 * First, attach the new VMA to the parent VMA's anon_vmas, | 
 | 	 * so rmap can find non-COWed pages in child processes. | 
 | 	 */ | 
 | 	error = anon_vma_clone(vma, pvma); | 
 | 	if (error) | 
 | 		return error; | 
 |  | 
 | 	/* An existing anon_vma has been reused, all done then. */ | 
 | 	if (vma->anon_vma) | 
 | 		return 0; | 
 |  | 
 | 	/* Then add our own anon_vma. */ | 
 | 	anon_vma = anon_vma_alloc(); | 
 | 	if (!anon_vma) | 
 | 		goto out_error; | 
 | 	anon_vma->num_active_vmas++; | 
 | 	avc = anon_vma_chain_alloc(GFP_KERNEL); | 
 | 	if (!avc) | 
 | 		goto out_error_free_anon_vma; | 
 |  | 
 | 	/* | 
 | 	 * The root anon_vma's rwsem is the lock actually used when we | 
 | 	 * lock any of the anon_vmas in this anon_vma tree. | 
 | 	 */ | 
 | 	anon_vma->root = pvma->anon_vma->root; | 
 | 	anon_vma->parent = pvma->anon_vma; | 
 | 	/* | 
 | 	 * With refcounts, an anon_vma can stay around longer than the | 
 | 	 * process it belongs to. The root anon_vma needs to be pinned until | 
 | 	 * this anon_vma is freed, because the lock lives in the root. | 
 | 	 */ | 
 | 	get_anon_vma(anon_vma->root); | 
 | 	/* Mark this anon_vma as the one where our new (COWed) pages go. */ | 
 | 	vma->anon_vma = anon_vma; | 
 | 	anon_vma_lock_write(anon_vma); | 
 | 	anon_vma_chain_link(vma, avc, anon_vma); | 
 | 	anon_vma->parent->num_children++; | 
 | 	anon_vma_unlock_write(anon_vma); | 
 |  | 
 | 	return 0; | 
 |  | 
 |  out_error_free_anon_vma: | 
 | 	put_anon_vma(anon_vma); | 
 |  out_error: | 
 | 	unlink_anon_vmas(vma); | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | void unlink_anon_vmas(struct vm_area_struct *vma) | 
 | { | 
 | 	struct anon_vma_chain *avc, *next; | 
 | 	struct anon_vma *root = NULL; | 
 |  | 
 | 	/* | 
 | 	 * Unlink each anon_vma chained to the VMA.  This list is ordered | 
 | 	 * from newest to oldest, ensuring the root anon_vma gets freed last. | 
 | 	 */ | 
 | 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { | 
 | 		struct anon_vma *anon_vma = avc->anon_vma; | 
 |  | 
 | 		root = lock_anon_vma_root(root, anon_vma); | 
 | 		anon_vma_interval_tree_remove(avc, &anon_vma->rb_root); | 
 |  | 
 | 		/* | 
 | 		 * Leave empty anon_vmas on the list - we'll need | 
 | 		 * to free them outside the lock. | 
 | 		 */ | 
 | 		if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) { | 
 | 			anon_vma->parent->num_children--; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		list_del(&avc->same_vma); | 
 | 		anon_vma_chain_free(avc); | 
 | 	} | 
 | 	if (vma->anon_vma) { | 
 | 		vma->anon_vma->num_active_vmas--; | 
 |  | 
 | 		/* | 
 | 		 * vma would still be needed after unlink, and anon_vma will be prepared | 
 | 		 * when handle fault. | 
 | 		 */ | 
 | 		vma->anon_vma = NULL; | 
 | 	} | 
 | 	unlock_anon_vma_root(root); | 
 |  | 
 | 	/* | 
 | 	 * Iterate the list once more, it now only contains empty and unlinked | 
 | 	 * anon_vmas, destroy them. Could not do before due to __put_anon_vma() | 
 | 	 * needing to write-acquire the anon_vma->root->rwsem. | 
 | 	 */ | 
 | 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { | 
 | 		struct anon_vma *anon_vma = avc->anon_vma; | 
 |  | 
 | 		VM_WARN_ON(anon_vma->num_children); | 
 | 		VM_WARN_ON(anon_vma->num_active_vmas); | 
 | 		put_anon_vma(anon_vma); | 
 |  | 
 | 		list_del(&avc->same_vma); | 
 | 		anon_vma_chain_free(avc); | 
 | 	} | 
 | } | 
 |  | 
 | static void anon_vma_ctor(void *data) | 
 | { | 
 | 	struct anon_vma *anon_vma = data; | 
 |  | 
 | 	init_rwsem(&anon_vma->rwsem); | 
 | 	atomic_set(&anon_vma->refcount, 0); | 
 | 	anon_vma->rb_root = RB_ROOT_CACHED; | 
 | } | 
 |  | 
 | void __init anon_vma_init(void) | 
 | { | 
 | 	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), | 
 | 			0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT, | 
 | 			anon_vma_ctor); | 
 | 	anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, | 
 | 			SLAB_PANIC|SLAB_ACCOUNT); | 
 | } | 
 |  | 
 | /* | 
 |  * Getting a lock on a stable anon_vma from a page off the LRU is tricky! | 
 |  * | 
 |  * Since there is no serialization what so ever against folio_remove_rmap_*() | 
 |  * the best this function can do is return a refcount increased anon_vma | 
 |  * that might have been relevant to this page. | 
 |  * | 
 |  * The page might have been remapped to a different anon_vma or the anon_vma | 
 |  * returned may already be freed (and even reused). | 
 |  * | 
 |  * In case it was remapped to a different anon_vma, the new anon_vma will be a | 
 |  * child of the old anon_vma, and the anon_vma lifetime rules will therefore | 
 |  * ensure that any anon_vma obtained from the page will still be valid for as | 
 |  * long as we observe page_mapped() [ hence all those page_mapped() tests ]. | 
 |  * | 
 |  * All users of this function must be very careful when walking the anon_vma | 
 |  * chain and verify that the page in question is indeed mapped in it | 
 |  * [ something equivalent to page_mapped_in_vma() ]. | 
 |  * | 
 |  * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from | 
 |  * folio_remove_rmap_*() that the anon_vma pointer from page->mapping is valid | 
 |  * if there is a mapcount, we can dereference the anon_vma after observing | 
 |  * those. | 
 |  * | 
 |  * NOTE: the caller should normally hold folio lock when calling this.  If | 
 |  * not, the caller needs to double check the anon_vma didn't change after | 
 |  * taking the anon_vma lock for either read or write (UFFDIO_MOVE can modify it | 
 |  * concurrently without folio lock protection). See folio_lock_anon_vma_read() | 
 |  * which has already covered that, and comment above remap_pages(). | 
 |  */ | 
 | struct anon_vma *folio_get_anon_vma(const struct folio *folio) | 
 | { | 
 | 	struct anon_vma *anon_vma = NULL; | 
 | 	unsigned long anon_mapping; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	anon_mapping = (unsigned long)READ_ONCE(folio->mapping); | 
 | 	if ((anon_mapping & FOLIO_MAPPING_FLAGS) != FOLIO_MAPPING_ANON) | 
 | 		goto out; | 
 | 	if (!folio_mapped(folio)) | 
 | 		goto out; | 
 |  | 
 | 	anon_vma = (struct anon_vma *) (anon_mapping - FOLIO_MAPPING_ANON); | 
 | 	if (!atomic_inc_not_zero(&anon_vma->refcount)) { | 
 | 		anon_vma = NULL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If this folio is still mapped, then its anon_vma cannot have been | 
 | 	 * freed.  But if it has been unmapped, we have no security against the | 
 | 	 * anon_vma structure being freed and reused (for another anon_vma: | 
 | 	 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero() | 
 | 	 * above cannot corrupt). | 
 | 	 */ | 
 | 	if (!folio_mapped(folio)) { | 
 | 		rcu_read_unlock(); | 
 | 		put_anon_vma(anon_vma); | 
 | 		return NULL; | 
 | 	} | 
 | out: | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	return anon_vma; | 
 | } | 
 |  | 
 | /* | 
 |  * Similar to folio_get_anon_vma() except it locks the anon_vma. | 
 |  * | 
 |  * Its a little more complex as it tries to keep the fast path to a single | 
 |  * atomic op -- the trylock. If we fail the trylock, we fall back to getting a | 
 |  * reference like with folio_get_anon_vma() and then block on the mutex | 
 |  * on !rwc->try_lock case. | 
 |  */ | 
 | struct anon_vma *folio_lock_anon_vma_read(const struct folio *folio, | 
 | 					  struct rmap_walk_control *rwc) | 
 | { | 
 | 	struct anon_vma *anon_vma = NULL; | 
 | 	struct anon_vma *root_anon_vma; | 
 | 	unsigned long anon_mapping; | 
 |  | 
 | retry: | 
 | 	rcu_read_lock(); | 
 | 	anon_mapping = (unsigned long)READ_ONCE(folio->mapping); | 
 | 	if ((anon_mapping & FOLIO_MAPPING_FLAGS) != FOLIO_MAPPING_ANON) | 
 | 		goto out; | 
 | 	if (!folio_mapped(folio)) | 
 | 		goto out; | 
 |  | 
 | 	anon_vma = (struct anon_vma *) (anon_mapping - FOLIO_MAPPING_ANON); | 
 | 	root_anon_vma = READ_ONCE(anon_vma->root); | 
 | 	if (down_read_trylock(&root_anon_vma->rwsem)) { | 
 | 		/* | 
 | 		 * folio_move_anon_rmap() might have changed the anon_vma as we | 
 | 		 * might not hold the folio lock here. | 
 | 		 */ | 
 | 		if (unlikely((unsigned long)READ_ONCE(folio->mapping) != | 
 | 			     anon_mapping)) { | 
 | 			up_read(&root_anon_vma->rwsem); | 
 | 			rcu_read_unlock(); | 
 | 			goto retry; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * If the folio is still mapped, then this anon_vma is still | 
 | 		 * its anon_vma, and holding the mutex ensures that it will | 
 | 		 * not go away, see anon_vma_free(). | 
 | 		 */ | 
 | 		if (!folio_mapped(folio)) { | 
 | 			up_read(&root_anon_vma->rwsem); | 
 | 			anon_vma = NULL; | 
 | 		} | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (rwc && rwc->try_lock) { | 
 | 		anon_vma = NULL; | 
 | 		rwc->contended = true; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* trylock failed, we got to sleep */ | 
 | 	if (!atomic_inc_not_zero(&anon_vma->refcount)) { | 
 | 		anon_vma = NULL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (!folio_mapped(folio)) { | 
 | 		rcu_read_unlock(); | 
 | 		put_anon_vma(anon_vma); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	/* we pinned the anon_vma, its safe to sleep */ | 
 | 	rcu_read_unlock(); | 
 | 	anon_vma_lock_read(anon_vma); | 
 |  | 
 | 	/* | 
 | 	 * folio_move_anon_rmap() might have changed the anon_vma as we might | 
 | 	 * not hold the folio lock here. | 
 | 	 */ | 
 | 	if (unlikely((unsigned long)READ_ONCE(folio->mapping) != | 
 | 		     anon_mapping)) { | 
 | 		anon_vma_unlock_read(anon_vma); | 
 | 		put_anon_vma(anon_vma); | 
 | 		anon_vma = NULL; | 
 | 		goto retry; | 
 | 	} | 
 |  | 
 | 	if (atomic_dec_and_test(&anon_vma->refcount)) { | 
 | 		/* | 
 | 		 * Oops, we held the last refcount, release the lock | 
 | 		 * and bail -- can't simply use put_anon_vma() because | 
 | 		 * we'll deadlock on the anon_vma_lock_write() recursion. | 
 | 		 */ | 
 | 		anon_vma_unlock_read(anon_vma); | 
 | 		__put_anon_vma(anon_vma); | 
 | 		anon_vma = NULL; | 
 | 	} | 
 |  | 
 | 	return anon_vma; | 
 |  | 
 | out: | 
 | 	rcu_read_unlock(); | 
 | 	return anon_vma; | 
 | } | 
 |  | 
 | #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH | 
 | /* | 
 |  * Flush TLB entries for recently unmapped pages from remote CPUs. It is | 
 |  * important if a PTE was dirty when it was unmapped that it's flushed | 
 |  * before any IO is initiated on the page to prevent lost writes. Similarly, | 
 |  * it must be flushed before freeing to prevent data leakage. | 
 |  */ | 
 | void try_to_unmap_flush(void) | 
 | { | 
 | 	struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; | 
 |  | 
 | 	if (!tlb_ubc->flush_required) | 
 | 		return; | 
 |  | 
 | 	arch_tlbbatch_flush(&tlb_ubc->arch); | 
 | 	tlb_ubc->flush_required = false; | 
 | 	tlb_ubc->writable = false; | 
 | } | 
 |  | 
 | /* Flush iff there are potentially writable TLB entries that can race with IO */ | 
 | void try_to_unmap_flush_dirty(void) | 
 | { | 
 | 	struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; | 
 |  | 
 | 	if (tlb_ubc->writable) | 
 | 		try_to_unmap_flush(); | 
 | } | 
 |  | 
 | /* | 
 |  * Bits 0-14 of mm->tlb_flush_batched record pending generations. | 
 |  * Bits 16-30 of mm->tlb_flush_batched bit record flushed generations. | 
 |  */ | 
 | #define TLB_FLUSH_BATCH_FLUSHED_SHIFT	16 | 
 | #define TLB_FLUSH_BATCH_PENDING_MASK			\ | 
 | 	((1 << (TLB_FLUSH_BATCH_FLUSHED_SHIFT - 1)) - 1) | 
 | #define TLB_FLUSH_BATCH_PENDING_LARGE			\ | 
 | 	(TLB_FLUSH_BATCH_PENDING_MASK / 2) | 
 |  | 
 | static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval, | 
 | 		unsigned long start, unsigned long end) | 
 | { | 
 | 	struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; | 
 | 	int batch; | 
 | 	bool writable = pte_dirty(pteval); | 
 |  | 
 | 	if (!pte_accessible(mm, pteval)) | 
 | 		return; | 
 |  | 
 | 	arch_tlbbatch_add_pending(&tlb_ubc->arch, mm, start, end); | 
 | 	tlb_ubc->flush_required = true; | 
 |  | 
 | 	/* | 
 | 	 * Ensure compiler does not re-order the setting of tlb_flush_batched | 
 | 	 * before the PTE is cleared. | 
 | 	 */ | 
 | 	barrier(); | 
 | 	batch = atomic_read(&mm->tlb_flush_batched); | 
 | retry: | 
 | 	if ((batch & TLB_FLUSH_BATCH_PENDING_MASK) > TLB_FLUSH_BATCH_PENDING_LARGE) { | 
 | 		/* | 
 | 		 * Prevent `pending' from catching up with `flushed' because of | 
 | 		 * overflow.  Reset `pending' and `flushed' to be 1 and 0 if | 
 | 		 * `pending' becomes large. | 
 | 		 */ | 
 | 		if (!atomic_try_cmpxchg(&mm->tlb_flush_batched, &batch, 1)) | 
 | 			goto retry; | 
 | 	} else { | 
 | 		atomic_inc(&mm->tlb_flush_batched); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If the PTE was dirty then it's best to assume it's writable. The | 
 | 	 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush() | 
 | 	 * before the page is queued for IO. | 
 | 	 */ | 
 | 	if (writable) | 
 | 		tlb_ubc->writable = true; | 
 | } | 
 |  | 
 | /* | 
 |  * Returns true if the TLB flush should be deferred to the end of a batch of | 
 |  * unmap operations to reduce IPIs. | 
 |  */ | 
 | static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) | 
 | { | 
 | 	if (!(flags & TTU_BATCH_FLUSH)) | 
 | 		return false; | 
 |  | 
 | 	return arch_tlbbatch_should_defer(mm); | 
 | } | 
 |  | 
 | /* | 
 |  * Reclaim unmaps pages under the PTL but do not flush the TLB prior to | 
 |  * releasing the PTL if TLB flushes are batched. It's possible for a parallel | 
 |  * operation such as mprotect or munmap to race between reclaim unmapping | 
 |  * the page and flushing the page. If this race occurs, it potentially allows | 
 |  * access to data via a stale TLB entry. Tracking all mm's that have TLB | 
 |  * batching in flight would be expensive during reclaim so instead track | 
 |  * whether TLB batching occurred in the past and if so then do a flush here | 
 |  * if required. This will cost one additional flush per reclaim cycle paid | 
 |  * by the first operation at risk such as mprotect and mumap. | 
 |  * | 
 |  * This must be called under the PTL so that an access to tlb_flush_batched | 
 |  * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise | 
 |  * via the PTL. | 
 |  */ | 
 | void flush_tlb_batched_pending(struct mm_struct *mm) | 
 | { | 
 | 	int batch = atomic_read(&mm->tlb_flush_batched); | 
 | 	int pending = batch & TLB_FLUSH_BATCH_PENDING_MASK; | 
 | 	int flushed = batch >> TLB_FLUSH_BATCH_FLUSHED_SHIFT; | 
 |  | 
 | 	if (pending != flushed) { | 
 | 		flush_tlb_mm(mm); | 
 | 		/* | 
 | 		 * If the new TLB flushing is pending during flushing, leave | 
 | 		 * mm->tlb_flush_batched as is, to avoid losing flushing. | 
 | 		 */ | 
 | 		atomic_cmpxchg(&mm->tlb_flush_batched, batch, | 
 | 			       pending | (pending << TLB_FLUSH_BATCH_FLUSHED_SHIFT)); | 
 | 	} | 
 | } | 
 | #else | 
 | static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval, | 
 | 		unsigned long start, unsigned long end) | 
 | { | 
 | } | 
 |  | 
 | static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) | 
 | { | 
 | 	return false; | 
 | } | 
 | #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */ | 
 |  | 
 | /** | 
 |  * page_address_in_vma - The virtual address of a page in this VMA. | 
 |  * @folio: The folio containing the page. | 
 |  * @page: The page within the folio. | 
 |  * @vma: The VMA we need to know the address in. | 
 |  * | 
 |  * Calculates the user virtual address of this page in the specified VMA. | 
 |  * It is the caller's responsibility to check the page is actually | 
 |  * within the VMA.  There may not currently be a PTE pointing at this | 
 |  * page, but if a page fault occurs at this address, this is the page | 
 |  * which will be accessed. | 
 |  * | 
 |  * Context: Caller should hold a reference to the folio.  Caller should | 
 |  * hold a lock (eg the i_mmap_lock or the mmap_lock) which keeps the | 
 |  * VMA from being altered. | 
 |  * | 
 |  * Return: The virtual address corresponding to this page in the VMA. | 
 |  */ | 
 | unsigned long page_address_in_vma(const struct folio *folio, | 
 | 		const struct page *page, const struct vm_area_struct *vma) | 
 | { | 
 | 	if (folio_test_anon(folio)) { | 
 | 		struct anon_vma *anon_vma = folio_anon_vma(folio); | 
 | 		/* | 
 | 		 * Note: swapoff's unuse_vma() is more efficient with this | 
 | 		 * check, and needs it to match anon_vma when KSM is active. | 
 | 		 */ | 
 | 		if (!vma->anon_vma || !anon_vma || | 
 | 		    vma->anon_vma->root != anon_vma->root) | 
 | 			return -EFAULT; | 
 | 	} else if (!vma->vm_file) { | 
 | 		return -EFAULT; | 
 | 	} else if (vma->vm_file->f_mapping != folio->mapping) { | 
 | 		return -EFAULT; | 
 | 	} | 
 |  | 
 | 	/* KSM folios don't reach here because of the !anon_vma check */ | 
 | 	return vma_address(vma, page_pgoff(folio, page), 1); | 
 | } | 
 |  | 
 | /* | 
 |  * Returns the actual pmd_t* where we expect 'address' to be mapped from, or | 
 |  * NULL if it doesn't exist.  No guarantees / checks on what the pmd_t* | 
 |  * represents. | 
 |  */ | 
 | pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address) | 
 | { | 
 | 	pgd_t *pgd; | 
 | 	p4d_t *p4d; | 
 | 	pud_t *pud; | 
 | 	pmd_t *pmd = NULL; | 
 |  | 
 | 	pgd = pgd_offset(mm, address); | 
 | 	if (!pgd_present(*pgd)) | 
 | 		goto out; | 
 |  | 
 | 	p4d = p4d_offset(pgd, address); | 
 | 	if (!p4d_present(*p4d)) | 
 | 		goto out; | 
 |  | 
 | 	pud = pud_offset(p4d, address); | 
 | 	if (!pud_present(*pud)) | 
 | 		goto out; | 
 |  | 
 | 	pmd = pmd_offset(pud, address); | 
 | out: | 
 | 	return pmd; | 
 | } | 
 |  | 
 | struct folio_referenced_arg { | 
 | 	int mapcount; | 
 | 	int referenced; | 
 | 	vm_flags_t vm_flags; | 
 | 	struct mem_cgroup *memcg; | 
 | }; | 
 |  | 
 | /* | 
 |  * arg: folio_referenced_arg will be passed | 
 |  */ | 
 | static bool folio_referenced_one(struct folio *folio, | 
 | 		struct vm_area_struct *vma, unsigned long address, void *arg) | 
 | { | 
 | 	struct folio_referenced_arg *pra = arg; | 
 | 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); | 
 | 	int referenced = 0; | 
 | 	unsigned long start = address, ptes = 0; | 
 |  | 
 | 	while (page_vma_mapped_walk(&pvmw)) { | 
 | 		address = pvmw.address; | 
 |  | 
 | 		if (vma->vm_flags & VM_LOCKED) { | 
 | 			if (!folio_test_large(folio) || !pvmw.pte) { | 
 | 				/* Restore the mlock which got missed */ | 
 | 				mlock_vma_folio(folio, vma); | 
 | 				page_vma_mapped_walk_done(&pvmw); | 
 | 				pra->vm_flags |= VM_LOCKED; | 
 | 				return false; /* To break the loop */ | 
 | 			} | 
 | 			/* | 
 | 			 * For large folio fully mapped to VMA, will | 
 | 			 * be handled after the pvmw loop. | 
 | 			 * | 
 | 			 * For large folio cross VMA boundaries, it's | 
 | 			 * expected to be picked  by page reclaim. But | 
 | 			 * should skip reference of pages which are in | 
 | 			 * the range of VM_LOCKED vma. As page reclaim | 
 | 			 * should just count the reference of pages out | 
 | 			 * the range of VM_LOCKED vma. | 
 | 			 */ | 
 | 			ptes++; | 
 | 			pra->mapcount--; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Skip the non-shared swapbacked folio mapped solely by | 
 | 		 * the exiting or OOM-reaped process. This avoids redundant | 
 | 		 * swap-out followed by an immediate unmap. | 
 | 		 */ | 
 | 		if ((!atomic_read(&vma->vm_mm->mm_users) || | 
 | 		    check_stable_address_space(vma->vm_mm)) && | 
 | 		    folio_test_anon(folio) && folio_test_swapbacked(folio) && | 
 | 		    !folio_maybe_mapped_shared(folio)) { | 
 | 			pra->referenced = -1; | 
 | 			page_vma_mapped_walk_done(&pvmw); | 
 | 			return false; | 
 | 		} | 
 |  | 
 | 		if (lru_gen_enabled() && pvmw.pte) { | 
 | 			if (lru_gen_look_around(&pvmw)) | 
 | 				referenced++; | 
 | 		} else if (pvmw.pte) { | 
 | 			if (ptep_clear_flush_young_notify(vma, address, | 
 | 						pvmw.pte)) | 
 | 				referenced++; | 
 | 		} else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { | 
 | 			if (pmdp_clear_flush_young_notify(vma, address, | 
 | 						pvmw.pmd)) | 
 | 				referenced++; | 
 | 		} else { | 
 | 			/* unexpected pmd-mapped folio? */ | 
 | 			WARN_ON_ONCE(1); | 
 | 		} | 
 |  | 
 | 		pra->mapcount--; | 
 | 	} | 
 |  | 
 | 	if ((vma->vm_flags & VM_LOCKED) && | 
 | 			folio_test_large(folio) && | 
 | 			folio_within_vma(folio, vma)) { | 
 | 		unsigned long s_align, e_align; | 
 |  | 
 | 		s_align = ALIGN_DOWN(start, PMD_SIZE); | 
 | 		e_align = ALIGN_DOWN(start + folio_size(folio) - 1, PMD_SIZE); | 
 |  | 
 | 		/* folio doesn't cross page table boundary and fully mapped */ | 
 | 		if ((s_align == e_align) && (ptes == folio_nr_pages(folio))) { | 
 | 			/* Restore the mlock which got missed */ | 
 | 			mlock_vma_folio(folio, vma); | 
 | 			pra->vm_flags |= VM_LOCKED; | 
 | 			return false; /* To break the loop */ | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (referenced) | 
 | 		folio_clear_idle(folio); | 
 | 	if (folio_test_clear_young(folio)) | 
 | 		referenced++; | 
 |  | 
 | 	if (referenced) { | 
 | 		pra->referenced++; | 
 | 		pra->vm_flags |= vma->vm_flags & ~VM_LOCKED; | 
 | 	} | 
 |  | 
 | 	if (!pra->mapcount) | 
 | 		return false; /* To break the loop */ | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static bool invalid_folio_referenced_vma(struct vm_area_struct *vma, void *arg) | 
 | { | 
 | 	struct folio_referenced_arg *pra = arg; | 
 | 	struct mem_cgroup *memcg = pra->memcg; | 
 |  | 
 | 	/* | 
 | 	 * Ignore references from this mapping if it has no recency. If the | 
 | 	 * folio has been used in another mapping, we will catch it; if this | 
 | 	 * other mapping is already gone, the unmap path will have set the | 
 | 	 * referenced flag or activated the folio in zap_pte_range(). | 
 | 	 */ | 
 | 	if (!vma_has_recency(vma)) | 
 | 		return true; | 
 |  | 
 | 	/* | 
 | 	 * If we are reclaiming on behalf of a cgroup, skip counting on behalf | 
 | 	 * of references from different cgroups. | 
 | 	 */ | 
 | 	if (memcg && !mm_match_cgroup(vma->vm_mm, memcg)) | 
 | 		return true; | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | /** | 
 |  * folio_referenced() - Test if the folio was referenced. | 
 |  * @folio: The folio to test. | 
 |  * @is_locked: Caller holds lock on the folio. | 
 |  * @memcg: target memory cgroup | 
 |  * @vm_flags: A combination of all the vma->vm_flags which referenced the folio. | 
 |  * | 
 |  * Quick test_and_clear_referenced for all mappings of a folio, | 
 |  * | 
 |  * Return: The number of mappings which referenced the folio. Return -1 if | 
 |  * the function bailed out due to rmap lock contention. | 
 |  */ | 
 | int folio_referenced(struct folio *folio, int is_locked, | 
 | 		     struct mem_cgroup *memcg, vm_flags_t *vm_flags) | 
 | { | 
 | 	bool we_locked = false; | 
 | 	struct folio_referenced_arg pra = { | 
 | 		.mapcount = folio_mapcount(folio), | 
 | 		.memcg = memcg, | 
 | 	}; | 
 | 	struct rmap_walk_control rwc = { | 
 | 		.rmap_one = folio_referenced_one, | 
 | 		.arg = (void *)&pra, | 
 | 		.anon_lock = folio_lock_anon_vma_read, | 
 | 		.try_lock = true, | 
 | 		.invalid_vma = invalid_folio_referenced_vma, | 
 | 	}; | 
 |  | 
 | 	*vm_flags = 0; | 
 | 	if (!pra.mapcount) | 
 | 		return 0; | 
 |  | 
 | 	if (!folio_raw_mapping(folio)) | 
 | 		return 0; | 
 |  | 
 | 	if (!is_locked && (!folio_test_anon(folio) || folio_test_ksm(folio))) { | 
 | 		we_locked = folio_trylock(folio); | 
 | 		if (!we_locked) | 
 | 			return 1; | 
 | 	} | 
 |  | 
 | 	rmap_walk(folio, &rwc); | 
 | 	*vm_flags = pra.vm_flags; | 
 |  | 
 | 	if (we_locked) | 
 | 		folio_unlock(folio); | 
 |  | 
 | 	return rwc.contended ? -1 : pra.referenced; | 
 | } | 
 |  | 
 | static int page_vma_mkclean_one(struct page_vma_mapped_walk *pvmw) | 
 | { | 
 | 	int cleaned = 0; | 
 | 	struct vm_area_struct *vma = pvmw->vma; | 
 | 	struct mmu_notifier_range range; | 
 | 	unsigned long address = pvmw->address; | 
 |  | 
 | 	/* | 
 | 	 * We have to assume the worse case ie pmd for invalidation. Note that | 
 | 	 * the folio can not be freed from this function. | 
 | 	 */ | 
 | 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 0, | 
 | 				vma->vm_mm, address, vma_address_end(pvmw)); | 
 | 	mmu_notifier_invalidate_range_start(&range); | 
 |  | 
 | 	while (page_vma_mapped_walk(pvmw)) { | 
 | 		int ret = 0; | 
 |  | 
 | 		address = pvmw->address; | 
 | 		if (pvmw->pte) { | 
 | 			pte_t *pte = pvmw->pte; | 
 | 			pte_t entry = ptep_get(pte); | 
 |  | 
 | 			/* | 
 | 			 * PFN swap PTEs, such as device-exclusive ones, that | 
 | 			 * actually map pages are clean and not writable from a | 
 | 			 * CPU perspective. The MMU notifier takes care of any | 
 | 			 * device aspects. | 
 | 			 */ | 
 | 			if (!pte_present(entry)) | 
 | 				continue; | 
 | 			if (!pte_dirty(entry) && !pte_write(entry)) | 
 | 				continue; | 
 |  | 
 | 			flush_cache_page(vma, address, pte_pfn(entry)); | 
 | 			entry = ptep_clear_flush(vma, address, pte); | 
 | 			entry = pte_wrprotect(entry); | 
 | 			entry = pte_mkclean(entry); | 
 | 			set_pte_at(vma->vm_mm, address, pte, entry); | 
 | 			ret = 1; | 
 | 		} else { | 
 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 
 | 			pmd_t *pmd = pvmw->pmd; | 
 | 			pmd_t entry; | 
 |  | 
 | 			if (!pmd_dirty(*pmd) && !pmd_write(*pmd)) | 
 | 				continue; | 
 |  | 
 | 			flush_cache_range(vma, address, | 
 | 					  address + HPAGE_PMD_SIZE); | 
 | 			entry = pmdp_invalidate(vma, address, pmd); | 
 | 			entry = pmd_wrprotect(entry); | 
 | 			entry = pmd_mkclean(entry); | 
 | 			set_pmd_at(vma->vm_mm, address, pmd, entry); | 
 | 			ret = 1; | 
 | #else | 
 | 			/* unexpected pmd-mapped folio? */ | 
 | 			WARN_ON_ONCE(1); | 
 | #endif | 
 | 		} | 
 |  | 
 | 		if (ret) | 
 | 			cleaned++; | 
 | 	} | 
 |  | 
 | 	mmu_notifier_invalidate_range_end(&range); | 
 |  | 
 | 	return cleaned; | 
 | } | 
 |  | 
 | static bool page_mkclean_one(struct folio *folio, struct vm_area_struct *vma, | 
 | 			     unsigned long address, void *arg) | 
 | { | 
 | 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, PVMW_SYNC); | 
 | 	int *cleaned = arg; | 
 |  | 
 | 	*cleaned += page_vma_mkclean_one(&pvmw); | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg) | 
 | { | 
 | 	if (vma->vm_flags & VM_SHARED) | 
 | 		return false; | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | int folio_mkclean(struct folio *folio) | 
 | { | 
 | 	int cleaned = 0; | 
 | 	struct address_space *mapping; | 
 | 	struct rmap_walk_control rwc = { | 
 | 		.arg = (void *)&cleaned, | 
 | 		.rmap_one = page_mkclean_one, | 
 | 		.invalid_vma = invalid_mkclean_vma, | 
 | 	}; | 
 |  | 
 | 	BUG_ON(!folio_test_locked(folio)); | 
 |  | 
 | 	if (!folio_mapped(folio)) | 
 | 		return 0; | 
 |  | 
 | 	mapping = folio_mapping(folio); | 
 | 	if (!mapping) | 
 | 		return 0; | 
 |  | 
 | 	rmap_walk(folio, &rwc); | 
 |  | 
 | 	return cleaned; | 
 | } | 
 | EXPORT_SYMBOL_GPL(folio_mkclean); | 
 |  | 
 | struct wrprotect_file_state { | 
 | 	int cleaned; | 
 | 	pgoff_t pgoff; | 
 | 	unsigned long pfn; | 
 | 	unsigned long nr_pages; | 
 | }; | 
 |  | 
 | static bool mapping_wrprotect_range_one(struct folio *folio, | 
 | 		struct vm_area_struct *vma, unsigned long address, void *arg) | 
 | { | 
 | 	struct wrprotect_file_state *state = (struct wrprotect_file_state *)arg; | 
 | 	struct page_vma_mapped_walk pvmw = { | 
 | 		.pfn		= state->pfn, | 
 | 		.nr_pages	= state->nr_pages, | 
 | 		.pgoff		= state->pgoff, | 
 | 		.vma		= vma, | 
 | 		.address	= address, | 
 | 		.flags		= PVMW_SYNC, | 
 | 	}; | 
 |  | 
 | 	state->cleaned += page_vma_mkclean_one(&pvmw); | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static void __rmap_walk_file(struct folio *folio, struct address_space *mapping, | 
 | 			     pgoff_t pgoff_start, unsigned long nr_pages, | 
 | 			     struct rmap_walk_control *rwc, bool locked); | 
 |  | 
 | /** | 
 |  * mapping_wrprotect_range() - Write-protect all mappings in a specified range. | 
 |  * | 
 |  * @mapping:	The mapping whose reverse mapping should be traversed. | 
 |  * @pgoff:	The page offset at which @pfn is mapped within @mapping. | 
 |  * @pfn:	The PFN of the page mapped in @mapping at @pgoff. | 
 |  * @nr_pages:	The number of physically contiguous base pages spanned. | 
 |  * | 
 |  * Traverses the reverse mapping, finding all VMAs which contain a shared | 
 |  * mapping of the pages in the specified range in @mapping, and write-protects | 
 |  * them (that is, updates the page tables to mark the mappings read-only such | 
 |  * that a write protection fault arises when the mappings are written to). | 
 |  * | 
 |  * The @pfn value need not refer to a folio, but rather can reference a kernel | 
 |  * allocation which is mapped into userland. We therefore do not require that | 
 |  * the page maps to a folio with a valid mapping or index field, rather the | 
 |  * caller specifies these in @mapping and @pgoff. | 
 |  * | 
 |  * Return: the number of write-protected PTEs, or an error. | 
 |  */ | 
 | int mapping_wrprotect_range(struct address_space *mapping, pgoff_t pgoff, | 
 | 		unsigned long pfn, unsigned long nr_pages) | 
 | { | 
 | 	struct wrprotect_file_state state = { | 
 | 		.cleaned = 0, | 
 | 		.pgoff = pgoff, | 
 | 		.pfn = pfn, | 
 | 		.nr_pages = nr_pages, | 
 | 	}; | 
 | 	struct rmap_walk_control rwc = { | 
 | 		.arg = (void *)&state, | 
 | 		.rmap_one = mapping_wrprotect_range_one, | 
 | 		.invalid_vma = invalid_mkclean_vma, | 
 | 	}; | 
 |  | 
 | 	if (!mapping) | 
 | 		return 0; | 
 |  | 
 | 	__rmap_walk_file(/* folio = */NULL, mapping, pgoff, nr_pages, &rwc, | 
 | 			 /* locked = */false); | 
 |  | 
 | 	return state.cleaned; | 
 | } | 
 | EXPORT_SYMBOL_GPL(mapping_wrprotect_range); | 
 |  | 
 | /** | 
 |  * pfn_mkclean_range - Cleans the PTEs (including PMDs) mapped with range of | 
 |  *                     [@pfn, @pfn + @nr_pages) at the specific offset (@pgoff) | 
 |  *                     within the @vma of shared mappings. And since clean PTEs | 
 |  *                     should also be readonly, write protects them too. | 
 |  * @pfn: start pfn. | 
 |  * @nr_pages: number of physically contiguous pages srarting with @pfn. | 
 |  * @pgoff: page offset that the @pfn mapped with. | 
 |  * @vma: vma that @pfn mapped within. | 
 |  * | 
 |  * Returns the number of cleaned PTEs (including PMDs). | 
 |  */ | 
 | int pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff, | 
 | 		      struct vm_area_struct *vma) | 
 | { | 
 | 	struct page_vma_mapped_walk pvmw = { | 
 | 		.pfn		= pfn, | 
 | 		.nr_pages	= nr_pages, | 
 | 		.pgoff		= pgoff, | 
 | 		.vma		= vma, | 
 | 		.flags		= PVMW_SYNC, | 
 | 	}; | 
 |  | 
 | 	if (invalid_mkclean_vma(vma, NULL)) | 
 | 		return 0; | 
 |  | 
 | 	pvmw.address = vma_address(vma, pgoff, nr_pages); | 
 | 	VM_BUG_ON_VMA(pvmw.address == -EFAULT, vma); | 
 |  | 
 | 	return page_vma_mkclean_one(&pvmw); | 
 | } | 
 |  | 
 | static __always_inline unsigned int __folio_add_rmap(struct folio *folio, | 
 | 		struct page *page, int nr_pages, struct vm_area_struct *vma, | 
 | 		enum rmap_level level, int *nr_pmdmapped) | 
 | { | 
 | 	atomic_t *mapped = &folio->_nr_pages_mapped; | 
 | 	const int orig_nr_pages = nr_pages; | 
 | 	int first = 0, nr = 0; | 
 |  | 
 | 	__folio_rmap_sanity_checks(folio, page, nr_pages, level); | 
 |  | 
 | 	switch (level) { | 
 | 	case RMAP_LEVEL_PTE: | 
 | 		if (!folio_test_large(folio)) { | 
 | 			nr = atomic_inc_and_test(&folio->_mapcount); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		if (IS_ENABLED(CONFIG_NO_PAGE_MAPCOUNT)) { | 
 | 			nr = folio_add_return_large_mapcount(folio, orig_nr_pages, vma); | 
 | 			if (nr == orig_nr_pages) | 
 | 				/* Was completely unmapped. */ | 
 | 				nr = folio_large_nr_pages(folio); | 
 | 			else | 
 | 				nr = 0; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		do { | 
 | 			first += atomic_inc_and_test(&page->_mapcount); | 
 | 		} while (page++, --nr_pages > 0); | 
 |  | 
 | 		if (first && | 
 | 		    atomic_add_return_relaxed(first, mapped) < ENTIRELY_MAPPED) | 
 | 			nr = first; | 
 |  | 
 | 		folio_add_large_mapcount(folio, orig_nr_pages, vma); | 
 | 		break; | 
 | 	case RMAP_LEVEL_PMD: | 
 | 	case RMAP_LEVEL_PUD: | 
 | 		first = atomic_inc_and_test(&folio->_entire_mapcount); | 
 | 		if (IS_ENABLED(CONFIG_NO_PAGE_MAPCOUNT)) { | 
 | 			if (level == RMAP_LEVEL_PMD && first) | 
 | 				*nr_pmdmapped = folio_large_nr_pages(folio); | 
 | 			nr = folio_inc_return_large_mapcount(folio, vma); | 
 | 			if (nr == 1) | 
 | 				/* Was completely unmapped. */ | 
 | 				nr = folio_large_nr_pages(folio); | 
 | 			else | 
 | 				nr = 0; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		if (first) { | 
 | 			nr = atomic_add_return_relaxed(ENTIRELY_MAPPED, mapped); | 
 | 			if (likely(nr < ENTIRELY_MAPPED + ENTIRELY_MAPPED)) { | 
 | 				nr_pages = folio_large_nr_pages(folio); | 
 | 				/* | 
 | 				 * We only track PMD mappings of PMD-sized | 
 | 				 * folios separately. | 
 | 				 */ | 
 | 				if (level == RMAP_LEVEL_PMD) | 
 | 					*nr_pmdmapped = nr_pages; | 
 | 				nr = nr_pages - (nr & FOLIO_PAGES_MAPPED); | 
 | 				/* Raced ahead of a remove and another add? */ | 
 | 				if (unlikely(nr < 0)) | 
 | 					nr = 0; | 
 | 			} else { | 
 | 				/* Raced ahead of a remove of ENTIRELY_MAPPED */ | 
 | 				nr = 0; | 
 | 			} | 
 | 		} | 
 | 		folio_inc_large_mapcount(folio, vma); | 
 | 		break; | 
 | 	} | 
 | 	return nr; | 
 | } | 
 |  | 
 | /** | 
 |  * folio_move_anon_rmap - move a folio to our anon_vma | 
 |  * @folio:	The folio to move to our anon_vma | 
 |  * @vma:	The vma the folio belongs to | 
 |  * | 
 |  * When a folio belongs exclusively to one process after a COW event, | 
 |  * that folio can be moved into the anon_vma that belongs to just that | 
 |  * process, so the rmap code will not search the parent or sibling processes. | 
 |  */ | 
 | void folio_move_anon_rmap(struct folio *folio, struct vm_area_struct *vma) | 
 | { | 
 | 	void *anon_vma = vma->anon_vma; | 
 |  | 
 | 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); | 
 | 	VM_BUG_ON_VMA(!anon_vma, vma); | 
 |  | 
 | 	anon_vma += FOLIO_MAPPING_ANON; | 
 | 	/* | 
 | 	 * Ensure that anon_vma and the FOLIO_MAPPING_ANON bit are written | 
 | 	 * simultaneously, so a concurrent reader (eg folio_referenced()'s | 
 | 	 * folio_test_anon()) will not see one without the other. | 
 | 	 */ | 
 | 	WRITE_ONCE(folio->mapping, anon_vma); | 
 | } | 
 |  | 
 | /** | 
 |  * __folio_set_anon - set up a new anonymous rmap for a folio | 
 |  * @folio:	The folio to set up the new anonymous rmap for. | 
 |  * @vma:	VM area to add the folio to. | 
 |  * @address:	User virtual address of the mapping | 
 |  * @exclusive:	Whether the folio is exclusive to the process. | 
 |  */ | 
 | static void __folio_set_anon(struct folio *folio, struct vm_area_struct *vma, | 
 | 			     unsigned long address, bool exclusive) | 
 | { | 
 | 	struct anon_vma *anon_vma = vma->anon_vma; | 
 |  | 
 | 	BUG_ON(!anon_vma); | 
 |  | 
 | 	/* | 
 | 	 * If the folio isn't exclusive to this vma, we must use the _oldest_ | 
 | 	 * possible anon_vma for the folio mapping! | 
 | 	 */ | 
 | 	if (!exclusive) | 
 | 		anon_vma = anon_vma->root; | 
 |  | 
 | 	/* | 
 | 	 * page_idle does a lockless/optimistic rmap scan on folio->mapping. | 
 | 	 * Make sure the compiler doesn't split the stores of anon_vma and | 
 | 	 * the FOLIO_MAPPING_ANON type identifier, otherwise the rmap code | 
 | 	 * could mistake the mapping for a struct address_space and crash. | 
 | 	 */ | 
 | 	anon_vma = (void *) anon_vma + FOLIO_MAPPING_ANON; | 
 | 	WRITE_ONCE(folio->mapping, (struct address_space *) anon_vma); | 
 | 	folio->index = linear_page_index(vma, address); | 
 | } | 
 |  | 
 | /** | 
 |  * __page_check_anon_rmap - sanity check anonymous rmap addition | 
 |  * @folio:	The folio containing @page. | 
 |  * @page:	the page to check the mapping of | 
 |  * @vma:	the vm area in which the mapping is added | 
 |  * @address:	the user virtual address mapped | 
 |  */ | 
 | static void __page_check_anon_rmap(const struct folio *folio, | 
 | 		const struct page *page, struct vm_area_struct *vma, | 
 | 		unsigned long address) | 
 | { | 
 | 	/* | 
 | 	 * The page's anon-rmap details (mapping and index) are guaranteed to | 
 | 	 * be set up correctly at this point. | 
 | 	 * | 
 | 	 * We have exclusion against folio_add_anon_rmap_*() because the caller | 
 | 	 * always holds the page locked. | 
 | 	 * | 
 | 	 * We have exclusion against folio_add_new_anon_rmap because those pages | 
 | 	 * are initially only visible via the pagetables, and the pte is locked | 
 | 	 * over the call to folio_add_new_anon_rmap. | 
 | 	 */ | 
 | 	VM_BUG_ON_FOLIO(folio_anon_vma(folio)->root != vma->anon_vma->root, | 
 | 			folio); | 
 | 	VM_BUG_ON_PAGE(page_pgoff(folio, page) != linear_page_index(vma, address), | 
 | 		       page); | 
 | } | 
 |  | 
 | static void __folio_mod_stat(struct folio *folio, int nr, int nr_pmdmapped) | 
 | { | 
 | 	int idx; | 
 |  | 
 | 	if (nr) { | 
 | 		idx = folio_test_anon(folio) ? NR_ANON_MAPPED : NR_FILE_MAPPED; | 
 | 		__lruvec_stat_mod_folio(folio, idx, nr); | 
 | 	} | 
 | 	if (nr_pmdmapped) { | 
 | 		if (folio_test_anon(folio)) { | 
 | 			idx = NR_ANON_THPS; | 
 | 			__lruvec_stat_mod_folio(folio, idx, nr_pmdmapped); | 
 | 		} else { | 
 | 			/* NR_*_PMDMAPPED are not maintained per-memcg */ | 
 | 			idx = folio_test_swapbacked(folio) ? | 
 | 				NR_SHMEM_PMDMAPPED : NR_FILE_PMDMAPPED; | 
 | 			__mod_node_page_state(folio_pgdat(folio), idx, | 
 | 					      nr_pmdmapped); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static __always_inline void __folio_add_anon_rmap(struct folio *folio, | 
 | 		struct page *page, int nr_pages, struct vm_area_struct *vma, | 
 | 		unsigned long address, rmap_t flags, enum rmap_level level) | 
 | { | 
 | 	int i, nr, nr_pmdmapped = 0; | 
 |  | 
 | 	VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio); | 
 |  | 
 | 	nr = __folio_add_rmap(folio, page, nr_pages, vma, level, &nr_pmdmapped); | 
 |  | 
 | 	if (likely(!folio_test_ksm(folio))) | 
 | 		__page_check_anon_rmap(folio, page, vma, address); | 
 |  | 
 | 	__folio_mod_stat(folio, nr, nr_pmdmapped); | 
 |  | 
 | 	if (flags & RMAP_EXCLUSIVE) { | 
 | 		switch (level) { | 
 | 		case RMAP_LEVEL_PTE: | 
 | 			for (i = 0; i < nr_pages; i++) | 
 | 				SetPageAnonExclusive(page + i); | 
 | 			break; | 
 | 		case RMAP_LEVEL_PMD: | 
 | 			SetPageAnonExclusive(page); | 
 | 			break; | 
 | 		case RMAP_LEVEL_PUD: | 
 | 			/* | 
 | 			 * Keep the compiler happy, we don't support anonymous | 
 | 			 * PUD mappings. | 
 | 			 */ | 
 | 			WARN_ON_ONCE(1); | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	VM_WARN_ON_FOLIO(!folio_test_large(folio) && PageAnonExclusive(page) && | 
 | 			 atomic_read(&folio->_mapcount) > 0, folio); | 
 | 	for (i = 0; i < nr_pages; i++) { | 
 | 		struct page *cur_page = page + i; | 
 |  | 
 | 		VM_WARN_ON_FOLIO(folio_test_large(folio) && | 
 | 				 folio_entire_mapcount(folio) > 1 && | 
 | 				 PageAnonExclusive(cur_page), folio); | 
 | 		if (IS_ENABLED(CONFIG_NO_PAGE_MAPCOUNT)) | 
 | 			continue; | 
 |  | 
 | 		/* | 
 | 		 * While PTE-mapping a THP we have a PMD and a PTE | 
 | 		 * mapping. | 
 | 		 */ | 
 | 		VM_WARN_ON_FOLIO(atomic_read(&cur_page->_mapcount) > 0 && | 
 | 				 PageAnonExclusive(cur_page), folio); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * For large folio, only mlock it if it's fully mapped to VMA. It's | 
 | 	 * not easy to check whether the large folio is fully mapped to VMA | 
 | 	 * here. Only mlock normal 4K folio and leave page reclaim to handle | 
 | 	 * large folio. | 
 | 	 */ | 
 | 	if (!folio_test_large(folio)) | 
 | 		mlock_vma_folio(folio, vma); | 
 | } | 
 |  | 
 | /** | 
 |  * folio_add_anon_rmap_ptes - add PTE mappings to a page range of an anon folio | 
 |  * @folio:	The folio to add the mappings to | 
 |  * @page:	The first page to add | 
 |  * @nr_pages:	The number of pages which will be mapped | 
 |  * @vma:	The vm area in which the mappings are added | 
 |  * @address:	The user virtual address of the first page to map | 
 |  * @flags:	The rmap flags | 
 |  * | 
 |  * The page range of folio is defined by [first_page, first_page + nr_pages) | 
 |  * | 
 |  * The caller needs to hold the page table lock, and the page must be locked in | 
 |  * the anon_vma case: to serialize mapping,index checking after setting, | 
 |  * and to ensure that an anon folio is not being upgraded racily to a KSM folio | 
 |  * (but KSM folios are never downgraded). | 
 |  */ | 
 | void folio_add_anon_rmap_ptes(struct folio *folio, struct page *page, | 
 | 		int nr_pages, struct vm_area_struct *vma, unsigned long address, | 
 | 		rmap_t flags) | 
 | { | 
 | 	__folio_add_anon_rmap(folio, page, nr_pages, vma, address, flags, | 
 | 			      RMAP_LEVEL_PTE); | 
 | } | 
 |  | 
 | /** | 
 |  * folio_add_anon_rmap_pmd - add a PMD mapping to a page range of an anon folio | 
 |  * @folio:	The folio to add the mapping to | 
 |  * @page:	The first page to add | 
 |  * @vma:	The vm area in which the mapping is added | 
 |  * @address:	The user virtual address of the first page to map | 
 |  * @flags:	The rmap flags | 
 |  * | 
 |  * The page range of folio is defined by [first_page, first_page + HPAGE_PMD_NR) | 
 |  * | 
 |  * The caller needs to hold the page table lock, and the page must be locked in | 
 |  * the anon_vma case: to serialize mapping,index checking after setting. | 
 |  */ | 
 | void folio_add_anon_rmap_pmd(struct folio *folio, struct page *page, | 
 | 		struct vm_area_struct *vma, unsigned long address, rmap_t flags) | 
 | { | 
 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 
 | 	__folio_add_anon_rmap(folio, page, HPAGE_PMD_NR, vma, address, flags, | 
 | 			      RMAP_LEVEL_PMD); | 
 | #else | 
 | 	WARN_ON_ONCE(true); | 
 | #endif | 
 | } | 
 |  | 
 | /** | 
 |  * folio_add_new_anon_rmap - Add mapping to a new anonymous folio. | 
 |  * @folio:	The folio to add the mapping to. | 
 |  * @vma:	the vm area in which the mapping is added | 
 |  * @address:	the user virtual address mapped | 
 |  * @flags:	The rmap flags | 
 |  * | 
 |  * Like folio_add_anon_rmap_*() but must only be called on *new* folios. | 
 |  * This means the inc-and-test can be bypassed. | 
 |  * The folio doesn't necessarily need to be locked while it's exclusive | 
 |  * unless two threads map it concurrently. However, the folio must be | 
 |  * locked if it's shared. | 
 |  * | 
 |  * If the folio is pmd-mappable, it is accounted as a THP. | 
 |  */ | 
 | void folio_add_new_anon_rmap(struct folio *folio, struct vm_area_struct *vma, | 
 | 		unsigned long address, rmap_t flags) | 
 | { | 
 | 	const bool exclusive = flags & RMAP_EXCLUSIVE; | 
 | 	int nr = 1, nr_pmdmapped = 0; | 
 |  | 
 | 	VM_WARN_ON_FOLIO(folio_test_hugetlb(folio), folio); | 
 | 	VM_WARN_ON_FOLIO(!exclusive && !folio_test_locked(folio), folio); | 
 |  | 
 | 	/* | 
 | 	 * VM_DROPPABLE mappings don't swap; instead they're just dropped when | 
 | 	 * under memory pressure. | 
 | 	 */ | 
 | 	if (!folio_test_swapbacked(folio) && !(vma->vm_flags & VM_DROPPABLE)) | 
 | 		__folio_set_swapbacked(folio); | 
 | 	__folio_set_anon(folio, vma, address, exclusive); | 
 |  | 
 | 	if (likely(!folio_test_large(folio))) { | 
 | 		/* increment count (starts at -1) */ | 
 | 		atomic_set(&folio->_mapcount, 0); | 
 | 		if (exclusive) | 
 | 			SetPageAnonExclusive(&folio->page); | 
 | 	} else if (!folio_test_pmd_mappable(folio)) { | 
 | 		int i; | 
 |  | 
 | 		nr = folio_large_nr_pages(folio); | 
 | 		for (i = 0; i < nr; i++) { | 
 | 			struct page *page = folio_page(folio, i); | 
 |  | 
 | 			if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT)) | 
 | 				/* increment count (starts at -1) */ | 
 | 				atomic_set(&page->_mapcount, 0); | 
 | 			if (exclusive) | 
 | 				SetPageAnonExclusive(page); | 
 | 		} | 
 |  | 
 | 		folio_set_large_mapcount(folio, nr, vma); | 
 | 		if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT)) | 
 | 			atomic_set(&folio->_nr_pages_mapped, nr); | 
 | 	} else { | 
 | 		nr = folio_large_nr_pages(folio); | 
 | 		/* increment count (starts at -1) */ | 
 | 		atomic_set(&folio->_entire_mapcount, 0); | 
 | 		folio_set_large_mapcount(folio, 1, vma); | 
 | 		if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT)) | 
 | 			atomic_set(&folio->_nr_pages_mapped, ENTIRELY_MAPPED); | 
 | 		if (exclusive) | 
 | 			SetPageAnonExclusive(&folio->page); | 
 | 		nr_pmdmapped = nr; | 
 | 	} | 
 |  | 
 | 	VM_WARN_ON_ONCE(address < vma->vm_start || | 
 | 			address + (nr << PAGE_SHIFT) > vma->vm_end); | 
 |  | 
 | 	__folio_mod_stat(folio, nr, nr_pmdmapped); | 
 | 	mod_mthp_stat(folio_order(folio), MTHP_STAT_NR_ANON, 1); | 
 | } | 
 |  | 
 | static __always_inline void __folio_add_file_rmap(struct folio *folio, | 
 | 		struct page *page, int nr_pages, struct vm_area_struct *vma, | 
 | 		enum rmap_level level) | 
 | { | 
 | 	int nr, nr_pmdmapped = 0; | 
 |  | 
 | 	VM_WARN_ON_FOLIO(folio_test_anon(folio), folio); | 
 |  | 
 | 	nr = __folio_add_rmap(folio, page, nr_pages, vma, level, &nr_pmdmapped); | 
 | 	__folio_mod_stat(folio, nr, nr_pmdmapped); | 
 |  | 
 | 	/* See comments in folio_add_anon_rmap_*() */ | 
 | 	if (!folio_test_large(folio)) | 
 | 		mlock_vma_folio(folio, vma); | 
 | } | 
 |  | 
 | /** | 
 |  * folio_add_file_rmap_ptes - add PTE mappings to a page range of a folio | 
 |  * @folio:	The folio to add the mappings to | 
 |  * @page:	The first page to add | 
 |  * @nr_pages:	The number of pages that will be mapped using PTEs | 
 |  * @vma:	The vm area in which the mappings are added | 
 |  * | 
 |  * The page range of the folio is defined by [page, page + nr_pages) | 
 |  * | 
 |  * The caller needs to hold the page table lock. | 
 |  */ | 
 | void folio_add_file_rmap_ptes(struct folio *folio, struct page *page, | 
 | 		int nr_pages, struct vm_area_struct *vma) | 
 | { | 
 | 	__folio_add_file_rmap(folio, page, nr_pages, vma, RMAP_LEVEL_PTE); | 
 | } | 
 |  | 
 | /** | 
 |  * folio_add_file_rmap_pmd - add a PMD mapping to a page range of a folio | 
 |  * @folio:	The folio to add the mapping to | 
 |  * @page:	The first page to add | 
 |  * @vma:	The vm area in which the mapping is added | 
 |  * | 
 |  * The page range of the folio is defined by [page, page + HPAGE_PMD_NR) | 
 |  * | 
 |  * The caller needs to hold the page table lock. | 
 |  */ | 
 | void folio_add_file_rmap_pmd(struct folio *folio, struct page *page, | 
 | 		struct vm_area_struct *vma) | 
 | { | 
 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 
 | 	__folio_add_file_rmap(folio, page, HPAGE_PMD_NR, vma, RMAP_LEVEL_PMD); | 
 | #else | 
 | 	WARN_ON_ONCE(true); | 
 | #endif | 
 | } | 
 |  | 
 | /** | 
 |  * folio_add_file_rmap_pud - add a PUD mapping to a page range of a folio | 
 |  * @folio:	The folio to add the mapping to | 
 |  * @page:	The first page to add | 
 |  * @vma:	The vm area in which the mapping is added | 
 |  * | 
 |  * The page range of the folio is defined by [page, page + HPAGE_PUD_NR) | 
 |  * | 
 |  * The caller needs to hold the page table lock. | 
 |  */ | 
 | void folio_add_file_rmap_pud(struct folio *folio, struct page *page, | 
 | 		struct vm_area_struct *vma) | 
 | { | 
 | #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ | 
 | 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) | 
 | 	__folio_add_file_rmap(folio, page, HPAGE_PUD_NR, vma, RMAP_LEVEL_PUD); | 
 | #else | 
 | 	WARN_ON_ONCE(true); | 
 | #endif | 
 | } | 
 |  | 
 | static __always_inline void __folio_remove_rmap(struct folio *folio, | 
 | 		struct page *page, int nr_pages, struct vm_area_struct *vma, | 
 | 		enum rmap_level level) | 
 | { | 
 | 	atomic_t *mapped = &folio->_nr_pages_mapped; | 
 | 	int last = 0, nr = 0, nr_pmdmapped = 0; | 
 | 	bool partially_mapped = false; | 
 |  | 
 | 	__folio_rmap_sanity_checks(folio, page, nr_pages, level); | 
 |  | 
 | 	switch (level) { | 
 | 	case RMAP_LEVEL_PTE: | 
 | 		if (!folio_test_large(folio)) { | 
 | 			nr = atomic_add_negative(-1, &folio->_mapcount); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		if (IS_ENABLED(CONFIG_NO_PAGE_MAPCOUNT)) { | 
 | 			nr = folio_sub_return_large_mapcount(folio, nr_pages, vma); | 
 | 			if (!nr) { | 
 | 				/* Now completely unmapped. */ | 
 | 				nr = folio_nr_pages(folio); | 
 | 			} else { | 
 | 				partially_mapped = nr < folio_large_nr_pages(folio) && | 
 | 						   !folio_entire_mapcount(folio); | 
 | 				nr = 0; | 
 | 			} | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		folio_sub_large_mapcount(folio, nr_pages, vma); | 
 | 		do { | 
 | 			last += atomic_add_negative(-1, &page->_mapcount); | 
 | 		} while (page++, --nr_pages > 0); | 
 |  | 
 | 		if (last && | 
 | 		    atomic_sub_return_relaxed(last, mapped) < ENTIRELY_MAPPED) | 
 | 			nr = last; | 
 |  | 
 | 		partially_mapped = nr && atomic_read(mapped); | 
 | 		break; | 
 | 	case RMAP_LEVEL_PMD: | 
 | 	case RMAP_LEVEL_PUD: | 
 | 		if (IS_ENABLED(CONFIG_NO_PAGE_MAPCOUNT)) { | 
 | 			last = atomic_add_negative(-1, &folio->_entire_mapcount); | 
 | 			if (level == RMAP_LEVEL_PMD && last) | 
 | 				nr_pmdmapped = folio_large_nr_pages(folio); | 
 | 			nr = folio_dec_return_large_mapcount(folio, vma); | 
 | 			if (!nr) { | 
 | 				/* Now completely unmapped. */ | 
 | 				nr = folio_large_nr_pages(folio); | 
 | 			} else { | 
 | 				partially_mapped = last && | 
 | 						   nr < folio_large_nr_pages(folio); | 
 | 				nr = 0; | 
 | 			} | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		folio_dec_large_mapcount(folio, vma); | 
 | 		last = atomic_add_negative(-1, &folio->_entire_mapcount); | 
 | 		if (last) { | 
 | 			nr = atomic_sub_return_relaxed(ENTIRELY_MAPPED, mapped); | 
 | 			if (likely(nr < ENTIRELY_MAPPED)) { | 
 | 				nr_pages = folio_large_nr_pages(folio); | 
 | 				if (level == RMAP_LEVEL_PMD) | 
 | 					nr_pmdmapped = nr_pages; | 
 | 				nr = nr_pages - (nr & FOLIO_PAGES_MAPPED); | 
 | 				/* Raced ahead of another remove and an add? */ | 
 | 				if (unlikely(nr < 0)) | 
 | 					nr = 0; | 
 | 			} else { | 
 | 				/* An add of ENTIRELY_MAPPED raced ahead */ | 
 | 				nr = 0; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		partially_mapped = nr && nr < nr_pmdmapped; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Queue anon large folio for deferred split if at least one page of | 
 | 	 * the folio is unmapped and at least one page is still mapped. | 
 | 	 * | 
 | 	 * Check partially_mapped first to ensure it is a large folio. | 
 | 	 */ | 
 | 	if (partially_mapped && folio_test_anon(folio) && | 
 | 	    !folio_test_partially_mapped(folio)) | 
 | 		deferred_split_folio(folio, true); | 
 |  | 
 | 	__folio_mod_stat(folio, -nr, -nr_pmdmapped); | 
 |  | 
 | 	/* | 
 | 	 * It would be tidy to reset folio_test_anon mapping when fully | 
 | 	 * unmapped, but that might overwrite a racing folio_add_anon_rmap_*() | 
 | 	 * which increments mapcount after us but sets mapping before us: | 
 | 	 * so leave the reset to free_pages_prepare, and remember that | 
 | 	 * it's only reliable while mapped. | 
 | 	 */ | 
 |  | 
 | 	munlock_vma_folio(folio, vma); | 
 | } | 
 |  | 
 | /** | 
 |  * folio_remove_rmap_ptes - remove PTE mappings from a page range of a folio | 
 |  * @folio:	The folio to remove the mappings from | 
 |  * @page:	The first page to remove | 
 |  * @nr_pages:	The number of pages that will be removed from the mapping | 
 |  * @vma:	The vm area from which the mappings are removed | 
 |  * | 
 |  * The page range of the folio is defined by [page, page + nr_pages) | 
 |  * | 
 |  * The caller needs to hold the page table lock. | 
 |  */ | 
 | void folio_remove_rmap_ptes(struct folio *folio, struct page *page, | 
 | 		int nr_pages, struct vm_area_struct *vma) | 
 | { | 
 | 	__folio_remove_rmap(folio, page, nr_pages, vma, RMAP_LEVEL_PTE); | 
 | } | 
 |  | 
 | /** | 
 |  * folio_remove_rmap_pmd - remove a PMD mapping from a page range of a folio | 
 |  * @folio:	The folio to remove the mapping from | 
 |  * @page:	The first page to remove | 
 |  * @vma:	The vm area from which the mapping is removed | 
 |  * | 
 |  * The page range of the folio is defined by [page, page + HPAGE_PMD_NR) | 
 |  * | 
 |  * The caller needs to hold the page table lock. | 
 |  */ | 
 | void folio_remove_rmap_pmd(struct folio *folio, struct page *page, | 
 | 		struct vm_area_struct *vma) | 
 | { | 
 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 
 | 	__folio_remove_rmap(folio, page, HPAGE_PMD_NR, vma, RMAP_LEVEL_PMD); | 
 | #else | 
 | 	WARN_ON_ONCE(true); | 
 | #endif | 
 | } | 
 |  | 
 | /** | 
 |  * folio_remove_rmap_pud - remove a PUD mapping from a page range of a folio | 
 |  * @folio:	The folio to remove the mapping from | 
 |  * @page:	The first page to remove | 
 |  * @vma:	The vm area from which the mapping is removed | 
 |  * | 
 |  * The page range of the folio is defined by [page, page + HPAGE_PUD_NR) | 
 |  * | 
 |  * The caller needs to hold the page table lock. | 
 |  */ | 
 | void folio_remove_rmap_pud(struct folio *folio, struct page *page, | 
 | 		struct vm_area_struct *vma) | 
 | { | 
 | #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ | 
 | 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) | 
 | 	__folio_remove_rmap(folio, page, HPAGE_PUD_NR, vma, RMAP_LEVEL_PUD); | 
 | #else | 
 | 	WARN_ON_ONCE(true); | 
 | #endif | 
 | } | 
 |  | 
 | static inline unsigned int folio_unmap_pte_batch(struct folio *folio, | 
 | 			struct page_vma_mapped_walk *pvmw, | 
 | 			enum ttu_flags flags, pte_t pte) | 
 | { | 
 | 	unsigned long end_addr, addr = pvmw->address; | 
 | 	struct vm_area_struct *vma = pvmw->vma; | 
 | 	unsigned int max_nr; | 
 |  | 
 | 	if (flags & TTU_HWPOISON) | 
 | 		return 1; | 
 | 	if (!folio_test_large(folio)) | 
 | 		return 1; | 
 |  | 
 | 	/* We may only batch within a single VMA and a single page table. */ | 
 | 	end_addr = pmd_addr_end(addr, vma->vm_end); | 
 | 	max_nr = (end_addr - addr) >> PAGE_SHIFT; | 
 |  | 
 | 	/* We only support lazyfree batching for now ... */ | 
 | 	if (!folio_test_anon(folio) || folio_test_swapbacked(folio)) | 
 | 		return 1; | 
 | 	if (pte_unused(pte)) | 
 | 		return 1; | 
 |  | 
 | 	return folio_pte_batch(folio, pvmw->pte, pte, max_nr); | 
 | } | 
 |  | 
 | /* | 
 |  * @arg: enum ttu_flags will be passed to this argument | 
 |  */ | 
 | static bool try_to_unmap_one(struct folio *folio, struct vm_area_struct *vma, | 
 | 		     unsigned long address, void *arg) | 
 | { | 
 | 	struct mm_struct *mm = vma->vm_mm; | 
 | 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); | 
 | 	bool anon_exclusive, ret = true; | 
 | 	pte_t pteval; | 
 | 	struct page *subpage; | 
 | 	struct mmu_notifier_range range; | 
 | 	enum ttu_flags flags = (enum ttu_flags)(long)arg; | 
 | 	unsigned long nr_pages = 1, end_addr; | 
 | 	unsigned long pfn; | 
 | 	unsigned long hsz = 0; | 
 |  | 
 | 	/* | 
 | 	 * When racing against e.g. zap_pte_range() on another cpu, | 
 | 	 * in between its ptep_get_and_clear_full() and folio_remove_rmap_*(), | 
 | 	 * try_to_unmap() may return before page_mapped() has become false, | 
 | 	 * if page table locking is skipped: use TTU_SYNC to wait for that. | 
 | 	 */ | 
 | 	if (flags & TTU_SYNC) | 
 | 		pvmw.flags = PVMW_SYNC; | 
 |  | 
 | 	/* | 
 | 	 * For THP, we have to assume the worse case ie pmd for invalidation. | 
 | 	 * For hugetlb, it could be much worse if we need to do pud | 
 | 	 * invalidation in the case of pmd sharing. | 
 | 	 * | 
 | 	 * Note that the folio can not be freed in this function as call of | 
 | 	 * try_to_unmap() must hold a reference on the folio. | 
 | 	 */ | 
 | 	range.end = vma_address_end(&pvmw); | 
 | 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, | 
 | 				address, range.end); | 
 | 	if (folio_test_hugetlb(folio)) { | 
 | 		/* | 
 | 		 * If sharing is possible, start and end will be adjusted | 
 | 		 * accordingly. | 
 | 		 */ | 
 | 		adjust_range_if_pmd_sharing_possible(vma, &range.start, | 
 | 						     &range.end); | 
 |  | 
 | 		/* We need the huge page size for set_huge_pte_at() */ | 
 | 		hsz = huge_page_size(hstate_vma(vma)); | 
 | 	} | 
 | 	mmu_notifier_invalidate_range_start(&range); | 
 |  | 
 | 	while (page_vma_mapped_walk(&pvmw)) { | 
 | 		/* | 
 | 		 * If the folio is in an mlock()d vma, we must not swap it out. | 
 | 		 */ | 
 | 		if (!(flags & TTU_IGNORE_MLOCK) && | 
 | 		    (vma->vm_flags & VM_LOCKED)) { | 
 | 			/* Restore the mlock which got missed */ | 
 | 			if (!folio_test_large(folio)) | 
 | 				mlock_vma_folio(folio, vma); | 
 | 			goto walk_abort; | 
 | 		} | 
 |  | 
 | 		if (!pvmw.pte) { | 
 | 			if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) { | 
 | 				if (unmap_huge_pmd_locked(vma, pvmw.address, pvmw.pmd, folio)) | 
 | 					goto walk_done; | 
 | 				/* | 
 | 				 * unmap_huge_pmd_locked has either already marked | 
 | 				 * the folio as swap-backed or decided to retain it | 
 | 				 * due to GUP or speculative references. | 
 | 				 */ | 
 | 				goto walk_abort; | 
 | 			} | 
 |  | 
 | 			if (flags & TTU_SPLIT_HUGE_PMD) { | 
 | 				/* | 
 | 				 * We temporarily have to drop the PTL and | 
 | 				 * restart so we can process the PTE-mapped THP. | 
 | 				 */ | 
 | 				split_huge_pmd_locked(vma, pvmw.address, | 
 | 						      pvmw.pmd, false); | 
 | 				flags &= ~TTU_SPLIT_HUGE_PMD; | 
 | 				page_vma_mapped_walk_restart(&pvmw); | 
 | 				continue; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		/* Unexpected PMD-mapped THP? */ | 
 | 		VM_BUG_ON_FOLIO(!pvmw.pte, folio); | 
 |  | 
 | 		/* | 
 | 		 * Handle PFN swap PTEs, such as device-exclusive ones, that | 
 | 		 * actually map pages. | 
 | 		 */ | 
 | 		pteval = ptep_get(pvmw.pte); | 
 | 		if (likely(pte_present(pteval))) { | 
 | 			pfn = pte_pfn(pteval); | 
 | 		} else { | 
 | 			pfn = swp_offset_pfn(pte_to_swp_entry(pteval)); | 
 | 			VM_WARN_ON_FOLIO(folio_test_hugetlb(folio), folio); | 
 | 		} | 
 |  | 
 | 		subpage = folio_page(folio, pfn - folio_pfn(folio)); | 
 | 		address = pvmw.address; | 
 | 		anon_exclusive = folio_test_anon(folio) && | 
 | 				 PageAnonExclusive(subpage); | 
 |  | 
 | 		if (folio_test_hugetlb(folio)) { | 
 | 			bool anon = folio_test_anon(folio); | 
 |  | 
 | 			/* | 
 | 			 * The try_to_unmap() is only passed a hugetlb page | 
 | 			 * in the case where the hugetlb page is poisoned. | 
 | 			 */ | 
 | 			VM_BUG_ON_PAGE(!PageHWPoison(subpage), subpage); | 
 | 			/* | 
 | 			 * huge_pmd_unshare may unmap an entire PMD page. | 
 | 			 * There is no way of knowing exactly which PMDs may | 
 | 			 * be cached for this mm, so we must flush them all. | 
 | 			 * start/end were already adjusted above to cover this | 
 | 			 * range. | 
 | 			 */ | 
 | 			flush_cache_range(vma, range.start, range.end); | 
 |  | 
 | 			/* | 
 | 			 * To call huge_pmd_unshare, i_mmap_rwsem must be | 
 | 			 * held in write mode.  Caller needs to explicitly | 
 | 			 * do this outside rmap routines. | 
 | 			 * | 
 | 			 * We also must hold hugetlb vma_lock in write mode. | 
 | 			 * Lock order dictates acquiring vma_lock BEFORE | 
 | 			 * i_mmap_rwsem.  We can only try lock here and fail | 
 | 			 * if unsuccessful. | 
 | 			 */ | 
 | 			if (!anon) { | 
 | 				VM_BUG_ON(!(flags & TTU_RMAP_LOCKED)); | 
 | 				if (!hugetlb_vma_trylock_write(vma)) | 
 | 					goto walk_abort; | 
 | 				if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) { | 
 | 					hugetlb_vma_unlock_write(vma); | 
 | 					flush_tlb_range(vma, | 
 | 						range.start, range.end); | 
 | 					/* | 
 | 					 * The ref count of the PMD page was | 
 | 					 * dropped which is part of the way map | 
 | 					 * counting is done for shared PMDs. | 
 | 					 * Return 'true' here.  When there is | 
 | 					 * no other sharing, huge_pmd_unshare | 
 | 					 * returns false and we will unmap the | 
 | 					 * actual page and drop map count | 
 | 					 * to zero. | 
 | 					 */ | 
 | 					goto walk_done; | 
 | 				} | 
 | 				hugetlb_vma_unlock_write(vma); | 
 | 			} | 
 | 			pteval = huge_ptep_clear_flush(vma, address, pvmw.pte); | 
 | 			if (pte_dirty(pteval)) | 
 | 				folio_mark_dirty(folio); | 
 | 		} else if (likely(pte_present(pteval))) { | 
 | 			nr_pages = folio_unmap_pte_batch(folio, &pvmw, flags, pteval); | 
 | 			end_addr = address + nr_pages * PAGE_SIZE; | 
 | 			flush_cache_range(vma, address, end_addr); | 
 |  | 
 | 			/* Nuke the page table entry. */ | 
 | 			pteval = get_and_clear_ptes(mm, address, pvmw.pte, nr_pages); | 
 | 			/* | 
 | 			 * We clear the PTE but do not flush so potentially | 
 | 			 * a remote CPU could still be writing to the folio. | 
 | 			 * If the entry was previously clean then the | 
 | 			 * architecture must guarantee that a clear->dirty | 
 | 			 * transition on a cached TLB entry is written through | 
 | 			 * and traps if the PTE is unmapped. | 
 | 			 */ | 
 | 			if (should_defer_flush(mm, flags)) | 
 | 				set_tlb_ubc_flush_pending(mm, pteval, address, end_addr); | 
 | 			else | 
 | 				flush_tlb_range(vma, address, end_addr); | 
 | 			if (pte_dirty(pteval)) | 
 | 				folio_mark_dirty(folio); | 
 | 		} else { | 
 | 			pte_clear(mm, address, pvmw.pte); | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Now the pte is cleared. If this pte was uffd-wp armed, | 
 | 		 * we may want to replace a none pte with a marker pte if | 
 | 		 * it's file-backed, so we don't lose the tracking info. | 
 | 		 */ | 
 | 		pte_install_uffd_wp_if_needed(vma, address, pvmw.pte, pteval); | 
 |  | 
 | 		/* Update high watermark before we lower rss */ | 
 | 		update_hiwater_rss(mm); | 
 |  | 
 | 		if (PageHWPoison(subpage) && (flags & TTU_HWPOISON)) { | 
 | 			pteval = swp_entry_to_pte(make_hwpoison_entry(subpage)); | 
 | 			if (folio_test_hugetlb(folio)) { | 
 | 				hugetlb_count_sub(folio_nr_pages(folio), mm); | 
 | 				set_huge_pte_at(mm, address, pvmw.pte, pteval, | 
 | 						hsz); | 
 | 			} else { | 
 | 				dec_mm_counter(mm, mm_counter(folio)); | 
 | 				set_pte_at(mm, address, pvmw.pte, pteval); | 
 | 			} | 
 | 		} else if (likely(pte_present(pteval)) && pte_unused(pteval) && | 
 | 			   !userfaultfd_armed(vma)) { | 
 | 			/* | 
 | 			 * The guest indicated that the page content is of no | 
 | 			 * interest anymore. Simply discard the pte, vmscan | 
 | 			 * will take care of the rest. | 
 | 			 * A future reference will then fault in a new zero | 
 | 			 * page. When userfaultfd is active, we must not drop | 
 | 			 * this page though, as its main user (postcopy | 
 | 			 * migration) will not expect userfaults on already | 
 | 			 * copied pages. | 
 | 			 */ | 
 | 			dec_mm_counter(mm, mm_counter(folio)); | 
 | 		} else if (folio_test_anon(folio)) { | 
 | 			swp_entry_t entry = page_swap_entry(subpage); | 
 | 			pte_t swp_pte; | 
 | 			/* | 
 | 			 * Store the swap location in the pte. | 
 | 			 * See handle_pte_fault() ... | 
 | 			 */ | 
 | 			if (unlikely(folio_test_swapbacked(folio) != | 
 | 					folio_test_swapcache(folio))) { | 
 | 				WARN_ON_ONCE(1); | 
 | 				goto walk_abort; | 
 | 			} | 
 |  | 
 | 			/* MADV_FREE page check */ | 
 | 			if (!folio_test_swapbacked(folio)) { | 
 | 				int ref_count, map_count; | 
 |  | 
 | 				/* | 
 | 				 * Synchronize with gup_pte_range(): | 
 | 				 * - clear PTE; barrier; read refcount | 
 | 				 * - inc refcount; barrier; read PTE | 
 | 				 */ | 
 | 				smp_mb(); | 
 |  | 
 | 				ref_count = folio_ref_count(folio); | 
 | 				map_count = folio_mapcount(folio); | 
 |  | 
 | 				/* | 
 | 				 * Order reads for page refcount and dirty flag | 
 | 				 * (see comments in __remove_mapping()). | 
 | 				 */ | 
 | 				smp_rmb(); | 
 |  | 
 | 				if (folio_test_dirty(folio) && !(vma->vm_flags & VM_DROPPABLE)) { | 
 | 					/* | 
 | 					 * redirtied either using the page table or a previously | 
 | 					 * obtained GUP reference. | 
 | 					 */ | 
 | 					set_ptes(mm, address, pvmw.pte, pteval, nr_pages); | 
 | 					folio_set_swapbacked(folio); | 
 | 					goto walk_abort; | 
 | 				} else if (ref_count != 1 + map_count) { | 
 | 					/* | 
 | 					 * Additional reference. Could be a GUP reference or any | 
 | 					 * speculative reference. GUP users must mark the folio | 
 | 					 * dirty if there was a modification. This folio cannot be | 
 | 					 * reclaimed right now either way, so act just like nothing | 
 | 					 * happened. | 
 | 					 * We'll come back here later and detect if the folio was | 
 | 					 * dirtied when the additional reference is gone. | 
 | 					 */ | 
 | 					set_ptes(mm, address, pvmw.pte, pteval, nr_pages); | 
 | 					goto walk_abort; | 
 | 				} | 
 | 				add_mm_counter(mm, MM_ANONPAGES, -nr_pages); | 
 | 				goto discard; | 
 | 			} | 
 |  | 
 | 			if (swap_duplicate(entry) < 0) { | 
 | 				set_pte_at(mm, address, pvmw.pte, pteval); | 
 | 				goto walk_abort; | 
 | 			} | 
 |  | 
 | 			/* | 
 | 			 * arch_unmap_one() is expected to be a NOP on | 
 | 			 * architectures where we could have PFN swap PTEs, | 
 | 			 * so we'll not check/care. | 
 | 			 */ | 
 | 			if (arch_unmap_one(mm, vma, address, pteval) < 0) { | 
 | 				swap_free(entry); | 
 | 				set_pte_at(mm, address, pvmw.pte, pteval); | 
 | 				goto walk_abort; | 
 | 			} | 
 |  | 
 | 			/* See folio_try_share_anon_rmap(): clear PTE first. */ | 
 | 			if (anon_exclusive && | 
 | 			    folio_try_share_anon_rmap_pte(folio, subpage)) { | 
 | 				swap_free(entry); | 
 | 				set_pte_at(mm, address, pvmw.pte, pteval); | 
 | 				goto walk_abort; | 
 | 			} | 
 | 			if (list_empty(&mm->mmlist)) { | 
 | 				spin_lock(&mmlist_lock); | 
 | 				if (list_empty(&mm->mmlist)) | 
 | 					list_add(&mm->mmlist, &init_mm.mmlist); | 
 | 				spin_unlock(&mmlist_lock); | 
 | 			} | 
 | 			dec_mm_counter(mm, MM_ANONPAGES); | 
 | 			inc_mm_counter(mm, MM_SWAPENTS); | 
 | 			swp_pte = swp_entry_to_pte(entry); | 
 | 			if (anon_exclusive) | 
 | 				swp_pte = pte_swp_mkexclusive(swp_pte); | 
 | 			if (likely(pte_present(pteval))) { | 
 | 				if (pte_soft_dirty(pteval)) | 
 | 					swp_pte = pte_swp_mksoft_dirty(swp_pte); | 
 | 				if (pte_uffd_wp(pteval)) | 
 | 					swp_pte = pte_swp_mkuffd_wp(swp_pte); | 
 | 			} else { | 
 | 				if (pte_swp_soft_dirty(pteval)) | 
 | 					swp_pte = pte_swp_mksoft_dirty(swp_pte); | 
 | 				if (pte_swp_uffd_wp(pteval)) | 
 | 					swp_pte = pte_swp_mkuffd_wp(swp_pte); | 
 | 			} | 
 | 			set_pte_at(mm, address, pvmw.pte, swp_pte); | 
 | 		} else { | 
 | 			/* | 
 | 			 * This is a locked file-backed folio, | 
 | 			 * so it cannot be removed from the page | 
 | 			 * cache and replaced by a new folio before | 
 | 			 * mmu_notifier_invalidate_range_end, so no | 
 | 			 * concurrent thread might update its page table | 
 | 			 * to point at a new folio while a device is | 
 | 			 * still using this folio. | 
 | 			 * | 
 | 			 * See Documentation/mm/mmu_notifier.rst | 
 | 			 */ | 
 | 			dec_mm_counter(mm, mm_counter_file(folio)); | 
 | 		} | 
 | discard: | 
 | 		if (unlikely(folio_test_hugetlb(folio))) { | 
 | 			hugetlb_remove_rmap(folio); | 
 | 		} else { | 
 | 			folio_remove_rmap_ptes(folio, subpage, nr_pages, vma); | 
 | 		} | 
 | 		if (vma->vm_flags & VM_LOCKED) | 
 | 			mlock_drain_local(); | 
 | 		folio_put_refs(folio, nr_pages); | 
 |  | 
 | 		/* | 
 | 		 * If we are sure that we batched the entire folio and cleared | 
 | 		 * all PTEs, we can just optimize and stop right here. | 
 | 		 */ | 
 | 		if (nr_pages == folio_nr_pages(folio)) | 
 | 			goto walk_done; | 
 | 		continue; | 
 | walk_abort: | 
 | 		ret = false; | 
 | walk_done: | 
 | 		page_vma_mapped_walk_done(&pvmw); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	mmu_notifier_invalidate_range_end(&range); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg) | 
 | { | 
 | 	return vma_is_temporary_stack(vma); | 
 | } | 
 |  | 
 | static int folio_not_mapped(struct folio *folio) | 
 | { | 
 | 	return !folio_mapped(folio); | 
 | } | 
 |  | 
 | /** | 
 |  * try_to_unmap - Try to remove all page table mappings to a folio. | 
 |  * @folio: The folio to unmap. | 
 |  * @flags: action and flags | 
 |  * | 
 |  * Tries to remove all the page table entries which are mapping this | 
 |  * folio.  It is the caller's responsibility to check if the folio is | 
 |  * still mapped if needed (use TTU_SYNC to prevent accounting races). | 
 |  * | 
 |  * Context: Caller must hold the folio lock. | 
 |  */ | 
 | void try_to_unmap(struct folio *folio, enum ttu_flags flags) | 
 | { | 
 | 	struct rmap_walk_control rwc = { | 
 | 		.rmap_one = try_to_unmap_one, | 
 | 		.arg = (void *)flags, | 
 | 		.done = folio_not_mapped, | 
 | 		.anon_lock = folio_lock_anon_vma_read, | 
 | 	}; | 
 |  | 
 | 	if (flags & TTU_RMAP_LOCKED) | 
 | 		rmap_walk_locked(folio, &rwc); | 
 | 	else | 
 | 		rmap_walk(folio, &rwc); | 
 | } | 
 |  | 
 | /* | 
 |  * @arg: enum ttu_flags will be passed to this argument. | 
 |  * | 
 |  * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs | 
 |  * containing migration entries. | 
 |  */ | 
 | static bool try_to_migrate_one(struct folio *folio, struct vm_area_struct *vma, | 
 | 		     unsigned long address, void *arg) | 
 | { | 
 | 	struct mm_struct *mm = vma->vm_mm; | 
 | 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); | 
 | 	bool anon_exclusive, writable, ret = true; | 
 | 	pte_t pteval; | 
 | 	struct page *subpage; | 
 | 	struct mmu_notifier_range range; | 
 | 	enum ttu_flags flags = (enum ttu_flags)(long)arg; | 
 | 	unsigned long pfn; | 
 | 	unsigned long hsz = 0; | 
 |  | 
 | 	/* | 
 | 	 * When racing against e.g. zap_pte_range() on another cpu, | 
 | 	 * in between its ptep_get_and_clear_full() and folio_remove_rmap_*(), | 
 | 	 * try_to_migrate() may return before page_mapped() has become false, | 
 | 	 * if page table locking is skipped: use TTU_SYNC to wait for that. | 
 | 	 */ | 
 | 	if (flags & TTU_SYNC) | 
 | 		pvmw.flags = PVMW_SYNC; | 
 |  | 
 | 	/* | 
 | 	 * For THP, we have to assume the worse case ie pmd for invalidation. | 
 | 	 * For hugetlb, it could be much worse if we need to do pud | 
 | 	 * invalidation in the case of pmd sharing. | 
 | 	 * | 
 | 	 * Note that the page can not be free in this function as call of | 
 | 	 * try_to_unmap() must hold a reference on the page. | 
 | 	 */ | 
 | 	range.end = vma_address_end(&pvmw); | 
 | 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, | 
 | 				address, range.end); | 
 | 	if (folio_test_hugetlb(folio)) { | 
 | 		/* | 
 | 		 * If sharing is possible, start and end will be adjusted | 
 | 		 * accordingly. | 
 | 		 */ | 
 | 		adjust_range_if_pmd_sharing_possible(vma, &range.start, | 
 | 						     &range.end); | 
 |  | 
 | 		/* We need the huge page size for set_huge_pte_at() */ | 
 | 		hsz = huge_page_size(hstate_vma(vma)); | 
 | 	} | 
 | 	mmu_notifier_invalidate_range_start(&range); | 
 |  | 
 | 	while (page_vma_mapped_walk(&pvmw)) { | 
 | 		/* PMD-mapped THP migration entry */ | 
 | 		if (!pvmw.pte) { | 
 | 			if (flags & TTU_SPLIT_HUGE_PMD) { | 
 | 				split_huge_pmd_locked(vma, pvmw.address, | 
 | 						      pvmw.pmd, true); | 
 | 				ret = false; | 
 | 				page_vma_mapped_walk_done(&pvmw); | 
 | 				break; | 
 | 			} | 
 | #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION | 
 | 			subpage = folio_page(folio, | 
 | 				pmd_pfn(*pvmw.pmd) - folio_pfn(folio)); | 
 | 			VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) || | 
 | 					!folio_test_pmd_mappable(folio), folio); | 
 |  | 
 | 			if (set_pmd_migration_entry(&pvmw, subpage)) { | 
 | 				ret = false; | 
 | 				page_vma_mapped_walk_done(&pvmw); | 
 | 				break; | 
 | 			} | 
 | 			continue; | 
 | #endif | 
 | 		} | 
 |  | 
 | 		/* Unexpected PMD-mapped THP? */ | 
 | 		VM_BUG_ON_FOLIO(!pvmw.pte, folio); | 
 |  | 
 | 		/* | 
 | 		 * Handle PFN swap PTEs, such as device-exclusive ones, that | 
 | 		 * actually map pages. | 
 | 		 */ | 
 | 		pteval = ptep_get(pvmw.pte); | 
 | 		if (likely(pte_present(pteval))) { | 
 | 			pfn = pte_pfn(pteval); | 
 | 		} else { | 
 | 			pfn = swp_offset_pfn(pte_to_swp_entry(pteval)); | 
 | 			VM_WARN_ON_FOLIO(folio_test_hugetlb(folio), folio); | 
 | 		} | 
 |  | 
 | 		subpage = folio_page(folio, pfn - folio_pfn(folio)); | 
 | 		address = pvmw.address; | 
 | 		anon_exclusive = folio_test_anon(folio) && | 
 | 				 PageAnonExclusive(subpage); | 
 |  | 
 | 		if (folio_test_hugetlb(folio)) { | 
 | 			bool anon = folio_test_anon(folio); | 
 |  | 
 | 			/* | 
 | 			 * huge_pmd_unshare may unmap an entire PMD page. | 
 | 			 * There is no way of knowing exactly which PMDs may | 
 | 			 * be cached for this mm, so we must flush them all. | 
 | 			 * start/end were already adjusted above to cover this | 
 | 			 * range. | 
 | 			 */ | 
 | 			flush_cache_range(vma, range.start, range.end); | 
 |  | 
 | 			/* | 
 | 			 * To call huge_pmd_unshare, i_mmap_rwsem must be | 
 | 			 * held in write mode.  Caller needs to explicitly | 
 | 			 * do this outside rmap routines. | 
 | 			 * | 
 | 			 * We also must hold hugetlb vma_lock in write mode. | 
 | 			 * Lock order dictates acquiring vma_lock BEFORE | 
 | 			 * i_mmap_rwsem.  We can only try lock here and | 
 | 			 * fail if unsuccessful. | 
 | 			 */ | 
 | 			if (!anon) { | 
 | 				VM_BUG_ON(!(flags & TTU_RMAP_LOCKED)); | 
 | 				if (!hugetlb_vma_trylock_write(vma)) { | 
 | 					page_vma_mapped_walk_done(&pvmw); | 
 | 					ret = false; | 
 | 					break; | 
 | 				} | 
 | 				if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) { | 
 | 					hugetlb_vma_unlock_write(vma); | 
 | 					flush_tlb_range(vma, | 
 | 						range.start, range.end); | 
 |  | 
 | 					/* | 
 | 					 * The ref count of the PMD page was | 
 | 					 * dropped which is part of the way map | 
 | 					 * counting is done for shared PMDs. | 
 | 					 * Return 'true' here.  When there is | 
 | 					 * no other sharing, huge_pmd_unshare | 
 | 					 * returns false and we will unmap the | 
 | 					 * actual page and drop map count | 
 | 					 * to zero. | 
 | 					 */ | 
 | 					page_vma_mapped_walk_done(&pvmw); | 
 | 					break; | 
 | 				} | 
 | 				hugetlb_vma_unlock_write(vma); | 
 | 			} | 
 | 			/* Nuke the hugetlb page table entry */ | 
 | 			pteval = huge_ptep_clear_flush(vma, address, pvmw.pte); | 
 | 			if (pte_dirty(pteval)) | 
 | 				folio_mark_dirty(folio); | 
 | 			writable = pte_write(pteval); | 
 | 		} else if (likely(pte_present(pteval))) { | 
 | 			flush_cache_page(vma, address, pfn); | 
 | 			/* Nuke the page table entry. */ | 
 | 			if (should_defer_flush(mm, flags)) { | 
 | 				/* | 
 | 				 * We clear the PTE but do not flush so potentially | 
 | 				 * a remote CPU could still be writing to the folio. | 
 | 				 * If the entry was previously clean then the | 
 | 				 * architecture must guarantee that a clear->dirty | 
 | 				 * transition on a cached TLB entry is written through | 
 | 				 * and traps if the PTE is unmapped. | 
 | 				 */ | 
 | 				pteval = ptep_get_and_clear(mm, address, pvmw.pte); | 
 |  | 
 | 				set_tlb_ubc_flush_pending(mm, pteval, address, address + PAGE_SIZE); | 
 | 			} else { | 
 | 				pteval = ptep_clear_flush(vma, address, pvmw.pte); | 
 | 			} | 
 | 			if (pte_dirty(pteval)) | 
 | 				folio_mark_dirty(folio); | 
 | 			writable = pte_write(pteval); | 
 | 		} else { | 
 | 			pte_clear(mm, address, pvmw.pte); | 
 | 			writable = is_writable_device_private_entry(pte_to_swp_entry(pteval)); | 
 | 		} | 
 |  | 
 | 		VM_WARN_ON_FOLIO(writable && folio_test_anon(folio) && | 
 | 				!anon_exclusive, folio); | 
 |  | 
 | 		/* Update high watermark before we lower rss */ | 
 | 		update_hiwater_rss(mm); | 
 |  | 
 | 		if (PageHWPoison(subpage)) { | 
 | 			VM_WARN_ON_FOLIO(folio_is_device_private(folio), folio); | 
 |  | 
 | 			pteval = swp_entry_to_pte(make_hwpoison_entry(subpage)); | 
 | 			if (folio_test_hugetlb(folio)) { | 
 | 				hugetlb_count_sub(folio_nr_pages(folio), mm); | 
 | 				set_huge_pte_at(mm, address, pvmw.pte, pteval, | 
 | 						hsz); | 
 | 			} else { | 
 | 				dec_mm_counter(mm, mm_counter(folio)); | 
 | 				set_pte_at(mm, address, pvmw.pte, pteval); | 
 | 			} | 
 | 		} else if (likely(pte_present(pteval)) && pte_unused(pteval) && | 
 | 			   !userfaultfd_armed(vma)) { | 
 | 			/* | 
 | 			 * The guest indicated that the page content is of no | 
 | 			 * interest anymore. Simply discard the pte, vmscan | 
 | 			 * will take care of the rest. | 
 | 			 * A future reference will then fault in a new zero | 
 | 			 * page. When userfaultfd is active, we must not drop | 
 | 			 * this page though, as its main user (postcopy | 
 | 			 * migration) will not expect userfaults on already | 
 | 			 * copied pages. | 
 | 			 */ | 
 | 			dec_mm_counter(mm, mm_counter(folio)); | 
 | 		} else { | 
 | 			swp_entry_t entry; | 
 | 			pte_t swp_pte; | 
 |  | 
 | 			/* | 
 | 			 * arch_unmap_one() is expected to be a NOP on | 
 | 			 * architectures where we could have PFN swap PTEs, | 
 | 			 * so we'll not check/care. | 
 | 			 */ | 
 | 			if (arch_unmap_one(mm, vma, address, pteval) < 0) { | 
 | 				if (folio_test_hugetlb(folio)) | 
 | 					set_huge_pte_at(mm, address, pvmw.pte, | 
 | 							pteval, hsz); | 
 | 				else | 
 | 					set_pte_at(mm, address, pvmw.pte, pteval); | 
 | 				ret = false; | 
 | 				page_vma_mapped_walk_done(&pvmw); | 
 | 				break; | 
 | 			} | 
 |  | 
 | 			/* See folio_try_share_anon_rmap_pte(): clear PTE first. */ | 
 | 			if (folio_test_hugetlb(folio)) { | 
 | 				if (anon_exclusive && | 
 | 				    hugetlb_try_share_anon_rmap(folio)) { | 
 | 					set_huge_pte_at(mm, address, pvmw.pte, | 
 | 							pteval, hsz); | 
 | 					ret = false; | 
 | 					page_vma_mapped_walk_done(&pvmw); | 
 | 					break; | 
 | 				} | 
 | 			} else if (anon_exclusive && | 
 | 				   folio_try_share_anon_rmap_pte(folio, subpage)) { | 
 | 				set_pte_at(mm, address, pvmw.pte, pteval); | 
 | 				ret = false; | 
 | 				page_vma_mapped_walk_done(&pvmw); | 
 | 				break; | 
 | 			} | 
 |  | 
 | 			/* | 
 | 			 * Store the pfn of the page in a special migration | 
 | 			 * pte. do_swap_page() will wait until the migration | 
 | 			 * pte is removed and then restart fault handling. | 
 | 			 */ | 
 | 			if (writable) | 
 | 				entry = make_writable_migration_entry( | 
 | 							page_to_pfn(subpage)); | 
 | 			else if (anon_exclusive) | 
 | 				entry = make_readable_exclusive_migration_entry( | 
 | 							page_to_pfn(subpage)); | 
 | 			else | 
 | 				entry = make_readable_migration_entry( | 
 | 							page_to_pfn(subpage)); | 
 | 			if (likely(pte_present(pteval))) { | 
 | 				if (pte_young(pteval)) | 
 | 					entry = make_migration_entry_young(entry); | 
 | 				if (pte_dirty(pteval)) | 
 | 					entry = make_migration_entry_dirty(entry); | 
 | 				swp_pte = swp_entry_to_pte(entry); | 
 | 				if (pte_soft_dirty(pteval)) | 
 | 					swp_pte = pte_swp_mksoft_dirty(swp_pte); | 
 | 				if (pte_uffd_wp(pteval)) | 
 | 					swp_pte = pte_swp_mkuffd_wp(swp_pte); | 
 | 			} else { | 
 | 				swp_pte = swp_entry_to_pte(entry); | 
 | 				if (pte_swp_soft_dirty(pteval)) | 
 | 					swp_pte = pte_swp_mksoft_dirty(swp_pte); | 
 | 				if (pte_swp_uffd_wp(pteval)) | 
 | 					swp_pte = pte_swp_mkuffd_wp(swp_pte); | 
 | 			} | 
 | 			if (folio_test_hugetlb(folio)) | 
 | 				set_huge_pte_at(mm, address, pvmw.pte, swp_pte, | 
 | 						hsz); | 
 | 			else | 
 | 				set_pte_at(mm, address, pvmw.pte, swp_pte); | 
 | 			trace_set_migration_pte(address, pte_val(swp_pte), | 
 | 						folio_order(folio)); | 
 | 			/* | 
 | 			 * No need to invalidate here it will synchronize on | 
 | 			 * against the special swap migration pte. | 
 | 			 */ | 
 | 		} | 
 |  | 
 | 		if (unlikely(folio_test_hugetlb(folio))) | 
 | 			hugetlb_remove_rmap(folio); | 
 | 		else | 
 | 			folio_remove_rmap_pte(folio, subpage, vma); | 
 | 		if (vma->vm_flags & VM_LOCKED) | 
 | 			mlock_drain_local(); | 
 | 		folio_put(folio); | 
 | 	} | 
 |  | 
 | 	mmu_notifier_invalidate_range_end(&range); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * try_to_migrate - try to replace all page table mappings with swap entries | 
 |  * @folio: the folio to replace page table entries for | 
 |  * @flags: action and flags | 
 |  * | 
 |  * Tries to remove all the page table entries which are mapping this folio and | 
 |  * replace them with special swap entries. Caller must hold the folio lock. | 
 |  */ | 
 | void try_to_migrate(struct folio *folio, enum ttu_flags flags) | 
 | { | 
 | 	struct rmap_walk_control rwc = { | 
 | 		.rmap_one = try_to_migrate_one, | 
 | 		.arg = (void *)flags, | 
 | 		.done = folio_not_mapped, | 
 | 		.anon_lock = folio_lock_anon_vma_read, | 
 | 	}; | 
 |  | 
 | 	/* | 
 | 	 * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and | 
 | 	 * TTU_SPLIT_HUGE_PMD, TTU_SYNC, and TTU_BATCH_FLUSH flags. | 
 | 	 */ | 
 | 	if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD | | 
 | 					TTU_SYNC | TTU_BATCH_FLUSH))) | 
 | 		return; | 
 |  | 
 | 	if (folio_is_zone_device(folio) && | 
 | 	    (!folio_is_device_private(folio) && !folio_is_device_coherent(folio))) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * During exec, a temporary VMA is setup and later moved. | 
 | 	 * The VMA is moved under the anon_vma lock but not the | 
 | 	 * page tables leading to a race where migration cannot | 
 | 	 * find the migration ptes. Rather than increasing the | 
 | 	 * locking requirements of exec(), migration skips | 
 | 	 * temporary VMAs until after exec() completes. | 
 | 	 */ | 
 | 	if (!folio_test_ksm(folio) && folio_test_anon(folio)) | 
 | 		rwc.invalid_vma = invalid_migration_vma; | 
 |  | 
 | 	if (flags & TTU_RMAP_LOCKED) | 
 | 		rmap_walk_locked(folio, &rwc); | 
 | 	else | 
 | 		rmap_walk(folio, &rwc); | 
 | } | 
 |  | 
 | #ifdef CONFIG_DEVICE_PRIVATE | 
 | /** | 
 |  * make_device_exclusive() - Mark a page for exclusive use by a device | 
 |  * @mm: mm_struct of associated target process | 
 |  * @addr: the virtual address to mark for exclusive device access | 
 |  * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering | 
 |  * @foliop: folio pointer will be stored here on success. | 
 |  * | 
 |  * This function looks up the page mapped at the given address, grabs a | 
 |  * folio reference, locks the folio and replaces the PTE with special | 
 |  * device-exclusive PFN swap entry, preventing access through the process | 
 |  * page tables. The function will return with the folio locked and referenced. | 
 |  * | 
 |  * On fault, the device-exclusive entries are replaced with the original PTE | 
 |  * under folio lock, after calling MMU notifiers. | 
 |  * | 
 |  * Only anonymous non-hugetlb folios are supported and the VMA must have | 
 |  * write permissions such that we can fault in the anonymous page writable | 
 |  * in order to mark it exclusive. The caller must hold the mmap_lock in read | 
 |  * mode. | 
 |  * | 
 |  * A driver using this to program access from a device must use a mmu notifier | 
 |  * critical section to hold a device specific lock during programming. Once | 
 |  * programming is complete it should drop the folio lock and reference after | 
 |  * which point CPU access to the page will revoke the exclusive access. | 
 |  * | 
 |  * Notes: | 
 |  *   #. This function always operates on individual PTEs mapping individual | 
 |  *      pages. PMD-sized THPs are first remapped to be mapped by PTEs before | 
 |  *      the conversion happens on a single PTE corresponding to @addr. | 
 |  *   #. While concurrent access through the process page tables is prevented, | 
 |  *      concurrent access through other page references (e.g., earlier GUP | 
 |  *      invocation) is not handled and not supported. | 
 |  *   #. device-exclusive entries are considered "clean" and "old" by core-mm. | 
 |  *      Device drivers must update the folio state when informed by MMU | 
 |  *      notifiers. | 
 |  * | 
 |  * Returns: pointer to mapped page on success, otherwise a negative error. | 
 |  */ | 
 | struct page *make_device_exclusive(struct mm_struct *mm, unsigned long addr, | 
 | 		void *owner, struct folio **foliop) | 
 | { | 
 | 	struct mmu_notifier_range range; | 
 | 	struct folio *folio, *fw_folio; | 
 | 	struct vm_area_struct *vma; | 
 | 	struct folio_walk fw; | 
 | 	struct page *page; | 
 | 	swp_entry_t entry; | 
 | 	pte_t swp_pte; | 
 | 	int ret; | 
 |  | 
 | 	mmap_assert_locked(mm); | 
 | 	addr = PAGE_ALIGN_DOWN(addr); | 
 |  | 
 | 	/* | 
 | 	 * Fault in the page writable and try to lock it; note that if the | 
 | 	 * address would already be marked for exclusive use by a device, | 
 | 	 * the GUP call would undo that first by triggering a fault. | 
 | 	 * | 
 | 	 * If any other device would already map this page exclusively, the | 
 | 	 * fault will trigger a conversion to an ordinary | 
 | 	 * (non-device-exclusive) PTE and issue a MMU_NOTIFY_EXCLUSIVE. | 
 | 	 */ | 
 | retry: | 
 | 	page = get_user_page_vma_remote(mm, addr, | 
 | 					FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD, | 
 | 					&vma); | 
 | 	if (IS_ERR(page)) | 
 | 		return page; | 
 | 	folio = page_folio(page); | 
 |  | 
 | 	if (!folio_test_anon(folio) || folio_test_hugetlb(folio)) { | 
 | 		folio_put(folio); | 
 | 		return ERR_PTR(-EOPNOTSUPP); | 
 | 	} | 
 |  | 
 | 	ret = folio_lock_killable(folio); | 
 | 	if (ret) { | 
 | 		folio_put(folio); | 
 | 		return ERR_PTR(ret); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Inform secondary MMUs that we are going to convert this PTE to | 
 | 	 * device-exclusive, such that they unmap it now. Note that the | 
 | 	 * caller must filter this event out to prevent livelocks. | 
 | 	 */ | 
 | 	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, | 
 | 				      mm, addr, addr + PAGE_SIZE, owner); | 
 | 	mmu_notifier_invalidate_range_start(&range); | 
 |  | 
 | 	/* | 
 | 	 * Let's do a second walk and make sure we still find the same page | 
 | 	 * mapped writable. Note that any page of an anonymous folio can | 
 | 	 * only be mapped writable using exactly one PTE ("exclusive"), so | 
 | 	 * there cannot be other mappings. | 
 | 	 */ | 
 | 	fw_folio = folio_walk_start(&fw, vma, addr, 0); | 
 | 	if (fw_folio != folio || fw.page != page || | 
 | 	    fw.level != FW_LEVEL_PTE || !pte_write(fw.pte)) { | 
 | 		if (fw_folio) | 
 | 			folio_walk_end(&fw, vma); | 
 | 		mmu_notifier_invalidate_range_end(&range); | 
 | 		folio_unlock(folio); | 
 | 		folio_put(folio); | 
 | 		goto retry; | 
 | 	} | 
 |  | 
 | 	/* Nuke the page table entry so we get the uptodate dirty bit. */ | 
 | 	flush_cache_page(vma, addr, page_to_pfn(page)); | 
 | 	fw.pte = ptep_clear_flush(vma, addr, fw.ptep); | 
 |  | 
 | 	/* Set the dirty flag on the folio now the PTE is gone. */ | 
 | 	if (pte_dirty(fw.pte)) | 
 | 		folio_mark_dirty(folio); | 
 |  | 
 | 	/* | 
 | 	 * Store the pfn of the page in a special device-exclusive PFN swap PTE. | 
 | 	 * do_swap_page() will trigger the conversion back while holding the | 
 | 	 * folio lock. | 
 | 	 */ | 
 | 	entry = make_device_exclusive_entry(page_to_pfn(page)); | 
 | 	swp_pte = swp_entry_to_pte(entry); | 
 | 	if (pte_soft_dirty(fw.pte)) | 
 | 		swp_pte = pte_swp_mksoft_dirty(swp_pte); | 
 | 	/* The pte is writable, uffd-wp does not apply. */ | 
 | 	set_pte_at(mm, addr, fw.ptep, swp_pte); | 
 |  | 
 | 	folio_walk_end(&fw, vma); | 
 | 	mmu_notifier_invalidate_range_end(&range); | 
 | 	*foliop = folio; | 
 | 	return page; | 
 | } | 
 | EXPORT_SYMBOL_GPL(make_device_exclusive); | 
 | #endif | 
 |  | 
 | void __put_anon_vma(struct anon_vma *anon_vma) | 
 | { | 
 | 	struct anon_vma *root = anon_vma->root; | 
 |  | 
 | 	anon_vma_free(anon_vma); | 
 | 	if (root != anon_vma && atomic_dec_and_test(&root->refcount)) | 
 | 		anon_vma_free(root); | 
 | } | 
 |  | 
 | static struct anon_vma *rmap_walk_anon_lock(const struct folio *folio, | 
 | 					    struct rmap_walk_control *rwc) | 
 | { | 
 | 	struct anon_vma *anon_vma; | 
 |  | 
 | 	if (rwc->anon_lock) | 
 | 		return rwc->anon_lock(folio, rwc); | 
 |  | 
 | 	/* | 
 | 	 * Note: remove_migration_ptes() cannot use folio_lock_anon_vma_read() | 
 | 	 * because that depends on page_mapped(); but not all its usages | 
 | 	 * are holding mmap_lock. Users without mmap_lock are required to | 
 | 	 * take a reference count to prevent the anon_vma disappearing | 
 | 	 */ | 
 | 	anon_vma = folio_anon_vma(folio); | 
 | 	if (!anon_vma) | 
 | 		return NULL; | 
 |  | 
 | 	if (anon_vma_trylock_read(anon_vma)) | 
 | 		goto out; | 
 |  | 
 | 	if (rwc->try_lock) { | 
 | 		anon_vma = NULL; | 
 | 		rwc->contended = true; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	anon_vma_lock_read(anon_vma); | 
 | out: | 
 | 	return anon_vma; | 
 | } | 
 |  | 
 | /* | 
 |  * rmap_walk_anon - do something to anonymous page using the object-based | 
 |  * rmap method | 
 |  * @folio: the folio to be handled | 
 |  * @rwc: control variable according to each walk type | 
 |  * @locked: caller holds relevant rmap lock | 
 |  * | 
 |  * Find all the mappings of a folio using the mapping pointer and the vma | 
 |  * chains contained in the anon_vma struct it points to. | 
 |  */ | 
 | static void rmap_walk_anon(struct folio *folio, | 
 | 		struct rmap_walk_control *rwc, bool locked) | 
 | { | 
 | 	struct anon_vma *anon_vma; | 
 | 	pgoff_t pgoff_start, pgoff_end; | 
 | 	struct anon_vma_chain *avc; | 
 |  | 
 | 	if (locked) { | 
 | 		anon_vma = folio_anon_vma(folio); | 
 | 		/* anon_vma disappear under us? */ | 
 | 		VM_BUG_ON_FOLIO(!anon_vma, folio); | 
 | 	} else { | 
 | 		anon_vma = rmap_walk_anon_lock(folio, rwc); | 
 | 	} | 
 | 	if (!anon_vma) | 
 | 		return; | 
 |  | 
 | 	pgoff_start = folio_pgoff(folio); | 
 | 	pgoff_end = pgoff_start + folio_nr_pages(folio) - 1; | 
 | 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, | 
 | 			pgoff_start, pgoff_end) { | 
 | 		struct vm_area_struct *vma = avc->vma; | 
 | 		unsigned long address = vma_address(vma, pgoff_start, | 
 | 				folio_nr_pages(folio)); | 
 |  | 
 | 		VM_BUG_ON_VMA(address == -EFAULT, vma); | 
 | 		cond_resched(); | 
 |  | 
 | 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) | 
 | 			continue; | 
 |  | 
 | 		if (!rwc->rmap_one(folio, vma, address, rwc->arg)) | 
 | 			break; | 
 | 		if (rwc->done && rwc->done(folio)) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	if (!locked) | 
 | 		anon_vma_unlock_read(anon_vma); | 
 | } | 
 |  | 
 | /** | 
 |  * __rmap_walk_file() - Traverse the reverse mapping for a file-backed mapping | 
 |  * of a page mapped within a specified page cache object at a specified offset. | 
 |  * | 
 |  * @folio: 		Either the folio whose mappings to traverse, or if NULL, | 
 |  * 			the callbacks specified in @rwc will be configured such | 
 |  * 			as to be able to look up mappings correctly. | 
 |  * @mapping: 		The page cache object whose mapping VMAs we intend to | 
 |  * 			traverse. If @folio is non-NULL, this should be equal to | 
 |  *			folio_mapping(folio). | 
 |  * @pgoff_start:	The offset within @mapping of the page which we are | 
 |  * 			looking up. If @folio is non-NULL, this should be equal | 
 |  * 			to folio_pgoff(folio). | 
 |  * @nr_pages:		The number of pages mapped by the mapping. If @folio is | 
 |  *			non-NULL, this should be equal to folio_nr_pages(folio). | 
 |  * @rwc:		The reverse mapping walk control object describing how | 
 |  *			the traversal should proceed. | 
 |  * @locked:		Is the @mapping already locked? If not, we acquire the | 
 |  *			lock. | 
 |  */ | 
 | static void __rmap_walk_file(struct folio *folio, struct address_space *mapping, | 
 | 			     pgoff_t pgoff_start, unsigned long nr_pages, | 
 | 			     struct rmap_walk_control *rwc, bool locked) | 
 | { | 
 | 	pgoff_t pgoff_end = pgoff_start + nr_pages - 1; | 
 | 	struct vm_area_struct *vma; | 
 |  | 
 | 	VM_WARN_ON_FOLIO(folio && mapping != folio_mapping(folio), folio); | 
 | 	VM_WARN_ON_FOLIO(folio && pgoff_start != folio_pgoff(folio), folio); | 
 | 	VM_WARN_ON_FOLIO(folio && nr_pages != folio_nr_pages(folio), folio); | 
 |  | 
 | 	if (!locked) { | 
 | 		if (i_mmap_trylock_read(mapping)) | 
 | 			goto lookup; | 
 |  | 
 | 		if (rwc->try_lock) { | 
 | 			rwc->contended = true; | 
 | 			return; | 
 | 		} | 
 |  | 
 | 		i_mmap_lock_read(mapping); | 
 | 	} | 
 | lookup: | 
 | 	vma_interval_tree_foreach(vma, &mapping->i_mmap, | 
 | 			pgoff_start, pgoff_end) { | 
 | 		unsigned long address = vma_address(vma, pgoff_start, nr_pages); | 
 |  | 
 | 		VM_BUG_ON_VMA(address == -EFAULT, vma); | 
 | 		cond_resched(); | 
 |  | 
 | 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) | 
 | 			continue; | 
 |  | 
 | 		if (!rwc->rmap_one(folio, vma, address, rwc->arg)) | 
 | 			goto done; | 
 | 		if (rwc->done && rwc->done(folio)) | 
 | 			goto done; | 
 | 	} | 
 | done: | 
 | 	if (!locked) | 
 | 		i_mmap_unlock_read(mapping); | 
 | } | 
 |  | 
 | /* | 
 |  * rmap_walk_file - do something to file page using the object-based rmap method | 
 |  * @folio: the folio to be handled | 
 |  * @rwc: control variable according to each walk type | 
 |  * @locked: caller holds relevant rmap lock | 
 |  * | 
 |  * Find all the mappings of a folio using the mapping pointer and the vma chains | 
 |  * contained in the address_space struct it points to. | 
 |  */ | 
 | static void rmap_walk_file(struct folio *folio, | 
 | 		struct rmap_walk_control *rwc, bool locked) | 
 | { | 
 | 	/* | 
 | 	 * The folio lock not only makes sure that folio->mapping cannot | 
 | 	 * suddenly be NULLified by truncation, it makes sure that the structure | 
 | 	 * at mapping cannot be freed and reused yet, so we can safely take | 
 | 	 * mapping->i_mmap_rwsem. | 
 | 	 */ | 
 | 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); | 
 |  | 
 | 	if (!folio->mapping) | 
 | 		return; | 
 |  | 
 | 	__rmap_walk_file(folio, folio->mapping, folio->index, | 
 | 			 folio_nr_pages(folio), rwc, locked); | 
 | } | 
 |  | 
 | void rmap_walk(struct folio *folio, struct rmap_walk_control *rwc) | 
 | { | 
 | 	if (unlikely(folio_test_ksm(folio))) | 
 | 		rmap_walk_ksm(folio, rwc); | 
 | 	else if (folio_test_anon(folio)) | 
 | 		rmap_walk_anon(folio, rwc, false); | 
 | 	else | 
 | 		rmap_walk_file(folio, rwc, false); | 
 | } | 
 |  | 
 | /* Like rmap_walk, but caller holds relevant rmap lock */ | 
 | void rmap_walk_locked(struct folio *folio, struct rmap_walk_control *rwc) | 
 | { | 
 | 	/* no ksm support for now */ | 
 | 	VM_BUG_ON_FOLIO(folio_test_ksm(folio), folio); | 
 | 	if (folio_test_anon(folio)) | 
 | 		rmap_walk_anon(folio, rwc, true); | 
 | 	else | 
 | 		rmap_walk_file(folio, rwc, true); | 
 | } | 
 |  | 
 | #ifdef CONFIG_HUGETLB_PAGE | 
 | /* | 
 |  * The following two functions are for anonymous (private mapped) hugepages. | 
 |  * Unlike common anonymous pages, anonymous hugepages have no accounting code | 
 |  * and no lru code, because we handle hugepages differently from common pages. | 
 |  */ | 
 | void hugetlb_add_anon_rmap(struct folio *folio, struct vm_area_struct *vma, | 
 | 		unsigned long address, rmap_t flags) | 
 | { | 
 | 	VM_WARN_ON_FOLIO(!folio_test_hugetlb(folio), folio); | 
 | 	VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio); | 
 |  | 
 | 	atomic_inc(&folio->_entire_mapcount); | 
 | 	atomic_inc(&folio->_large_mapcount); | 
 | 	if (flags & RMAP_EXCLUSIVE) | 
 | 		SetPageAnonExclusive(&folio->page); | 
 | 	VM_WARN_ON_FOLIO(folio_entire_mapcount(folio) > 1 && | 
 | 			 PageAnonExclusive(&folio->page), folio); | 
 | } | 
 |  | 
 | void hugetlb_add_new_anon_rmap(struct folio *folio, | 
 | 		struct vm_area_struct *vma, unsigned long address) | 
 | { | 
 | 	VM_WARN_ON_FOLIO(!folio_test_hugetlb(folio), folio); | 
 |  | 
 | 	BUG_ON(address < vma->vm_start || address >= vma->vm_end); | 
 | 	/* increment count (starts at -1) */ | 
 | 	atomic_set(&folio->_entire_mapcount, 0); | 
 | 	atomic_set(&folio->_large_mapcount, 0); | 
 | 	folio_clear_hugetlb_restore_reserve(folio); | 
 | 	__folio_set_anon(folio, vma, address, true); | 
 | 	SetPageAnonExclusive(&folio->page); | 
 | } | 
 | #endif /* CONFIG_HUGETLB_PAGE */ |