| // SPDX-License-Identifier: GPL-2.0 | 
 | /* | 
 |  * Shared application/kernel submission and completion ring pairs, for | 
 |  * supporting fast/efficient IO. | 
 |  * | 
 |  * A note on the read/write ordering memory barriers that are matched between | 
 |  * the application and kernel side. | 
 |  * | 
 |  * After the application reads the CQ ring tail, it must use an | 
 |  * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses | 
 |  * before writing the tail (using smp_load_acquire to read the tail will | 
 |  * do). It also needs a smp_mb() before updating CQ head (ordering the | 
 |  * entry load(s) with the head store), pairing with an implicit barrier | 
 |  * through a control-dependency in io_get_cqe (smp_store_release to | 
 |  * store head will do). Failure to do so could lead to reading invalid | 
 |  * CQ entries. | 
 |  * | 
 |  * Likewise, the application must use an appropriate smp_wmb() before | 
 |  * writing the SQ tail (ordering SQ entry stores with the tail store), | 
 |  * which pairs with smp_load_acquire in io_get_sqring (smp_store_release | 
 |  * to store the tail will do). And it needs a barrier ordering the SQ | 
 |  * head load before writing new SQ entries (smp_load_acquire to read | 
 |  * head will do). | 
 |  * | 
 |  * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application | 
 |  * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after* | 
 |  * updating the SQ tail; a full memory barrier smp_mb() is needed | 
 |  * between. | 
 |  * | 
 |  * Also see the examples in the liburing library: | 
 |  * | 
 |  *	git://git.kernel.dk/liburing | 
 |  * | 
 |  * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens | 
 |  * from data shared between the kernel and application. This is done both | 
 |  * for ordering purposes, but also to ensure that once a value is loaded from | 
 |  * data that the application could potentially modify, it remains stable. | 
 |  * | 
 |  * Copyright (C) 2018-2019 Jens Axboe | 
 |  * Copyright (c) 2018-2019 Christoph Hellwig | 
 |  */ | 
 | #include <linux/kernel.h> | 
 | #include <linux/init.h> | 
 | #include <linux/errno.h> | 
 | #include <linux/syscalls.h> | 
 | #include <net/compat.h> | 
 | #include <linux/refcount.h> | 
 | #include <linux/uio.h> | 
 | #include <linux/bits.h> | 
 |  | 
 | #include <linux/sched/signal.h> | 
 | #include <linux/fs.h> | 
 | #include <linux/file.h> | 
 | #include <linux/fdtable.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/mman.h> | 
 | #include <linux/percpu.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/bvec.h> | 
 | #include <linux/net.h> | 
 | #include <net/sock.h> | 
 | #include <net/af_unix.h> | 
 | #include <net/scm.h> | 
 | #include <linux/anon_inodes.h> | 
 | #include <linux/sched/mm.h> | 
 | #include <linux/uaccess.h> | 
 | #include <linux/nospec.h> | 
 | #include <linux/highmem.h> | 
 | #include <linux/fsnotify.h> | 
 | #include <linux/fadvise.h> | 
 | #include <linux/task_work.h> | 
 | #include <linux/io_uring.h> | 
 | #include <linux/audit.h> | 
 | #include <linux/security.h> | 
 | #include <asm/shmparam.h> | 
 |  | 
 | #define CREATE_TRACE_POINTS | 
 | #include <trace/events/io_uring.h> | 
 |  | 
 | #include <uapi/linux/io_uring.h> | 
 |  | 
 | #include "io-wq.h" | 
 |  | 
 | #include "io_uring.h" | 
 | #include "opdef.h" | 
 | #include "refs.h" | 
 | #include "tctx.h" | 
 | #include "sqpoll.h" | 
 | #include "fdinfo.h" | 
 | #include "kbuf.h" | 
 | #include "rsrc.h" | 
 | #include "cancel.h" | 
 | #include "net.h" | 
 | #include "notif.h" | 
 |  | 
 | #include "timeout.h" | 
 | #include "poll.h" | 
 | #include "rw.h" | 
 | #include "alloc_cache.h" | 
 |  | 
 | #define IORING_MAX_ENTRIES	32768 | 
 | #define IORING_MAX_CQ_ENTRIES	(2 * IORING_MAX_ENTRIES) | 
 |  | 
 | #define IORING_MAX_RESTRICTIONS	(IORING_RESTRICTION_LAST + \ | 
 | 				 IORING_REGISTER_LAST + IORING_OP_LAST) | 
 |  | 
 | #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \ | 
 | 			  IOSQE_IO_HARDLINK | IOSQE_ASYNC) | 
 |  | 
 | #define SQE_VALID_FLAGS	(SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \ | 
 | 			IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS) | 
 |  | 
 | #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \ | 
 | 				REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \ | 
 | 				REQ_F_ASYNC_DATA) | 
 |  | 
 | #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\ | 
 | 				 IO_REQ_CLEAN_FLAGS) | 
 |  | 
 | #define IO_TCTX_REFS_CACHE_NR	(1U << 10) | 
 |  | 
 | #define IO_COMPL_BATCH			32 | 
 | #define IO_REQ_ALLOC_BATCH		8 | 
 |  | 
 | enum { | 
 | 	IO_CHECK_CQ_OVERFLOW_BIT, | 
 | 	IO_CHECK_CQ_DROPPED_BIT, | 
 | }; | 
 |  | 
 | enum { | 
 | 	IO_EVENTFD_OP_SIGNAL_BIT, | 
 | 	IO_EVENTFD_OP_FREE_BIT, | 
 | }; | 
 |  | 
 | struct io_defer_entry { | 
 | 	struct list_head	list; | 
 | 	struct io_kiocb		*req; | 
 | 	u32			seq; | 
 | }; | 
 |  | 
 | /* requests with any of those set should undergo io_disarm_next() */ | 
 | #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL) | 
 | #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK) | 
 |  | 
 | static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, | 
 | 					 struct task_struct *task, | 
 | 					 bool cancel_all); | 
 |  | 
 | static void io_queue_sqe(struct io_kiocb *req); | 
 |  | 
 | struct kmem_cache *req_cachep; | 
 |  | 
 | static int __read_mostly sysctl_io_uring_disabled; | 
 | static int __read_mostly sysctl_io_uring_group = -1; | 
 |  | 
 | #ifdef CONFIG_SYSCTL | 
 | static struct ctl_table kernel_io_uring_disabled_table[] = { | 
 | 	{ | 
 | 		.procname	= "io_uring_disabled", | 
 | 		.data		= &sysctl_io_uring_disabled, | 
 | 		.maxlen		= sizeof(sysctl_io_uring_disabled), | 
 | 		.mode		= 0644, | 
 | 		.proc_handler	= proc_dointvec_minmax, | 
 | 		.extra1		= SYSCTL_ZERO, | 
 | 		.extra2		= SYSCTL_TWO, | 
 | 	}, | 
 | 	{ | 
 | 		.procname	= "io_uring_group", | 
 | 		.data		= &sysctl_io_uring_group, | 
 | 		.maxlen		= sizeof(gid_t), | 
 | 		.mode		= 0644, | 
 | 		.proc_handler	= proc_dointvec, | 
 | 	}, | 
 | 	{}, | 
 | }; | 
 | #endif | 
 |  | 
 | struct sock *io_uring_get_socket(struct file *file) | 
 | { | 
 | #if defined(CONFIG_UNIX) | 
 | 	if (io_is_uring_fops(file)) { | 
 | 		struct io_ring_ctx *ctx = file->private_data; | 
 |  | 
 | 		return ctx->ring_sock->sk; | 
 | 	} | 
 | #endif | 
 | 	return NULL; | 
 | } | 
 | EXPORT_SYMBOL(io_uring_get_socket); | 
 |  | 
 | static inline void io_submit_flush_completions(struct io_ring_ctx *ctx) | 
 | { | 
 | 	if (!wq_list_empty(&ctx->submit_state.compl_reqs) || | 
 | 	    ctx->submit_state.cqes_count) | 
 | 		__io_submit_flush_completions(ctx); | 
 | } | 
 |  | 
 | static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx) | 
 | { | 
 | 	return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head); | 
 | } | 
 |  | 
 | static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx) | 
 | { | 
 | 	return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head); | 
 | } | 
 |  | 
 | static bool io_match_linked(struct io_kiocb *head) | 
 | { | 
 | 	struct io_kiocb *req; | 
 |  | 
 | 	io_for_each_link(req, head) { | 
 | 		if (req->flags & REQ_F_INFLIGHT) | 
 | 			return true; | 
 | 	} | 
 | 	return false; | 
 | } | 
 |  | 
 | /* | 
 |  * As io_match_task() but protected against racing with linked timeouts. | 
 |  * User must not hold timeout_lock. | 
 |  */ | 
 | bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task, | 
 | 			bool cancel_all) | 
 | { | 
 | 	bool matched; | 
 |  | 
 | 	if (task && head->task != task) | 
 | 		return false; | 
 | 	if (cancel_all) | 
 | 		return true; | 
 |  | 
 | 	if (head->flags & REQ_F_LINK_TIMEOUT) { | 
 | 		struct io_ring_ctx *ctx = head->ctx; | 
 |  | 
 | 		/* protect against races with linked timeouts */ | 
 | 		spin_lock_irq(&ctx->timeout_lock); | 
 | 		matched = io_match_linked(head); | 
 | 		spin_unlock_irq(&ctx->timeout_lock); | 
 | 	} else { | 
 | 		matched = io_match_linked(head); | 
 | 	} | 
 | 	return matched; | 
 | } | 
 |  | 
 | static inline void req_fail_link_node(struct io_kiocb *req, int res) | 
 | { | 
 | 	req_set_fail(req); | 
 | 	io_req_set_res(req, res, 0); | 
 | } | 
 |  | 
 | static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx) | 
 | { | 
 | 	wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list); | 
 | } | 
 |  | 
 | static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref) | 
 | { | 
 | 	struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs); | 
 |  | 
 | 	complete(&ctx->ref_comp); | 
 | } | 
 |  | 
 | static __cold void io_fallback_req_func(struct work_struct *work) | 
 | { | 
 | 	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, | 
 | 						fallback_work.work); | 
 | 	struct llist_node *node = llist_del_all(&ctx->fallback_llist); | 
 | 	struct io_kiocb *req, *tmp; | 
 | 	struct io_tw_state ts = { .locked = true, }; | 
 |  | 
 | 	mutex_lock(&ctx->uring_lock); | 
 | 	llist_for_each_entry_safe(req, tmp, node, io_task_work.node) | 
 | 		req->io_task_work.func(req, &ts); | 
 | 	if (WARN_ON_ONCE(!ts.locked)) | 
 | 		return; | 
 | 	io_submit_flush_completions(ctx); | 
 | 	mutex_unlock(&ctx->uring_lock); | 
 | } | 
 |  | 
 | static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits) | 
 | { | 
 | 	unsigned hash_buckets = 1U << bits; | 
 | 	size_t hash_size = hash_buckets * sizeof(table->hbs[0]); | 
 |  | 
 | 	table->hbs = kmalloc(hash_size, GFP_KERNEL); | 
 | 	if (!table->hbs) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	table->hash_bits = bits; | 
 | 	init_hash_table(table, hash_buckets); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p) | 
 | { | 
 | 	struct io_ring_ctx *ctx; | 
 | 	int hash_bits; | 
 |  | 
 | 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); | 
 | 	if (!ctx) | 
 | 		return NULL; | 
 |  | 
 | 	xa_init(&ctx->io_bl_xa); | 
 |  | 
 | 	/* | 
 | 	 * Use 5 bits less than the max cq entries, that should give us around | 
 | 	 * 32 entries per hash list if totally full and uniformly spread, but | 
 | 	 * don't keep too many buckets to not overconsume memory. | 
 | 	 */ | 
 | 	hash_bits = ilog2(p->cq_entries) - 5; | 
 | 	hash_bits = clamp(hash_bits, 1, 8); | 
 | 	if (io_alloc_hash_table(&ctx->cancel_table, hash_bits)) | 
 | 		goto err; | 
 | 	if (io_alloc_hash_table(&ctx->cancel_table_locked, hash_bits)) | 
 | 		goto err; | 
 | 	if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free, | 
 | 			    0, GFP_KERNEL)) | 
 | 		goto err; | 
 |  | 
 | 	ctx->flags = p->flags; | 
 | 	init_waitqueue_head(&ctx->sqo_sq_wait); | 
 | 	INIT_LIST_HEAD(&ctx->sqd_list); | 
 | 	INIT_LIST_HEAD(&ctx->cq_overflow_list); | 
 | 	INIT_LIST_HEAD(&ctx->io_buffers_cache); | 
 | 	io_alloc_cache_init(&ctx->rsrc_node_cache, IO_NODE_ALLOC_CACHE_MAX, | 
 | 			    sizeof(struct io_rsrc_node)); | 
 | 	io_alloc_cache_init(&ctx->apoll_cache, IO_ALLOC_CACHE_MAX, | 
 | 			    sizeof(struct async_poll)); | 
 | 	io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX, | 
 | 			    sizeof(struct io_async_msghdr)); | 
 | 	init_completion(&ctx->ref_comp); | 
 | 	xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1); | 
 | 	mutex_init(&ctx->uring_lock); | 
 | 	init_waitqueue_head(&ctx->cq_wait); | 
 | 	init_waitqueue_head(&ctx->poll_wq); | 
 | 	init_waitqueue_head(&ctx->rsrc_quiesce_wq); | 
 | 	spin_lock_init(&ctx->completion_lock); | 
 | 	spin_lock_init(&ctx->timeout_lock); | 
 | 	INIT_WQ_LIST(&ctx->iopoll_list); | 
 | 	INIT_LIST_HEAD(&ctx->io_buffers_pages); | 
 | 	INIT_LIST_HEAD(&ctx->io_buffers_comp); | 
 | 	INIT_LIST_HEAD(&ctx->defer_list); | 
 | 	INIT_LIST_HEAD(&ctx->timeout_list); | 
 | 	INIT_LIST_HEAD(&ctx->ltimeout_list); | 
 | 	INIT_LIST_HEAD(&ctx->rsrc_ref_list); | 
 | 	init_llist_head(&ctx->work_llist); | 
 | 	INIT_LIST_HEAD(&ctx->tctx_list); | 
 | 	ctx->submit_state.free_list.next = NULL; | 
 | 	INIT_WQ_LIST(&ctx->locked_free_list); | 
 | 	INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func); | 
 | 	INIT_WQ_LIST(&ctx->submit_state.compl_reqs); | 
 | 	return ctx; | 
 | err: | 
 | 	kfree(ctx->cancel_table.hbs); | 
 | 	kfree(ctx->cancel_table_locked.hbs); | 
 | 	kfree(ctx->io_bl); | 
 | 	xa_destroy(&ctx->io_bl_xa); | 
 | 	kfree(ctx); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static void io_account_cq_overflow(struct io_ring_ctx *ctx) | 
 | { | 
 | 	struct io_rings *r = ctx->rings; | 
 |  | 
 | 	WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1); | 
 | 	ctx->cq_extra--; | 
 | } | 
 |  | 
 | static bool req_need_defer(struct io_kiocb *req, u32 seq) | 
 | { | 
 | 	if (unlikely(req->flags & REQ_F_IO_DRAIN)) { | 
 | 		struct io_ring_ctx *ctx = req->ctx; | 
 |  | 
 | 		return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail; | 
 | 	} | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | static void io_clean_op(struct io_kiocb *req) | 
 | { | 
 | 	if (req->flags & REQ_F_BUFFER_SELECTED) { | 
 | 		spin_lock(&req->ctx->completion_lock); | 
 | 		io_put_kbuf_comp(req); | 
 | 		spin_unlock(&req->ctx->completion_lock); | 
 | 	} | 
 |  | 
 | 	if (req->flags & REQ_F_NEED_CLEANUP) { | 
 | 		const struct io_cold_def *def = &io_cold_defs[req->opcode]; | 
 |  | 
 | 		if (def->cleanup) | 
 | 			def->cleanup(req); | 
 | 	} | 
 | 	if ((req->flags & REQ_F_POLLED) && req->apoll) { | 
 | 		kfree(req->apoll->double_poll); | 
 | 		kfree(req->apoll); | 
 | 		req->apoll = NULL; | 
 | 	} | 
 | 	if (req->flags & REQ_F_INFLIGHT) { | 
 | 		struct io_uring_task *tctx = req->task->io_uring; | 
 |  | 
 | 		atomic_dec(&tctx->inflight_tracked); | 
 | 	} | 
 | 	if (req->flags & REQ_F_CREDS) | 
 | 		put_cred(req->creds); | 
 | 	if (req->flags & REQ_F_ASYNC_DATA) { | 
 | 		kfree(req->async_data); | 
 | 		req->async_data = NULL; | 
 | 	} | 
 | 	req->flags &= ~IO_REQ_CLEAN_FLAGS; | 
 | } | 
 |  | 
 | static inline void io_req_track_inflight(struct io_kiocb *req) | 
 | { | 
 | 	if (!(req->flags & REQ_F_INFLIGHT)) { | 
 | 		req->flags |= REQ_F_INFLIGHT; | 
 | 		atomic_inc(&req->task->io_uring->inflight_tracked); | 
 | 	} | 
 | } | 
 |  | 
 | static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req) | 
 | { | 
 | 	if (WARN_ON_ONCE(!req->link)) | 
 | 		return NULL; | 
 |  | 
 | 	req->flags &= ~REQ_F_ARM_LTIMEOUT; | 
 | 	req->flags |= REQ_F_LINK_TIMEOUT; | 
 |  | 
 | 	/* linked timeouts should have two refs once prep'ed */ | 
 | 	io_req_set_refcount(req); | 
 | 	__io_req_set_refcount(req->link, 2); | 
 | 	return req->link; | 
 | } | 
 |  | 
 | static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req) | 
 | { | 
 | 	if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT))) | 
 | 		return NULL; | 
 | 	return __io_prep_linked_timeout(req); | 
 | } | 
 |  | 
 | static noinline void __io_arm_ltimeout(struct io_kiocb *req) | 
 | { | 
 | 	io_queue_linked_timeout(__io_prep_linked_timeout(req)); | 
 | } | 
 |  | 
 | static inline void io_arm_ltimeout(struct io_kiocb *req) | 
 | { | 
 | 	if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT)) | 
 | 		__io_arm_ltimeout(req); | 
 | } | 
 |  | 
 | static void io_prep_async_work(struct io_kiocb *req) | 
 | { | 
 | 	const struct io_issue_def *def = &io_issue_defs[req->opcode]; | 
 | 	struct io_ring_ctx *ctx = req->ctx; | 
 |  | 
 | 	if (!(req->flags & REQ_F_CREDS)) { | 
 | 		req->flags |= REQ_F_CREDS; | 
 | 		req->creds = get_current_cred(); | 
 | 	} | 
 |  | 
 | 	req->work.list.next = NULL; | 
 | 	req->work.flags = 0; | 
 | 	req->work.cancel_seq = atomic_read(&ctx->cancel_seq); | 
 | 	if (req->flags & REQ_F_FORCE_ASYNC) | 
 | 		req->work.flags |= IO_WQ_WORK_CONCURRENT; | 
 |  | 
 | 	if (req->file && !(req->flags & REQ_F_FIXED_FILE)) | 
 | 		req->flags |= io_file_get_flags(req->file); | 
 |  | 
 | 	if (req->file && (req->flags & REQ_F_ISREG)) { | 
 | 		bool should_hash = def->hash_reg_file; | 
 |  | 
 | 		/* don't serialize this request if the fs doesn't need it */ | 
 | 		if (should_hash && (req->file->f_flags & O_DIRECT) && | 
 | 		    (req->file->f_mode & FMODE_DIO_PARALLEL_WRITE)) | 
 | 			should_hash = false; | 
 | 		if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL)) | 
 | 			io_wq_hash_work(&req->work, file_inode(req->file)); | 
 | 	} else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) { | 
 | 		if (def->unbound_nonreg_file) | 
 | 			req->work.flags |= IO_WQ_WORK_UNBOUND; | 
 | 	} | 
 | } | 
 |  | 
 | static void io_prep_async_link(struct io_kiocb *req) | 
 | { | 
 | 	struct io_kiocb *cur; | 
 |  | 
 | 	if (req->flags & REQ_F_LINK_TIMEOUT) { | 
 | 		struct io_ring_ctx *ctx = req->ctx; | 
 |  | 
 | 		spin_lock_irq(&ctx->timeout_lock); | 
 | 		io_for_each_link(cur, req) | 
 | 			io_prep_async_work(cur); | 
 | 		spin_unlock_irq(&ctx->timeout_lock); | 
 | 	} else { | 
 | 		io_for_each_link(cur, req) | 
 | 			io_prep_async_work(cur); | 
 | 	} | 
 | } | 
 |  | 
 | void io_queue_iowq(struct io_kiocb *req, struct io_tw_state *ts_dont_use) | 
 | { | 
 | 	struct io_kiocb *link = io_prep_linked_timeout(req); | 
 | 	struct io_uring_task *tctx = req->task->io_uring; | 
 |  | 
 | 	BUG_ON(!tctx); | 
 | 	BUG_ON(!tctx->io_wq); | 
 |  | 
 | 	/* init ->work of the whole link before punting */ | 
 | 	io_prep_async_link(req); | 
 |  | 
 | 	/* | 
 | 	 * Not expected to happen, but if we do have a bug where this _can_ | 
 | 	 * happen, catch it here and ensure the request is marked as | 
 | 	 * canceled. That will make io-wq go through the usual work cancel | 
 | 	 * procedure rather than attempt to run this request (or create a new | 
 | 	 * worker for it). | 
 | 	 */ | 
 | 	if (WARN_ON_ONCE(!same_thread_group(req->task, current))) | 
 | 		req->work.flags |= IO_WQ_WORK_CANCEL; | 
 |  | 
 | 	trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work)); | 
 | 	io_wq_enqueue(tctx->io_wq, &req->work); | 
 | 	if (link) | 
 | 		io_queue_linked_timeout(link); | 
 | } | 
 |  | 
 | static __cold void io_queue_deferred(struct io_ring_ctx *ctx) | 
 | { | 
 | 	while (!list_empty(&ctx->defer_list)) { | 
 | 		struct io_defer_entry *de = list_first_entry(&ctx->defer_list, | 
 | 						struct io_defer_entry, list); | 
 |  | 
 | 		if (req_need_defer(de->req, de->seq)) | 
 | 			break; | 
 | 		list_del_init(&de->list); | 
 | 		io_req_task_queue(de->req); | 
 | 		kfree(de); | 
 | 	} | 
 | } | 
 |  | 
 |  | 
 | static void io_eventfd_ops(struct rcu_head *rcu) | 
 | { | 
 | 	struct io_ev_fd *ev_fd = container_of(rcu, struct io_ev_fd, rcu); | 
 | 	int ops = atomic_xchg(&ev_fd->ops, 0); | 
 |  | 
 | 	if (ops & BIT(IO_EVENTFD_OP_SIGNAL_BIT)) | 
 | 		eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE); | 
 |  | 
 | 	/* IO_EVENTFD_OP_FREE_BIT may not be set here depending on callback | 
 | 	 * ordering in a race but if references are 0 we know we have to free | 
 | 	 * it regardless. | 
 | 	 */ | 
 | 	if (atomic_dec_and_test(&ev_fd->refs)) { | 
 | 		eventfd_ctx_put(ev_fd->cq_ev_fd); | 
 | 		kfree(ev_fd); | 
 | 	} | 
 | } | 
 |  | 
 | static void io_eventfd_signal(struct io_ring_ctx *ctx) | 
 | { | 
 | 	struct io_ev_fd *ev_fd = NULL; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	/* | 
 | 	 * rcu_dereference ctx->io_ev_fd once and use it for both for checking | 
 | 	 * and eventfd_signal | 
 | 	 */ | 
 | 	ev_fd = rcu_dereference(ctx->io_ev_fd); | 
 |  | 
 | 	/* | 
 | 	 * Check again if ev_fd exists incase an io_eventfd_unregister call | 
 | 	 * completed between the NULL check of ctx->io_ev_fd at the start of | 
 | 	 * the function and rcu_read_lock. | 
 | 	 */ | 
 | 	if (unlikely(!ev_fd)) | 
 | 		goto out; | 
 | 	if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED) | 
 | 		goto out; | 
 | 	if (ev_fd->eventfd_async && !io_wq_current_is_worker()) | 
 | 		goto out; | 
 |  | 
 | 	if (likely(eventfd_signal_allowed())) { | 
 | 		eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE); | 
 | 	} else { | 
 | 		atomic_inc(&ev_fd->refs); | 
 | 		if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_SIGNAL_BIT), &ev_fd->ops)) | 
 | 			call_rcu_hurry(&ev_fd->rcu, io_eventfd_ops); | 
 | 		else | 
 | 			atomic_dec(&ev_fd->refs); | 
 | 	} | 
 |  | 
 | out: | 
 | 	rcu_read_unlock(); | 
 | } | 
 |  | 
 | static void io_eventfd_flush_signal(struct io_ring_ctx *ctx) | 
 | { | 
 | 	bool skip; | 
 |  | 
 | 	spin_lock(&ctx->completion_lock); | 
 |  | 
 | 	/* | 
 | 	 * Eventfd should only get triggered when at least one event has been | 
 | 	 * posted. Some applications rely on the eventfd notification count | 
 | 	 * only changing IFF a new CQE has been added to the CQ ring. There's | 
 | 	 * no depedency on 1:1 relationship between how many times this | 
 | 	 * function is called (and hence the eventfd count) and number of CQEs | 
 | 	 * posted to the CQ ring. | 
 | 	 */ | 
 | 	skip = ctx->cached_cq_tail == ctx->evfd_last_cq_tail; | 
 | 	ctx->evfd_last_cq_tail = ctx->cached_cq_tail; | 
 | 	spin_unlock(&ctx->completion_lock); | 
 | 	if (skip) | 
 | 		return; | 
 |  | 
 | 	io_eventfd_signal(ctx); | 
 | } | 
 |  | 
 | void __io_commit_cqring_flush(struct io_ring_ctx *ctx) | 
 | { | 
 | 	if (ctx->poll_activated) | 
 | 		io_poll_wq_wake(ctx); | 
 | 	if (ctx->off_timeout_used) | 
 | 		io_flush_timeouts(ctx); | 
 | 	if (ctx->drain_active) { | 
 | 		spin_lock(&ctx->completion_lock); | 
 | 		io_queue_deferred(ctx); | 
 | 		spin_unlock(&ctx->completion_lock); | 
 | 	} | 
 | 	if (ctx->has_evfd) | 
 | 		io_eventfd_flush_signal(ctx); | 
 | } | 
 |  | 
 | static inline void __io_cq_lock(struct io_ring_ctx *ctx) | 
 | { | 
 | 	if (!ctx->lockless_cq) | 
 | 		spin_lock(&ctx->completion_lock); | 
 | } | 
 |  | 
 | static inline void io_cq_lock(struct io_ring_ctx *ctx) | 
 | 	__acquires(ctx->completion_lock) | 
 | { | 
 | 	spin_lock(&ctx->completion_lock); | 
 | } | 
 |  | 
 | static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx) | 
 | { | 
 | 	io_commit_cqring(ctx); | 
 | 	if (!ctx->task_complete) { | 
 | 		if (!ctx->lockless_cq) | 
 | 			spin_unlock(&ctx->completion_lock); | 
 | 		/* IOPOLL rings only need to wake up if it's also SQPOLL */ | 
 | 		if (!ctx->syscall_iopoll) | 
 | 			io_cqring_wake(ctx); | 
 | 	} | 
 | 	io_commit_cqring_flush(ctx); | 
 | } | 
 |  | 
 | static void io_cq_unlock_post(struct io_ring_ctx *ctx) | 
 | 	__releases(ctx->completion_lock) | 
 | { | 
 | 	io_commit_cqring(ctx); | 
 | 	spin_unlock(&ctx->completion_lock); | 
 | 	io_cqring_wake(ctx); | 
 | 	io_commit_cqring_flush(ctx); | 
 | } | 
 |  | 
 | /* Returns true if there are no backlogged entries after the flush */ | 
 | static void io_cqring_overflow_kill(struct io_ring_ctx *ctx) | 
 | { | 
 | 	struct io_overflow_cqe *ocqe; | 
 | 	LIST_HEAD(list); | 
 |  | 
 | 	spin_lock(&ctx->completion_lock); | 
 | 	list_splice_init(&ctx->cq_overflow_list, &list); | 
 | 	clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); | 
 | 	spin_unlock(&ctx->completion_lock); | 
 |  | 
 | 	while (!list_empty(&list)) { | 
 | 		ocqe = list_first_entry(&list, struct io_overflow_cqe, list); | 
 | 		list_del(&ocqe->list); | 
 | 		kfree(ocqe); | 
 | 	} | 
 | } | 
 |  | 
 | static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx) | 
 | { | 
 | 	size_t cqe_size = sizeof(struct io_uring_cqe); | 
 |  | 
 | 	if (__io_cqring_events(ctx) == ctx->cq_entries) | 
 | 		return; | 
 |  | 
 | 	if (ctx->flags & IORING_SETUP_CQE32) | 
 | 		cqe_size <<= 1; | 
 |  | 
 | 	io_cq_lock(ctx); | 
 | 	while (!list_empty(&ctx->cq_overflow_list)) { | 
 | 		struct io_uring_cqe *cqe; | 
 | 		struct io_overflow_cqe *ocqe; | 
 |  | 
 | 		if (!io_get_cqe_overflow(ctx, &cqe, true)) | 
 | 			break; | 
 | 		ocqe = list_first_entry(&ctx->cq_overflow_list, | 
 | 					struct io_overflow_cqe, list); | 
 | 		memcpy(cqe, &ocqe->cqe, cqe_size); | 
 | 		list_del(&ocqe->list); | 
 | 		kfree(ocqe); | 
 | 	} | 
 |  | 
 | 	if (list_empty(&ctx->cq_overflow_list)) { | 
 | 		clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); | 
 | 		atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); | 
 | 	} | 
 | 	io_cq_unlock_post(ctx); | 
 | } | 
 |  | 
 | static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx) | 
 | { | 
 | 	/* iopoll syncs against uring_lock, not completion_lock */ | 
 | 	if (ctx->flags & IORING_SETUP_IOPOLL) | 
 | 		mutex_lock(&ctx->uring_lock); | 
 | 	__io_cqring_overflow_flush(ctx); | 
 | 	if (ctx->flags & IORING_SETUP_IOPOLL) | 
 | 		mutex_unlock(&ctx->uring_lock); | 
 | } | 
 |  | 
 | static void io_cqring_overflow_flush(struct io_ring_ctx *ctx) | 
 | { | 
 | 	if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) | 
 | 		io_cqring_do_overflow_flush(ctx); | 
 | } | 
 |  | 
 | /* can be called by any task */ | 
 | static void io_put_task_remote(struct task_struct *task) | 
 | { | 
 | 	struct io_uring_task *tctx = task->io_uring; | 
 |  | 
 | 	percpu_counter_sub(&tctx->inflight, 1); | 
 | 	if (unlikely(atomic_read(&tctx->in_cancel))) | 
 | 		wake_up(&tctx->wait); | 
 | 	put_task_struct(task); | 
 | } | 
 |  | 
 | /* used by a task to put its own references */ | 
 | static void io_put_task_local(struct task_struct *task) | 
 | { | 
 | 	task->io_uring->cached_refs++; | 
 | } | 
 |  | 
 | /* must to be called somewhat shortly after putting a request */ | 
 | static inline void io_put_task(struct task_struct *task) | 
 | { | 
 | 	if (likely(task == current)) | 
 | 		io_put_task_local(task); | 
 | 	else | 
 | 		io_put_task_remote(task); | 
 | } | 
 |  | 
 | void io_task_refs_refill(struct io_uring_task *tctx) | 
 | { | 
 | 	unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR; | 
 |  | 
 | 	percpu_counter_add(&tctx->inflight, refill); | 
 | 	refcount_add(refill, ¤t->usage); | 
 | 	tctx->cached_refs += refill; | 
 | } | 
 |  | 
 | static __cold void io_uring_drop_tctx_refs(struct task_struct *task) | 
 | { | 
 | 	struct io_uring_task *tctx = task->io_uring; | 
 | 	unsigned int refs = tctx->cached_refs; | 
 |  | 
 | 	if (refs) { | 
 | 		tctx->cached_refs = 0; | 
 | 		percpu_counter_sub(&tctx->inflight, refs); | 
 | 		put_task_struct_many(task, refs); | 
 | 	} | 
 | } | 
 |  | 
 | static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data, | 
 | 				     s32 res, u32 cflags, u64 extra1, u64 extra2) | 
 | { | 
 | 	struct io_overflow_cqe *ocqe; | 
 | 	size_t ocq_size = sizeof(struct io_overflow_cqe); | 
 | 	bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32); | 
 |  | 
 | 	lockdep_assert_held(&ctx->completion_lock); | 
 |  | 
 | 	if (is_cqe32) | 
 | 		ocq_size += sizeof(struct io_uring_cqe); | 
 |  | 
 | 	ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT); | 
 | 	trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe); | 
 | 	if (!ocqe) { | 
 | 		/* | 
 | 		 * If we're in ring overflow flush mode, or in task cancel mode, | 
 | 		 * or cannot allocate an overflow entry, then we need to drop it | 
 | 		 * on the floor. | 
 | 		 */ | 
 | 		io_account_cq_overflow(ctx); | 
 | 		set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq); | 
 | 		return false; | 
 | 	} | 
 | 	if (list_empty(&ctx->cq_overflow_list)) { | 
 | 		set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); | 
 | 		atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); | 
 |  | 
 | 	} | 
 | 	ocqe->cqe.user_data = user_data; | 
 | 	ocqe->cqe.res = res; | 
 | 	ocqe->cqe.flags = cflags; | 
 | 	if (is_cqe32) { | 
 | 		ocqe->cqe.big_cqe[0] = extra1; | 
 | 		ocqe->cqe.big_cqe[1] = extra2; | 
 | 	} | 
 | 	list_add_tail(&ocqe->list, &ctx->cq_overflow_list); | 
 | 	return true; | 
 | } | 
 |  | 
 | void io_req_cqe_overflow(struct io_kiocb *req) | 
 | { | 
 | 	io_cqring_event_overflow(req->ctx, req->cqe.user_data, | 
 | 				req->cqe.res, req->cqe.flags, | 
 | 				req->big_cqe.extra1, req->big_cqe.extra2); | 
 | 	memset(&req->big_cqe, 0, sizeof(req->big_cqe)); | 
 | } | 
 |  | 
 | /* | 
 |  * writes to the cq entry need to come after reading head; the | 
 |  * control dependency is enough as we're using WRITE_ONCE to | 
 |  * fill the cq entry | 
 |  */ | 
 | bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow) | 
 | { | 
 | 	struct io_rings *rings = ctx->rings; | 
 | 	unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1); | 
 | 	unsigned int free, queued, len; | 
 |  | 
 | 	/* | 
 | 	 * Posting into the CQ when there are pending overflowed CQEs may break | 
 | 	 * ordering guarantees, which will affect links, F_MORE users and more. | 
 | 	 * Force overflow the completion. | 
 | 	 */ | 
 | 	if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))) | 
 | 		return false; | 
 |  | 
 | 	/* userspace may cheat modifying the tail, be safe and do min */ | 
 | 	queued = min(__io_cqring_events(ctx), ctx->cq_entries); | 
 | 	free = ctx->cq_entries - queued; | 
 | 	/* we need a contiguous range, limit based on the current array offset */ | 
 | 	len = min(free, ctx->cq_entries - off); | 
 | 	if (!len) | 
 | 		return false; | 
 |  | 
 | 	if (ctx->flags & IORING_SETUP_CQE32) { | 
 | 		off <<= 1; | 
 | 		len <<= 1; | 
 | 	} | 
 |  | 
 | 	ctx->cqe_cached = &rings->cqes[off]; | 
 | 	ctx->cqe_sentinel = ctx->cqe_cached + len; | 
 | 	return true; | 
 | } | 
 |  | 
 | static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res, | 
 | 			      u32 cflags) | 
 | { | 
 | 	struct io_uring_cqe *cqe; | 
 |  | 
 | 	ctx->cq_extra++; | 
 |  | 
 | 	/* | 
 | 	 * If we can't get a cq entry, userspace overflowed the | 
 | 	 * submission (by quite a lot). Increment the overflow count in | 
 | 	 * the ring. | 
 | 	 */ | 
 | 	if (likely(io_get_cqe(ctx, &cqe))) { | 
 | 		trace_io_uring_complete(ctx, NULL, user_data, res, cflags, 0, 0); | 
 |  | 
 | 		WRITE_ONCE(cqe->user_data, user_data); | 
 | 		WRITE_ONCE(cqe->res, res); | 
 | 		WRITE_ONCE(cqe->flags, cflags); | 
 |  | 
 | 		if (ctx->flags & IORING_SETUP_CQE32) { | 
 | 			WRITE_ONCE(cqe->big_cqe[0], 0); | 
 | 			WRITE_ONCE(cqe->big_cqe[1], 0); | 
 | 		} | 
 | 		return true; | 
 | 	} | 
 | 	return false; | 
 | } | 
 |  | 
 | static void __io_flush_post_cqes(struct io_ring_ctx *ctx) | 
 | 	__must_hold(&ctx->uring_lock) | 
 | { | 
 | 	struct io_submit_state *state = &ctx->submit_state; | 
 | 	unsigned int i; | 
 |  | 
 | 	lockdep_assert_held(&ctx->uring_lock); | 
 | 	for (i = 0; i < state->cqes_count; i++) { | 
 | 		struct io_uring_cqe *cqe = &ctx->completion_cqes[i]; | 
 |  | 
 | 		if (!io_fill_cqe_aux(ctx, cqe->user_data, cqe->res, cqe->flags)) { | 
 | 			if (ctx->lockless_cq) { | 
 | 				spin_lock(&ctx->completion_lock); | 
 | 				io_cqring_event_overflow(ctx, cqe->user_data, | 
 | 							cqe->res, cqe->flags, 0, 0); | 
 | 				spin_unlock(&ctx->completion_lock); | 
 | 			} else { | 
 | 				io_cqring_event_overflow(ctx, cqe->user_data, | 
 | 							cqe->res, cqe->flags, 0, 0); | 
 | 			} | 
 | 		} | 
 | 	} | 
 | 	state->cqes_count = 0; | 
 | } | 
 |  | 
 | static bool __io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags, | 
 | 			      bool allow_overflow) | 
 | { | 
 | 	bool filled; | 
 |  | 
 | 	io_cq_lock(ctx); | 
 | 	filled = io_fill_cqe_aux(ctx, user_data, res, cflags); | 
 | 	if (!filled && allow_overflow) | 
 | 		filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0); | 
 |  | 
 | 	io_cq_unlock_post(ctx); | 
 | 	return filled; | 
 | } | 
 |  | 
 | bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags) | 
 | { | 
 | 	return __io_post_aux_cqe(ctx, user_data, res, cflags, true); | 
 | } | 
 |  | 
 | /* | 
 |  * A helper for multishot requests posting additional CQEs. | 
 |  * Should only be used from a task_work including IO_URING_F_MULTISHOT. | 
 |  */ | 
 | bool io_fill_cqe_req_aux(struct io_kiocb *req, bool defer, s32 res, u32 cflags) | 
 | { | 
 | 	struct io_ring_ctx *ctx = req->ctx; | 
 | 	u64 user_data = req->cqe.user_data; | 
 | 	struct io_uring_cqe *cqe; | 
 |  | 
 | 	if (!defer) | 
 | 		return __io_post_aux_cqe(ctx, user_data, res, cflags, false); | 
 |  | 
 | 	lockdep_assert_held(&ctx->uring_lock); | 
 |  | 
 | 	if (ctx->submit_state.cqes_count == ARRAY_SIZE(ctx->completion_cqes)) { | 
 | 		__io_cq_lock(ctx); | 
 | 		__io_flush_post_cqes(ctx); | 
 | 		/* no need to flush - flush is deferred */ | 
 | 		__io_cq_unlock_post(ctx); | 
 | 	} | 
 |  | 
 | 	/* For defered completions this is not as strict as it is otherwise, | 
 | 	 * however it's main job is to prevent unbounded posted completions, | 
 | 	 * and in that it works just as well. | 
 | 	 */ | 
 | 	if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) | 
 | 		return false; | 
 |  | 
 | 	cqe = &ctx->completion_cqes[ctx->submit_state.cqes_count++]; | 
 | 	cqe->user_data = user_data; | 
 | 	cqe->res = res; | 
 | 	cqe->flags = cflags; | 
 | 	return true; | 
 | } | 
 |  | 
 | static void __io_req_complete_post(struct io_kiocb *req, unsigned issue_flags) | 
 | { | 
 | 	struct io_ring_ctx *ctx = req->ctx; | 
 | 	struct io_rsrc_node *rsrc_node = NULL; | 
 |  | 
 | 	io_cq_lock(ctx); | 
 | 	if (!(req->flags & REQ_F_CQE_SKIP)) { | 
 | 		if (!io_fill_cqe_req(ctx, req)) | 
 | 			io_req_cqe_overflow(req); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If we're the last reference to this request, add to our locked | 
 | 	 * free_list cache. | 
 | 	 */ | 
 | 	if (req_ref_put_and_test(req)) { | 
 | 		if (req->flags & IO_REQ_LINK_FLAGS) { | 
 | 			if (req->flags & IO_DISARM_MASK) | 
 | 				io_disarm_next(req); | 
 | 			if (req->link) { | 
 | 				io_req_task_queue(req->link); | 
 | 				req->link = NULL; | 
 | 			} | 
 | 		} | 
 | 		io_put_kbuf_comp(req); | 
 | 		if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS)) | 
 | 			io_clean_op(req); | 
 | 		io_put_file(req); | 
 |  | 
 | 		rsrc_node = req->rsrc_node; | 
 | 		/* | 
 | 		 * Selected buffer deallocation in io_clean_op() assumes that | 
 | 		 * we don't hold ->completion_lock. Clean them here to avoid | 
 | 		 * deadlocks. | 
 | 		 */ | 
 | 		io_put_task_remote(req->task); | 
 | 		wq_list_add_head(&req->comp_list, &ctx->locked_free_list); | 
 | 		ctx->locked_free_nr++; | 
 | 	} | 
 | 	io_cq_unlock_post(ctx); | 
 |  | 
 | 	if (rsrc_node) { | 
 | 		io_ring_submit_lock(ctx, issue_flags); | 
 | 		io_put_rsrc_node(ctx, rsrc_node); | 
 | 		io_ring_submit_unlock(ctx, issue_flags); | 
 | 	} | 
 | } | 
 |  | 
 | void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags) | 
 | { | 
 | 	if (req->ctx->task_complete && req->ctx->submitter_task != current) { | 
 | 		req->io_task_work.func = io_req_task_complete; | 
 | 		io_req_task_work_add(req); | 
 | 	} else if (!(issue_flags & IO_URING_F_UNLOCKED) || | 
 | 		   !(req->ctx->flags & IORING_SETUP_IOPOLL)) { | 
 | 		__io_req_complete_post(req, issue_flags); | 
 | 	} else { | 
 | 		struct io_ring_ctx *ctx = req->ctx; | 
 |  | 
 | 		mutex_lock(&ctx->uring_lock); | 
 | 		__io_req_complete_post(req, issue_flags & ~IO_URING_F_UNLOCKED); | 
 | 		mutex_unlock(&ctx->uring_lock); | 
 | 	} | 
 | } | 
 |  | 
 | void io_req_defer_failed(struct io_kiocb *req, s32 res) | 
 | 	__must_hold(&ctx->uring_lock) | 
 | { | 
 | 	const struct io_cold_def *def = &io_cold_defs[req->opcode]; | 
 |  | 
 | 	lockdep_assert_held(&req->ctx->uring_lock); | 
 |  | 
 | 	req_set_fail(req); | 
 | 	io_req_set_res(req, res, io_put_kbuf(req, IO_URING_F_UNLOCKED)); | 
 | 	if (def->fail) | 
 | 		def->fail(req); | 
 | 	io_req_complete_defer(req); | 
 | } | 
 |  | 
 | /* | 
 |  * Don't initialise the fields below on every allocation, but do that in | 
 |  * advance and keep them valid across allocations. | 
 |  */ | 
 | static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx) | 
 | { | 
 | 	req->ctx = ctx; | 
 | 	req->link = NULL; | 
 | 	req->async_data = NULL; | 
 | 	/* not necessary, but safer to zero */ | 
 | 	memset(&req->cqe, 0, sizeof(req->cqe)); | 
 | 	memset(&req->big_cqe, 0, sizeof(req->big_cqe)); | 
 | } | 
 |  | 
 | static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx, | 
 | 					struct io_submit_state *state) | 
 | { | 
 | 	spin_lock(&ctx->completion_lock); | 
 | 	wq_list_splice(&ctx->locked_free_list, &state->free_list); | 
 | 	ctx->locked_free_nr = 0; | 
 | 	spin_unlock(&ctx->completion_lock); | 
 | } | 
 |  | 
 | /* | 
 |  * A request might get retired back into the request caches even before opcode | 
 |  * handlers and io_issue_sqe() are done with it, e.g. inline completion path. | 
 |  * Because of that, io_alloc_req() should be called only under ->uring_lock | 
 |  * and with extra caution to not get a request that is still worked on. | 
 |  */ | 
 | __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx) | 
 | 	__must_hold(&ctx->uring_lock) | 
 | { | 
 | 	gfp_t gfp = GFP_KERNEL | __GFP_NOWARN; | 
 | 	void *reqs[IO_REQ_ALLOC_BATCH]; | 
 | 	int ret, i; | 
 |  | 
 | 	/* | 
 | 	 * If we have more than a batch's worth of requests in our IRQ side | 
 | 	 * locked cache, grab the lock and move them over to our submission | 
 | 	 * side cache. | 
 | 	 */ | 
 | 	if (data_race(ctx->locked_free_nr) > IO_COMPL_BATCH) { | 
 | 		io_flush_cached_locked_reqs(ctx, &ctx->submit_state); | 
 | 		if (!io_req_cache_empty(ctx)) | 
 | 			return true; | 
 | 	} | 
 |  | 
 | 	ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs); | 
 |  | 
 | 	/* | 
 | 	 * Bulk alloc is all-or-nothing. If we fail to get a batch, | 
 | 	 * retry single alloc to be on the safe side. | 
 | 	 */ | 
 | 	if (unlikely(ret <= 0)) { | 
 | 		reqs[0] = kmem_cache_alloc(req_cachep, gfp); | 
 | 		if (!reqs[0]) | 
 | 			return false; | 
 | 		ret = 1; | 
 | 	} | 
 |  | 
 | 	percpu_ref_get_many(&ctx->refs, ret); | 
 | 	for (i = 0; i < ret; i++) { | 
 | 		struct io_kiocb *req = reqs[i]; | 
 |  | 
 | 		io_preinit_req(req, ctx); | 
 | 		io_req_add_to_cache(req, ctx); | 
 | 	} | 
 | 	return true; | 
 | } | 
 |  | 
 | __cold void io_free_req(struct io_kiocb *req) | 
 | { | 
 | 	/* refs were already put, restore them for io_req_task_complete() */ | 
 | 	req->flags &= ~REQ_F_REFCOUNT; | 
 | 	/* we only want to free it, don't post CQEs */ | 
 | 	req->flags |= REQ_F_CQE_SKIP; | 
 | 	req->io_task_work.func = io_req_task_complete; | 
 | 	io_req_task_work_add(req); | 
 | } | 
 |  | 
 | static void __io_req_find_next_prep(struct io_kiocb *req) | 
 | { | 
 | 	struct io_ring_ctx *ctx = req->ctx; | 
 |  | 
 | 	spin_lock(&ctx->completion_lock); | 
 | 	io_disarm_next(req); | 
 | 	spin_unlock(&ctx->completion_lock); | 
 | } | 
 |  | 
 | static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req) | 
 | { | 
 | 	struct io_kiocb *nxt; | 
 |  | 
 | 	/* | 
 | 	 * If LINK is set, we have dependent requests in this chain. If we | 
 | 	 * didn't fail this request, queue the first one up, moving any other | 
 | 	 * dependencies to the next request. In case of failure, fail the rest | 
 | 	 * of the chain. | 
 | 	 */ | 
 | 	if (unlikely(req->flags & IO_DISARM_MASK)) | 
 | 		__io_req_find_next_prep(req); | 
 | 	nxt = req->link; | 
 | 	req->link = NULL; | 
 | 	return nxt; | 
 | } | 
 |  | 
 | static void ctx_flush_and_put(struct io_ring_ctx *ctx, struct io_tw_state *ts) | 
 | { | 
 | 	if (!ctx) | 
 | 		return; | 
 | 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) | 
 | 		atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); | 
 | 	if (ts->locked) { | 
 | 		io_submit_flush_completions(ctx); | 
 | 		mutex_unlock(&ctx->uring_lock); | 
 | 		ts->locked = false; | 
 | 	} | 
 | 	percpu_ref_put(&ctx->refs); | 
 | } | 
 |  | 
 | static unsigned int handle_tw_list(struct llist_node *node, | 
 | 				   struct io_ring_ctx **ctx, | 
 | 				   struct io_tw_state *ts, | 
 | 				   struct llist_node *last) | 
 | { | 
 | 	unsigned int count = 0; | 
 |  | 
 | 	while (node && node != last) { | 
 | 		struct llist_node *next = node->next; | 
 | 		struct io_kiocb *req = container_of(node, struct io_kiocb, | 
 | 						    io_task_work.node); | 
 |  | 
 | 		prefetch(container_of(next, struct io_kiocb, io_task_work.node)); | 
 |  | 
 | 		if (req->ctx != *ctx) { | 
 | 			ctx_flush_and_put(*ctx, ts); | 
 | 			*ctx = req->ctx; | 
 | 			/* if not contended, grab and improve batching */ | 
 | 			ts->locked = mutex_trylock(&(*ctx)->uring_lock); | 
 | 			percpu_ref_get(&(*ctx)->refs); | 
 | 		} | 
 | 		INDIRECT_CALL_2(req->io_task_work.func, | 
 | 				io_poll_task_func, io_req_rw_complete, | 
 | 				req, ts); | 
 | 		node = next; | 
 | 		count++; | 
 | 		if (unlikely(need_resched())) { | 
 | 			ctx_flush_and_put(*ctx, ts); | 
 | 			*ctx = NULL; | 
 | 			cond_resched(); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return count; | 
 | } | 
 |  | 
 | /** | 
 |  * io_llist_xchg - swap all entries in a lock-less list | 
 |  * @head:	the head of lock-less list to delete all entries | 
 |  * @new:	new entry as the head of the list | 
 |  * | 
 |  * If list is empty, return NULL, otherwise, return the pointer to the first entry. | 
 |  * The order of entries returned is from the newest to the oldest added one. | 
 |  */ | 
 | static inline struct llist_node *io_llist_xchg(struct llist_head *head, | 
 | 					       struct llist_node *new) | 
 | { | 
 | 	return xchg(&head->first, new); | 
 | } | 
 |  | 
 | /** | 
 |  * io_llist_cmpxchg - possibly swap all entries in a lock-less list | 
 |  * @head:	the head of lock-less list to delete all entries | 
 |  * @old:	expected old value of the first entry of the list | 
 |  * @new:	new entry as the head of the list | 
 |  * | 
 |  * perform a cmpxchg on the first entry of the list. | 
 |  */ | 
 |  | 
 | static inline struct llist_node *io_llist_cmpxchg(struct llist_head *head, | 
 | 						  struct llist_node *old, | 
 | 						  struct llist_node *new) | 
 | { | 
 | 	return cmpxchg(&head->first, old, new); | 
 | } | 
 |  | 
 | static __cold void io_fallback_tw(struct io_uring_task *tctx, bool sync) | 
 | { | 
 | 	struct llist_node *node = llist_del_all(&tctx->task_list); | 
 | 	struct io_ring_ctx *last_ctx = NULL; | 
 | 	struct io_kiocb *req; | 
 |  | 
 | 	while (node) { | 
 | 		req = container_of(node, struct io_kiocb, io_task_work.node); | 
 | 		node = node->next; | 
 | 		if (sync && last_ctx != req->ctx) { | 
 | 			if (last_ctx) { | 
 | 				flush_delayed_work(&last_ctx->fallback_work); | 
 | 				percpu_ref_put(&last_ctx->refs); | 
 | 			} | 
 | 			last_ctx = req->ctx; | 
 | 			percpu_ref_get(&last_ctx->refs); | 
 | 		} | 
 | 		if (llist_add(&req->io_task_work.node, | 
 | 			      &req->ctx->fallback_llist)) | 
 | 			schedule_delayed_work(&req->ctx->fallback_work, 1); | 
 | 	} | 
 |  | 
 | 	if (last_ctx) { | 
 | 		flush_delayed_work(&last_ctx->fallback_work); | 
 | 		percpu_ref_put(&last_ctx->refs); | 
 | 	} | 
 | } | 
 |  | 
 | void tctx_task_work(struct callback_head *cb) | 
 | { | 
 | 	struct io_tw_state ts = {}; | 
 | 	struct io_ring_ctx *ctx = NULL; | 
 | 	struct io_uring_task *tctx = container_of(cb, struct io_uring_task, | 
 | 						  task_work); | 
 | 	struct llist_node fake = {}; | 
 | 	struct llist_node *node; | 
 | 	unsigned int loops = 0; | 
 | 	unsigned int count = 0; | 
 |  | 
 | 	if (unlikely(current->flags & PF_EXITING)) { | 
 | 		io_fallback_tw(tctx, true); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	do { | 
 | 		loops++; | 
 | 		node = io_llist_xchg(&tctx->task_list, &fake); | 
 | 		count += handle_tw_list(node, &ctx, &ts, &fake); | 
 |  | 
 | 		/* skip expensive cmpxchg if there are items in the list */ | 
 | 		if (READ_ONCE(tctx->task_list.first) != &fake) | 
 | 			continue; | 
 | 		if (ts.locked && !wq_list_empty(&ctx->submit_state.compl_reqs)) { | 
 | 			io_submit_flush_completions(ctx); | 
 | 			if (READ_ONCE(tctx->task_list.first) != &fake) | 
 | 				continue; | 
 | 		} | 
 | 		node = io_llist_cmpxchg(&tctx->task_list, &fake, NULL); | 
 | 	} while (node != &fake); | 
 |  | 
 | 	ctx_flush_and_put(ctx, &ts); | 
 |  | 
 | 	/* relaxed read is enough as only the task itself sets ->in_cancel */ | 
 | 	if (unlikely(atomic_read(&tctx->in_cancel))) | 
 | 		io_uring_drop_tctx_refs(current); | 
 |  | 
 | 	trace_io_uring_task_work_run(tctx, count, loops); | 
 | } | 
 |  | 
 | static inline void io_req_local_work_add(struct io_kiocb *req, unsigned flags) | 
 | { | 
 | 	struct io_ring_ctx *ctx = req->ctx; | 
 | 	unsigned nr_wait, nr_tw, nr_tw_prev; | 
 | 	struct llist_node *first; | 
 |  | 
 | 	if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) | 
 | 		flags &= ~IOU_F_TWQ_LAZY_WAKE; | 
 |  | 
 | 	first = READ_ONCE(ctx->work_llist.first); | 
 | 	do { | 
 | 		nr_tw_prev = 0; | 
 | 		if (first) { | 
 | 			struct io_kiocb *first_req = container_of(first, | 
 | 							struct io_kiocb, | 
 | 							io_task_work.node); | 
 | 			/* | 
 | 			 * Might be executed at any moment, rely on | 
 | 			 * SLAB_TYPESAFE_BY_RCU to keep it alive. | 
 | 			 */ | 
 | 			nr_tw_prev = READ_ONCE(first_req->nr_tw); | 
 | 		} | 
 | 		nr_tw = nr_tw_prev + 1; | 
 | 		/* Large enough to fail the nr_wait comparison below */ | 
 | 		if (!(flags & IOU_F_TWQ_LAZY_WAKE)) | 
 | 			nr_tw = -1U; | 
 |  | 
 | 		req->nr_tw = nr_tw; | 
 | 		req->io_task_work.node.next = first; | 
 | 	} while (!try_cmpxchg(&ctx->work_llist.first, &first, | 
 | 			      &req->io_task_work.node)); | 
 |  | 
 | 	if (!first) { | 
 | 		if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) | 
 | 			atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); | 
 | 		if (ctx->has_evfd) | 
 | 			io_eventfd_signal(ctx); | 
 | 	} | 
 |  | 
 | 	nr_wait = atomic_read(&ctx->cq_wait_nr); | 
 | 	/* no one is waiting */ | 
 | 	if (!nr_wait) | 
 | 		return; | 
 | 	/* either not enough or the previous add has already woken it up */ | 
 | 	if (nr_wait > nr_tw || nr_tw_prev >= nr_wait) | 
 | 		return; | 
 | 	/* pairs with set_current_state() in io_cqring_wait() */ | 
 | 	smp_mb__after_atomic(); | 
 | 	wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE); | 
 | } | 
 |  | 
 | static void io_req_normal_work_add(struct io_kiocb *req) | 
 | { | 
 | 	struct io_uring_task *tctx = req->task->io_uring; | 
 | 	struct io_ring_ctx *ctx = req->ctx; | 
 |  | 
 | 	/* task_work already pending, we're done */ | 
 | 	if (!llist_add(&req->io_task_work.node, &tctx->task_list)) | 
 | 		return; | 
 |  | 
 | 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) | 
 | 		atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); | 
 |  | 
 | 	if (likely(!task_work_add(req->task, &tctx->task_work, ctx->notify_method))) | 
 | 		return; | 
 |  | 
 | 	io_fallback_tw(tctx, false); | 
 | } | 
 |  | 
 | void __io_req_task_work_add(struct io_kiocb *req, unsigned flags) | 
 | { | 
 | 	if (req->ctx->flags & IORING_SETUP_DEFER_TASKRUN) { | 
 | 		rcu_read_lock(); | 
 | 		io_req_local_work_add(req, flags); | 
 | 		rcu_read_unlock(); | 
 | 	} else { | 
 | 		io_req_normal_work_add(req); | 
 | 	} | 
 | } | 
 |  | 
 | static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx) | 
 | { | 
 | 	struct llist_node *node; | 
 |  | 
 | 	node = llist_del_all(&ctx->work_llist); | 
 | 	while (node) { | 
 | 		struct io_kiocb *req = container_of(node, struct io_kiocb, | 
 | 						    io_task_work.node); | 
 |  | 
 | 		node = node->next; | 
 | 		io_req_normal_work_add(req); | 
 | 	} | 
 | } | 
 |  | 
 | static int __io_run_local_work(struct io_ring_ctx *ctx, struct io_tw_state *ts) | 
 | { | 
 | 	struct llist_node *node; | 
 | 	unsigned int loops = 0; | 
 | 	int ret = 0; | 
 |  | 
 | 	if (WARN_ON_ONCE(ctx->submitter_task != current)) | 
 | 		return -EEXIST; | 
 | 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) | 
 | 		atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); | 
 | again: | 
 | 	/* | 
 | 	 * llists are in reverse order, flip it back the right way before | 
 | 	 * running the pending items. | 
 | 	 */ | 
 | 	node = llist_reverse_order(io_llist_xchg(&ctx->work_llist, NULL)); | 
 | 	while (node) { | 
 | 		struct llist_node *next = node->next; | 
 | 		struct io_kiocb *req = container_of(node, struct io_kiocb, | 
 | 						    io_task_work.node); | 
 | 		prefetch(container_of(next, struct io_kiocb, io_task_work.node)); | 
 | 		INDIRECT_CALL_2(req->io_task_work.func, | 
 | 				io_poll_task_func, io_req_rw_complete, | 
 | 				req, ts); | 
 | 		ret++; | 
 | 		node = next; | 
 | 	} | 
 | 	loops++; | 
 |  | 
 | 	if (!llist_empty(&ctx->work_llist)) | 
 | 		goto again; | 
 | 	if (ts->locked) { | 
 | 		io_submit_flush_completions(ctx); | 
 | 		if (!llist_empty(&ctx->work_llist)) | 
 | 			goto again; | 
 | 	} | 
 | 	trace_io_uring_local_work_run(ctx, ret, loops); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static inline int io_run_local_work_locked(struct io_ring_ctx *ctx) | 
 | { | 
 | 	struct io_tw_state ts = { .locked = true, }; | 
 | 	int ret; | 
 |  | 
 | 	if (llist_empty(&ctx->work_llist)) | 
 | 		return 0; | 
 |  | 
 | 	ret = __io_run_local_work(ctx, &ts); | 
 | 	/* shouldn't happen! */ | 
 | 	if (WARN_ON_ONCE(!ts.locked)) | 
 | 		mutex_lock(&ctx->uring_lock); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int io_run_local_work(struct io_ring_ctx *ctx) | 
 | { | 
 | 	struct io_tw_state ts = {}; | 
 | 	int ret; | 
 |  | 
 | 	ts.locked = mutex_trylock(&ctx->uring_lock); | 
 | 	ret = __io_run_local_work(ctx, &ts); | 
 | 	if (ts.locked) | 
 | 		mutex_unlock(&ctx->uring_lock); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void io_req_task_cancel(struct io_kiocb *req, struct io_tw_state *ts) | 
 | { | 
 | 	io_tw_lock(req->ctx, ts); | 
 | 	io_req_defer_failed(req, req->cqe.res); | 
 | } | 
 |  | 
 | void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts) | 
 | { | 
 | 	io_tw_lock(req->ctx, ts); | 
 | 	/* req->task == current here, checking PF_EXITING is safe */ | 
 | 	if (unlikely(req->task->flags & PF_EXITING)) | 
 | 		io_req_defer_failed(req, -EFAULT); | 
 | 	else if (req->flags & REQ_F_FORCE_ASYNC) | 
 | 		io_queue_iowq(req, ts); | 
 | 	else | 
 | 		io_queue_sqe(req); | 
 | } | 
 |  | 
 | void io_req_task_queue_fail(struct io_kiocb *req, int ret) | 
 | { | 
 | 	io_req_set_res(req, ret, 0); | 
 | 	req->io_task_work.func = io_req_task_cancel; | 
 | 	io_req_task_work_add(req); | 
 | } | 
 |  | 
 | void io_req_task_queue(struct io_kiocb *req) | 
 | { | 
 | 	req->io_task_work.func = io_req_task_submit; | 
 | 	io_req_task_work_add(req); | 
 | } | 
 |  | 
 | void io_queue_next(struct io_kiocb *req) | 
 | { | 
 | 	struct io_kiocb *nxt = io_req_find_next(req); | 
 |  | 
 | 	if (nxt) | 
 | 		io_req_task_queue(nxt); | 
 | } | 
 |  | 
 | static void io_free_batch_list(struct io_ring_ctx *ctx, | 
 | 			       struct io_wq_work_node *node) | 
 | 	__must_hold(&ctx->uring_lock) | 
 | { | 
 | 	do { | 
 | 		struct io_kiocb *req = container_of(node, struct io_kiocb, | 
 | 						    comp_list); | 
 |  | 
 | 		if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) { | 
 | 			if (req->flags & REQ_F_REFCOUNT) { | 
 | 				node = req->comp_list.next; | 
 | 				if (!req_ref_put_and_test(req)) | 
 | 					continue; | 
 | 			} | 
 | 			if ((req->flags & REQ_F_POLLED) && req->apoll) { | 
 | 				struct async_poll *apoll = req->apoll; | 
 |  | 
 | 				if (apoll->double_poll) | 
 | 					kfree(apoll->double_poll); | 
 | 				if (!io_alloc_cache_put(&ctx->apoll_cache, &apoll->cache)) | 
 | 					kfree(apoll); | 
 | 				req->flags &= ~REQ_F_POLLED; | 
 | 			} | 
 | 			if (req->flags & IO_REQ_LINK_FLAGS) | 
 | 				io_queue_next(req); | 
 | 			if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS)) | 
 | 				io_clean_op(req); | 
 | 		} | 
 | 		io_put_file(req); | 
 |  | 
 | 		io_req_put_rsrc_locked(req, ctx); | 
 |  | 
 | 		io_put_task(req->task); | 
 | 		node = req->comp_list.next; | 
 | 		io_req_add_to_cache(req, ctx); | 
 | 	} while (node); | 
 | } | 
 |  | 
 | void __io_submit_flush_completions(struct io_ring_ctx *ctx) | 
 | 	__must_hold(&ctx->uring_lock) | 
 | { | 
 | 	struct io_submit_state *state = &ctx->submit_state; | 
 | 	struct io_wq_work_node *node; | 
 |  | 
 | 	__io_cq_lock(ctx); | 
 | 	/* must come first to preserve CQE ordering in failure cases */ | 
 | 	if (state->cqes_count) | 
 | 		__io_flush_post_cqes(ctx); | 
 | 	__wq_list_for_each(node, &state->compl_reqs) { | 
 | 		struct io_kiocb *req = container_of(node, struct io_kiocb, | 
 | 					    comp_list); | 
 |  | 
 | 		if (!(req->flags & REQ_F_CQE_SKIP) && | 
 | 		    unlikely(!io_fill_cqe_req(ctx, req))) { | 
 | 			if (ctx->lockless_cq) { | 
 | 				spin_lock(&ctx->completion_lock); | 
 | 				io_req_cqe_overflow(req); | 
 | 				spin_unlock(&ctx->completion_lock); | 
 | 			} else { | 
 | 				io_req_cqe_overflow(req); | 
 | 			} | 
 | 		} | 
 | 	} | 
 | 	__io_cq_unlock_post(ctx); | 
 |  | 
 | 	if (!wq_list_empty(&ctx->submit_state.compl_reqs)) { | 
 | 		io_free_batch_list(ctx, state->compl_reqs.first); | 
 | 		INIT_WQ_LIST(&state->compl_reqs); | 
 | 	} | 
 | } | 
 |  | 
 | static unsigned io_cqring_events(struct io_ring_ctx *ctx) | 
 | { | 
 | 	/* See comment at the top of this file */ | 
 | 	smp_rmb(); | 
 | 	return __io_cqring_events(ctx); | 
 | } | 
 |  | 
 | /* | 
 |  * We can't just wait for polled events to come to us, we have to actively | 
 |  * find and complete them. | 
 |  */ | 
 | static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx) | 
 | { | 
 | 	if (!(ctx->flags & IORING_SETUP_IOPOLL)) | 
 | 		return; | 
 |  | 
 | 	mutex_lock(&ctx->uring_lock); | 
 | 	while (!wq_list_empty(&ctx->iopoll_list)) { | 
 | 		/* let it sleep and repeat later if can't complete a request */ | 
 | 		if (io_do_iopoll(ctx, true) == 0) | 
 | 			break; | 
 | 		/* | 
 | 		 * Ensure we allow local-to-the-cpu processing to take place, | 
 | 		 * in this case we need to ensure that we reap all events. | 
 | 		 * Also let task_work, etc. to progress by releasing the mutex | 
 | 		 */ | 
 | 		if (need_resched()) { | 
 | 			mutex_unlock(&ctx->uring_lock); | 
 | 			cond_resched(); | 
 | 			mutex_lock(&ctx->uring_lock); | 
 | 		} | 
 | 	} | 
 | 	mutex_unlock(&ctx->uring_lock); | 
 | } | 
 |  | 
 | static int io_iopoll_check(struct io_ring_ctx *ctx, long min) | 
 | { | 
 | 	unsigned int nr_events = 0; | 
 | 	unsigned long check_cq; | 
 |  | 
 | 	if (!io_allowed_run_tw(ctx)) | 
 | 		return -EEXIST; | 
 |  | 
 | 	check_cq = READ_ONCE(ctx->check_cq); | 
 | 	if (unlikely(check_cq)) { | 
 | 		if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) | 
 | 			__io_cqring_overflow_flush(ctx); | 
 | 		/* | 
 | 		 * Similarly do not spin if we have not informed the user of any | 
 | 		 * dropped CQE. | 
 | 		 */ | 
 | 		if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) | 
 | 			return -EBADR; | 
 | 	} | 
 | 	/* | 
 | 	 * Don't enter poll loop if we already have events pending. | 
 | 	 * If we do, we can potentially be spinning for commands that | 
 | 	 * already triggered a CQE (eg in error). | 
 | 	 */ | 
 | 	if (io_cqring_events(ctx)) | 
 | 		return 0; | 
 |  | 
 | 	do { | 
 | 		int ret = 0; | 
 |  | 
 | 		/* | 
 | 		 * If a submit got punted to a workqueue, we can have the | 
 | 		 * application entering polling for a command before it gets | 
 | 		 * issued. That app will hold the uring_lock for the duration | 
 | 		 * of the poll right here, so we need to take a breather every | 
 | 		 * now and then to ensure that the issue has a chance to add | 
 | 		 * the poll to the issued list. Otherwise we can spin here | 
 | 		 * forever, while the workqueue is stuck trying to acquire the | 
 | 		 * very same mutex. | 
 | 		 */ | 
 | 		if (wq_list_empty(&ctx->iopoll_list) || | 
 | 		    io_task_work_pending(ctx)) { | 
 | 			u32 tail = ctx->cached_cq_tail; | 
 |  | 
 | 			(void) io_run_local_work_locked(ctx); | 
 |  | 
 | 			if (task_work_pending(current) || | 
 | 			    wq_list_empty(&ctx->iopoll_list)) { | 
 | 				mutex_unlock(&ctx->uring_lock); | 
 | 				io_run_task_work(); | 
 | 				mutex_lock(&ctx->uring_lock); | 
 | 			} | 
 | 			/* some requests don't go through iopoll_list */ | 
 | 			if (tail != ctx->cached_cq_tail || | 
 | 			    wq_list_empty(&ctx->iopoll_list)) | 
 | 				break; | 
 | 		} | 
 | 		ret = io_do_iopoll(ctx, !min); | 
 | 		if (unlikely(ret < 0)) | 
 | 			return ret; | 
 |  | 
 | 		if (task_sigpending(current)) | 
 | 			return -EINTR; | 
 | 		if (need_resched()) | 
 | 			break; | 
 |  | 
 | 		nr_events += ret; | 
 | 	} while (nr_events < min); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts) | 
 | { | 
 | 	if (ts->locked) | 
 | 		io_req_complete_defer(req); | 
 | 	else | 
 | 		io_req_complete_post(req, IO_URING_F_UNLOCKED); | 
 | } | 
 |  | 
 | /* | 
 |  * After the iocb has been issued, it's safe to be found on the poll list. | 
 |  * Adding the kiocb to the list AFTER submission ensures that we don't | 
 |  * find it from a io_do_iopoll() thread before the issuer is done | 
 |  * accessing the kiocb cookie. | 
 |  */ | 
 | static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags) | 
 | { | 
 | 	struct io_ring_ctx *ctx = req->ctx; | 
 | 	const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED; | 
 |  | 
 | 	/* workqueue context doesn't hold uring_lock, grab it now */ | 
 | 	if (unlikely(needs_lock)) | 
 | 		mutex_lock(&ctx->uring_lock); | 
 |  | 
 | 	/* | 
 | 	 * Track whether we have multiple files in our lists. This will impact | 
 | 	 * how we do polling eventually, not spinning if we're on potentially | 
 | 	 * different devices. | 
 | 	 */ | 
 | 	if (wq_list_empty(&ctx->iopoll_list)) { | 
 | 		ctx->poll_multi_queue = false; | 
 | 	} else if (!ctx->poll_multi_queue) { | 
 | 		struct io_kiocb *list_req; | 
 |  | 
 | 		list_req = container_of(ctx->iopoll_list.first, struct io_kiocb, | 
 | 					comp_list); | 
 | 		if (list_req->file != req->file) | 
 | 			ctx->poll_multi_queue = true; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * For fast devices, IO may have already completed. If it has, add | 
 | 	 * it to the front so we find it first. | 
 | 	 */ | 
 | 	if (READ_ONCE(req->iopoll_completed)) | 
 | 		wq_list_add_head(&req->comp_list, &ctx->iopoll_list); | 
 | 	else | 
 | 		wq_list_add_tail(&req->comp_list, &ctx->iopoll_list); | 
 |  | 
 | 	if (unlikely(needs_lock)) { | 
 | 		/* | 
 | 		 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle | 
 | 		 * in sq thread task context or in io worker task context. If | 
 | 		 * current task context is sq thread, we don't need to check | 
 | 		 * whether should wake up sq thread. | 
 | 		 */ | 
 | 		if ((ctx->flags & IORING_SETUP_SQPOLL) && | 
 | 		    wq_has_sleeper(&ctx->sq_data->wait)) | 
 | 			wake_up(&ctx->sq_data->wait); | 
 |  | 
 | 		mutex_unlock(&ctx->uring_lock); | 
 | 	} | 
 | } | 
 |  | 
 | unsigned int io_file_get_flags(struct file *file) | 
 | { | 
 | 	unsigned int res = 0; | 
 |  | 
 | 	if (S_ISREG(file_inode(file)->i_mode)) | 
 | 		res |= REQ_F_ISREG; | 
 | 	if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT)) | 
 | 		res |= REQ_F_SUPPORT_NOWAIT; | 
 | 	return res; | 
 | } | 
 |  | 
 | bool io_alloc_async_data(struct io_kiocb *req) | 
 | { | 
 | 	WARN_ON_ONCE(!io_cold_defs[req->opcode].async_size); | 
 | 	req->async_data = kmalloc(io_cold_defs[req->opcode].async_size, GFP_KERNEL); | 
 | 	if (req->async_data) { | 
 | 		req->flags |= REQ_F_ASYNC_DATA; | 
 | 		return false; | 
 | 	} | 
 | 	return true; | 
 | } | 
 |  | 
 | int io_req_prep_async(struct io_kiocb *req) | 
 | { | 
 | 	const struct io_cold_def *cdef = &io_cold_defs[req->opcode]; | 
 | 	const struct io_issue_def *def = &io_issue_defs[req->opcode]; | 
 |  | 
 | 	/* assign early for deferred execution for non-fixed file */ | 
 | 	if (def->needs_file && !(req->flags & REQ_F_FIXED_FILE) && !req->file) | 
 | 		req->file = io_file_get_normal(req, req->cqe.fd); | 
 | 	if (!cdef->prep_async) | 
 | 		return 0; | 
 | 	if (WARN_ON_ONCE(req_has_async_data(req))) | 
 | 		return -EFAULT; | 
 | 	if (!def->manual_alloc) { | 
 | 		if (io_alloc_async_data(req)) | 
 | 			return -EAGAIN; | 
 | 	} | 
 | 	return cdef->prep_async(req); | 
 | } | 
 |  | 
 | static u32 io_get_sequence(struct io_kiocb *req) | 
 | { | 
 | 	u32 seq = req->ctx->cached_sq_head; | 
 | 	struct io_kiocb *cur; | 
 |  | 
 | 	/* need original cached_sq_head, but it was increased for each req */ | 
 | 	io_for_each_link(cur, req) | 
 | 		seq--; | 
 | 	return seq; | 
 | } | 
 |  | 
 | static __cold void io_drain_req(struct io_kiocb *req) | 
 | 	__must_hold(&ctx->uring_lock) | 
 | { | 
 | 	struct io_ring_ctx *ctx = req->ctx; | 
 | 	struct io_defer_entry *de; | 
 | 	int ret; | 
 | 	u32 seq = io_get_sequence(req); | 
 |  | 
 | 	/* Still need defer if there is pending req in defer list. */ | 
 | 	spin_lock(&ctx->completion_lock); | 
 | 	if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) { | 
 | 		spin_unlock(&ctx->completion_lock); | 
 | queue: | 
 | 		ctx->drain_active = false; | 
 | 		io_req_task_queue(req); | 
 | 		return; | 
 | 	} | 
 | 	spin_unlock(&ctx->completion_lock); | 
 |  | 
 | 	io_prep_async_link(req); | 
 | 	de = kmalloc(sizeof(*de), GFP_KERNEL); | 
 | 	if (!de) { | 
 | 		ret = -ENOMEM; | 
 | 		io_req_defer_failed(req, ret); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	spin_lock(&ctx->completion_lock); | 
 | 	if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) { | 
 | 		spin_unlock(&ctx->completion_lock); | 
 | 		kfree(de); | 
 | 		goto queue; | 
 | 	} | 
 |  | 
 | 	trace_io_uring_defer(req); | 
 | 	de->req = req; | 
 | 	de->seq = seq; | 
 | 	list_add_tail(&de->list, &ctx->defer_list); | 
 | 	spin_unlock(&ctx->completion_lock); | 
 | } | 
 |  | 
 | static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def, | 
 | 			   unsigned int issue_flags) | 
 | { | 
 | 	if (req->file || !def->needs_file) | 
 | 		return true; | 
 |  | 
 | 	if (req->flags & REQ_F_FIXED_FILE) | 
 | 		req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags); | 
 | 	else | 
 | 		req->file = io_file_get_normal(req, req->cqe.fd); | 
 |  | 
 | 	return !!req->file; | 
 | } | 
 |  | 
 | static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags) | 
 | { | 
 | 	const struct io_issue_def *def = &io_issue_defs[req->opcode]; | 
 | 	const struct cred *creds = NULL; | 
 | 	int ret; | 
 |  | 
 | 	if (unlikely(!io_assign_file(req, def, issue_flags))) | 
 | 		return -EBADF; | 
 |  | 
 | 	if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred())) | 
 | 		creds = override_creds(req->creds); | 
 |  | 
 | 	if (!def->audit_skip) | 
 | 		audit_uring_entry(req->opcode); | 
 |  | 
 | 	ret = def->issue(req, issue_flags); | 
 |  | 
 | 	if (!def->audit_skip) | 
 | 		audit_uring_exit(!ret, ret); | 
 |  | 
 | 	if (creds) | 
 | 		revert_creds(creds); | 
 |  | 
 | 	if (ret == IOU_OK) { | 
 | 		if (issue_flags & IO_URING_F_COMPLETE_DEFER) | 
 | 			io_req_complete_defer(req); | 
 | 		else | 
 | 			io_req_complete_post(req, issue_flags); | 
 | 	} else if (ret != IOU_ISSUE_SKIP_COMPLETE) | 
 | 		return ret; | 
 |  | 
 | 	/* If the op doesn't have a file, we're not polling for it */ | 
 | 	if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue) | 
 | 		io_iopoll_req_issued(req, issue_flags); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts) | 
 | { | 
 | 	io_tw_lock(req->ctx, ts); | 
 | 	return io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_MULTISHOT| | 
 | 				 IO_URING_F_COMPLETE_DEFER); | 
 | } | 
 |  | 
 | struct io_wq_work *io_wq_free_work(struct io_wq_work *work) | 
 | { | 
 | 	struct io_kiocb *req = container_of(work, struct io_kiocb, work); | 
 | 	struct io_kiocb *nxt = NULL; | 
 |  | 
 | 	if (req_ref_put_and_test(req)) { | 
 | 		if (req->flags & IO_REQ_LINK_FLAGS) | 
 | 			nxt = io_req_find_next(req); | 
 | 		io_free_req(req); | 
 | 	} | 
 | 	return nxt ? &nxt->work : NULL; | 
 | } | 
 |  | 
 | void io_wq_submit_work(struct io_wq_work *work) | 
 | { | 
 | 	struct io_kiocb *req = container_of(work, struct io_kiocb, work); | 
 | 	const struct io_issue_def *def = &io_issue_defs[req->opcode]; | 
 | 	unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ; | 
 | 	bool needs_poll = false; | 
 | 	int ret = 0, err = -ECANCELED; | 
 |  | 
 | 	/* one will be dropped by ->io_wq_free_work() after returning to io-wq */ | 
 | 	if (!(req->flags & REQ_F_REFCOUNT)) | 
 | 		__io_req_set_refcount(req, 2); | 
 | 	else | 
 | 		req_ref_get(req); | 
 |  | 
 | 	io_arm_ltimeout(req); | 
 |  | 
 | 	/* either cancelled or io-wq is dying, so don't touch tctx->iowq */ | 
 | 	if (work->flags & IO_WQ_WORK_CANCEL) { | 
 | fail: | 
 | 		io_req_task_queue_fail(req, err); | 
 | 		return; | 
 | 	} | 
 | 	if (!io_assign_file(req, def, issue_flags)) { | 
 | 		err = -EBADF; | 
 | 		work->flags |= IO_WQ_WORK_CANCEL; | 
 | 		goto fail; | 
 | 	} | 
 |  | 
 | 	if (req->flags & REQ_F_FORCE_ASYNC) { | 
 | 		bool opcode_poll = def->pollin || def->pollout; | 
 |  | 
 | 		if (opcode_poll && file_can_poll(req->file)) { | 
 | 			needs_poll = true; | 
 | 			issue_flags |= IO_URING_F_NONBLOCK; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	do { | 
 | 		ret = io_issue_sqe(req, issue_flags); | 
 | 		if (ret != -EAGAIN) | 
 | 			break; | 
 |  | 
 | 		/* | 
 | 		 * If REQ_F_NOWAIT is set, then don't wait or retry with | 
 | 		 * poll. -EAGAIN is final for that case. | 
 | 		 */ | 
 | 		if (req->flags & REQ_F_NOWAIT) | 
 | 			break; | 
 |  | 
 | 		/* | 
 | 		 * We can get EAGAIN for iopolled IO even though we're | 
 | 		 * forcing a sync submission from here, since we can't | 
 | 		 * wait for request slots on the block side. | 
 | 		 */ | 
 | 		if (!needs_poll) { | 
 | 			if (!(req->ctx->flags & IORING_SETUP_IOPOLL)) | 
 | 				break; | 
 | 			if (io_wq_worker_stopped()) | 
 | 				break; | 
 | 			cond_resched(); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK) | 
 | 			return; | 
 | 		/* aborted or ready, in either case retry blocking */ | 
 | 		needs_poll = false; | 
 | 		issue_flags &= ~IO_URING_F_NONBLOCK; | 
 | 	} while (1); | 
 |  | 
 | 	/* avoid locking problems by failing it from a clean context */ | 
 | 	if (ret < 0) | 
 | 		io_req_task_queue_fail(req, ret); | 
 | } | 
 |  | 
 | inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd, | 
 | 				      unsigned int issue_flags) | 
 | { | 
 | 	struct io_ring_ctx *ctx = req->ctx; | 
 | 	struct io_fixed_file *slot; | 
 | 	struct file *file = NULL; | 
 |  | 
 | 	io_ring_submit_lock(ctx, issue_flags); | 
 |  | 
 | 	if (unlikely((unsigned int)fd >= ctx->nr_user_files)) | 
 | 		goto out; | 
 | 	fd = array_index_nospec(fd, ctx->nr_user_files); | 
 | 	slot = io_fixed_file_slot(&ctx->file_table, fd); | 
 | 	file = io_slot_file(slot); | 
 | 	req->flags |= io_slot_flags(slot); | 
 | 	io_req_set_rsrc_node(req, ctx, 0); | 
 | out: | 
 | 	io_ring_submit_unlock(ctx, issue_flags); | 
 | 	return file; | 
 | } | 
 |  | 
 | struct file *io_file_get_normal(struct io_kiocb *req, int fd) | 
 | { | 
 | 	struct file *file = fget(fd); | 
 |  | 
 | 	trace_io_uring_file_get(req, fd); | 
 |  | 
 | 	/* we don't allow fixed io_uring files */ | 
 | 	if (file && io_is_uring_fops(file)) | 
 | 		io_req_track_inflight(req); | 
 | 	return file; | 
 | } | 
 |  | 
 | static void io_queue_async(struct io_kiocb *req, int ret) | 
 | 	__must_hold(&req->ctx->uring_lock) | 
 | { | 
 | 	struct io_kiocb *linked_timeout; | 
 |  | 
 | 	if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) { | 
 | 		io_req_defer_failed(req, ret); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	linked_timeout = io_prep_linked_timeout(req); | 
 |  | 
 | 	switch (io_arm_poll_handler(req, 0)) { | 
 | 	case IO_APOLL_READY: | 
 | 		io_kbuf_recycle(req, 0); | 
 | 		io_req_task_queue(req); | 
 | 		break; | 
 | 	case IO_APOLL_ABORTED: | 
 | 		io_kbuf_recycle(req, 0); | 
 | 		io_queue_iowq(req, NULL); | 
 | 		break; | 
 | 	case IO_APOLL_OK: | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	if (linked_timeout) | 
 | 		io_queue_linked_timeout(linked_timeout); | 
 | } | 
 |  | 
 | static inline void io_queue_sqe(struct io_kiocb *req) | 
 | 	__must_hold(&req->ctx->uring_lock) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER); | 
 |  | 
 | 	/* | 
 | 	 * We async punt it if the file wasn't marked NOWAIT, or if the file | 
 | 	 * doesn't support non-blocking read/write attempts | 
 | 	 */ | 
 | 	if (likely(!ret)) | 
 | 		io_arm_ltimeout(req); | 
 | 	else | 
 | 		io_queue_async(req, ret); | 
 | } | 
 |  | 
 | static void io_queue_sqe_fallback(struct io_kiocb *req) | 
 | 	__must_hold(&req->ctx->uring_lock) | 
 | { | 
 | 	if (unlikely(req->flags & REQ_F_FAIL)) { | 
 | 		/* | 
 | 		 * We don't submit, fail them all, for that replace hardlinks | 
 | 		 * with normal links. Extra REQ_F_LINK is tolerated. | 
 | 		 */ | 
 | 		req->flags &= ~REQ_F_HARDLINK; | 
 | 		req->flags |= REQ_F_LINK; | 
 | 		io_req_defer_failed(req, req->cqe.res); | 
 | 	} else { | 
 | 		int ret = io_req_prep_async(req); | 
 |  | 
 | 		if (unlikely(ret)) { | 
 | 			io_req_defer_failed(req, ret); | 
 | 			return; | 
 | 		} | 
 |  | 
 | 		if (unlikely(req->ctx->drain_active)) | 
 | 			io_drain_req(req); | 
 | 		else | 
 | 			io_queue_iowq(req, NULL); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Check SQE restrictions (opcode and flags). | 
 |  * | 
 |  * Returns 'true' if SQE is allowed, 'false' otherwise. | 
 |  */ | 
 | static inline bool io_check_restriction(struct io_ring_ctx *ctx, | 
 | 					struct io_kiocb *req, | 
 | 					unsigned int sqe_flags) | 
 | { | 
 | 	if (!test_bit(req->opcode, ctx->restrictions.sqe_op)) | 
 | 		return false; | 
 |  | 
 | 	if ((sqe_flags & ctx->restrictions.sqe_flags_required) != | 
 | 	    ctx->restrictions.sqe_flags_required) | 
 | 		return false; | 
 |  | 
 | 	if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed | | 
 | 			  ctx->restrictions.sqe_flags_required)) | 
 | 		return false; | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static void io_init_req_drain(struct io_kiocb *req) | 
 | { | 
 | 	struct io_ring_ctx *ctx = req->ctx; | 
 | 	struct io_kiocb *head = ctx->submit_state.link.head; | 
 |  | 
 | 	ctx->drain_active = true; | 
 | 	if (head) { | 
 | 		/* | 
 | 		 * If we need to drain a request in the middle of a link, drain | 
 | 		 * the head request and the next request/link after the current | 
 | 		 * link. Considering sequential execution of links, | 
 | 		 * REQ_F_IO_DRAIN will be maintained for every request of our | 
 | 		 * link. | 
 | 		 */ | 
 | 		head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; | 
 | 		ctx->drain_next = true; | 
 | 	} | 
 | } | 
 |  | 
 | static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req, | 
 | 		       const struct io_uring_sqe *sqe) | 
 | 	__must_hold(&ctx->uring_lock) | 
 | { | 
 | 	const struct io_issue_def *def; | 
 | 	unsigned int sqe_flags; | 
 | 	int personality; | 
 | 	u8 opcode; | 
 |  | 
 | 	/* req is partially pre-initialised, see io_preinit_req() */ | 
 | 	req->opcode = opcode = READ_ONCE(sqe->opcode); | 
 | 	/* same numerical values with corresponding REQ_F_*, safe to copy */ | 
 | 	req->flags = sqe_flags = READ_ONCE(sqe->flags); | 
 | 	req->cqe.user_data = READ_ONCE(sqe->user_data); | 
 | 	req->file = NULL; | 
 | 	req->rsrc_node = NULL; | 
 | 	req->task = current; | 
 |  | 
 | 	if (unlikely(opcode >= IORING_OP_LAST)) { | 
 | 		req->opcode = 0; | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	def = &io_issue_defs[opcode]; | 
 | 	if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) { | 
 | 		/* enforce forwards compatibility on users */ | 
 | 		if (sqe_flags & ~SQE_VALID_FLAGS) | 
 | 			return -EINVAL; | 
 | 		if (sqe_flags & IOSQE_BUFFER_SELECT) { | 
 | 			if (!def->buffer_select) | 
 | 				return -EOPNOTSUPP; | 
 | 			req->buf_index = READ_ONCE(sqe->buf_group); | 
 | 		} | 
 | 		if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS) | 
 | 			ctx->drain_disabled = true; | 
 | 		if (sqe_flags & IOSQE_IO_DRAIN) { | 
 | 			if (ctx->drain_disabled) | 
 | 				return -EOPNOTSUPP; | 
 | 			io_init_req_drain(req); | 
 | 		} | 
 | 	} | 
 | 	if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) { | 
 | 		if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags)) | 
 | 			return -EACCES; | 
 | 		/* knock it to the slow queue path, will be drained there */ | 
 | 		if (ctx->drain_active) | 
 | 			req->flags |= REQ_F_FORCE_ASYNC; | 
 | 		/* if there is no link, we're at "next" request and need to drain */ | 
 | 		if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) { | 
 | 			ctx->drain_next = false; | 
 | 			ctx->drain_active = true; | 
 | 			req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (!def->ioprio && sqe->ioprio) | 
 | 		return -EINVAL; | 
 | 	if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (def->needs_file) { | 
 | 		struct io_submit_state *state = &ctx->submit_state; | 
 |  | 
 | 		req->cqe.fd = READ_ONCE(sqe->fd); | 
 |  | 
 | 		/* | 
 | 		 * Plug now if we have more than 2 IO left after this, and the | 
 | 		 * target is potentially a read/write to block based storage. | 
 | 		 */ | 
 | 		if (state->need_plug && def->plug) { | 
 | 			state->plug_started = true; | 
 | 			state->need_plug = false; | 
 | 			blk_start_plug_nr_ios(&state->plug, state->submit_nr); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	personality = READ_ONCE(sqe->personality); | 
 | 	if (personality) { | 
 | 		int ret; | 
 |  | 
 | 		req->creds = xa_load(&ctx->personalities, personality); | 
 | 		if (!req->creds) | 
 | 			return -EINVAL; | 
 | 		get_cred(req->creds); | 
 | 		ret = security_uring_override_creds(req->creds); | 
 | 		if (ret) { | 
 | 			put_cred(req->creds); | 
 | 			return ret; | 
 | 		} | 
 | 		req->flags |= REQ_F_CREDS; | 
 | 	} | 
 |  | 
 | 	return def->prep(req, sqe); | 
 | } | 
 |  | 
 | static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe, | 
 | 				      struct io_kiocb *req, int ret) | 
 | { | 
 | 	struct io_ring_ctx *ctx = req->ctx; | 
 | 	struct io_submit_link *link = &ctx->submit_state.link; | 
 | 	struct io_kiocb *head = link->head; | 
 |  | 
 | 	trace_io_uring_req_failed(sqe, req, ret); | 
 |  | 
 | 	/* | 
 | 	 * Avoid breaking links in the middle as it renders links with SQPOLL | 
 | 	 * unusable. Instead of failing eagerly, continue assembling the link if | 
 | 	 * applicable and mark the head with REQ_F_FAIL. The link flushing code | 
 | 	 * should find the flag and handle the rest. | 
 | 	 */ | 
 | 	req_fail_link_node(req, ret); | 
 | 	if (head && !(head->flags & REQ_F_FAIL)) | 
 | 		req_fail_link_node(head, -ECANCELED); | 
 |  | 
 | 	if (!(req->flags & IO_REQ_LINK_FLAGS)) { | 
 | 		if (head) { | 
 | 			link->last->link = req; | 
 | 			link->head = NULL; | 
 | 			req = head; | 
 | 		} | 
 | 		io_queue_sqe_fallback(req); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	if (head) | 
 | 		link->last->link = req; | 
 | 	else | 
 | 		link->head = req; | 
 | 	link->last = req; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req, | 
 | 			 const struct io_uring_sqe *sqe) | 
 | 	__must_hold(&ctx->uring_lock) | 
 | { | 
 | 	struct io_submit_link *link = &ctx->submit_state.link; | 
 | 	int ret; | 
 |  | 
 | 	ret = io_init_req(ctx, req, sqe); | 
 | 	if (unlikely(ret)) | 
 | 		return io_submit_fail_init(sqe, req, ret); | 
 |  | 
 | 	trace_io_uring_submit_req(req); | 
 |  | 
 | 	/* | 
 | 	 * If we already have a head request, queue this one for async | 
 | 	 * submittal once the head completes. If we don't have a head but | 
 | 	 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be | 
 | 	 * submitted sync once the chain is complete. If none of those | 
 | 	 * conditions are true (normal request), then just queue it. | 
 | 	 */ | 
 | 	if (unlikely(link->head)) { | 
 | 		ret = io_req_prep_async(req); | 
 | 		if (unlikely(ret)) | 
 | 			return io_submit_fail_init(sqe, req, ret); | 
 |  | 
 | 		trace_io_uring_link(req, link->head); | 
 | 		link->last->link = req; | 
 | 		link->last = req; | 
 |  | 
 | 		if (req->flags & IO_REQ_LINK_FLAGS) | 
 | 			return 0; | 
 | 		/* last request of the link, flush it */ | 
 | 		req = link->head; | 
 | 		link->head = NULL; | 
 | 		if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL)) | 
 | 			goto fallback; | 
 |  | 
 | 	} else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS | | 
 | 					  REQ_F_FORCE_ASYNC | REQ_F_FAIL))) { | 
 | 		if (req->flags & IO_REQ_LINK_FLAGS) { | 
 | 			link->head = req; | 
 | 			link->last = req; | 
 | 		} else { | 
 | fallback: | 
 | 			io_queue_sqe_fallback(req); | 
 | 		} | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	io_queue_sqe(req); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Batched submission is done, ensure local IO is flushed out. | 
 |  */ | 
 | static void io_submit_state_end(struct io_ring_ctx *ctx) | 
 | { | 
 | 	struct io_submit_state *state = &ctx->submit_state; | 
 |  | 
 | 	if (unlikely(state->link.head)) | 
 | 		io_queue_sqe_fallback(state->link.head); | 
 | 	/* flush only after queuing links as they can generate completions */ | 
 | 	io_submit_flush_completions(ctx); | 
 | 	if (state->plug_started) | 
 | 		blk_finish_plug(&state->plug); | 
 | } | 
 |  | 
 | /* | 
 |  * Start submission side cache. | 
 |  */ | 
 | static void io_submit_state_start(struct io_submit_state *state, | 
 | 				  unsigned int max_ios) | 
 | { | 
 | 	state->plug_started = false; | 
 | 	state->need_plug = max_ios > 2; | 
 | 	state->submit_nr = max_ios; | 
 | 	/* set only head, no need to init link_last in advance */ | 
 | 	state->link.head = NULL; | 
 | } | 
 |  | 
 | static void io_commit_sqring(struct io_ring_ctx *ctx) | 
 | { | 
 | 	struct io_rings *rings = ctx->rings; | 
 |  | 
 | 	/* | 
 | 	 * Ensure any loads from the SQEs are done at this point, | 
 | 	 * since once we write the new head, the application could | 
 | 	 * write new data to them. | 
 | 	 */ | 
 | 	smp_store_release(&rings->sq.head, ctx->cached_sq_head); | 
 | } | 
 |  | 
 | /* | 
 |  * Fetch an sqe, if one is available. Note this returns a pointer to memory | 
 |  * that is mapped by userspace. This means that care needs to be taken to | 
 |  * ensure that reads are stable, as we cannot rely on userspace always | 
 |  * being a good citizen. If members of the sqe are validated and then later | 
 |  * used, it's important that those reads are done through READ_ONCE() to | 
 |  * prevent a re-load down the line. | 
 |  */ | 
 | static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe) | 
 | { | 
 | 	unsigned mask = ctx->sq_entries - 1; | 
 | 	unsigned head = ctx->cached_sq_head++ & mask; | 
 |  | 
 | 	if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) { | 
 | 		head = READ_ONCE(ctx->sq_array[head]); | 
 | 		if (unlikely(head >= ctx->sq_entries)) { | 
 | 			/* drop invalid entries */ | 
 | 			spin_lock(&ctx->completion_lock); | 
 | 			ctx->cq_extra--; | 
 | 			spin_unlock(&ctx->completion_lock); | 
 | 			WRITE_ONCE(ctx->rings->sq_dropped, | 
 | 				   READ_ONCE(ctx->rings->sq_dropped) + 1); | 
 | 			return false; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * The cached sq head (or cq tail) serves two purposes: | 
 | 	 * | 
 | 	 * 1) allows us to batch the cost of updating the user visible | 
 | 	 *    head updates. | 
 | 	 * 2) allows the kernel side to track the head on its own, even | 
 | 	 *    though the application is the one updating it. | 
 | 	 */ | 
 |  | 
 | 	/* double index for 128-byte SQEs, twice as long */ | 
 | 	if (ctx->flags & IORING_SETUP_SQE128) | 
 | 		head <<= 1; | 
 | 	*sqe = &ctx->sq_sqes[head]; | 
 | 	return true; | 
 | } | 
 |  | 
 | int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr) | 
 | 	__must_hold(&ctx->uring_lock) | 
 | { | 
 | 	unsigned int entries = io_sqring_entries(ctx); | 
 | 	unsigned int left; | 
 | 	int ret; | 
 |  | 
 | 	if (unlikely(!entries)) | 
 | 		return 0; | 
 | 	/* make sure SQ entry isn't read before tail */ | 
 | 	ret = left = min(nr, entries); | 
 | 	io_get_task_refs(left); | 
 | 	io_submit_state_start(&ctx->submit_state, left); | 
 |  | 
 | 	do { | 
 | 		const struct io_uring_sqe *sqe; | 
 | 		struct io_kiocb *req; | 
 |  | 
 | 		if (unlikely(!io_alloc_req(ctx, &req))) | 
 | 			break; | 
 | 		if (unlikely(!io_get_sqe(ctx, &sqe))) { | 
 | 			io_req_add_to_cache(req, ctx); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Continue submitting even for sqe failure if the | 
 | 		 * ring was setup with IORING_SETUP_SUBMIT_ALL | 
 | 		 */ | 
 | 		if (unlikely(io_submit_sqe(ctx, req, sqe)) && | 
 | 		    !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) { | 
 | 			left--; | 
 | 			break; | 
 | 		} | 
 | 	} while (--left); | 
 |  | 
 | 	if (unlikely(left)) { | 
 | 		ret -= left; | 
 | 		/* try again if it submitted nothing and can't allocate a req */ | 
 | 		if (!ret && io_req_cache_empty(ctx)) | 
 | 			ret = -EAGAIN; | 
 | 		current->io_uring->cached_refs += left; | 
 | 	} | 
 |  | 
 | 	io_submit_state_end(ctx); | 
 | 	 /* Commit SQ ring head once we've consumed and submitted all SQEs */ | 
 | 	io_commit_sqring(ctx); | 
 | 	return ret; | 
 | } | 
 |  | 
 | struct io_wait_queue { | 
 | 	struct wait_queue_entry wq; | 
 | 	struct io_ring_ctx *ctx; | 
 | 	unsigned cq_tail; | 
 | 	unsigned nr_timeouts; | 
 | 	ktime_t timeout; | 
 | }; | 
 |  | 
 | static inline bool io_has_work(struct io_ring_ctx *ctx) | 
 | { | 
 | 	return test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq) || | 
 | 	       !llist_empty(&ctx->work_llist); | 
 | } | 
 |  | 
 | static inline bool io_should_wake(struct io_wait_queue *iowq) | 
 | { | 
 | 	struct io_ring_ctx *ctx = iowq->ctx; | 
 | 	int dist = READ_ONCE(ctx->rings->cq.tail) - (int) iowq->cq_tail; | 
 |  | 
 | 	/* | 
 | 	 * Wake up if we have enough events, or if a timeout occurred since we | 
 | 	 * started waiting. For timeouts, we always want to return to userspace, | 
 | 	 * regardless of event count. | 
 | 	 */ | 
 | 	return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts; | 
 | } | 
 |  | 
 | static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode, | 
 | 			    int wake_flags, void *key) | 
 | { | 
 | 	struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq); | 
 |  | 
 | 	/* | 
 | 	 * Cannot safely flush overflowed CQEs from here, ensure we wake up | 
 | 	 * the task, and the next invocation will do it. | 
 | 	 */ | 
 | 	if (io_should_wake(iowq) || io_has_work(iowq->ctx)) | 
 | 		return autoremove_wake_function(curr, mode, wake_flags, key); | 
 | 	return -1; | 
 | } | 
 |  | 
 | int io_run_task_work_sig(struct io_ring_ctx *ctx) | 
 | { | 
 | 	if (!llist_empty(&ctx->work_llist)) { | 
 | 		__set_current_state(TASK_RUNNING); | 
 | 		if (io_run_local_work(ctx) > 0) | 
 | 			return 0; | 
 | 	} | 
 | 	if (io_run_task_work() > 0) | 
 | 		return 0; | 
 | 	if (task_sigpending(current)) | 
 | 		return -EINTR; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static bool current_pending_io(void) | 
 | { | 
 | 	struct io_uring_task *tctx = current->io_uring; | 
 |  | 
 | 	if (!tctx) | 
 | 		return false; | 
 | 	return percpu_counter_read_positive(&tctx->inflight); | 
 | } | 
 |  | 
 | /* when returns >0, the caller should retry */ | 
 | static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx, | 
 | 					  struct io_wait_queue *iowq) | 
 | { | 
 | 	int io_wait, ret; | 
 |  | 
 | 	if (unlikely(READ_ONCE(ctx->check_cq))) | 
 | 		return 1; | 
 | 	if (unlikely(!llist_empty(&ctx->work_llist))) | 
 | 		return 1; | 
 | 	if (unlikely(test_thread_flag(TIF_NOTIFY_SIGNAL))) | 
 | 		return 1; | 
 | 	if (unlikely(task_sigpending(current))) | 
 | 		return -EINTR; | 
 | 	if (unlikely(io_should_wake(iowq))) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * Mark us as being in io_wait if we have pending requests, so cpufreq | 
 | 	 * can take into account that the task is waiting for IO - turns out | 
 | 	 * to be important for low QD IO. | 
 | 	 */ | 
 | 	io_wait = current->in_iowait; | 
 | 	if (current_pending_io()) | 
 | 		current->in_iowait = 1; | 
 | 	ret = 0; | 
 | 	if (iowq->timeout == KTIME_MAX) | 
 | 		schedule(); | 
 | 	else if (!schedule_hrtimeout(&iowq->timeout, HRTIMER_MODE_ABS)) | 
 | 		ret = -ETIME; | 
 | 	current->in_iowait = io_wait; | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Wait until events become available, if we don't already have some. The | 
 |  * application must reap them itself, as they reside on the shared cq ring. | 
 |  */ | 
 | static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events, | 
 | 			  const sigset_t __user *sig, size_t sigsz, | 
 | 			  struct __kernel_timespec __user *uts) | 
 | { | 
 | 	struct io_wait_queue iowq; | 
 | 	struct io_rings *rings = ctx->rings; | 
 | 	int ret; | 
 |  | 
 | 	if (!io_allowed_run_tw(ctx)) | 
 | 		return -EEXIST; | 
 | 	if (!llist_empty(&ctx->work_llist)) | 
 | 		io_run_local_work(ctx); | 
 | 	io_run_task_work(); | 
 | 	io_cqring_overflow_flush(ctx); | 
 | 	/* if user messes with these they will just get an early return */ | 
 | 	if (__io_cqring_events_user(ctx) >= min_events) | 
 | 		return 0; | 
 |  | 
 | 	if (sig) { | 
 | #ifdef CONFIG_COMPAT | 
 | 		if (in_compat_syscall()) | 
 | 			ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig, | 
 | 						      sigsz); | 
 | 		else | 
 | #endif | 
 | 			ret = set_user_sigmask(sig, sigsz); | 
 |  | 
 | 		if (ret) | 
 | 			return ret; | 
 | 	} | 
 |  | 
 | 	init_waitqueue_func_entry(&iowq.wq, io_wake_function); | 
 | 	iowq.wq.private = current; | 
 | 	INIT_LIST_HEAD(&iowq.wq.entry); | 
 | 	iowq.ctx = ctx; | 
 | 	iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts); | 
 | 	iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events; | 
 | 	iowq.timeout = KTIME_MAX; | 
 |  | 
 | 	if (uts) { | 
 | 		struct timespec64 ts; | 
 |  | 
 | 		if (get_timespec64(&ts, uts)) | 
 | 			return -EFAULT; | 
 | 		iowq.timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns()); | 
 | 	} | 
 |  | 
 | 	trace_io_uring_cqring_wait(ctx, min_events); | 
 | 	do { | 
 | 		unsigned long check_cq; | 
 |  | 
 | 		if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { | 
 | 			int nr_wait = (int) iowq.cq_tail - READ_ONCE(ctx->rings->cq.tail); | 
 |  | 
 | 			atomic_set(&ctx->cq_wait_nr, nr_wait); | 
 | 			set_current_state(TASK_INTERRUPTIBLE); | 
 | 		} else { | 
 | 			prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq, | 
 | 							TASK_INTERRUPTIBLE); | 
 | 		} | 
 |  | 
 | 		ret = io_cqring_wait_schedule(ctx, &iowq); | 
 | 		__set_current_state(TASK_RUNNING); | 
 | 		atomic_set(&ctx->cq_wait_nr, 0); | 
 |  | 
 | 		if (ret < 0) | 
 | 			break; | 
 | 		/* | 
 | 		 * Run task_work after scheduling and before io_should_wake(). | 
 | 		 * If we got woken because of task_work being processed, run it | 
 | 		 * now rather than let the caller do another wait loop. | 
 | 		 */ | 
 | 		io_run_task_work(); | 
 | 		if (!llist_empty(&ctx->work_llist)) | 
 | 			io_run_local_work(ctx); | 
 |  | 
 | 		check_cq = READ_ONCE(ctx->check_cq); | 
 | 		if (unlikely(check_cq)) { | 
 | 			/* let the caller flush overflows, retry */ | 
 | 			if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) | 
 | 				io_cqring_do_overflow_flush(ctx); | 
 | 			if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) { | 
 | 				ret = -EBADR; | 
 | 				break; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		if (io_should_wake(&iowq)) { | 
 | 			ret = 0; | 
 | 			break; | 
 | 		} | 
 | 		cond_resched(); | 
 | 	} while (1); | 
 |  | 
 | 	if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN)) | 
 | 		finish_wait(&ctx->cq_wait, &iowq.wq); | 
 | 	restore_saved_sigmask_unless(ret == -EINTR); | 
 |  | 
 | 	return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0; | 
 | } | 
 |  | 
 | static void io_mem_free(void *ptr) | 
 | { | 
 | 	if (!ptr) | 
 | 		return; | 
 |  | 
 | 	folio_put(virt_to_folio(ptr)); | 
 | } | 
 |  | 
 | static void io_pages_free(struct page ***pages, int npages) | 
 | { | 
 | 	struct page **page_array; | 
 | 	int i; | 
 |  | 
 | 	if (!pages) | 
 | 		return; | 
 | 	page_array = *pages; | 
 | 	for (i = 0; i < npages; i++) | 
 | 		unpin_user_page(page_array[i]); | 
 | 	kvfree(page_array); | 
 | 	*pages = NULL; | 
 | } | 
 |  | 
 | static void *__io_uaddr_map(struct page ***pages, unsigned short *npages, | 
 | 			    unsigned long uaddr, size_t size) | 
 | { | 
 | 	struct page **page_array; | 
 | 	unsigned int nr_pages; | 
 | 	int ret; | 
 |  | 
 | 	*npages = 0; | 
 |  | 
 | 	if (uaddr & (PAGE_SIZE - 1) || !size) | 
 | 		return ERR_PTR(-EINVAL); | 
 |  | 
 | 	nr_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; | 
 | 	if (nr_pages > USHRT_MAX) | 
 | 		return ERR_PTR(-EINVAL); | 
 | 	page_array = kvmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL); | 
 | 	if (!page_array) | 
 | 		return ERR_PTR(-ENOMEM); | 
 |  | 
 | 	ret = pin_user_pages_fast(uaddr, nr_pages, FOLL_WRITE | FOLL_LONGTERM, | 
 | 					page_array); | 
 | 	if (ret != nr_pages) { | 
 | err: | 
 | 		io_pages_free(&page_array, ret > 0 ? ret : 0); | 
 | 		return ret < 0 ? ERR_PTR(ret) : ERR_PTR(-EFAULT); | 
 | 	} | 
 | 	/* | 
 | 	 * Should be a single page. If the ring is small enough that we can | 
 | 	 * use a normal page, that is fine. If we need multiple pages, then | 
 | 	 * userspace should use a huge page. That's the only way to guarantee | 
 | 	 * that we get contigious memory, outside of just being lucky or | 
 | 	 * (currently) having low memory fragmentation. | 
 | 	 */ | 
 | 	if (page_array[0] != page_array[ret - 1]) | 
 | 		goto err; | 
 | 	*pages = page_array; | 
 | 	*npages = nr_pages; | 
 | 	return page_to_virt(page_array[0]); | 
 | } | 
 |  | 
 | static void *io_rings_map(struct io_ring_ctx *ctx, unsigned long uaddr, | 
 | 			  size_t size) | 
 | { | 
 | 	return __io_uaddr_map(&ctx->ring_pages, &ctx->n_ring_pages, uaddr, | 
 | 				size); | 
 | } | 
 |  | 
 | static void *io_sqes_map(struct io_ring_ctx *ctx, unsigned long uaddr, | 
 | 			 size_t size) | 
 | { | 
 | 	return __io_uaddr_map(&ctx->sqe_pages, &ctx->n_sqe_pages, uaddr, | 
 | 				size); | 
 | } | 
 |  | 
 | static void io_rings_free(struct io_ring_ctx *ctx) | 
 | { | 
 | 	if (!(ctx->flags & IORING_SETUP_NO_MMAP)) { | 
 | 		io_mem_free(ctx->rings); | 
 | 		io_mem_free(ctx->sq_sqes); | 
 | 		ctx->rings = NULL; | 
 | 		ctx->sq_sqes = NULL; | 
 | 	} else { | 
 | 		io_pages_free(&ctx->ring_pages, ctx->n_ring_pages); | 
 | 		io_pages_free(&ctx->sqe_pages, ctx->n_sqe_pages); | 
 | 	} | 
 | } | 
 |  | 
 | static void *io_mem_alloc(size_t size) | 
 | { | 
 | 	gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP; | 
 | 	void *ret; | 
 |  | 
 | 	ret = (void *) __get_free_pages(gfp, get_order(size)); | 
 | 	if (ret) | 
 | 		return ret; | 
 | 	return ERR_PTR(-ENOMEM); | 
 | } | 
 |  | 
 | static unsigned long rings_size(struct io_ring_ctx *ctx, unsigned int sq_entries, | 
 | 				unsigned int cq_entries, size_t *sq_offset) | 
 | { | 
 | 	struct io_rings *rings; | 
 | 	size_t off, sq_array_size; | 
 |  | 
 | 	off = struct_size(rings, cqes, cq_entries); | 
 | 	if (off == SIZE_MAX) | 
 | 		return SIZE_MAX; | 
 | 	if (ctx->flags & IORING_SETUP_CQE32) { | 
 | 		if (check_shl_overflow(off, 1, &off)) | 
 | 			return SIZE_MAX; | 
 | 	} | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | 	off = ALIGN(off, SMP_CACHE_BYTES); | 
 | 	if (off == 0) | 
 | 		return SIZE_MAX; | 
 | #endif | 
 |  | 
 | 	if (ctx->flags & IORING_SETUP_NO_SQARRAY) { | 
 | 		if (sq_offset) | 
 | 			*sq_offset = SIZE_MAX; | 
 | 		return off; | 
 | 	} | 
 |  | 
 | 	if (sq_offset) | 
 | 		*sq_offset = off; | 
 |  | 
 | 	sq_array_size = array_size(sizeof(u32), sq_entries); | 
 | 	if (sq_array_size == SIZE_MAX) | 
 | 		return SIZE_MAX; | 
 |  | 
 | 	if (check_add_overflow(off, sq_array_size, &off)) | 
 | 		return SIZE_MAX; | 
 |  | 
 | 	return off; | 
 | } | 
 |  | 
 | static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg, | 
 | 			       unsigned int eventfd_async) | 
 | { | 
 | 	struct io_ev_fd *ev_fd; | 
 | 	__s32 __user *fds = arg; | 
 | 	int fd; | 
 |  | 
 | 	ev_fd = rcu_dereference_protected(ctx->io_ev_fd, | 
 | 					lockdep_is_held(&ctx->uring_lock)); | 
 | 	if (ev_fd) | 
 | 		return -EBUSY; | 
 |  | 
 | 	if (copy_from_user(&fd, fds, sizeof(*fds))) | 
 | 		return -EFAULT; | 
 |  | 
 | 	ev_fd = kmalloc(sizeof(*ev_fd), GFP_KERNEL); | 
 | 	if (!ev_fd) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	ev_fd->cq_ev_fd = eventfd_ctx_fdget(fd); | 
 | 	if (IS_ERR(ev_fd->cq_ev_fd)) { | 
 | 		int ret = PTR_ERR(ev_fd->cq_ev_fd); | 
 | 		kfree(ev_fd); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	spin_lock(&ctx->completion_lock); | 
 | 	ctx->evfd_last_cq_tail = ctx->cached_cq_tail; | 
 | 	spin_unlock(&ctx->completion_lock); | 
 |  | 
 | 	ev_fd->eventfd_async = eventfd_async; | 
 | 	ctx->has_evfd = true; | 
 | 	rcu_assign_pointer(ctx->io_ev_fd, ev_fd); | 
 | 	atomic_set(&ev_fd->refs, 1); | 
 | 	atomic_set(&ev_fd->ops, 0); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int io_eventfd_unregister(struct io_ring_ctx *ctx) | 
 | { | 
 | 	struct io_ev_fd *ev_fd; | 
 |  | 
 | 	ev_fd = rcu_dereference_protected(ctx->io_ev_fd, | 
 | 					lockdep_is_held(&ctx->uring_lock)); | 
 | 	if (ev_fd) { | 
 | 		ctx->has_evfd = false; | 
 | 		rcu_assign_pointer(ctx->io_ev_fd, NULL); | 
 | 		if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_FREE_BIT), &ev_fd->ops)) | 
 | 			call_rcu(&ev_fd->rcu, io_eventfd_ops); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	return -ENXIO; | 
 | } | 
 |  | 
 | static void io_req_caches_free(struct io_ring_ctx *ctx) | 
 | { | 
 | 	struct io_kiocb *req; | 
 | 	int nr = 0; | 
 |  | 
 | 	mutex_lock(&ctx->uring_lock); | 
 | 	io_flush_cached_locked_reqs(ctx, &ctx->submit_state); | 
 |  | 
 | 	while (!io_req_cache_empty(ctx)) { | 
 | 		req = io_extract_req(ctx); | 
 | 		kmem_cache_free(req_cachep, req); | 
 | 		nr++; | 
 | 	} | 
 | 	if (nr) | 
 | 		percpu_ref_put_many(&ctx->refs, nr); | 
 | 	mutex_unlock(&ctx->uring_lock); | 
 | } | 
 |  | 
 | static void io_rsrc_node_cache_free(struct io_cache_entry *entry) | 
 | { | 
 | 	kfree(container_of(entry, struct io_rsrc_node, cache)); | 
 | } | 
 |  | 
 | static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx) | 
 | { | 
 | 	io_sq_thread_finish(ctx); | 
 | 	/* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */ | 
 | 	if (WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list))) | 
 | 		return; | 
 |  | 
 | 	mutex_lock(&ctx->uring_lock); | 
 | 	if (ctx->buf_data) | 
 | 		__io_sqe_buffers_unregister(ctx); | 
 | 	if (ctx->file_data) | 
 | 		__io_sqe_files_unregister(ctx); | 
 | 	io_cqring_overflow_kill(ctx); | 
 | 	io_eventfd_unregister(ctx); | 
 | 	io_alloc_cache_free(&ctx->apoll_cache, io_apoll_cache_free); | 
 | 	io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free); | 
 | 	io_destroy_buffers(ctx); | 
 | 	mutex_unlock(&ctx->uring_lock); | 
 | 	if (ctx->sq_creds) | 
 | 		put_cred(ctx->sq_creds); | 
 | 	if (ctx->submitter_task) | 
 | 		put_task_struct(ctx->submitter_task); | 
 |  | 
 | 	/* there are no registered resources left, nobody uses it */ | 
 | 	if (ctx->rsrc_node) | 
 | 		io_rsrc_node_destroy(ctx, ctx->rsrc_node); | 
 |  | 
 | 	WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list)); | 
 |  | 
 | #if defined(CONFIG_UNIX) | 
 | 	if (ctx->ring_sock) { | 
 | 		ctx->ring_sock->file = NULL; /* so that iput() is called */ | 
 | 		sock_release(ctx->ring_sock); | 
 | 	} | 
 | #endif | 
 | 	WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list)); | 
 |  | 
 | 	io_alloc_cache_free(&ctx->rsrc_node_cache, io_rsrc_node_cache_free); | 
 | 	if (ctx->mm_account) { | 
 | 		mmdrop(ctx->mm_account); | 
 | 		ctx->mm_account = NULL; | 
 | 	} | 
 | 	io_rings_free(ctx); | 
 |  | 
 | 	percpu_ref_exit(&ctx->refs); | 
 | 	free_uid(ctx->user); | 
 | 	io_req_caches_free(ctx); | 
 | 	if (ctx->hash_map) | 
 | 		io_wq_put_hash(ctx->hash_map); | 
 | 	kfree(ctx->cancel_table.hbs); | 
 | 	kfree(ctx->cancel_table_locked.hbs); | 
 | 	kfree(ctx->io_bl); | 
 | 	xa_destroy(&ctx->io_bl_xa); | 
 | 	kfree(ctx); | 
 | } | 
 |  | 
 | static __cold void io_activate_pollwq_cb(struct callback_head *cb) | 
 | { | 
 | 	struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx, | 
 | 					       poll_wq_task_work); | 
 |  | 
 | 	mutex_lock(&ctx->uring_lock); | 
 | 	ctx->poll_activated = true; | 
 | 	mutex_unlock(&ctx->uring_lock); | 
 |  | 
 | 	/* | 
 | 	 * Wake ups for some events between start of polling and activation | 
 | 	 * might've been lost due to loose synchronisation. | 
 | 	 */ | 
 | 	wake_up_all(&ctx->poll_wq); | 
 | 	percpu_ref_put(&ctx->refs); | 
 | } | 
 |  | 
 | static __cold void io_activate_pollwq(struct io_ring_ctx *ctx) | 
 | { | 
 | 	spin_lock(&ctx->completion_lock); | 
 | 	/* already activated or in progress */ | 
 | 	if (ctx->poll_activated || ctx->poll_wq_task_work.func) | 
 | 		goto out; | 
 | 	if (WARN_ON_ONCE(!ctx->task_complete)) | 
 | 		goto out; | 
 | 	if (!ctx->submitter_task) | 
 | 		goto out; | 
 | 	/* | 
 | 	 * with ->submitter_task only the submitter task completes requests, we | 
 | 	 * only need to sync with it, which is done by injecting a tw | 
 | 	 */ | 
 | 	init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb); | 
 | 	percpu_ref_get(&ctx->refs); | 
 | 	if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL)) | 
 | 		percpu_ref_put(&ctx->refs); | 
 | out: | 
 | 	spin_unlock(&ctx->completion_lock); | 
 | } | 
 |  | 
 | static __poll_t io_uring_poll(struct file *file, poll_table *wait) | 
 | { | 
 | 	struct io_ring_ctx *ctx = file->private_data; | 
 | 	__poll_t mask = 0; | 
 |  | 
 | 	if (unlikely(!ctx->poll_activated)) | 
 | 		io_activate_pollwq(ctx); | 
 |  | 
 | 	poll_wait(file, &ctx->poll_wq, wait); | 
 | 	/* | 
 | 	 * synchronizes with barrier from wq_has_sleeper call in | 
 | 	 * io_commit_cqring | 
 | 	 */ | 
 | 	smp_rmb(); | 
 | 	if (!io_sqring_full(ctx)) | 
 | 		mask |= EPOLLOUT | EPOLLWRNORM; | 
 |  | 
 | 	/* | 
 | 	 * Don't flush cqring overflow list here, just do a simple check. | 
 | 	 * Otherwise there could possible be ABBA deadlock: | 
 | 	 *      CPU0                    CPU1 | 
 | 	 *      ----                    ---- | 
 | 	 * lock(&ctx->uring_lock); | 
 | 	 *                              lock(&ep->mtx); | 
 | 	 *                              lock(&ctx->uring_lock); | 
 | 	 * lock(&ep->mtx); | 
 | 	 * | 
 | 	 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this | 
 | 	 * pushes them to do the flush. | 
 | 	 */ | 
 |  | 
 | 	if (__io_cqring_events_user(ctx) || io_has_work(ctx)) | 
 | 		mask |= EPOLLIN | EPOLLRDNORM; | 
 |  | 
 | 	return mask; | 
 | } | 
 |  | 
 | static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id) | 
 | { | 
 | 	const struct cred *creds; | 
 |  | 
 | 	creds = xa_erase(&ctx->personalities, id); | 
 | 	if (creds) { | 
 | 		put_cred(creds); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	return -EINVAL; | 
 | } | 
 |  | 
 | struct io_tctx_exit { | 
 | 	struct callback_head		task_work; | 
 | 	struct completion		completion; | 
 | 	struct io_ring_ctx		*ctx; | 
 | }; | 
 |  | 
 | static __cold void io_tctx_exit_cb(struct callback_head *cb) | 
 | { | 
 | 	struct io_uring_task *tctx = current->io_uring; | 
 | 	struct io_tctx_exit *work; | 
 |  | 
 | 	work = container_of(cb, struct io_tctx_exit, task_work); | 
 | 	/* | 
 | 	 * When @in_cancel, we're in cancellation and it's racy to remove the | 
 | 	 * node. It'll be removed by the end of cancellation, just ignore it. | 
 | 	 * tctx can be NULL if the queueing of this task_work raced with | 
 | 	 * work cancelation off the exec path. | 
 | 	 */ | 
 | 	if (tctx && !atomic_read(&tctx->in_cancel)) | 
 | 		io_uring_del_tctx_node((unsigned long)work->ctx); | 
 | 	complete(&work->completion); | 
 | } | 
 |  | 
 | static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data) | 
 | { | 
 | 	struct io_kiocb *req = container_of(work, struct io_kiocb, work); | 
 |  | 
 | 	return req->ctx == data; | 
 | } | 
 |  | 
 | static __cold void io_ring_exit_work(struct work_struct *work) | 
 | { | 
 | 	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work); | 
 | 	unsigned long timeout = jiffies + HZ * 60 * 5; | 
 | 	unsigned long interval = HZ / 20; | 
 | 	struct io_tctx_exit exit; | 
 | 	struct io_tctx_node *node; | 
 | 	int ret; | 
 |  | 
 | 	/* | 
 | 	 * If we're doing polled IO and end up having requests being | 
 | 	 * submitted async (out-of-line), then completions can come in while | 
 | 	 * we're waiting for refs to drop. We need to reap these manually, | 
 | 	 * as nobody else will be looking for them. | 
 | 	 */ | 
 | 	do { | 
 | 		if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) { | 
 | 			mutex_lock(&ctx->uring_lock); | 
 | 			io_cqring_overflow_kill(ctx); | 
 | 			mutex_unlock(&ctx->uring_lock); | 
 | 		} | 
 |  | 
 | 		if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) | 
 | 			io_move_task_work_from_local(ctx); | 
 |  | 
 | 		while (io_uring_try_cancel_requests(ctx, NULL, true)) | 
 | 			cond_resched(); | 
 |  | 
 | 		if (ctx->sq_data) { | 
 | 			struct io_sq_data *sqd = ctx->sq_data; | 
 | 			struct task_struct *tsk; | 
 |  | 
 | 			io_sq_thread_park(sqd); | 
 | 			tsk = sqd->thread; | 
 | 			if (tsk && tsk->io_uring && tsk->io_uring->io_wq) | 
 | 				io_wq_cancel_cb(tsk->io_uring->io_wq, | 
 | 						io_cancel_ctx_cb, ctx, true); | 
 | 			io_sq_thread_unpark(sqd); | 
 | 		} | 
 |  | 
 | 		io_req_caches_free(ctx); | 
 |  | 
 | 		if (WARN_ON_ONCE(time_after(jiffies, timeout))) { | 
 | 			/* there is little hope left, don't run it too often */ | 
 | 			interval = HZ * 60; | 
 | 		} | 
 | 		/* | 
 | 		 * This is really an uninterruptible wait, as it has to be | 
 | 		 * complete. But it's also run from a kworker, which doesn't | 
 | 		 * take signals, so it's fine to make it interruptible. This | 
 | 		 * avoids scenarios where we knowingly can wait much longer | 
 | 		 * on completions, for example if someone does a SIGSTOP on | 
 | 		 * a task that needs to finish task_work to make this loop | 
 | 		 * complete. That's a synthetic situation that should not | 
 | 		 * cause a stuck task backtrace, and hence a potential panic | 
 | 		 * on stuck tasks if that is enabled. | 
 | 		 */ | 
 | 	} while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval)); | 
 |  | 
 | 	init_completion(&exit.completion); | 
 | 	init_task_work(&exit.task_work, io_tctx_exit_cb); | 
 | 	exit.ctx = ctx; | 
 | 	/* | 
 | 	 * Some may use context even when all refs and requests have been put, | 
 | 	 * and they are free to do so while still holding uring_lock or | 
 | 	 * completion_lock, see io_req_task_submit(). Apart from other work, | 
 | 	 * this lock/unlock section also waits them to finish. | 
 | 	 */ | 
 | 	mutex_lock(&ctx->uring_lock); | 
 | 	while (!list_empty(&ctx->tctx_list)) { | 
 | 		WARN_ON_ONCE(time_after(jiffies, timeout)); | 
 |  | 
 | 		node = list_first_entry(&ctx->tctx_list, struct io_tctx_node, | 
 | 					ctx_node); | 
 | 		/* don't spin on a single task if cancellation failed */ | 
 | 		list_rotate_left(&ctx->tctx_list); | 
 | 		ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL); | 
 | 		if (WARN_ON_ONCE(ret)) | 
 | 			continue; | 
 |  | 
 | 		mutex_unlock(&ctx->uring_lock); | 
 | 		/* | 
 | 		 * See comment above for | 
 | 		 * wait_for_completion_interruptible_timeout() on why this | 
 | 		 * wait is marked as interruptible. | 
 | 		 */ | 
 | 		wait_for_completion_interruptible(&exit.completion); | 
 | 		mutex_lock(&ctx->uring_lock); | 
 | 	} | 
 | 	mutex_unlock(&ctx->uring_lock); | 
 | 	spin_lock(&ctx->completion_lock); | 
 | 	spin_unlock(&ctx->completion_lock); | 
 |  | 
 | 	/* pairs with RCU read section in io_req_local_work_add() */ | 
 | 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) | 
 | 		synchronize_rcu(); | 
 |  | 
 | 	io_ring_ctx_free(ctx); | 
 | } | 
 |  | 
 | static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx) | 
 | { | 
 | 	unsigned long index; | 
 | 	struct creds *creds; | 
 |  | 
 | 	mutex_lock(&ctx->uring_lock); | 
 | 	percpu_ref_kill(&ctx->refs); | 
 | 	xa_for_each(&ctx->personalities, index, creds) | 
 | 		io_unregister_personality(ctx, index); | 
 | 	if (ctx->rings) | 
 | 		io_poll_remove_all(ctx, NULL, true); | 
 | 	mutex_unlock(&ctx->uring_lock); | 
 |  | 
 | 	/* | 
 | 	 * If we failed setting up the ctx, we might not have any rings | 
 | 	 * and therefore did not submit any requests | 
 | 	 */ | 
 | 	if (ctx->rings) | 
 | 		io_kill_timeouts(ctx, NULL, true); | 
 |  | 
 | 	flush_delayed_work(&ctx->fallback_work); | 
 |  | 
 | 	INIT_WORK(&ctx->exit_work, io_ring_exit_work); | 
 | 	/* | 
 | 	 * Use system_unbound_wq to avoid spawning tons of event kworkers | 
 | 	 * if we're exiting a ton of rings at the same time. It just adds | 
 | 	 * noise and overhead, there's no discernable change in runtime | 
 | 	 * over using system_wq. | 
 | 	 */ | 
 | 	queue_work(system_unbound_wq, &ctx->exit_work); | 
 | } | 
 |  | 
 | static int io_uring_release(struct inode *inode, struct file *file) | 
 | { | 
 | 	struct io_ring_ctx *ctx = file->private_data; | 
 |  | 
 | 	file->private_data = NULL; | 
 | 	io_ring_ctx_wait_and_kill(ctx); | 
 | 	return 0; | 
 | } | 
 |  | 
 | struct io_task_cancel { | 
 | 	struct task_struct *task; | 
 | 	bool all; | 
 | }; | 
 |  | 
 | static bool io_cancel_task_cb(struct io_wq_work *work, void *data) | 
 | { | 
 | 	struct io_kiocb *req = container_of(work, struct io_kiocb, work); | 
 | 	struct io_task_cancel *cancel = data; | 
 |  | 
 | 	return io_match_task_safe(req, cancel->task, cancel->all); | 
 | } | 
 |  | 
 | static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx, | 
 | 					 struct task_struct *task, | 
 | 					 bool cancel_all) | 
 | { | 
 | 	struct io_defer_entry *de; | 
 | 	LIST_HEAD(list); | 
 |  | 
 | 	spin_lock(&ctx->completion_lock); | 
 | 	list_for_each_entry_reverse(de, &ctx->defer_list, list) { | 
 | 		if (io_match_task_safe(de->req, task, cancel_all)) { | 
 | 			list_cut_position(&list, &ctx->defer_list, &de->list); | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	spin_unlock(&ctx->completion_lock); | 
 | 	if (list_empty(&list)) | 
 | 		return false; | 
 |  | 
 | 	while (!list_empty(&list)) { | 
 | 		de = list_first_entry(&list, struct io_defer_entry, list); | 
 | 		list_del_init(&de->list); | 
 | 		io_req_task_queue_fail(de->req, -ECANCELED); | 
 | 		kfree(de); | 
 | 	} | 
 | 	return true; | 
 | } | 
 |  | 
 | static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx) | 
 | { | 
 | 	struct io_tctx_node *node; | 
 | 	enum io_wq_cancel cret; | 
 | 	bool ret = false; | 
 |  | 
 | 	mutex_lock(&ctx->uring_lock); | 
 | 	list_for_each_entry(node, &ctx->tctx_list, ctx_node) { | 
 | 		struct io_uring_task *tctx = node->task->io_uring; | 
 |  | 
 | 		/* | 
 | 		 * io_wq will stay alive while we hold uring_lock, because it's | 
 | 		 * killed after ctx nodes, which requires to take the lock. | 
 | 		 */ | 
 | 		if (!tctx || !tctx->io_wq) | 
 | 			continue; | 
 | 		cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true); | 
 | 		ret |= (cret != IO_WQ_CANCEL_NOTFOUND); | 
 | 	} | 
 | 	mutex_unlock(&ctx->uring_lock); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, | 
 | 						struct task_struct *task, | 
 | 						bool cancel_all) | 
 | { | 
 | 	struct io_task_cancel cancel = { .task = task, .all = cancel_all, }; | 
 | 	struct io_uring_task *tctx = task ? task->io_uring : NULL; | 
 | 	enum io_wq_cancel cret; | 
 | 	bool ret = false; | 
 |  | 
 | 	/* set it so io_req_local_work_add() would wake us up */ | 
 | 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { | 
 | 		atomic_set(&ctx->cq_wait_nr, 1); | 
 | 		smp_mb(); | 
 | 	} | 
 |  | 
 | 	/* failed during ring init, it couldn't have issued any requests */ | 
 | 	if (!ctx->rings) | 
 | 		return false; | 
 |  | 
 | 	if (!task) { | 
 | 		ret |= io_uring_try_cancel_iowq(ctx); | 
 | 	} else if (tctx && tctx->io_wq) { | 
 | 		/* | 
 | 		 * Cancels requests of all rings, not only @ctx, but | 
 | 		 * it's fine as the task is in exit/exec. | 
 | 		 */ | 
 | 		cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb, | 
 | 				       &cancel, true); | 
 | 		ret |= (cret != IO_WQ_CANCEL_NOTFOUND); | 
 | 	} | 
 |  | 
 | 	/* SQPOLL thread does its own polling */ | 
 | 	if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) || | 
 | 	    (ctx->sq_data && ctx->sq_data->thread == current)) { | 
 | 		while (!wq_list_empty(&ctx->iopoll_list)) { | 
 | 			io_iopoll_try_reap_events(ctx); | 
 | 			ret = true; | 
 | 			cond_resched(); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) && | 
 | 	    io_allowed_defer_tw_run(ctx)) | 
 | 		ret |= io_run_local_work(ctx) > 0; | 
 | 	ret |= io_cancel_defer_files(ctx, task, cancel_all); | 
 | 	mutex_lock(&ctx->uring_lock); | 
 | 	ret |= io_poll_remove_all(ctx, task, cancel_all); | 
 | 	mutex_unlock(&ctx->uring_lock); | 
 | 	ret |= io_kill_timeouts(ctx, task, cancel_all); | 
 | 	if (task) | 
 | 		ret |= io_run_task_work() > 0; | 
 | 	return ret; | 
 | } | 
 |  | 
 | static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked) | 
 | { | 
 | 	if (tracked) | 
 | 		return atomic_read(&tctx->inflight_tracked); | 
 | 	return percpu_counter_sum(&tctx->inflight); | 
 | } | 
 |  | 
 | /* | 
 |  * Find any io_uring ctx that this task has registered or done IO on, and cancel | 
 |  * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation. | 
 |  */ | 
 | __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd) | 
 | { | 
 | 	struct io_uring_task *tctx = current->io_uring; | 
 | 	struct io_ring_ctx *ctx; | 
 | 	struct io_tctx_node *node; | 
 | 	unsigned long index; | 
 | 	s64 inflight; | 
 | 	DEFINE_WAIT(wait); | 
 |  | 
 | 	WARN_ON_ONCE(sqd && sqd->thread != current); | 
 |  | 
 | 	if (!current->io_uring) | 
 | 		return; | 
 | 	if (tctx->io_wq) | 
 | 		io_wq_exit_start(tctx->io_wq); | 
 |  | 
 | 	atomic_inc(&tctx->in_cancel); | 
 | 	do { | 
 | 		bool loop = false; | 
 |  | 
 | 		io_uring_drop_tctx_refs(current); | 
 | 		/* read completions before cancelations */ | 
 | 		inflight = tctx_inflight(tctx, !cancel_all); | 
 | 		if (!inflight) | 
 | 			break; | 
 |  | 
 | 		if (!sqd) { | 
 | 			xa_for_each(&tctx->xa, index, node) { | 
 | 				/* sqpoll task will cancel all its requests */ | 
 | 				if (node->ctx->sq_data) | 
 | 					continue; | 
 | 				loop |= io_uring_try_cancel_requests(node->ctx, | 
 | 							current, cancel_all); | 
 | 			} | 
 | 		} else { | 
 | 			list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) | 
 | 				loop |= io_uring_try_cancel_requests(ctx, | 
 | 								     current, | 
 | 								     cancel_all); | 
 | 		} | 
 |  | 
 | 		if (loop) { | 
 | 			cond_resched(); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE); | 
 | 		io_run_task_work(); | 
 | 		io_uring_drop_tctx_refs(current); | 
 | 		xa_for_each(&tctx->xa, index, node) { | 
 | 			if (!llist_empty(&node->ctx->work_llist)) { | 
 | 				WARN_ON_ONCE(node->ctx->submitter_task && | 
 | 					     node->ctx->submitter_task != current); | 
 | 				goto end_wait; | 
 | 			} | 
 | 		} | 
 | 		/* | 
 | 		 * If we've seen completions, retry without waiting. This | 
 | 		 * avoids a race where a completion comes in before we did | 
 | 		 * prepare_to_wait(). | 
 | 		 */ | 
 | 		if (inflight == tctx_inflight(tctx, !cancel_all)) | 
 | 			schedule(); | 
 | end_wait: | 
 | 		finish_wait(&tctx->wait, &wait); | 
 | 	} while (1); | 
 |  | 
 | 	io_uring_clean_tctx(tctx); | 
 | 	if (cancel_all) { | 
 | 		/* | 
 | 		 * We shouldn't run task_works after cancel, so just leave | 
 | 		 * ->in_cancel set for normal exit. | 
 | 		 */ | 
 | 		atomic_dec(&tctx->in_cancel); | 
 | 		/* for exec all current's requests should be gone, kill tctx */ | 
 | 		__io_uring_free(current); | 
 | 	} | 
 | } | 
 |  | 
 | void __io_uring_cancel(bool cancel_all) | 
 | { | 
 | 	io_uring_cancel_generic(cancel_all, NULL); | 
 | } | 
 |  | 
 | static void *io_uring_validate_mmap_request(struct file *file, | 
 | 					    loff_t pgoff, size_t sz) | 
 | { | 
 | 	struct io_ring_ctx *ctx = file->private_data; | 
 | 	loff_t offset = pgoff << PAGE_SHIFT; | 
 | 	struct page *page; | 
 | 	void *ptr; | 
 |  | 
 | 	/* Don't allow mmap if the ring was setup without it */ | 
 | 	if (ctx->flags & IORING_SETUP_NO_MMAP) | 
 | 		return ERR_PTR(-EINVAL); | 
 |  | 
 | 	switch (offset & IORING_OFF_MMAP_MASK) { | 
 | 	case IORING_OFF_SQ_RING: | 
 | 	case IORING_OFF_CQ_RING: | 
 | 		ptr = ctx->rings; | 
 | 		break; | 
 | 	case IORING_OFF_SQES: | 
 | 		ptr = ctx->sq_sqes; | 
 | 		break; | 
 | 	case IORING_OFF_PBUF_RING: { | 
 | 		unsigned int bgid; | 
 |  | 
 | 		bgid = (offset & ~IORING_OFF_MMAP_MASK) >> IORING_OFF_PBUF_SHIFT; | 
 | 		mutex_lock(&ctx->uring_lock); | 
 | 		ptr = io_pbuf_get_address(ctx, bgid); | 
 | 		mutex_unlock(&ctx->uring_lock); | 
 | 		if (!ptr) | 
 | 			return ERR_PTR(-EINVAL); | 
 | 		break; | 
 | 		} | 
 | 	default: | 
 | 		return ERR_PTR(-EINVAL); | 
 | 	} | 
 |  | 
 | 	page = virt_to_head_page(ptr); | 
 | 	if (sz > page_size(page)) | 
 | 		return ERR_PTR(-EINVAL); | 
 |  | 
 | 	return ptr; | 
 | } | 
 |  | 
 | #ifdef CONFIG_MMU | 
 |  | 
 | static __cold int io_uring_mmap(struct file *file, struct vm_area_struct *vma) | 
 | { | 
 | 	size_t sz = vma->vm_end - vma->vm_start; | 
 | 	unsigned long pfn; | 
 | 	void *ptr; | 
 |  | 
 | 	ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz); | 
 | 	if (IS_ERR(ptr)) | 
 | 		return PTR_ERR(ptr); | 
 |  | 
 | 	pfn = virt_to_phys(ptr) >> PAGE_SHIFT; | 
 | 	return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot); | 
 | } | 
 |  | 
 | static unsigned long io_uring_mmu_get_unmapped_area(struct file *filp, | 
 | 			unsigned long addr, unsigned long len, | 
 | 			unsigned long pgoff, unsigned long flags) | 
 | { | 
 | 	void *ptr; | 
 |  | 
 | 	/* | 
 | 	 * Do not allow to map to user-provided address to avoid breaking the | 
 | 	 * aliasing rules. Userspace is not able to guess the offset address of | 
 | 	 * kernel kmalloc()ed memory area. | 
 | 	 */ | 
 | 	if (addr) | 
 | 		return -EINVAL; | 
 |  | 
 | 	ptr = io_uring_validate_mmap_request(filp, pgoff, len); | 
 | 	if (IS_ERR(ptr)) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	/* | 
 | 	 * Some architectures have strong cache aliasing requirements. | 
 | 	 * For such architectures we need a coherent mapping which aliases | 
 | 	 * kernel memory *and* userspace memory. To achieve that: | 
 | 	 * - use a NULL file pointer to reference physical memory, and | 
 | 	 * - use the kernel virtual address of the shared io_uring context | 
 | 	 *   (instead of the userspace-provided address, which has to be 0UL | 
 | 	 *   anyway). | 
 | 	 * - use the same pgoff which the get_unmapped_area() uses to | 
 | 	 *   calculate the page colouring. | 
 | 	 * For architectures without such aliasing requirements, the | 
 | 	 * architecture will return any suitable mapping because addr is 0. | 
 | 	 */ | 
 | 	filp = NULL; | 
 | 	flags |= MAP_SHARED; | 
 | 	pgoff = 0;	/* has been translated to ptr above */ | 
 | #ifdef SHM_COLOUR | 
 | 	addr = (uintptr_t) ptr; | 
 | 	pgoff = addr >> PAGE_SHIFT; | 
 | #else | 
 | 	addr = 0UL; | 
 | #endif | 
 | 	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags); | 
 | } | 
 |  | 
 | #else /* !CONFIG_MMU */ | 
 |  | 
 | static int io_uring_mmap(struct file *file, struct vm_area_struct *vma) | 
 | { | 
 | 	return is_nommu_shared_mapping(vma->vm_flags) ? 0 : -EINVAL; | 
 | } | 
 |  | 
 | static unsigned int io_uring_nommu_mmap_capabilities(struct file *file) | 
 | { | 
 | 	return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE; | 
 | } | 
 |  | 
 | static unsigned long io_uring_nommu_get_unmapped_area(struct file *file, | 
 | 	unsigned long addr, unsigned long len, | 
 | 	unsigned long pgoff, unsigned long flags) | 
 | { | 
 | 	void *ptr; | 
 |  | 
 | 	ptr = io_uring_validate_mmap_request(file, pgoff, len); | 
 | 	if (IS_ERR(ptr)) | 
 | 		return PTR_ERR(ptr); | 
 |  | 
 | 	return (unsigned long) ptr; | 
 | } | 
 |  | 
 | #endif /* !CONFIG_MMU */ | 
 |  | 
 | static int io_validate_ext_arg(unsigned flags, const void __user *argp, size_t argsz) | 
 | { | 
 | 	if (flags & IORING_ENTER_EXT_ARG) { | 
 | 		struct io_uring_getevents_arg arg; | 
 |  | 
 | 		if (argsz != sizeof(arg)) | 
 | 			return -EINVAL; | 
 | 		if (copy_from_user(&arg, argp, sizeof(arg))) | 
 | 			return -EFAULT; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz, | 
 | 			  struct __kernel_timespec __user **ts, | 
 | 			  const sigset_t __user **sig) | 
 | { | 
 | 	struct io_uring_getevents_arg arg; | 
 |  | 
 | 	/* | 
 | 	 * If EXT_ARG isn't set, then we have no timespec and the argp pointer | 
 | 	 * is just a pointer to the sigset_t. | 
 | 	 */ | 
 | 	if (!(flags & IORING_ENTER_EXT_ARG)) { | 
 | 		*sig = (const sigset_t __user *) argp; | 
 | 		*ts = NULL; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * EXT_ARG is set - ensure we agree on the size of it and copy in our | 
 | 	 * timespec and sigset_t pointers if good. | 
 | 	 */ | 
 | 	if (*argsz != sizeof(arg)) | 
 | 		return -EINVAL; | 
 | 	if (copy_from_user(&arg, argp, sizeof(arg))) | 
 | 		return -EFAULT; | 
 | 	if (arg.pad) | 
 | 		return -EINVAL; | 
 | 	*sig = u64_to_user_ptr(arg.sigmask); | 
 | 	*argsz = arg.sigmask_sz; | 
 | 	*ts = u64_to_user_ptr(arg.ts); | 
 | 	return 0; | 
 | } | 
 |  | 
 | SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit, | 
 | 		u32, min_complete, u32, flags, const void __user *, argp, | 
 | 		size_t, argsz) | 
 | { | 
 | 	struct io_ring_ctx *ctx; | 
 | 	struct fd f; | 
 | 	long ret; | 
 |  | 
 | 	if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP | | 
 | 			       IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG | | 
 | 			       IORING_ENTER_REGISTERED_RING))) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* | 
 | 	 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we | 
 | 	 * need only dereference our task private array to find it. | 
 | 	 */ | 
 | 	if (flags & IORING_ENTER_REGISTERED_RING) { | 
 | 		struct io_uring_task *tctx = current->io_uring; | 
 |  | 
 | 		if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX)) | 
 | 			return -EINVAL; | 
 | 		fd = array_index_nospec(fd, IO_RINGFD_REG_MAX); | 
 | 		f.file = tctx->registered_rings[fd]; | 
 | 		f.flags = 0; | 
 | 		if (unlikely(!f.file)) | 
 | 			return -EBADF; | 
 | 	} else { | 
 | 		f = fdget(fd); | 
 | 		if (unlikely(!f.file)) | 
 | 			return -EBADF; | 
 | 		ret = -EOPNOTSUPP; | 
 | 		if (unlikely(!io_is_uring_fops(f.file))) | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | 	ctx = f.file->private_data; | 
 | 	ret = -EBADFD; | 
 | 	if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED)) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * For SQ polling, the thread will do all submissions and completions. | 
 | 	 * Just return the requested submit count, and wake the thread if | 
 | 	 * we were asked to. | 
 | 	 */ | 
 | 	ret = 0; | 
 | 	if (ctx->flags & IORING_SETUP_SQPOLL) { | 
 | 		io_cqring_overflow_flush(ctx); | 
 |  | 
 | 		if (unlikely(ctx->sq_data->thread == NULL)) { | 
 | 			ret = -EOWNERDEAD; | 
 | 			goto out; | 
 | 		} | 
 | 		if (flags & IORING_ENTER_SQ_WAKEUP) | 
 | 			wake_up(&ctx->sq_data->wait); | 
 | 		if (flags & IORING_ENTER_SQ_WAIT) | 
 | 			io_sqpoll_wait_sq(ctx); | 
 |  | 
 | 		ret = to_submit; | 
 | 	} else if (to_submit) { | 
 | 		ret = io_uring_add_tctx_node(ctx); | 
 | 		if (unlikely(ret)) | 
 | 			goto out; | 
 |  | 
 | 		mutex_lock(&ctx->uring_lock); | 
 | 		ret = io_submit_sqes(ctx, to_submit); | 
 | 		if (ret != to_submit) { | 
 | 			mutex_unlock(&ctx->uring_lock); | 
 | 			goto out; | 
 | 		} | 
 | 		if (flags & IORING_ENTER_GETEVENTS) { | 
 | 			if (ctx->syscall_iopoll) | 
 | 				goto iopoll_locked; | 
 | 			/* | 
 | 			 * Ignore errors, we'll soon call io_cqring_wait() and | 
 | 			 * it should handle ownership problems if any. | 
 | 			 */ | 
 | 			if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) | 
 | 				(void)io_run_local_work_locked(ctx); | 
 | 		} | 
 | 		mutex_unlock(&ctx->uring_lock); | 
 | 	} | 
 |  | 
 | 	if (flags & IORING_ENTER_GETEVENTS) { | 
 | 		int ret2; | 
 |  | 
 | 		if (ctx->syscall_iopoll) { | 
 | 			/* | 
 | 			 * We disallow the app entering submit/complete with | 
 | 			 * polling, but we still need to lock the ring to | 
 | 			 * prevent racing with polled issue that got punted to | 
 | 			 * a workqueue. | 
 | 			 */ | 
 | 			mutex_lock(&ctx->uring_lock); | 
 | iopoll_locked: | 
 | 			ret2 = io_validate_ext_arg(flags, argp, argsz); | 
 | 			if (likely(!ret2)) { | 
 | 				min_complete = min(min_complete, | 
 | 						   ctx->cq_entries); | 
 | 				ret2 = io_iopoll_check(ctx, min_complete); | 
 | 			} | 
 | 			mutex_unlock(&ctx->uring_lock); | 
 | 		} else { | 
 | 			const sigset_t __user *sig; | 
 | 			struct __kernel_timespec __user *ts; | 
 |  | 
 | 			ret2 = io_get_ext_arg(flags, argp, &argsz, &ts, &sig); | 
 | 			if (likely(!ret2)) { | 
 | 				min_complete = min(min_complete, | 
 | 						   ctx->cq_entries); | 
 | 				ret2 = io_cqring_wait(ctx, min_complete, sig, | 
 | 						      argsz, ts); | 
 | 			} | 
 | 		} | 
 |  | 
 | 		if (!ret) { | 
 | 			ret = ret2; | 
 |  | 
 | 			/* | 
 | 			 * EBADR indicates that one or more CQE were dropped. | 
 | 			 * Once the user has been informed we can clear the bit | 
 | 			 * as they are obviously ok with those drops. | 
 | 			 */ | 
 | 			if (unlikely(ret2 == -EBADR)) | 
 | 				clear_bit(IO_CHECK_CQ_DROPPED_BIT, | 
 | 					  &ctx->check_cq); | 
 | 		} | 
 | 	} | 
 | out: | 
 | 	fdput(f); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static const struct file_operations io_uring_fops = { | 
 | 	.release	= io_uring_release, | 
 | 	.mmap		= io_uring_mmap, | 
 | #ifndef CONFIG_MMU | 
 | 	.get_unmapped_area = io_uring_nommu_get_unmapped_area, | 
 | 	.mmap_capabilities = io_uring_nommu_mmap_capabilities, | 
 | #else | 
 | 	.get_unmapped_area = io_uring_mmu_get_unmapped_area, | 
 | #endif | 
 | 	.poll		= io_uring_poll, | 
 | #ifdef CONFIG_PROC_FS | 
 | 	.show_fdinfo	= io_uring_show_fdinfo, | 
 | #endif | 
 | }; | 
 |  | 
 | bool io_is_uring_fops(struct file *file) | 
 | { | 
 | 	return file->f_op == &io_uring_fops; | 
 | } | 
 |  | 
 | static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx, | 
 | 					 struct io_uring_params *p) | 
 | { | 
 | 	struct io_rings *rings; | 
 | 	size_t size, sq_array_offset; | 
 | 	void *ptr; | 
 |  | 
 | 	/* make sure these are sane, as we already accounted them */ | 
 | 	ctx->sq_entries = p->sq_entries; | 
 | 	ctx->cq_entries = p->cq_entries; | 
 |  | 
 | 	size = rings_size(ctx, p->sq_entries, p->cq_entries, &sq_array_offset); | 
 | 	if (size == SIZE_MAX) | 
 | 		return -EOVERFLOW; | 
 |  | 
 | 	if (!(ctx->flags & IORING_SETUP_NO_MMAP)) | 
 | 		rings = io_mem_alloc(size); | 
 | 	else | 
 | 		rings = io_rings_map(ctx, p->cq_off.user_addr, size); | 
 |  | 
 | 	if (IS_ERR(rings)) | 
 | 		return PTR_ERR(rings); | 
 |  | 
 | 	ctx->rings = rings; | 
 | 	if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) | 
 | 		ctx->sq_array = (u32 *)((char *)rings + sq_array_offset); | 
 | 	rings->sq_ring_mask = p->sq_entries - 1; | 
 | 	rings->cq_ring_mask = p->cq_entries - 1; | 
 | 	rings->sq_ring_entries = p->sq_entries; | 
 | 	rings->cq_ring_entries = p->cq_entries; | 
 |  | 
 | 	if (p->flags & IORING_SETUP_SQE128) | 
 | 		size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries); | 
 | 	else | 
 | 		size = array_size(sizeof(struct io_uring_sqe), p->sq_entries); | 
 | 	if (size == SIZE_MAX) { | 
 | 		io_rings_free(ctx); | 
 | 		return -EOVERFLOW; | 
 | 	} | 
 |  | 
 | 	if (!(ctx->flags & IORING_SETUP_NO_MMAP)) | 
 | 		ptr = io_mem_alloc(size); | 
 | 	else | 
 | 		ptr = io_sqes_map(ctx, p->sq_off.user_addr, size); | 
 |  | 
 | 	if (IS_ERR(ptr)) { | 
 | 		io_rings_free(ctx); | 
 | 		return PTR_ERR(ptr); | 
 | 	} | 
 |  | 
 | 	ctx->sq_sqes = ptr; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int io_uring_install_fd(struct file *file) | 
 | { | 
 | 	int fd; | 
 |  | 
 | 	fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC); | 
 | 	if (fd < 0) | 
 | 		return fd; | 
 | 	fd_install(fd, file); | 
 | 	return fd; | 
 | } | 
 |  | 
 | /* | 
 |  * Allocate an anonymous fd, this is what constitutes the application | 
 |  * visible backing of an io_uring instance. The application mmaps this | 
 |  * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled, | 
 |  * we have to tie this fd to a socket for file garbage collection purposes. | 
 |  */ | 
 | static struct file *io_uring_get_file(struct io_ring_ctx *ctx) | 
 | { | 
 | 	struct file *file; | 
 | #if defined(CONFIG_UNIX) | 
 | 	int ret; | 
 |  | 
 | 	ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP, | 
 | 				&ctx->ring_sock); | 
 | 	if (ret) | 
 | 		return ERR_PTR(ret); | 
 | #endif | 
 |  | 
 | 	file = anon_inode_getfile_secure("[io_uring]", &io_uring_fops, ctx, | 
 | 					 O_RDWR | O_CLOEXEC, NULL); | 
 | #if defined(CONFIG_UNIX) | 
 | 	if (IS_ERR(file)) { | 
 | 		sock_release(ctx->ring_sock); | 
 | 		ctx->ring_sock = NULL; | 
 | 	} else { | 
 | 		ctx->ring_sock->file = file; | 
 | 	} | 
 | #endif | 
 | 	return file; | 
 | } | 
 |  | 
 | static __cold int io_uring_create(unsigned entries, struct io_uring_params *p, | 
 | 				  struct io_uring_params __user *params) | 
 | { | 
 | 	struct io_ring_ctx *ctx; | 
 | 	struct io_uring_task *tctx; | 
 | 	struct file *file; | 
 | 	int ret; | 
 |  | 
 | 	if (!entries) | 
 | 		return -EINVAL; | 
 | 	if (entries > IORING_MAX_ENTRIES) { | 
 | 		if (!(p->flags & IORING_SETUP_CLAMP)) | 
 | 			return -EINVAL; | 
 | 		entries = IORING_MAX_ENTRIES; | 
 | 	} | 
 |  | 
 | 	if ((p->flags & IORING_SETUP_REGISTERED_FD_ONLY) | 
 | 	    && !(p->flags & IORING_SETUP_NO_MMAP)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* | 
 | 	 * Use twice as many entries for the CQ ring. It's possible for the | 
 | 	 * application to drive a higher depth than the size of the SQ ring, | 
 | 	 * since the sqes are only used at submission time. This allows for | 
 | 	 * some flexibility in overcommitting a bit. If the application has | 
 | 	 * set IORING_SETUP_CQSIZE, it will have passed in the desired number | 
 | 	 * of CQ ring entries manually. | 
 | 	 */ | 
 | 	p->sq_entries = roundup_pow_of_two(entries); | 
 | 	if (p->flags & IORING_SETUP_CQSIZE) { | 
 | 		/* | 
 | 		 * If IORING_SETUP_CQSIZE is set, we do the same roundup | 
 | 		 * to a power-of-two, if it isn't already. We do NOT impose | 
 | 		 * any cq vs sq ring sizing. | 
 | 		 */ | 
 | 		if (!p->cq_entries) | 
 | 			return -EINVAL; | 
 | 		if (p->cq_entries > IORING_MAX_CQ_ENTRIES) { | 
 | 			if (!(p->flags & IORING_SETUP_CLAMP)) | 
 | 				return -EINVAL; | 
 | 			p->cq_entries = IORING_MAX_CQ_ENTRIES; | 
 | 		} | 
 | 		p->cq_entries = roundup_pow_of_two(p->cq_entries); | 
 | 		if (p->cq_entries < p->sq_entries) | 
 | 			return -EINVAL; | 
 | 	} else { | 
 | 		p->cq_entries = 2 * p->sq_entries; | 
 | 	} | 
 |  | 
 | 	ctx = io_ring_ctx_alloc(p); | 
 | 	if (!ctx) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) && | 
 | 	    !(ctx->flags & IORING_SETUP_IOPOLL) && | 
 | 	    !(ctx->flags & IORING_SETUP_SQPOLL)) | 
 | 		ctx->task_complete = true; | 
 |  | 
 | 	if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL)) | 
 | 		ctx->lockless_cq = true; | 
 |  | 
 | 	/* | 
 | 	 * lazy poll_wq activation relies on ->task_complete for synchronisation | 
 | 	 * purposes, see io_activate_pollwq() | 
 | 	 */ | 
 | 	if (!ctx->task_complete) | 
 | 		ctx->poll_activated = true; | 
 |  | 
 | 	/* | 
 | 	 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user | 
 | 	 * space applications don't need to do io completion events | 
 | 	 * polling again, they can rely on io_sq_thread to do polling | 
 | 	 * work, which can reduce cpu usage and uring_lock contention. | 
 | 	 */ | 
 | 	if (ctx->flags & IORING_SETUP_IOPOLL && | 
 | 	    !(ctx->flags & IORING_SETUP_SQPOLL)) | 
 | 		ctx->syscall_iopoll = 1; | 
 |  | 
 | 	ctx->compat = in_compat_syscall(); | 
 | 	if (!ns_capable_noaudit(&init_user_ns, CAP_IPC_LOCK)) | 
 | 		ctx->user = get_uid(current_user()); | 
 |  | 
 | 	/* | 
 | 	 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if | 
 | 	 * COOP_TASKRUN is set, then IPIs are never needed by the app. | 
 | 	 */ | 
 | 	ret = -EINVAL; | 
 | 	if (ctx->flags & IORING_SETUP_SQPOLL) { | 
 | 		/* IPI related flags don't make sense with SQPOLL */ | 
 | 		if (ctx->flags & (IORING_SETUP_COOP_TASKRUN | | 
 | 				  IORING_SETUP_TASKRUN_FLAG | | 
 | 				  IORING_SETUP_DEFER_TASKRUN)) | 
 | 			goto err; | 
 | 		ctx->notify_method = TWA_SIGNAL_NO_IPI; | 
 | 	} else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) { | 
 | 		ctx->notify_method = TWA_SIGNAL_NO_IPI; | 
 | 	} else { | 
 | 		if (ctx->flags & IORING_SETUP_TASKRUN_FLAG && | 
 | 		    !(ctx->flags & IORING_SETUP_DEFER_TASKRUN)) | 
 | 			goto err; | 
 | 		ctx->notify_method = TWA_SIGNAL; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * For DEFER_TASKRUN we require the completion task to be the same as the | 
 | 	 * submission task. This implies that there is only one submitter, so enforce | 
 | 	 * that. | 
 | 	 */ | 
 | 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN && | 
 | 	    !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) { | 
 | 		goto err; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * This is just grabbed for accounting purposes. When a process exits, | 
 | 	 * the mm is exited and dropped before the files, hence we need to hang | 
 | 	 * on to this mm purely for the purposes of being able to unaccount | 
 | 	 * memory (locked/pinned vm). It's not used for anything else. | 
 | 	 */ | 
 | 	mmgrab(current->mm); | 
 | 	ctx->mm_account = current->mm; | 
 |  | 
 | 	ret = io_allocate_scq_urings(ctx, p); | 
 | 	if (ret) | 
 | 		goto err; | 
 |  | 
 | 	ret = io_sq_offload_create(ctx, p); | 
 | 	if (ret) | 
 | 		goto err; | 
 |  | 
 | 	ret = io_rsrc_init(ctx); | 
 | 	if (ret) | 
 | 		goto err; | 
 |  | 
 | 	p->sq_off.head = offsetof(struct io_rings, sq.head); | 
 | 	p->sq_off.tail = offsetof(struct io_rings, sq.tail); | 
 | 	p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask); | 
 | 	p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries); | 
 | 	p->sq_off.flags = offsetof(struct io_rings, sq_flags); | 
 | 	p->sq_off.dropped = offsetof(struct io_rings, sq_dropped); | 
 | 	if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) | 
 | 		p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings; | 
 | 	p->sq_off.resv1 = 0; | 
 | 	if (!(ctx->flags & IORING_SETUP_NO_MMAP)) | 
 | 		p->sq_off.user_addr = 0; | 
 |  | 
 | 	p->cq_off.head = offsetof(struct io_rings, cq.head); | 
 | 	p->cq_off.tail = offsetof(struct io_rings, cq.tail); | 
 | 	p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask); | 
 | 	p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries); | 
 | 	p->cq_off.overflow = offsetof(struct io_rings, cq_overflow); | 
 | 	p->cq_off.cqes = offsetof(struct io_rings, cqes); | 
 | 	p->cq_off.flags = offsetof(struct io_rings, cq_flags); | 
 | 	p->cq_off.resv1 = 0; | 
 | 	if (!(ctx->flags & IORING_SETUP_NO_MMAP)) | 
 | 		p->cq_off.user_addr = 0; | 
 |  | 
 | 	p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP | | 
 | 			IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS | | 
 | 			IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL | | 
 | 			IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED | | 
 | 			IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS | | 
 | 			IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP | | 
 | 			IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING; | 
 |  | 
 | 	if (copy_to_user(params, p, sizeof(*p))) { | 
 | 		ret = -EFAULT; | 
 | 		goto err; | 
 | 	} | 
 |  | 
 | 	if (ctx->flags & IORING_SETUP_SINGLE_ISSUER | 
 | 	    && !(ctx->flags & IORING_SETUP_R_DISABLED)) | 
 | 		WRITE_ONCE(ctx->submitter_task, get_task_struct(current)); | 
 |  | 
 | 	file = io_uring_get_file(ctx); | 
 | 	if (IS_ERR(file)) { | 
 | 		ret = PTR_ERR(file); | 
 | 		goto err; | 
 | 	} | 
 |  | 
 | 	ret = __io_uring_add_tctx_node(ctx); | 
 | 	if (ret) | 
 | 		goto err_fput; | 
 | 	tctx = current->io_uring; | 
 |  | 
 | 	/* | 
 | 	 * Install ring fd as the very last thing, so we don't risk someone | 
 | 	 * having closed it before we finish setup | 
 | 	 */ | 
 | 	if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY) | 
 | 		ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX); | 
 | 	else | 
 | 		ret = io_uring_install_fd(file); | 
 | 	if (ret < 0) | 
 | 		goto err_fput; | 
 |  | 
 | 	trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags); | 
 | 	return ret; | 
 | err: | 
 | 	io_ring_ctx_wait_and_kill(ctx); | 
 | 	return ret; | 
 | err_fput: | 
 | 	fput(file); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Sets up an aio uring context, and returns the fd. Applications asks for a | 
 |  * ring size, we return the actual sq/cq ring sizes (among other things) in the | 
 |  * params structure passed in. | 
 |  */ | 
 | static long io_uring_setup(u32 entries, struct io_uring_params __user *params) | 
 | { | 
 | 	struct io_uring_params p; | 
 | 	int i; | 
 |  | 
 | 	if (copy_from_user(&p, params, sizeof(p))) | 
 | 		return -EFAULT; | 
 | 	for (i = 0; i < ARRAY_SIZE(p.resv); i++) { | 
 | 		if (p.resv[i]) | 
 | 			return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL | | 
 | 			IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE | | 
 | 			IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ | | 
 | 			IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL | | 
 | 			IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG | | 
 | 			IORING_SETUP_SQE128 | IORING_SETUP_CQE32 | | 
 | 			IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN | | 
 | 			IORING_SETUP_NO_MMAP | IORING_SETUP_REGISTERED_FD_ONLY | | 
 | 			IORING_SETUP_NO_SQARRAY)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	return io_uring_create(entries, &p, params); | 
 | } | 
 |  | 
 | static inline bool io_uring_allowed(void) | 
 | { | 
 | 	int disabled = READ_ONCE(sysctl_io_uring_disabled); | 
 | 	kgid_t io_uring_group; | 
 |  | 
 | 	if (disabled == 2) | 
 | 		return false; | 
 |  | 
 | 	if (disabled == 0 || capable(CAP_SYS_ADMIN)) | 
 | 		return true; | 
 |  | 
 | 	io_uring_group = make_kgid(&init_user_ns, sysctl_io_uring_group); | 
 | 	if (!gid_valid(io_uring_group)) | 
 | 		return false; | 
 |  | 
 | 	return in_group_p(io_uring_group); | 
 | } | 
 |  | 
 | SYSCALL_DEFINE2(io_uring_setup, u32, entries, | 
 | 		struct io_uring_params __user *, params) | 
 | { | 
 | 	if (!io_uring_allowed()) | 
 | 		return -EPERM; | 
 |  | 
 | 	return io_uring_setup(entries, params); | 
 | } | 
 |  | 
 | static __cold int io_probe(struct io_ring_ctx *ctx, void __user *arg, | 
 | 			   unsigned nr_args) | 
 | { | 
 | 	struct io_uring_probe *p; | 
 | 	size_t size; | 
 | 	int i, ret; | 
 |  | 
 | 	size = struct_size(p, ops, nr_args); | 
 | 	if (size == SIZE_MAX) | 
 | 		return -EOVERFLOW; | 
 | 	p = kzalloc(size, GFP_KERNEL); | 
 | 	if (!p) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	ret = -EFAULT; | 
 | 	if (copy_from_user(p, arg, size)) | 
 | 		goto out; | 
 | 	ret = -EINVAL; | 
 | 	if (memchr_inv(p, 0, size)) | 
 | 		goto out; | 
 |  | 
 | 	p->last_op = IORING_OP_LAST - 1; | 
 | 	if (nr_args > IORING_OP_LAST) | 
 | 		nr_args = IORING_OP_LAST; | 
 |  | 
 | 	for (i = 0; i < nr_args; i++) { | 
 | 		p->ops[i].op = i; | 
 | 		if (!io_issue_defs[i].not_supported) | 
 | 			p->ops[i].flags = IO_URING_OP_SUPPORTED; | 
 | 	} | 
 | 	p->ops_len = i; | 
 |  | 
 | 	ret = 0; | 
 | 	if (copy_to_user(arg, p, size)) | 
 | 		ret = -EFAULT; | 
 | out: | 
 | 	kfree(p); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int io_register_personality(struct io_ring_ctx *ctx) | 
 | { | 
 | 	const struct cred *creds; | 
 | 	u32 id; | 
 | 	int ret; | 
 |  | 
 | 	creds = get_current_cred(); | 
 |  | 
 | 	ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds, | 
 | 			XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL); | 
 | 	if (ret < 0) { | 
 | 		put_cred(creds); | 
 | 		return ret; | 
 | 	} | 
 | 	return id; | 
 | } | 
 |  | 
 | static __cold int io_register_restrictions(struct io_ring_ctx *ctx, | 
 | 					   void __user *arg, unsigned int nr_args) | 
 | { | 
 | 	struct io_uring_restriction *res; | 
 | 	size_t size; | 
 | 	int i, ret; | 
 |  | 
 | 	/* Restrictions allowed only if rings started disabled */ | 
 | 	if (!(ctx->flags & IORING_SETUP_R_DISABLED)) | 
 | 		return -EBADFD; | 
 |  | 
 | 	/* We allow only a single restrictions registration */ | 
 | 	if (ctx->restrictions.registered) | 
 | 		return -EBUSY; | 
 |  | 
 | 	if (!arg || nr_args > IORING_MAX_RESTRICTIONS) | 
 | 		return -EINVAL; | 
 |  | 
 | 	size = array_size(nr_args, sizeof(*res)); | 
 | 	if (size == SIZE_MAX) | 
 | 		return -EOVERFLOW; | 
 |  | 
 | 	res = memdup_user(arg, size); | 
 | 	if (IS_ERR(res)) | 
 | 		return PTR_ERR(res); | 
 |  | 
 | 	ret = 0; | 
 |  | 
 | 	for (i = 0; i < nr_args; i++) { | 
 | 		switch (res[i].opcode) { | 
 | 		case IORING_RESTRICTION_REGISTER_OP: | 
 | 			if (res[i].register_op >= IORING_REGISTER_LAST) { | 
 | 				ret = -EINVAL; | 
 | 				goto out; | 
 | 			} | 
 |  | 
 | 			__set_bit(res[i].register_op, | 
 | 				  ctx->restrictions.register_op); | 
 | 			break; | 
 | 		case IORING_RESTRICTION_SQE_OP: | 
 | 			if (res[i].sqe_op >= IORING_OP_LAST) { | 
 | 				ret = -EINVAL; | 
 | 				goto out; | 
 | 			} | 
 |  | 
 | 			__set_bit(res[i].sqe_op, ctx->restrictions.sqe_op); | 
 | 			break; | 
 | 		case IORING_RESTRICTION_SQE_FLAGS_ALLOWED: | 
 | 			ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags; | 
 | 			break; | 
 | 		case IORING_RESTRICTION_SQE_FLAGS_REQUIRED: | 
 | 			ctx->restrictions.sqe_flags_required = res[i].sqe_flags; | 
 | 			break; | 
 | 		default: | 
 | 			ret = -EINVAL; | 
 | 			goto out; | 
 | 		} | 
 | 	} | 
 |  | 
 | out: | 
 | 	/* Reset all restrictions if an error happened */ | 
 | 	if (ret != 0) | 
 | 		memset(&ctx->restrictions, 0, sizeof(ctx->restrictions)); | 
 | 	else | 
 | 		ctx->restrictions.registered = true; | 
 |  | 
 | 	kfree(res); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int io_register_enable_rings(struct io_ring_ctx *ctx) | 
 | { | 
 | 	if (!(ctx->flags & IORING_SETUP_R_DISABLED)) | 
 | 		return -EBADFD; | 
 |  | 
 | 	if (ctx->flags & IORING_SETUP_SINGLE_ISSUER && !ctx->submitter_task) { | 
 | 		WRITE_ONCE(ctx->submitter_task, get_task_struct(current)); | 
 | 		/* | 
 | 		 * Lazy activation attempts would fail if it was polled before | 
 | 		 * submitter_task is set. | 
 | 		 */ | 
 | 		if (wq_has_sleeper(&ctx->poll_wq)) | 
 | 			io_activate_pollwq(ctx); | 
 | 	} | 
 |  | 
 | 	if (ctx->restrictions.registered) | 
 | 		ctx->restricted = 1; | 
 |  | 
 | 	ctx->flags &= ~IORING_SETUP_R_DISABLED; | 
 | 	if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait)) | 
 | 		wake_up(&ctx->sq_data->wait); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static __cold int __io_register_iowq_aff(struct io_ring_ctx *ctx, | 
 | 					 cpumask_var_t new_mask) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	if (!(ctx->flags & IORING_SETUP_SQPOLL)) { | 
 | 		ret = io_wq_cpu_affinity(current->io_uring, new_mask); | 
 | 	} else { | 
 | 		mutex_unlock(&ctx->uring_lock); | 
 | 		ret = io_sqpoll_wq_cpu_affinity(ctx, new_mask); | 
 | 		mutex_lock(&ctx->uring_lock); | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static __cold int io_register_iowq_aff(struct io_ring_ctx *ctx, | 
 | 				       void __user *arg, unsigned len) | 
 | { | 
 | 	cpumask_var_t new_mask; | 
 | 	int ret; | 
 |  | 
 | 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	cpumask_clear(new_mask); | 
 | 	if (len > cpumask_size()) | 
 | 		len = cpumask_size(); | 
 |  | 
 | 	if (in_compat_syscall()) { | 
 | 		ret = compat_get_bitmap(cpumask_bits(new_mask), | 
 | 					(const compat_ulong_t __user *)arg, | 
 | 					len * 8 /* CHAR_BIT */); | 
 | 	} else { | 
 | 		ret = copy_from_user(new_mask, arg, len); | 
 | 	} | 
 |  | 
 | 	if (ret) { | 
 | 		free_cpumask_var(new_mask); | 
 | 		return -EFAULT; | 
 | 	} | 
 |  | 
 | 	ret = __io_register_iowq_aff(ctx, new_mask); | 
 | 	free_cpumask_var(new_mask); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static __cold int io_unregister_iowq_aff(struct io_ring_ctx *ctx) | 
 | { | 
 | 	return __io_register_iowq_aff(ctx, NULL); | 
 | } | 
 |  | 
 | static __cold int io_register_iowq_max_workers(struct io_ring_ctx *ctx, | 
 | 					       void __user *arg) | 
 | 	__must_hold(&ctx->uring_lock) | 
 | { | 
 | 	struct io_tctx_node *node; | 
 | 	struct io_uring_task *tctx = NULL; | 
 | 	struct io_sq_data *sqd = NULL; | 
 | 	__u32 new_count[2]; | 
 | 	int i, ret; | 
 |  | 
 | 	if (copy_from_user(new_count, arg, sizeof(new_count))) | 
 | 		return -EFAULT; | 
 | 	for (i = 0; i < ARRAY_SIZE(new_count); i++) | 
 | 		if (new_count[i] > INT_MAX) | 
 | 			return -EINVAL; | 
 |  | 
 | 	if (ctx->flags & IORING_SETUP_SQPOLL) { | 
 | 		sqd = ctx->sq_data; | 
 | 		if (sqd) { | 
 | 			/* | 
 | 			 * Observe the correct sqd->lock -> ctx->uring_lock | 
 | 			 * ordering. Fine to drop uring_lock here, we hold | 
 | 			 * a ref to the ctx. | 
 | 			 */ | 
 | 			refcount_inc(&sqd->refs); | 
 | 			mutex_unlock(&ctx->uring_lock); | 
 | 			mutex_lock(&sqd->lock); | 
 | 			mutex_lock(&ctx->uring_lock); | 
 | 			if (sqd->thread) | 
 | 				tctx = sqd->thread->io_uring; | 
 | 		} | 
 | 	} else { | 
 | 		tctx = current->io_uring; | 
 | 	} | 
 |  | 
 | 	BUILD_BUG_ON(sizeof(new_count) != sizeof(ctx->iowq_limits)); | 
 |  | 
 | 	for (i = 0; i < ARRAY_SIZE(new_count); i++) | 
 | 		if (new_count[i]) | 
 | 			ctx->iowq_limits[i] = new_count[i]; | 
 | 	ctx->iowq_limits_set = true; | 
 |  | 
 | 	if (tctx && tctx->io_wq) { | 
 | 		ret = io_wq_max_workers(tctx->io_wq, new_count); | 
 | 		if (ret) | 
 | 			goto err; | 
 | 	} else { | 
 | 		memset(new_count, 0, sizeof(new_count)); | 
 | 	} | 
 |  | 
 | 	if (sqd) { | 
 | 		mutex_unlock(&sqd->lock); | 
 | 		io_put_sq_data(sqd); | 
 | 	} | 
 |  | 
 | 	if (copy_to_user(arg, new_count, sizeof(new_count))) | 
 | 		return -EFAULT; | 
 |  | 
 | 	/* that's it for SQPOLL, only the SQPOLL task creates requests */ | 
 | 	if (sqd) | 
 | 		return 0; | 
 |  | 
 | 	/* now propagate the restriction to all registered users */ | 
 | 	list_for_each_entry(node, &ctx->tctx_list, ctx_node) { | 
 | 		struct io_uring_task *tctx = node->task->io_uring; | 
 |  | 
 | 		if (WARN_ON_ONCE(!tctx->io_wq)) | 
 | 			continue; | 
 |  | 
 | 		for (i = 0; i < ARRAY_SIZE(new_count); i++) | 
 | 			new_count[i] = ctx->iowq_limits[i]; | 
 | 		/* ignore errors, it always returns zero anyway */ | 
 | 		(void)io_wq_max_workers(tctx->io_wq, new_count); | 
 | 	} | 
 | 	return 0; | 
 | err: | 
 | 	if (sqd) { | 
 | 		mutex_unlock(&sqd->lock); | 
 | 		io_put_sq_data(sqd); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode, | 
 | 			       void __user *arg, unsigned nr_args) | 
 | 	__releases(ctx->uring_lock) | 
 | 	__acquires(ctx->uring_lock) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	/* | 
 | 	 * We don't quiesce the refs for register anymore and so it can't be | 
 | 	 * dying as we're holding a file ref here. | 
 | 	 */ | 
 | 	if (WARN_ON_ONCE(percpu_ref_is_dying(&ctx->refs))) | 
 | 		return -ENXIO; | 
 |  | 
 | 	if (ctx->submitter_task && ctx->submitter_task != current) | 
 | 		return -EEXIST; | 
 |  | 
 | 	if (ctx->restricted) { | 
 | 		opcode = array_index_nospec(opcode, IORING_REGISTER_LAST); | 
 | 		if (!test_bit(opcode, ctx->restrictions.register_op)) | 
 | 			return -EACCES; | 
 | 	} | 
 |  | 
 | 	switch (opcode) { | 
 | 	case IORING_REGISTER_BUFFERS: | 
 | 		ret = -EFAULT; | 
 | 		if (!arg) | 
 | 			break; | 
 | 		ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL); | 
 | 		break; | 
 | 	case IORING_UNREGISTER_BUFFERS: | 
 | 		ret = -EINVAL; | 
 | 		if (arg || nr_args) | 
 | 			break; | 
 | 		ret = io_sqe_buffers_unregister(ctx); | 
 | 		break; | 
 | 	case IORING_REGISTER_FILES: | 
 | 		ret = -EFAULT; | 
 | 		if (!arg) | 
 | 			break; | 
 | 		ret = io_sqe_files_register(ctx, arg, nr_args, NULL); | 
 | 		break; | 
 | 	case IORING_UNREGISTER_FILES: | 
 | 		ret = -EINVAL; | 
 | 		if (arg || nr_args) | 
 | 			break; | 
 | 		ret = io_sqe_files_unregister(ctx); | 
 | 		break; | 
 | 	case IORING_REGISTER_FILES_UPDATE: | 
 | 		ret = io_register_files_update(ctx, arg, nr_args); | 
 | 		break; | 
 | 	case IORING_REGISTER_EVENTFD: | 
 | 		ret = -EINVAL; | 
 | 		if (nr_args != 1) | 
 | 			break; | 
 | 		ret = io_eventfd_register(ctx, arg, 0); | 
 | 		break; | 
 | 	case IORING_REGISTER_EVENTFD_ASYNC: | 
 | 		ret = -EINVAL; | 
 | 		if (nr_args != 1) | 
 | 			break; | 
 | 		ret = io_eventfd_register(ctx, arg, 1); | 
 | 		break; | 
 | 	case IORING_UNREGISTER_EVENTFD: | 
 | 		ret = -EINVAL; | 
 | 		if (arg || nr_args) | 
 | 			break; | 
 | 		ret = io_eventfd_unregister(ctx); | 
 | 		break; | 
 | 	case IORING_REGISTER_PROBE: | 
 | 		ret = -EINVAL; | 
 | 		if (!arg || nr_args > 256) | 
 | 			break; | 
 | 		ret = io_probe(ctx, arg, nr_args); | 
 | 		break; | 
 | 	case IORING_REGISTER_PERSONALITY: | 
 | 		ret = -EINVAL; | 
 | 		if (arg || nr_args) | 
 | 			break; | 
 | 		ret = io_register_personality(ctx); | 
 | 		break; | 
 | 	case IORING_UNREGISTER_PERSONALITY: | 
 | 		ret = -EINVAL; | 
 | 		if (arg) | 
 | 			break; | 
 | 		ret = io_unregister_personality(ctx, nr_args); | 
 | 		break; | 
 | 	case IORING_REGISTER_ENABLE_RINGS: | 
 | 		ret = -EINVAL; | 
 | 		if (arg || nr_args) | 
 | 			break; | 
 | 		ret = io_register_enable_rings(ctx); | 
 | 		break; | 
 | 	case IORING_REGISTER_RESTRICTIONS: | 
 | 		ret = io_register_restrictions(ctx, arg, nr_args); | 
 | 		break; | 
 | 	case IORING_REGISTER_FILES2: | 
 | 		ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_FILE); | 
 | 		break; | 
 | 	case IORING_REGISTER_FILES_UPDATE2: | 
 | 		ret = io_register_rsrc_update(ctx, arg, nr_args, | 
 | 					      IORING_RSRC_FILE); | 
 | 		break; | 
 | 	case IORING_REGISTER_BUFFERS2: | 
 | 		ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_BUFFER); | 
 | 		break; | 
 | 	case IORING_REGISTER_BUFFERS_UPDATE: | 
 | 		ret = io_register_rsrc_update(ctx, arg, nr_args, | 
 | 					      IORING_RSRC_BUFFER); | 
 | 		break; | 
 | 	case IORING_REGISTER_IOWQ_AFF: | 
 | 		ret = -EINVAL; | 
 | 		if (!arg || !nr_args) | 
 | 			break; | 
 | 		ret = io_register_iowq_aff(ctx, arg, nr_args); | 
 | 		break; | 
 | 	case IORING_UNREGISTER_IOWQ_AFF: | 
 | 		ret = -EINVAL; | 
 | 		if (arg || nr_args) | 
 | 			break; | 
 | 		ret = io_unregister_iowq_aff(ctx); | 
 | 		break; | 
 | 	case IORING_REGISTER_IOWQ_MAX_WORKERS: | 
 | 		ret = -EINVAL; | 
 | 		if (!arg || nr_args != 2) | 
 | 			break; | 
 | 		ret = io_register_iowq_max_workers(ctx, arg); | 
 | 		break; | 
 | 	case IORING_REGISTER_RING_FDS: | 
 | 		ret = io_ringfd_register(ctx, arg, nr_args); | 
 | 		break; | 
 | 	case IORING_UNREGISTER_RING_FDS: | 
 | 		ret = io_ringfd_unregister(ctx, arg, nr_args); | 
 | 		break; | 
 | 	case IORING_REGISTER_PBUF_RING: | 
 | 		ret = -EINVAL; | 
 | 		if (!arg || nr_args != 1) | 
 | 			break; | 
 | 		ret = io_register_pbuf_ring(ctx, arg); | 
 | 		break; | 
 | 	case IORING_UNREGISTER_PBUF_RING: | 
 | 		ret = -EINVAL; | 
 | 		if (!arg || nr_args != 1) | 
 | 			break; | 
 | 		ret = io_unregister_pbuf_ring(ctx, arg); | 
 | 		break; | 
 | 	case IORING_REGISTER_SYNC_CANCEL: | 
 | 		ret = -EINVAL; | 
 | 		if (!arg || nr_args != 1) | 
 | 			break; | 
 | 		ret = io_sync_cancel(ctx, arg); | 
 | 		break; | 
 | 	case IORING_REGISTER_FILE_ALLOC_RANGE: | 
 | 		ret = -EINVAL; | 
 | 		if (!arg || nr_args) | 
 | 			break; | 
 | 		ret = io_register_file_alloc_range(ctx, arg); | 
 | 		break; | 
 | 	default: | 
 | 		ret = -EINVAL; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode, | 
 | 		void __user *, arg, unsigned int, nr_args) | 
 | { | 
 | 	struct io_ring_ctx *ctx; | 
 | 	long ret = -EBADF; | 
 | 	struct fd f; | 
 | 	bool use_registered_ring; | 
 |  | 
 | 	use_registered_ring = !!(opcode & IORING_REGISTER_USE_REGISTERED_RING); | 
 | 	opcode &= ~IORING_REGISTER_USE_REGISTERED_RING; | 
 |  | 
 | 	if (opcode >= IORING_REGISTER_LAST) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (use_registered_ring) { | 
 | 		/* | 
 | 		 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we | 
 | 		 * need only dereference our task private array to find it. | 
 | 		 */ | 
 | 		struct io_uring_task *tctx = current->io_uring; | 
 |  | 
 | 		if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX)) | 
 | 			return -EINVAL; | 
 | 		fd = array_index_nospec(fd, IO_RINGFD_REG_MAX); | 
 | 		f.file = tctx->registered_rings[fd]; | 
 | 		f.flags = 0; | 
 | 		if (unlikely(!f.file)) | 
 | 			return -EBADF; | 
 | 	} else { | 
 | 		f = fdget(fd); | 
 | 		if (unlikely(!f.file)) | 
 | 			return -EBADF; | 
 | 		ret = -EOPNOTSUPP; | 
 | 		if (!io_is_uring_fops(f.file)) | 
 | 			goto out_fput; | 
 | 	} | 
 |  | 
 | 	ctx = f.file->private_data; | 
 |  | 
 | 	mutex_lock(&ctx->uring_lock); | 
 | 	ret = __io_uring_register(ctx, opcode, arg, nr_args); | 
 | 	mutex_unlock(&ctx->uring_lock); | 
 | 	trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs, ret); | 
 | out_fput: | 
 | 	fdput(f); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int __init io_uring_init(void) | 
 | { | 
 | #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \ | 
 | 	BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \ | 
 | 	BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \ | 
 | } while (0) | 
 |  | 
 | #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \ | 
 | 	__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename) | 
 | #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \ | 
 | 	__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename) | 
 | 	BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64); | 
 | 	BUILD_BUG_SQE_ELEM(0,  __u8,   opcode); | 
 | 	BUILD_BUG_SQE_ELEM(1,  __u8,   flags); | 
 | 	BUILD_BUG_SQE_ELEM(2,  __u16,  ioprio); | 
 | 	BUILD_BUG_SQE_ELEM(4,  __s32,  fd); | 
 | 	BUILD_BUG_SQE_ELEM(8,  __u64,  off); | 
 | 	BUILD_BUG_SQE_ELEM(8,  __u64,  addr2); | 
 | 	BUILD_BUG_SQE_ELEM(8,  __u32,  cmd_op); | 
 | 	BUILD_BUG_SQE_ELEM(12, __u32, __pad1); | 
 | 	BUILD_BUG_SQE_ELEM(16, __u64,  addr); | 
 | 	BUILD_BUG_SQE_ELEM(16, __u64,  splice_off_in); | 
 | 	BUILD_BUG_SQE_ELEM(24, __u32,  len); | 
 | 	BUILD_BUG_SQE_ELEM(28,     __kernel_rwf_t, rw_flags); | 
 | 	BUILD_BUG_SQE_ELEM(28, /* compat */   int, rw_flags); | 
 | 	BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags); | 
 | 	BUILD_BUG_SQE_ELEM(28, __u32,  fsync_flags); | 
 | 	BUILD_BUG_SQE_ELEM(28, /* compat */ __u16,  poll_events); | 
 | 	BUILD_BUG_SQE_ELEM(28, __u32,  poll32_events); | 
 | 	BUILD_BUG_SQE_ELEM(28, __u32,  sync_range_flags); | 
 | 	BUILD_BUG_SQE_ELEM(28, __u32,  msg_flags); | 
 | 	BUILD_BUG_SQE_ELEM(28, __u32,  timeout_flags); | 
 | 	BUILD_BUG_SQE_ELEM(28, __u32,  accept_flags); | 
 | 	BUILD_BUG_SQE_ELEM(28, __u32,  cancel_flags); | 
 | 	BUILD_BUG_SQE_ELEM(28, __u32,  open_flags); | 
 | 	BUILD_BUG_SQE_ELEM(28, __u32,  statx_flags); | 
 | 	BUILD_BUG_SQE_ELEM(28, __u32,  fadvise_advice); | 
 | 	BUILD_BUG_SQE_ELEM(28, __u32,  splice_flags); | 
 | 	BUILD_BUG_SQE_ELEM(28, __u32,  rename_flags); | 
 | 	BUILD_BUG_SQE_ELEM(28, __u32,  unlink_flags); | 
 | 	BUILD_BUG_SQE_ELEM(28, __u32,  hardlink_flags); | 
 | 	BUILD_BUG_SQE_ELEM(28, __u32,  xattr_flags); | 
 | 	BUILD_BUG_SQE_ELEM(28, __u32,  msg_ring_flags); | 
 | 	BUILD_BUG_SQE_ELEM(32, __u64,  user_data); | 
 | 	BUILD_BUG_SQE_ELEM(40, __u16,  buf_index); | 
 | 	BUILD_BUG_SQE_ELEM(40, __u16,  buf_group); | 
 | 	BUILD_BUG_SQE_ELEM(42, __u16,  personality); | 
 | 	BUILD_BUG_SQE_ELEM(44, __s32,  splice_fd_in); | 
 | 	BUILD_BUG_SQE_ELEM(44, __u32,  file_index); | 
 | 	BUILD_BUG_SQE_ELEM(44, __u16,  addr_len); | 
 | 	BUILD_BUG_SQE_ELEM(46, __u16,  __pad3[0]); | 
 | 	BUILD_BUG_SQE_ELEM(48, __u64,  addr3); | 
 | 	BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd); | 
 | 	BUILD_BUG_SQE_ELEM(56, __u64,  __pad2); | 
 |  | 
 | 	BUILD_BUG_ON(sizeof(struct io_uring_files_update) != | 
 | 		     sizeof(struct io_uring_rsrc_update)); | 
 | 	BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) > | 
 | 		     sizeof(struct io_uring_rsrc_update2)); | 
 |  | 
 | 	/* ->buf_index is u16 */ | 
 | 	BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0); | 
 | 	BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) != | 
 | 		     offsetof(struct io_uring_buf_ring, tail)); | 
 |  | 
 | 	/* should fit into one byte */ | 
 | 	BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8)); | 
 | 	BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8)); | 
 | 	BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS); | 
 |  | 
 | 	BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int)); | 
 |  | 
 | 	BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32)); | 
 |  | 
 | 	io_uring_optable_init(); | 
 |  | 
 | 	/* | 
 | 	 * Allow user copy in the per-command field, which starts after the | 
 | 	 * file in io_kiocb and until the opcode field. The openat2 handling | 
 | 	 * requires copying in user memory into the io_kiocb object in that | 
 | 	 * range, and HARDENED_USERCOPY will complain if we haven't | 
 | 	 * correctly annotated this range. | 
 | 	 */ | 
 | 	req_cachep = kmem_cache_create_usercopy("io_kiocb", | 
 | 				sizeof(struct io_kiocb), 0, | 
 | 				SLAB_HWCACHE_ALIGN | SLAB_PANIC | | 
 | 				SLAB_ACCOUNT | SLAB_TYPESAFE_BY_RCU, | 
 | 				offsetof(struct io_kiocb, cmd.data), | 
 | 				sizeof_field(struct io_kiocb, cmd.data), NULL); | 
 |  | 
 | #ifdef CONFIG_SYSCTL | 
 | 	register_sysctl_init("kernel", kernel_io_uring_disabled_table); | 
 | #endif | 
 |  | 
 | 	return 0; | 
 | }; | 
 | __initcall(io_uring_init); |