blob: a80d993b882eb1b3a76cab8ac6ce5ec0814a2e9f [file] [log] [blame]
/*
* GPL HEADER START
*
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 only,
* as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License version 2 for more details (a copy is included
* in the LICENSE file that accompanied this code).
*
* You should have received a copy of the GNU General Public License
* version 2 along with this program; If not, see
* http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*
* GPL HEADER END
*/
/*
* Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
* Use is subject to license terms.
*
* Copyright (c) 2011, 2012, Intel Corporation.
*/
/*
* This file is part of Lustre, http://www.lustre.org/
* Lustre is a trademark of Sun Microsystems, Inc.
*
* libcfs/include/libcfs/libcfs_private.h
*
* Various defines for libcfs.
*
*/
#ifndef __LIBCFS_PRIVATE_H__
#define __LIBCFS_PRIVATE_H__
#ifndef DEBUG_SUBSYSTEM
# define DEBUG_SUBSYSTEM S_UNDEFINED
#endif
/*
* When this is on, LASSERT macro includes check for assignment used instead
* of equality check, but doesn't have unlikely(). Turn this on from time to
* time to make test-builds. This shouldn't be on for production release.
*/
#define LASSERT_CHECKED (0)
#define LASSERTF(cond, fmt, ...) \
do { \
if (unlikely(!(cond))) { \
LIBCFS_DEBUG_MSG_DATA_DECL(__msg_data, D_EMERG, NULL); \
libcfs_debug_msg(&__msg_data, \
"ASSERTION( %s ) failed: " fmt, #cond, \
## __VA_ARGS__); \
lbug_with_loc(&__msg_data); \
} \
} while (0)
#define LASSERT(cond) LASSERTF(cond, "\n")
#ifdef CONFIG_LUSTRE_DEBUG_EXPENSIVE_CHECK
/**
* This is for more expensive checks that one doesn't want to be enabled all
* the time. LINVRNT() has to be explicitly enabled by
* CONFIG_LUSTRE_DEBUG_EXPENSIVE_CHECK option.
*/
# define LINVRNT(exp) LASSERT(exp)
#else
# define LINVRNT(exp) ((void)sizeof !!(exp))
#endif
#define KLASSERT(e) LASSERT(e)
void __noreturn lbug_with_loc(struct libcfs_debug_msg_data *);
#define LBUG() \
do { \
LIBCFS_DEBUG_MSG_DATA_DECL(msgdata, D_EMERG, NULL); \
lbug_with_loc(&msgdata); \
} while (0)
#ifndef LIBCFS_VMALLOC_SIZE
#define LIBCFS_VMALLOC_SIZE (2 << PAGE_CACHE_SHIFT) /* 2 pages */
#endif
#define LIBCFS_ALLOC_PRE(size, mask) \
do { \
LASSERT(!in_interrupt() || \
((size) <= LIBCFS_VMALLOC_SIZE && \
!gfpflags_allow_blocking(mask))); \
} while (0)
#define LIBCFS_ALLOC_POST(ptr, size) \
do { \
if (unlikely((ptr) == NULL)) { \
CERROR("LNET: out of memory at %s:%d (tried to alloc '" \
#ptr "' = %d)\n", __FILE__, __LINE__, (int)(size)); \
} else { \
memset((ptr), 0, (size)); \
} \
} while (0)
/**
* allocate memory with GFP flags @mask
*/
#define LIBCFS_ALLOC_GFP(ptr, size, mask) \
do { \
LIBCFS_ALLOC_PRE((size), (mask)); \
(ptr) = (size) <= LIBCFS_VMALLOC_SIZE ? \
kmalloc((size), (mask)) : vmalloc(size); \
LIBCFS_ALLOC_POST((ptr), (size)); \
} while (0)
/**
* default allocator
*/
#define LIBCFS_ALLOC(ptr, size) \
LIBCFS_ALLOC_GFP(ptr, size, GFP_NOFS)
/**
* non-sleeping allocator
*/
#define LIBCFS_ALLOC_ATOMIC(ptr, size) \
LIBCFS_ALLOC_GFP(ptr, size, GFP_ATOMIC)
/**
* allocate memory for specified CPU partition
* \a cptab != NULL, \a cpt is CPU partition id of \a cptab
* \a cptab == NULL, \a cpt is HW NUMA node id
*/
#define LIBCFS_CPT_ALLOC_GFP(ptr, cptab, cpt, size, mask) \
do { \
LIBCFS_ALLOC_PRE((size), (mask)); \
(ptr) = (size) <= LIBCFS_VMALLOC_SIZE ? \
kmalloc_node((size), (mask), cfs_cpt_spread_node(cptab, cpt)) :\
vmalloc_node(size, cfs_cpt_spread_node(cptab, cpt)); \
LIBCFS_ALLOC_POST((ptr), (size)); \
} while (0)
/** default numa allocator */
#define LIBCFS_CPT_ALLOC(ptr, cptab, cpt, size) \
LIBCFS_CPT_ALLOC_GFP(ptr, cptab, cpt, size, GFP_NOFS)
#define LIBCFS_FREE(ptr, size) \
do { \
if (unlikely((ptr) == NULL)) { \
CERROR("LIBCFS: free NULL '" #ptr "' (%d bytes) at " \
"%s:%d\n", (int)(size), __FILE__, __LINE__); \
break; \
} \
kvfree(ptr); \
} while (0)
/******************************************************************************/
/* htonl hack - either this, or compile with -O2. Stupid byteorder/generic.h */
#if defined(__GNUC__) && (__GNUC__ >= 2) && !defined(__OPTIMIZE__)
#define ___htonl(x) __cpu_to_be32(x)
#define ___htons(x) __cpu_to_be16(x)
#define ___ntohl(x) __be32_to_cpu(x)
#define ___ntohs(x) __be16_to_cpu(x)
#define htonl(x) ___htonl(x)
#define ntohl(x) ___ntohl(x)
#define htons(x) ___htons(x)
#define ntohs(x) ___ntohs(x)
#endif
void libcfs_run_upcall(char **argv);
void libcfs_run_lbug_upcall(struct libcfs_debug_msg_data *);
void libcfs_debug_dumplog(void);
int libcfs_debug_init(unsigned long bufsize);
int libcfs_debug_cleanup(void);
int libcfs_debug_clear_buffer(void);
int libcfs_debug_mark_buffer(const char *text);
/*
* allocate per-cpu-partition data, returned value is an array of pointers,
* variable can be indexed by CPU ID.
* cptable != NULL: size of array is number of CPU partitions
* cptable == NULL: size of array is number of HW cores
*/
void *cfs_percpt_alloc(struct cfs_cpt_table *cptab, unsigned int size);
/*
* destroy per-cpu-partition variable
*/
void cfs_percpt_free(void *vars);
int cfs_percpt_number(void *vars);
void *cfs_percpt_current(void *vars);
void *cfs_percpt_index(void *vars, int idx);
#define cfs_percpt_for_each(var, i, vars) \
for (i = 0; i < cfs_percpt_number(vars) && \
((var) = (vars)[i]) != NULL; i++)
/*
* allocate a variable array, returned value is an array of pointers.
* Caller can specify length of array by count.
*/
void *cfs_array_alloc(int count, unsigned int size);
void cfs_array_free(void *vars);
#define LASSERT_ATOMIC_ENABLED (1)
#if LASSERT_ATOMIC_ENABLED
/** assert value of @a is equal to @v */
#define LASSERT_ATOMIC_EQ(a, v) \
do { \
LASSERTF(atomic_read(a) == v, \
"value: %d\n", atomic_read((a))); \
} while (0)
/** assert value of @a is unequal to @v */
#define LASSERT_ATOMIC_NE(a, v) \
do { \
LASSERTF(atomic_read(a) != v, \
"value: %d\n", atomic_read((a))); \
} while (0)
/** assert value of @a is little than @v */
#define LASSERT_ATOMIC_LT(a, v) \
do { \
LASSERTF(atomic_read(a) < v, \
"value: %d\n", atomic_read((a))); \
} while (0)
/** assert value of @a is little/equal to @v */
#define LASSERT_ATOMIC_LE(a, v) \
do { \
LASSERTF(atomic_read(a) <= v, \
"value: %d\n", atomic_read((a))); \
} while (0)
/** assert value of @a is great than @v */
#define LASSERT_ATOMIC_GT(a, v) \
do { \
LASSERTF(atomic_read(a) > v, \
"value: %d\n", atomic_read((a))); \
} while (0)
/** assert value of @a is great/equal to @v */
#define LASSERT_ATOMIC_GE(a, v) \
do { \
LASSERTF(atomic_read(a) >= v, \
"value: %d\n", atomic_read((a))); \
} while (0)
/** assert value of @a is great than @v1 and little than @v2 */
#define LASSERT_ATOMIC_GT_LT(a, v1, v2) \
do { \
int __v = atomic_read(a); \
LASSERTF(__v > v1 && __v < v2, "value: %d\n", __v); \
} while (0)
/** assert value of @a is great than @v1 and little/equal to @v2 */
#define LASSERT_ATOMIC_GT_LE(a, v1, v2) \
do { \
int __v = atomic_read(a); \
LASSERTF(__v > v1 && __v <= v2, "value: %d\n", __v); \
} while (0)
/** assert value of @a is great/equal to @v1 and little than @v2 */
#define LASSERT_ATOMIC_GE_LT(a, v1, v2) \
do { \
int __v = atomic_read(a); \
LASSERTF(__v >= v1 && __v < v2, "value: %d\n", __v); \
} while (0)
/** assert value of @a is great/equal to @v1 and little/equal to @v2 */
#define LASSERT_ATOMIC_GE_LE(a, v1, v2) \
do { \
int __v = atomic_read(a); \
LASSERTF(__v >= v1 && __v <= v2, "value: %d\n", __v); \
} while (0)
#else /* !LASSERT_ATOMIC_ENABLED */
#define LASSERT_ATOMIC_EQ(a, v) do {} while (0)
#define LASSERT_ATOMIC_NE(a, v) do {} while (0)
#define LASSERT_ATOMIC_LT(a, v) do {} while (0)
#define LASSERT_ATOMIC_LE(a, v) do {} while (0)
#define LASSERT_ATOMIC_GT(a, v) do {} while (0)
#define LASSERT_ATOMIC_GE(a, v) do {} while (0)
#define LASSERT_ATOMIC_GT_LT(a, v1, v2) do {} while (0)
#define LASSERT_ATOMIC_GT_LE(a, v1, v2) do {} while (0)
#define LASSERT_ATOMIC_GE_LT(a, v1, v2) do {} while (0)
#define LASSERT_ATOMIC_GE_LE(a, v1, v2) do {} while (0)
#endif /* LASSERT_ATOMIC_ENABLED */
#define LASSERT_ATOMIC_ZERO(a) LASSERT_ATOMIC_EQ(a, 0)
#define LASSERT_ATOMIC_POS(a) LASSERT_ATOMIC_GT(a, 0)
#define CFS_ALLOC_PTR(ptr) LIBCFS_ALLOC(ptr, sizeof(*(ptr)))
#define CFS_FREE_PTR(ptr) LIBCFS_FREE(ptr, sizeof(*(ptr)))
/*
* percpu partition lock
*
* There are some use-cases like this in Lustre:
* . each CPU partition has it's own private data which is frequently changed,
* and mostly by the local CPU partition.
* . all CPU partitions share some global data, these data are rarely changed.
*
* LNet is typical example.
* CPU partition lock is designed for this kind of use-cases:
* . each CPU partition has it's own private lock
* . change on private data just needs to take the private lock
* . read on shared data just needs to take _any_ of private locks
* . change on shared data needs to take _all_ private locks,
* which is slow and should be really rare.
*/
enum {
CFS_PERCPT_LOCK_EX = -1, /* negative */
};
struct cfs_percpt_lock {
/* cpu-partition-table for this lock */
struct cfs_cpt_table *pcl_cptab;
/* exclusively locked */
unsigned int pcl_locked;
/* private lock table */
spinlock_t **pcl_locks;
};
/* return number of private locks */
static inline int
cfs_percpt_lock_num(struct cfs_percpt_lock *pcl)
{
return cfs_cpt_number(pcl->pcl_cptab);
}
/*
* create a cpu-partition lock based on CPU partition table \a cptab,
* each private lock has extra \a psize bytes padding data
*/
struct cfs_percpt_lock *cfs_percpt_lock_alloc(struct cfs_cpt_table *cptab);
/* destroy a cpu-partition lock */
void cfs_percpt_lock_free(struct cfs_percpt_lock *pcl);
/* lock private lock \a index of \a pcl */
void cfs_percpt_lock(struct cfs_percpt_lock *pcl, int index);
/* unlock private lock \a index of \a pcl */
void cfs_percpt_unlock(struct cfs_percpt_lock *pcl, int index);
/* create percpt (atomic) refcount based on @cptab */
atomic_t **cfs_percpt_atomic_alloc(struct cfs_cpt_table *cptab, int val);
/* destroy percpt refcount */
void cfs_percpt_atomic_free(atomic_t **refs);
/* return sum of all percpu refs */
int cfs_percpt_atomic_summary(atomic_t **refs);
/** Compile-time assertion.
* Check an invariant described by a constant expression at compile time by
* forcing a compiler error if it does not hold. \a cond must be a constant
* expression as defined by the ISO C Standard:
*
* 6.8.4.2 The switch statement
* ....
* [#3] The expression of each case label shall be an integer
* constant expression and no two of the case constant
* expressions in the same switch statement shall have the same
* value after conversion...
*
*/
#define CLASSERT(cond) do {switch (42) {case (cond): case 0: break; } } while (0)
/* max value for numeric network address */
#define MAX_NUMERIC_VALUE 0xffffffff
/* implication */
#define ergo(a, b) (!(a) || (b))
/* logical equivalence */
#define equi(a, b) (!!(a) == !!(b))
/* --------------------------------------------------------------------
* Light-weight trace
* Support for temporary event tracing with minimal Heisenberg effect.
* -------------------------------------------------------------------- */
struct libcfs_device_userstate {
int ldu_memhog_pages;
struct page *ldu_memhog_root_page;
};
#define MKSTR(ptr) ((ptr)) ? (ptr) : ""
static inline int cfs_size_round4(int val)
{
return (val + 3) & (~0x3);
}
#ifndef HAVE_CFS_SIZE_ROUND
static inline int cfs_size_round(int val)
{
return (val + 7) & (~0x7);
}
#define HAVE_CFS_SIZE_ROUND
#endif
static inline int cfs_size_round16(int val)
{
return (val + 0xf) & (~0xf);
}
static inline int cfs_size_round32(int val)
{
return (val + 0x1f) & (~0x1f);
}
static inline int cfs_size_round0(int val)
{
if (!val)
return 0;
return (val + 1 + 7) & (~0x7);
}
static inline size_t cfs_round_strlen(char *fset)
{
return (size_t)cfs_size_round((int)strlen(fset) + 1);
}
#define LOGL(var, len, ptr) \
do { \
if (var) \
memcpy((char *)ptr, (const char *)var, len); \
ptr += cfs_size_round(len); \
} while (0)
#define LOGU(var, len, ptr) \
do { \
if (var) \
memcpy((char *)var, (const char *)ptr, len); \
ptr += cfs_size_round(len); \
} while (0)
#define LOGL0(var, len, ptr) \
do { \
if (!len) \
break; \
memcpy((char *)ptr, (const char *)var, len); \
*((char *)(ptr) + len) = 0; \
ptr += cfs_size_round(len + 1); \
} while (0)
#endif