|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /* | 
|  | * Simple NUMA memory policy for the Linux kernel. | 
|  | * | 
|  | * Copyright 2003,2004 Andi Kleen, SuSE Labs. | 
|  | * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc. | 
|  | * | 
|  | * NUMA policy allows the user to give hints in which node(s) memory should | 
|  | * be allocated. | 
|  | * | 
|  | * Support four policies per VMA and per process: | 
|  | * | 
|  | * The VMA policy has priority over the process policy for a page fault. | 
|  | * | 
|  | * interleave     Allocate memory interleaved over a set of nodes, | 
|  | *                with normal fallback if it fails. | 
|  | *                For VMA based allocations this interleaves based on the | 
|  | *                offset into the backing object or offset into the mapping | 
|  | *                for anonymous memory. For process policy an process counter | 
|  | *                is used. | 
|  | * | 
|  | * weighted interleave | 
|  | *                Allocate memory interleaved over a set of nodes based on | 
|  | *                a set of weights (per-node), with normal fallback if it | 
|  | *                fails.  Otherwise operates the same as interleave. | 
|  | *                Example: nodeset(0,1) & weights (2,1) - 2 pages allocated | 
|  | *                on node 0 for every 1 page allocated on node 1. | 
|  | * | 
|  | * bind           Only allocate memory on a specific set of nodes, | 
|  | *                no fallback. | 
|  | *                FIXME: memory is allocated starting with the first node | 
|  | *                to the last. It would be better if bind would truly restrict | 
|  | *                the allocation to memory nodes instead | 
|  | * | 
|  | * preferred      Try a specific node first before normal fallback. | 
|  | *                As a special case NUMA_NO_NODE here means do the allocation | 
|  | *                on the local CPU. This is normally identical to default, | 
|  | *                but useful to set in a VMA when you have a non default | 
|  | *                process policy. | 
|  | * | 
|  | * preferred many Try a set of nodes first before normal fallback. This is | 
|  | *                similar to preferred without the special case. | 
|  | * | 
|  | * default        Allocate on the local node first, or when on a VMA | 
|  | *                use the process policy. This is what Linux always did | 
|  | *		  in a NUMA aware kernel and still does by, ahem, default. | 
|  | * | 
|  | * The process policy is applied for most non interrupt memory allocations | 
|  | * in that process' context. Interrupts ignore the policies and always | 
|  | * try to allocate on the local CPU. The VMA policy is only applied for memory | 
|  | * allocations for a VMA in the VM. | 
|  | * | 
|  | * Currently there are a few corner cases in swapping where the policy | 
|  | * is not applied, but the majority should be handled. When process policy | 
|  | * is used it is not remembered over swap outs/swap ins. | 
|  | * | 
|  | * Only the highest zone in the zone hierarchy gets policied. Allocations | 
|  | * requesting a lower zone just use default policy. This implies that | 
|  | * on systems with highmem kernel lowmem allocation don't get policied. | 
|  | * Same with GFP_DMA allocations. | 
|  | * | 
|  | * For shmem/tmpfs shared memory the policy is shared between | 
|  | * all users and remembered even when nobody has memory mapped. | 
|  | */ | 
|  |  | 
|  | /* Notebook: | 
|  | fix mmap readahead to honour policy and enable policy for any page cache | 
|  | object | 
|  | statistics for bigpages | 
|  | global policy for page cache? currently it uses process policy. Requires | 
|  | first item above. | 
|  | handle mremap for shared memory (currently ignored for the policy) | 
|  | grows down? | 
|  | make bind policy root only? It can trigger oom much faster and the | 
|  | kernel is not always grateful with that. | 
|  | */ | 
|  |  | 
|  | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
|  |  | 
|  | #include <linux/mempolicy.h> | 
|  | #include <linux/pagewalk.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/hugetlb.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/sched/mm.h> | 
|  | #include <linux/sched/numa_balancing.h> | 
|  | #include <linux/sched/task.h> | 
|  | #include <linux/nodemask.h> | 
|  | #include <linux/cpuset.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/export.h> | 
|  | #include <linux/nsproxy.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/compat.h> | 
|  | #include <linux/ptrace.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/seq_file.h> | 
|  | #include <linux/proc_fs.h> | 
|  | #include <linux/migrate.h> | 
|  | #include <linux/ksm.h> | 
|  | #include <linux/rmap.h> | 
|  | #include <linux/security.h> | 
|  | #include <linux/syscalls.h> | 
|  | #include <linux/ctype.h> | 
|  | #include <linux/mm_inline.h> | 
|  | #include <linux/mmu_notifier.h> | 
|  | #include <linux/printk.h> | 
|  | #include <linux/swapops.h> | 
|  |  | 
|  | #include <asm/tlbflush.h> | 
|  | #include <asm/tlb.h> | 
|  | #include <linux/uaccess.h> | 
|  |  | 
|  | #include "internal.h" | 
|  |  | 
|  | /* Internal flags */ | 
|  | #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */ | 
|  | #define MPOL_MF_INVERT       (MPOL_MF_INTERNAL << 1)	/* Invert check for nodemask */ | 
|  | #define MPOL_MF_WRLOCK       (MPOL_MF_INTERNAL << 2)	/* Write-lock walked vmas */ | 
|  |  | 
|  | static struct kmem_cache *policy_cache; | 
|  | static struct kmem_cache *sn_cache; | 
|  |  | 
|  | /* Highest zone. An specific allocation for a zone below that is not | 
|  | policied. */ | 
|  | enum zone_type policy_zone = 0; | 
|  |  | 
|  | /* | 
|  | * run-time system-wide default policy => local allocation | 
|  | */ | 
|  | static struct mempolicy default_policy = { | 
|  | .refcnt = ATOMIC_INIT(1), /* never free it */ | 
|  | .mode = MPOL_LOCAL, | 
|  | }; | 
|  |  | 
|  | static struct mempolicy preferred_node_policy[MAX_NUMNODES]; | 
|  |  | 
|  | /* | 
|  | * iw_table is the sysfs-set interleave weight table, a value of 0 denotes | 
|  | * system-default value should be used. A NULL iw_table also denotes that | 
|  | * system-default values should be used. Until the system-default table | 
|  | * is implemented, the system-default is always 1. | 
|  | * | 
|  | * iw_table is RCU protected | 
|  | */ | 
|  | static u8 __rcu *iw_table; | 
|  | static DEFINE_MUTEX(iw_table_lock); | 
|  |  | 
|  | static u8 get_il_weight(int node) | 
|  | { | 
|  | u8 *table; | 
|  | u8 weight; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | table = rcu_dereference(iw_table); | 
|  | /* if no iw_table, use system default */ | 
|  | weight = table ? table[node] : 1; | 
|  | /* if value in iw_table is 0, use system default */ | 
|  | weight = weight ? weight : 1; | 
|  | rcu_read_unlock(); | 
|  | return weight; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * numa_nearest_node - Find nearest node by state | 
|  | * @node: Node id to start the search | 
|  | * @state: State to filter the search | 
|  | * | 
|  | * Lookup the closest node by distance if @nid is not in state. | 
|  | * | 
|  | * Return: this @node if it is in state, otherwise the closest node by distance | 
|  | */ | 
|  | int numa_nearest_node(int node, unsigned int state) | 
|  | { | 
|  | int min_dist = INT_MAX, dist, n, min_node; | 
|  |  | 
|  | if (state >= NR_NODE_STATES) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (node == NUMA_NO_NODE || node_state(node, state)) | 
|  | return node; | 
|  |  | 
|  | min_node = node; | 
|  | for_each_node_state(n, state) { | 
|  | dist = node_distance(node, n); | 
|  | if (dist < min_dist) { | 
|  | min_dist = dist; | 
|  | min_node = n; | 
|  | } | 
|  | } | 
|  |  | 
|  | return min_node; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(numa_nearest_node); | 
|  |  | 
|  | struct mempolicy *get_task_policy(struct task_struct *p) | 
|  | { | 
|  | struct mempolicy *pol = p->mempolicy; | 
|  | int node; | 
|  |  | 
|  | if (pol) | 
|  | return pol; | 
|  |  | 
|  | node = numa_node_id(); | 
|  | if (node != NUMA_NO_NODE) { | 
|  | pol = &preferred_node_policy[node]; | 
|  | /* preferred_node_policy is not initialised early in boot */ | 
|  | if (pol->mode) | 
|  | return pol; | 
|  | } | 
|  |  | 
|  | return &default_policy; | 
|  | } | 
|  |  | 
|  | static const struct mempolicy_operations { | 
|  | int (*create)(struct mempolicy *pol, const nodemask_t *nodes); | 
|  | void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes); | 
|  | } mpol_ops[MPOL_MAX]; | 
|  |  | 
|  | static inline int mpol_store_user_nodemask(const struct mempolicy *pol) | 
|  | { | 
|  | return pol->flags & MPOL_MODE_FLAGS; | 
|  | } | 
|  |  | 
|  | static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig, | 
|  | const nodemask_t *rel) | 
|  | { | 
|  | nodemask_t tmp; | 
|  | nodes_fold(tmp, *orig, nodes_weight(*rel)); | 
|  | nodes_onto(*ret, tmp, *rel); | 
|  | } | 
|  |  | 
|  | static int mpol_new_nodemask(struct mempolicy *pol, const nodemask_t *nodes) | 
|  | { | 
|  | if (nodes_empty(*nodes)) | 
|  | return -EINVAL; | 
|  | pol->nodes = *nodes; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes) | 
|  | { | 
|  | if (nodes_empty(*nodes)) | 
|  | return -EINVAL; | 
|  |  | 
|  | nodes_clear(pol->nodes); | 
|  | node_set(first_node(*nodes), pol->nodes); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if | 
|  | * any, for the new policy.  mpol_new() has already validated the nodes | 
|  | * parameter with respect to the policy mode and flags. | 
|  | * | 
|  | * Must be called holding task's alloc_lock to protect task's mems_allowed | 
|  | * and mempolicy.  May also be called holding the mmap_lock for write. | 
|  | */ | 
|  | static int mpol_set_nodemask(struct mempolicy *pol, | 
|  | const nodemask_t *nodes, struct nodemask_scratch *nsc) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * Default (pol==NULL) resp. local memory policies are not a | 
|  | * subject of any remapping. They also do not need any special | 
|  | * constructor. | 
|  | */ | 
|  | if (!pol || pol->mode == MPOL_LOCAL) | 
|  | return 0; | 
|  |  | 
|  | /* Check N_MEMORY */ | 
|  | nodes_and(nsc->mask1, | 
|  | cpuset_current_mems_allowed, node_states[N_MEMORY]); | 
|  |  | 
|  | VM_BUG_ON(!nodes); | 
|  |  | 
|  | if (pol->flags & MPOL_F_RELATIVE_NODES) | 
|  | mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1); | 
|  | else | 
|  | nodes_and(nsc->mask2, *nodes, nsc->mask1); | 
|  |  | 
|  | if (mpol_store_user_nodemask(pol)) | 
|  | pol->w.user_nodemask = *nodes; | 
|  | else | 
|  | pol->w.cpuset_mems_allowed = cpuset_current_mems_allowed; | 
|  |  | 
|  | ret = mpol_ops[pol->mode].create(pol, &nsc->mask2); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function just creates a new policy, does some check and simple | 
|  | * initialization. You must invoke mpol_set_nodemask() to set nodes. | 
|  | */ | 
|  | static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags, | 
|  | nodemask_t *nodes) | 
|  | { | 
|  | struct mempolicy *policy; | 
|  |  | 
|  | if (mode == MPOL_DEFAULT) { | 
|  | if (nodes && !nodes_empty(*nodes)) | 
|  | return ERR_PTR(-EINVAL); | 
|  | return NULL; | 
|  | } | 
|  | VM_BUG_ON(!nodes); | 
|  |  | 
|  | /* | 
|  | * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or | 
|  | * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation). | 
|  | * All other modes require a valid pointer to a non-empty nodemask. | 
|  | */ | 
|  | if (mode == MPOL_PREFERRED) { | 
|  | if (nodes_empty(*nodes)) { | 
|  | if (((flags & MPOL_F_STATIC_NODES) || | 
|  | (flags & MPOL_F_RELATIVE_NODES))) | 
|  | return ERR_PTR(-EINVAL); | 
|  |  | 
|  | mode = MPOL_LOCAL; | 
|  | } | 
|  | } else if (mode == MPOL_LOCAL) { | 
|  | if (!nodes_empty(*nodes) || | 
|  | (flags & MPOL_F_STATIC_NODES) || | 
|  | (flags & MPOL_F_RELATIVE_NODES)) | 
|  | return ERR_PTR(-EINVAL); | 
|  | } else if (nodes_empty(*nodes)) | 
|  | return ERR_PTR(-EINVAL); | 
|  |  | 
|  | policy = kmem_cache_alloc(policy_cache, GFP_KERNEL); | 
|  | if (!policy) | 
|  | return ERR_PTR(-ENOMEM); | 
|  | atomic_set(&policy->refcnt, 1); | 
|  | policy->mode = mode; | 
|  | policy->flags = flags; | 
|  | policy->home_node = NUMA_NO_NODE; | 
|  |  | 
|  | return policy; | 
|  | } | 
|  |  | 
|  | /* Slow path of a mpol destructor. */ | 
|  | void __mpol_put(struct mempolicy *pol) | 
|  | { | 
|  | if (!atomic_dec_and_test(&pol->refcnt)) | 
|  | return; | 
|  | kmem_cache_free(policy_cache, pol); | 
|  | } | 
|  |  | 
|  | static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes) | 
|  | { | 
|  | } | 
|  |  | 
|  | static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes) | 
|  | { | 
|  | nodemask_t tmp; | 
|  |  | 
|  | if (pol->flags & MPOL_F_STATIC_NODES) | 
|  | nodes_and(tmp, pol->w.user_nodemask, *nodes); | 
|  | else if (pol->flags & MPOL_F_RELATIVE_NODES) | 
|  | mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes); | 
|  | else { | 
|  | nodes_remap(tmp, pol->nodes, pol->w.cpuset_mems_allowed, | 
|  | *nodes); | 
|  | pol->w.cpuset_mems_allowed = *nodes; | 
|  | } | 
|  |  | 
|  | if (nodes_empty(tmp)) | 
|  | tmp = *nodes; | 
|  |  | 
|  | pol->nodes = tmp; | 
|  | } | 
|  |  | 
|  | static void mpol_rebind_preferred(struct mempolicy *pol, | 
|  | const nodemask_t *nodes) | 
|  | { | 
|  | pol->w.cpuset_mems_allowed = *nodes; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mpol_rebind_policy - Migrate a policy to a different set of nodes | 
|  | * | 
|  | * Per-vma policies are protected by mmap_lock. Allocations using per-task | 
|  | * policies are protected by task->mems_allowed_seq to prevent a premature | 
|  | * OOM/allocation failure due to parallel nodemask modification. | 
|  | */ | 
|  | static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask) | 
|  | { | 
|  | if (!pol || pol->mode == MPOL_LOCAL) | 
|  | return; | 
|  | if (!mpol_store_user_nodemask(pol) && | 
|  | nodes_equal(pol->w.cpuset_mems_allowed, *newmask)) | 
|  | return; | 
|  |  | 
|  | mpol_ops[pol->mode].rebind(pol, newmask); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Wrapper for mpol_rebind_policy() that just requires task | 
|  | * pointer, and updates task mempolicy. | 
|  | * | 
|  | * Called with task's alloc_lock held. | 
|  | */ | 
|  | void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new) | 
|  | { | 
|  | mpol_rebind_policy(tsk->mempolicy, new); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Rebind each vma in mm to new nodemask. | 
|  | * | 
|  | * Call holding a reference to mm.  Takes mm->mmap_lock during call. | 
|  | */ | 
|  | void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new) | 
|  | { | 
|  | struct vm_area_struct *vma; | 
|  | VMA_ITERATOR(vmi, mm, 0); | 
|  |  | 
|  | mmap_write_lock(mm); | 
|  | for_each_vma(vmi, vma) { | 
|  | vma_start_write(vma); | 
|  | mpol_rebind_policy(vma->vm_policy, new); | 
|  | } | 
|  | mmap_write_unlock(mm); | 
|  | } | 
|  |  | 
|  | static const struct mempolicy_operations mpol_ops[MPOL_MAX] = { | 
|  | [MPOL_DEFAULT] = { | 
|  | .rebind = mpol_rebind_default, | 
|  | }, | 
|  | [MPOL_INTERLEAVE] = { | 
|  | .create = mpol_new_nodemask, | 
|  | .rebind = mpol_rebind_nodemask, | 
|  | }, | 
|  | [MPOL_PREFERRED] = { | 
|  | .create = mpol_new_preferred, | 
|  | .rebind = mpol_rebind_preferred, | 
|  | }, | 
|  | [MPOL_BIND] = { | 
|  | .create = mpol_new_nodemask, | 
|  | .rebind = mpol_rebind_nodemask, | 
|  | }, | 
|  | [MPOL_LOCAL] = { | 
|  | .rebind = mpol_rebind_default, | 
|  | }, | 
|  | [MPOL_PREFERRED_MANY] = { | 
|  | .create = mpol_new_nodemask, | 
|  | .rebind = mpol_rebind_preferred, | 
|  | }, | 
|  | [MPOL_WEIGHTED_INTERLEAVE] = { | 
|  | .create = mpol_new_nodemask, | 
|  | .rebind = mpol_rebind_nodemask, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static bool migrate_folio_add(struct folio *folio, struct list_head *foliolist, | 
|  | unsigned long flags); | 
|  | static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *pol, | 
|  | pgoff_t ilx, int *nid); | 
|  |  | 
|  | static bool strictly_unmovable(unsigned long flags) | 
|  | { | 
|  | /* | 
|  | * STRICT without MOVE flags lets do_mbind() fail immediately with -EIO | 
|  | * if any misplaced page is found. | 
|  | */ | 
|  | return (flags & (MPOL_MF_STRICT | MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) == | 
|  | MPOL_MF_STRICT; | 
|  | } | 
|  |  | 
|  | struct migration_mpol {		/* for alloc_migration_target_by_mpol() */ | 
|  | struct mempolicy *pol; | 
|  | pgoff_t ilx; | 
|  | }; | 
|  |  | 
|  | struct queue_pages { | 
|  | struct list_head *pagelist; | 
|  | unsigned long flags; | 
|  | nodemask_t *nmask; | 
|  | unsigned long start; | 
|  | unsigned long end; | 
|  | struct vm_area_struct *first; | 
|  | struct folio *large;		/* note last large folio encountered */ | 
|  | long nr_failed;			/* could not be isolated at this time */ | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Check if the folio's nid is in qp->nmask. | 
|  | * | 
|  | * If MPOL_MF_INVERT is set in qp->flags, check if the nid is | 
|  | * in the invert of qp->nmask. | 
|  | */ | 
|  | static inline bool queue_folio_required(struct folio *folio, | 
|  | struct queue_pages *qp) | 
|  | { | 
|  | int nid = folio_nid(folio); | 
|  | unsigned long flags = qp->flags; | 
|  |  | 
|  | return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT); | 
|  | } | 
|  |  | 
|  | static void queue_folios_pmd(pmd_t *pmd, struct mm_walk *walk) | 
|  | { | 
|  | struct folio *folio; | 
|  | struct queue_pages *qp = walk->private; | 
|  |  | 
|  | if (unlikely(is_pmd_migration_entry(*pmd))) { | 
|  | qp->nr_failed++; | 
|  | return; | 
|  | } | 
|  | folio = pfn_folio(pmd_pfn(*pmd)); | 
|  | if (is_huge_zero_page(&folio->page)) { | 
|  | walk->action = ACTION_CONTINUE; | 
|  | return; | 
|  | } | 
|  | if (!queue_folio_required(folio, qp)) | 
|  | return; | 
|  | if (!(qp->flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) || | 
|  | !vma_migratable(walk->vma) || | 
|  | !migrate_folio_add(folio, qp->pagelist, qp->flags)) | 
|  | qp->nr_failed++; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Scan through folios, checking if they satisfy the required conditions, | 
|  | * moving them from LRU to local pagelist for migration if they do (or not). | 
|  | * | 
|  | * queue_folios_pte_range() has two possible return values: | 
|  | * 0 - continue walking to scan for more, even if an existing folio on the | 
|  | *     wrong node could not be isolated and queued for migration. | 
|  | * -EIO - only MPOL_MF_STRICT was specified, without MPOL_MF_MOVE or ..._ALL, | 
|  | *        and an existing folio was on a node that does not follow the policy. | 
|  | */ | 
|  | static int queue_folios_pte_range(pmd_t *pmd, unsigned long addr, | 
|  | unsigned long end, struct mm_walk *walk) | 
|  | { | 
|  | struct vm_area_struct *vma = walk->vma; | 
|  | struct folio *folio; | 
|  | struct queue_pages *qp = walk->private; | 
|  | unsigned long flags = qp->flags; | 
|  | pte_t *pte, *mapped_pte; | 
|  | pte_t ptent; | 
|  | spinlock_t *ptl; | 
|  |  | 
|  | ptl = pmd_trans_huge_lock(pmd, vma); | 
|  | if (ptl) { | 
|  | queue_folios_pmd(pmd, walk); | 
|  | spin_unlock(ptl); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | mapped_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); | 
|  | if (!pte) { | 
|  | walk->action = ACTION_AGAIN; | 
|  | return 0; | 
|  | } | 
|  | for (; addr != end; pte++, addr += PAGE_SIZE) { | 
|  | ptent = ptep_get(pte); | 
|  | if (pte_none(ptent)) | 
|  | continue; | 
|  | if (!pte_present(ptent)) { | 
|  | if (is_migration_entry(pte_to_swp_entry(ptent))) | 
|  | qp->nr_failed++; | 
|  | continue; | 
|  | } | 
|  | folio = vm_normal_folio(vma, addr, ptent); | 
|  | if (!folio || folio_is_zone_device(folio)) | 
|  | continue; | 
|  | /* | 
|  | * vm_normal_folio() filters out zero pages, but there might | 
|  | * still be reserved folios to skip, perhaps in a VDSO. | 
|  | */ | 
|  | if (folio_test_reserved(folio)) | 
|  | continue; | 
|  | if (!queue_folio_required(folio, qp)) | 
|  | continue; | 
|  | if (folio_test_large(folio)) { | 
|  | /* | 
|  | * A large folio can only be isolated from LRU once, | 
|  | * but may be mapped by many PTEs (and Copy-On-Write may | 
|  | * intersperse PTEs of other, order 0, folios).  This is | 
|  | * a common case, so don't mistake it for failure (but | 
|  | * there can be other cases of multi-mapped pages which | 
|  | * this quick check does not help to filter out - and a | 
|  | * search of the pagelist might grow to be prohibitive). | 
|  | * | 
|  | * migrate_pages(&pagelist) returns nr_failed folios, so | 
|  | * check "large" now so that queue_pages_range() returns | 
|  | * a comparable nr_failed folios.  This does imply that | 
|  | * if folio could not be isolated for some racy reason | 
|  | * at its first PTE, later PTEs will not give it another | 
|  | * chance of isolation; but keeps the accounting simple. | 
|  | */ | 
|  | if (folio == qp->large) | 
|  | continue; | 
|  | qp->large = folio; | 
|  | } | 
|  | if (!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) || | 
|  | !vma_migratable(vma) || | 
|  | !migrate_folio_add(folio, qp->pagelist, flags)) { | 
|  | qp->nr_failed++; | 
|  | if (strictly_unmovable(flags)) | 
|  | break; | 
|  | } | 
|  | } | 
|  | pte_unmap_unlock(mapped_pte, ptl); | 
|  | cond_resched(); | 
|  | out: | 
|  | if (qp->nr_failed && strictly_unmovable(flags)) | 
|  | return -EIO; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int queue_folios_hugetlb(pte_t *pte, unsigned long hmask, | 
|  | unsigned long addr, unsigned long end, | 
|  | struct mm_walk *walk) | 
|  | { | 
|  | #ifdef CONFIG_HUGETLB_PAGE | 
|  | struct queue_pages *qp = walk->private; | 
|  | unsigned long flags = qp->flags; | 
|  | struct folio *folio; | 
|  | spinlock_t *ptl; | 
|  | pte_t entry; | 
|  |  | 
|  | ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte); | 
|  | entry = huge_ptep_get(pte); | 
|  | if (!pte_present(entry)) { | 
|  | if (unlikely(is_hugetlb_entry_migration(entry))) | 
|  | qp->nr_failed++; | 
|  | goto unlock; | 
|  | } | 
|  | folio = pfn_folio(pte_pfn(entry)); | 
|  | if (!queue_folio_required(folio, qp)) | 
|  | goto unlock; | 
|  | if (!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) || | 
|  | !vma_migratable(walk->vma)) { | 
|  | qp->nr_failed++; | 
|  | goto unlock; | 
|  | } | 
|  | /* | 
|  | * Unless MPOL_MF_MOVE_ALL, we try to avoid migrating a shared folio. | 
|  | * Choosing not to migrate a shared folio is not counted as a failure. | 
|  | * | 
|  | * To check if the folio is shared, ideally we want to make sure | 
|  | * every page is mapped to the same process. Doing that is very | 
|  | * expensive, so check the estimated sharers of the folio instead. | 
|  | */ | 
|  | if ((flags & MPOL_MF_MOVE_ALL) || | 
|  | (folio_estimated_sharers(folio) == 1 && !hugetlb_pmd_shared(pte))) | 
|  | if (!isolate_hugetlb(folio, qp->pagelist)) | 
|  | qp->nr_failed++; | 
|  | unlock: | 
|  | spin_unlock(ptl); | 
|  | if (qp->nr_failed && strictly_unmovable(flags)) | 
|  | return -EIO; | 
|  | #endif | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_NUMA_BALANCING | 
|  | /* | 
|  | * This is used to mark a range of virtual addresses to be inaccessible. | 
|  | * These are later cleared by a NUMA hinting fault. Depending on these | 
|  | * faults, pages may be migrated for better NUMA placement. | 
|  | * | 
|  | * This is assuming that NUMA faults are handled using PROT_NONE. If | 
|  | * an architecture makes a different choice, it will need further | 
|  | * changes to the core. | 
|  | */ | 
|  | unsigned long change_prot_numa(struct vm_area_struct *vma, | 
|  | unsigned long addr, unsigned long end) | 
|  | { | 
|  | struct mmu_gather tlb; | 
|  | long nr_updated; | 
|  |  | 
|  | tlb_gather_mmu(&tlb, vma->vm_mm); | 
|  |  | 
|  | nr_updated = change_protection(&tlb, vma, addr, end, MM_CP_PROT_NUMA); | 
|  | if (nr_updated > 0) | 
|  | count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated); | 
|  |  | 
|  | tlb_finish_mmu(&tlb); | 
|  |  | 
|  | return nr_updated; | 
|  | } | 
|  | #endif /* CONFIG_NUMA_BALANCING */ | 
|  |  | 
|  | static int queue_pages_test_walk(unsigned long start, unsigned long end, | 
|  | struct mm_walk *walk) | 
|  | { | 
|  | struct vm_area_struct *next, *vma = walk->vma; | 
|  | struct queue_pages *qp = walk->private; | 
|  | unsigned long flags = qp->flags; | 
|  |  | 
|  | /* range check first */ | 
|  | VM_BUG_ON_VMA(!range_in_vma(vma, start, end), vma); | 
|  |  | 
|  | if (!qp->first) { | 
|  | qp->first = vma; | 
|  | if (!(flags & MPOL_MF_DISCONTIG_OK) && | 
|  | (qp->start < vma->vm_start)) | 
|  | /* hole at head side of range */ | 
|  | return -EFAULT; | 
|  | } | 
|  | next = find_vma(vma->vm_mm, vma->vm_end); | 
|  | if (!(flags & MPOL_MF_DISCONTIG_OK) && | 
|  | ((vma->vm_end < qp->end) && | 
|  | (!next || vma->vm_end < next->vm_start))) | 
|  | /* hole at middle or tail of range */ | 
|  | return -EFAULT; | 
|  |  | 
|  | /* | 
|  | * Need check MPOL_MF_STRICT to return -EIO if possible | 
|  | * regardless of vma_migratable | 
|  | */ | 
|  | if (!vma_migratable(vma) && | 
|  | !(flags & MPOL_MF_STRICT)) | 
|  | return 1; | 
|  |  | 
|  | /* | 
|  | * Check page nodes, and queue pages to move, in the current vma. | 
|  | * But if no moving, and no strict checking, the scan can be skipped. | 
|  | */ | 
|  | if (flags & (MPOL_MF_STRICT | MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) | 
|  | return 0; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static const struct mm_walk_ops queue_pages_walk_ops = { | 
|  | .hugetlb_entry		= queue_folios_hugetlb, | 
|  | .pmd_entry		= queue_folios_pte_range, | 
|  | .test_walk		= queue_pages_test_walk, | 
|  | .walk_lock		= PGWALK_RDLOCK, | 
|  | }; | 
|  |  | 
|  | static const struct mm_walk_ops queue_pages_lock_vma_walk_ops = { | 
|  | .hugetlb_entry		= queue_folios_hugetlb, | 
|  | .pmd_entry		= queue_folios_pte_range, | 
|  | .test_walk		= queue_pages_test_walk, | 
|  | .walk_lock		= PGWALK_WRLOCK, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Walk through page tables and collect pages to be migrated. | 
|  | * | 
|  | * If pages found in a given range are not on the required set of @nodes, | 
|  | * and migration is allowed, they are isolated and queued to @pagelist. | 
|  | * | 
|  | * queue_pages_range() may return: | 
|  | * 0 - all pages already on the right node, or successfully queued for moving | 
|  | *     (or neither strict checking nor moving requested: only range checking). | 
|  | * >0 - this number of misplaced folios could not be queued for moving | 
|  | *      (a hugetlbfs page or a transparent huge page being counted as 1). | 
|  | * -EIO - a misplaced page found, when MPOL_MF_STRICT specified without MOVEs. | 
|  | * -EFAULT - a hole in the memory range, when MPOL_MF_DISCONTIG_OK unspecified. | 
|  | */ | 
|  | static long | 
|  | queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end, | 
|  | nodemask_t *nodes, unsigned long flags, | 
|  | struct list_head *pagelist) | 
|  | { | 
|  | int err; | 
|  | struct queue_pages qp = { | 
|  | .pagelist = pagelist, | 
|  | .flags = flags, | 
|  | .nmask = nodes, | 
|  | .start = start, | 
|  | .end = end, | 
|  | .first = NULL, | 
|  | }; | 
|  | const struct mm_walk_ops *ops = (flags & MPOL_MF_WRLOCK) ? | 
|  | &queue_pages_lock_vma_walk_ops : &queue_pages_walk_ops; | 
|  |  | 
|  | err = walk_page_range(mm, start, end, ops, &qp); | 
|  |  | 
|  | if (!qp.first) | 
|  | /* whole range in hole */ | 
|  | err = -EFAULT; | 
|  |  | 
|  | return err ? : qp.nr_failed; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Apply policy to a single VMA | 
|  | * This must be called with the mmap_lock held for writing. | 
|  | */ | 
|  | static int vma_replace_policy(struct vm_area_struct *vma, | 
|  | struct mempolicy *pol) | 
|  | { | 
|  | int err; | 
|  | struct mempolicy *old; | 
|  | struct mempolicy *new; | 
|  |  | 
|  | vma_assert_write_locked(vma); | 
|  |  | 
|  | new = mpol_dup(pol); | 
|  | if (IS_ERR(new)) | 
|  | return PTR_ERR(new); | 
|  |  | 
|  | if (vma->vm_ops && vma->vm_ops->set_policy) { | 
|  | err = vma->vm_ops->set_policy(vma, new); | 
|  | if (err) | 
|  | goto err_out; | 
|  | } | 
|  |  | 
|  | old = vma->vm_policy; | 
|  | vma->vm_policy = new; /* protected by mmap_lock */ | 
|  | mpol_put(old); | 
|  |  | 
|  | return 0; | 
|  | err_out: | 
|  | mpol_put(new); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* Split or merge the VMA (if required) and apply the new policy */ | 
|  | static int mbind_range(struct vma_iterator *vmi, struct vm_area_struct *vma, | 
|  | struct vm_area_struct **prev, unsigned long start, | 
|  | unsigned long end, struct mempolicy *new_pol) | 
|  | { | 
|  | unsigned long vmstart, vmend; | 
|  |  | 
|  | vmend = min(end, vma->vm_end); | 
|  | if (start > vma->vm_start) { | 
|  | *prev = vma; | 
|  | vmstart = start; | 
|  | } else { | 
|  | vmstart = vma->vm_start; | 
|  | } | 
|  |  | 
|  | if (mpol_equal(vma->vm_policy, new_pol)) { | 
|  | *prev = vma; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | vma =  vma_modify_policy(vmi, *prev, vma, vmstart, vmend, new_pol); | 
|  | if (IS_ERR(vma)) | 
|  | return PTR_ERR(vma); | 
|  |  | 
|  | *prev = vma; | 
|  | return vma_replace_policy(vma, new_pol); | 
|  | } | 
|  |  | 
|  | /* Set the process memory policy */ | 
|  | static long do_set_mempolicy(unsigned short mode, unsigned short flags, | 
|  | nodemask_t *nodes) | 
|  | { | 
|  | struct mempolicy *new, *old; | 
|  | NODEMASK_SCRATCH(scratch); | 
|  | int ret; | 
|  |  | 
|  | if (!scratch) | 
|  | return -ENOMEM; | 
|  |  | 
|  | new = mpol_new(mode, flags, nodes); | 
|  | if (IS_ERR(new)) { | 
|  | ret = PTR_ERR(new); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | task_lock(current); | 
|  | ret = mpol_set_nodemask(new, nodes, scratch); | 
|  | if (ret) { | 
|  | task_unlock(current); | 
|  | mpol_put(new); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | old = current->mempolicy; | 
|  | current->mempolicy = new; | 
|  | if (new && (new->mode == MPOL_INTERLEAVE || | 
|  | new->mode == MPOL_WEIGHTED_INTERLEAVE)) { | 
|  | current->il_prev = MAX_NUMNODES-1; | 
|  | current->il_weight = 0; | 
|  | } | 
|  | task_unlock(current); | 
|  | mpol_put(old); | 
|  | ret = 0; | 
|  | out: | 
|  | NODEMASK_SCRATCH_FREE(scratch); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return nodemask for policy for get_mempolicy() query | 
|  | * | 
|  | * Called with task's alloc_lock held | 
|  | */ | 
|  | static void get_policy_nodemask(struct mempolicy *pol, nodemask_t *nodes) | 
|  | { | 
|  | nodes_clear(*nodes); | 
|  | if (pol == &default_policy) | 
|  | return; | 
|  |  | 
|  | switch (pol->mode) { | 
|  | case MPOL_BIND: | 
|  | case MPOL_INTERLEAVE: | 
|  | case MPOL_PREFERRED: | 
|  | case MPOL_PREFERRED_MANY: | 
|  | case MPOL_WEIGHTED_INTERLEAVE: | 
|  | *nodes = pol->nodes; | 
|  | break; | 
|  | case MPOL_LOCAL: | 
|  | /* return empty node mask for local allocation */ | 
|  | break; | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int lookup_node(struct mm_struct *mm, unsigned long addr) | 
|  | { | 
|  | struct page *p = NULL; | 
|  | int ret; | 
|  |  | 
|  | ret = get_user_pages_fast(addr & PAGE_MASK, 1, 0, &p); | 
|  | if (ret > 0) { | 
|  | ret = page_to_nid(p); | 
|  | put_page(p); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Retrieve NUMA policy */ | 
|  | static long do_get_mempolicy(int *policy, nodemask_t *nmask, | 
|  | unsigned long addr, unsigned long flags) | 
|  | { | 
|  | int err; | 
|  | struct mm_struct *mm = current->mm; | 
|  | struct vm_area_struct *vma = NULL; | 
|  | struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL; | 
|  |  | 
|  | if (flags & | 
|  | ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (flags & MPOL_F_MEMS_ALLOWED) { | 
|  | if (flags & (MPOL_F_NODE|MPOL_F_ADDR)) | 
|  | return -EINVAL; | 
|  | *policy = 0;	/* just so it's initialized */ | 
|  | task_lock(current); | 
|  | *nmask  = cpuset_current_mems_allowed; | 
|  | task_unlock(current); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (flags & MPOL_F_ADDR) { | 
|  | pgoff_t ilx;		/* ignored here */ | 
|  | /* | 
|  | * Do NOT fall back to task policy if the | 
|  | * vma/shared policy at addr is NULL.  We | 
|  | * want to return MPOL_DEFAULT in this case. | 
|  | */ | 
|  | mmap_read_lock(mm); | 
|  | vma = vma_lookup(mm, addr); | 
|  | if (!vma) { | 
|  | mmap_read_unlock(mm); | 
|  | return -EFAULT; | 
|  | } | 
|  | pol = __get_vma_policy(vma, addr, &ilx); | 
|  | } else if (addr) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (!pol) | 
|  | pol = &default_policy;	/* indicates default behavior */ | 
|  |  | 
|  | if (flags & MPOL_F_NODE) { | 
|  | if (flags & MPOL_F_ADDR) { | 
|  | /* | 
|  | * Take a refcount on the mpol, because we are about to | 
|  | * drop the mmap_lock, after which only "pol" remains | 
|  | * valid, "vma" is stale. | 
|  | */ | 
|  | pol_refcount = pol; | 
|  | vma = NULL; | 
|  | mpol_get(pol); | 
|  | mmap_read_unlock(mm); | 
|  | err = lookup_node(mm, addr); | 
|  | if (err < 0) | 
|  | goto out; | 
|  | *policy = err; | 
|  | } else if (pol == current->mempolicy && | 
|  | pol->mode == MPOL_INTERLEAVE) { | 
|  | *policy = next_node_in(current->il_prev, pol->nodes); | 
|  | } else if (pol == current->mempolicy && | 
|  | pol->mode == MPOL_WEIGHTED_INTERLEAVE) { | 
|  | if (current->il_weight) | 
|  | *policy = current->il_prev; | 
|  | else | 
|  | *policy = next_node_in(current->il_prev, | 
|  | pol->nodes); | 
|  | } else { | 
|  | err = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  | } else { | 
|  | *policy = pol == &default_policy ? MPOL_DEFAULT : | 
|  | pol->mode; | 
|  | /* | 
|  | * Internal mempolicy flags must be masked off before exposing | 
|  | * the policy to userspace. | 
|  | */ | 
|  | *policy |= (pol->flags & MPOL_MODE_FLAGS); | 
|  | } | 
|  |  | 
|  | err = 0; | 
|  | if (nmask) { | 
|  | if (mpol_store_user_nodemask(pol)) { | 
|  | *nmask = pol->w.user_nodemask; | 
|  | } else { | 
|  | task_lock(current); | 
|  | get_policy_nodemask(pol, nmask); | 
|  | task_unlock(current); | 
|  | } | 
|  | } | 
|  |  | 
|  | out: | 
|  | mpol_cond_put(pol); | 
|  | if (vma) | 
|  | mmap_read_unlock(mm); | 
|  | if (pol_refcount) | 
|  | mpol_put(pol_refcount); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_MIGRATION | 
|  | static bool migrate_folio_add(struct folio *folio, struct list_head *foliolist, | 
|  | unsigned long flags) | 
|  | { | 
|  | /* | 
|  | * Unless MPOL_MF_MOVE_ALL, we try to avoid migrating a shared folio. | 
|  | * Choosing not to migrate a shared folio is not counted as a failure. | 
|  | * | 
|  | * To check if the folio is shared, ideally we want to make sure | 
|  | * every page is mapped to the same process. Doing that is very | 
|  | * expensive, so check the estimated sharers of the folio instead. | 
|  | */ | 
|  | if ((flags & MPOL_MF_MOVE_ALL) || folio_estimated_sharers(folio) == 1) { | 
|  | if (folio_isolate_lru(folio)) { | 
|  | list_add_tail(&folio->lru, foliolist); | 
|  | node_stat_mod_folio(folio, | 
|  | NR_ISOLATED_ANON + folio_is_file_lru(folio), | 
|  | folio_nr_pages(folio)); | 
|  | } else { | 
|  | /* | 
|  | * Non-movable folio may reach here.  And, there may be | 
|  | * temporary off LRU folios or non-LRU movable folios. | 
|  | * Treat them as unmovable folios since they can't be | 
|  | * isolated, so they can't be moved at the moment. | 
|  | */ | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Migrate pages from one node to a target node. | 
|  | * Returns error or the number of pages not migrated. | 
|  | */ | 
|  | static long migrate_to_node(struct mm_struct *mm, int source, int dest, | 
|  | int flags) | 
|  | { | 
|  | nodemask_t nmask; | 
|  | struct vm_area_struct *vma; | 
|  | LIST_HEAD(pagelist); | 
|  | long nr_failed; | 
|  | long err = 0; | 
|  | struct migration_target_control mtc = { | 
|  | .nid = dest, | 
|  | .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, | 
|  | }; | 
|  |  | 
|  | nodes_clear(nmask); | 
|  | node_set(source, nmask); | 
|  |  | 
|  | VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))); | 
|  |  | 
|  | mmap_read_lock(mm); | 
|  | vma = find_vma(mm, 0); | 
|  |  | 
|  | /* | 
|  | * This does not migrate the range, but isolates all pages that | 
|  | * need migration.  Between passing in the full user address | 
|  | * space range and MPOL_MF_DISCONTIG_OK, this call cannot fail, | 
|  | * but passes back the count of pages which could not be isolated. | 
|  | */ | 
|  | nr_failed = queue_pages_range(mm, vma->vm_start, mm->task_size, &nmask, | 
|  | flags | MPOL_MF_DISCONTIG_OK, &pagelist); | 
|  | mmap_read_unlock(mm); | 
|  |  | 
|  | if (!list_empty(&pagelist)) { | 
|  | err = migrate_pages(&pagelist, alloc_migration_target, NULL, | 
|  | (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL); | 
|  | if (err) | 
|  | putback_movable_pages(&pagelist); | 
|  | } | 
|  |  | 
|  | if (err >= 0) | 
|  | err += nr_failed; | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Move pages between the two nodesets so as to preserve the physical | 
|  | * layout as much as possible. | 
|  | * | 
|  | * Returns the number of page that could not be moved. | 
|  | */ | 
|  | int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, | 
|  | const nodemask_t *to, int flags) | 
|  | { | 
|  | long nr_failed = 0; | 
|  | long err = 0; | 
|  | nodemask_t tmp; | 
|  |  | 
|  | lru_cache_disable(); | 
|  |  | 
|  | /* | 
|  | * Find a 'source' bit set in 'tmp' whose corresponding 'dest' | 
|  | * bit in 'to' is not also set in 'tmp'.  Clear the found 'source' | 
|  | * bit in 'tmp', and return that <source, dest> pair for migration. | 
|  | * The pair of nodemasks 'to' and 'from' define the map. | 
|  | * | 
|  | * If no pair of bits is found that way, fallback to picking some | 
|  | * pair of 'source' and 'dest' bits that are not the same.  If the | 
|  | * 'source' and 'dest' bits are the same, this represents a node | 
|  | * that will be migrating to itself, so no pages need move. | 
|  | * | 
|  | * If no bits are left in 'tmp', or if all remaining bits left | 
|  | * in 'tmp' correspond to the same bit in 'to', return false | 
|  | * (nothing left to migrate). | 
|  | * | 
|  | * This lets us pick a pair of nodes to migrate between, such that | 
|  | * if possible the dest node is not already occupied by some other | 
|  | * source node, minimizing the risk of overloading the memory on a | 
|  | * node that would happen if we migrated incoming memory to a node | 
|  | * before migrating outgoing memory source that same node. | 
|  | * | 
|  | * A single scan of tmp is sufficient.  As we go, we remember the | 
|  | * most recent <s, d> pair that moved (s != d).  If we find a pair | 
|  | * that not only moved, but what's better, moved to an empty slot | 
|  | * (d is not set in tmp), then we break out then, with that pair. | 
|  | * Otherwise when we finish scanning from_tmp, we at least have the | 
|  | * most recent <s, d> pair that moved.  If we get all the way through | 
|  | * the scan of tmp without finding any node that moved, much less | 
|  | * moved to an empty node, then there is nothing left worth migrating. | 
|  | */ | 
|  |  | 
|  | tmp = *from; | 
|  | while (!nodes_empty(tmp)) { | 
|  | int s, d; | 
|  | int source = NUMA_NO_NODE; | 
|  | int dest = 0; | 
|  |  | 
|  | for_each_node_mask(s, tmp) { | 
|  |  | 
|  | /* | 
|  | * do_migrate_pages() tries to maintain the relative | 
|  | * node relationship of the pages established between | 
|  | * threads and memory areas. | 
|  | * | 
|  | * However if the number of source nodes is not equal to | 
|  | * the number of destination nodes we can not preserve | 
|  | * this node relative relationship.  In that case, skip | 
|  | * copying memory from a node that is in the destination | 
|  | * mask. | 
|  | * | 
|  | * Example: [2,3,4] -> [3,4,5] moves everything. | 
|  | *          [0-7] - > [3,4,5] moves only 0,1,2,6,7. | 
|  | */ | 
|  |  | 
|  | if ((nodes_weight(*from) != nodes_weight(*to)) && | 
|  | (node_isset(s, *to))) | 
|  | continue; | 
|  |  | 
|  | d = node_remap(s, *from, *to); | 
|  | if (s == d) | 
|  | continue; | 
|  |  | 
|  | source = s;	/* Node moved. Memorize */ | 
|  | dest = d; | 
|  |  | 
|  | /* dest not in remaining from nodes? */ | 
|  | if (!node_isset(dest, tmp)) | 
|  | break; | 
|  | } | 
|  | if (source == NUMA_NO_NODE) | 
|  | break; | 
|  |  | 
|  | node_clear(source, tmp); | 
|  | err = migrate_to_node(mm, source, dest, flags); | 
|  | if (err > 0) | 
|  | nr_failed += err; | 
|  | if (err < 0) | 
|  | break; | 
|  | } | 
|  |  | 
|  | lru_cache_enable(); | 
|  | if (err < 0) | 
|  | return err; | 
|  | return (nr_failed < INT_MAX) ? nr_failed : INT_MAX; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocate a new folio for page migration, according to NUMA mempolicy. | 
|  | */ | 
|  | static struct folio *alloc_migration_target_by_mpol(struct folio *src, | 
|  | unsigned long private) | 
|  | { | 
|  | struct migration_mpol *mmpol = (struct migration_mpol *)private; | 
|  | struct mempolicy *pol = mmpol->pol; | 
|  | pgoff_t ilx = mmpol->ilx; | 
|  | struct page *page; | 
|  | unsigned int order; | 
|  | int nid = numa_node_id(); | 
|  | gfp_t gfp; | 
|  |  | 
|  | order = folio_order(src); | 
|  | ilx += src->index >> order; | 
|  |  | 
|  | if (folio_test_hugetlb(src)) { | 
|  | nodemask_t *nodemask; | 
|  | struct hstate *h; | 
|  |  | 
|  | h = folio_hstate(src); | 
|  | gfp = htlb_alloc_mask(h); | 
|  | nodemask = policy_nodemask(gfp, pol, ilx, &nid); | 
|  | return alloc_hugetlb_folio_nodemask(h, nid, nodemask, gfp); | 
|  | } | 
|  |  | 
|  | if (folio_test_large(src)) | 
|  | gfp = GFP_TRANSHUGE; | 
|  | else | 
|  | gfp = GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL | __GFP_COMP; | 
|  |  | 
|  | page = alloc_pages_mpol(gfp, order, pol, ilx, nid); | 
|  | return page_rmappable_folio(page); | 
|  | } | 
|  | #else | 
|  |  | 
|  | static bool migrate_folio_add(struct folio *folio, struct list_head *foliolist, | 
|  | unsigned long flags) | 
|  | { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, | 
|  | const nodemask_t *to, int flags) | 
|  | { | 
|  | return -ENOSYS; | 
|  | } | 
|  |  | 
|  | static struct folio *alloc_migration_target_by_mpol(struct folio *src, | 
|  | unsigned long private) | 
|  | { | 
|  | return NULL; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static long do_mbind(unsigned long start, unsigned long len, | 
|  | unsigned short mode, unsigned short mode_flags, | 
|  | nodemask_t *nmask, unsigned long flags) | 
|  | { | 
|  | struct mm_struct *mm = current->mm; | 
|  | struct vm_area_struct *vma, *prev; | 
|  | struct vma_iterator vmi; | 
|  | struct migration_mpol mmpol; | 
|  | struct mempolicy *new; | 
|  | unsigned long end; | 
|  | long err; | 
|  | long nr_failed; | 
|  | LIST_HEAD(pagelist); | 
|  |  | 
|  | if (flags & ~(unsigned long)MPOL_MF_VALID) | 
|  | return -EINVAL; | 
|  | if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) | 
|  | return -EPERM; | 
|  |  | 
|  | if (start & ~PAGE_MASK) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (mode == MPOL_DEFAULT) | 
|  | flags &= ~MPOL_MF_STRICT; | 
|  |  | 
|  | len = PAGE_ALIGN(len); | 
|  | end = start + len; | 
|  |  | 
|  | if (end < start) | 
|  | return -EINVAL; | 
|  | if (end == start) | 
|  | return 0; | 
|  |  | 
|  | new = mpol_new(mode, mode_flags, nmask); | 
|  | if (IS_ERR(new)) | 
|  | return PTR_ERR(new); | 
|  |  | 
|  | /* | 
|  | * If we are using the default policy then operation | 
|  | * on discontinuous address spaces is okay after all | 
|  | */ | 
|  | if (!new) | 
|  | flags |= MPOL_MF_DISCONTIG_OK; | 
|  |  | 
|  | if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) | 
|  | lru_cache_disable(); | 
|  | { | 
|  | NODEMASK_SCRATCH(scratch); | 
|  | if (scratch) { | 
|  | mmap_write_lock(mm); | 
|  | err = mpol_set_nodemask(new, nmask, scratch); | 
|  | if (err) | 
|  | mmap_write_unlock(mm); | 
|  | } else | 
|  | err = -ENOMEM; | 
|  | NODEMASK_SCRATCH_FREE(scratch); | 
|  | } | 
|  | if (err) | 
|  | goto mpol_out; | 
|  |  | 
|  | /* | 
|  | * Lock the VMAs before scanning for pages to migrate, | 
|  | * to ensure we don't miss a concurrently inserted page. | 
|  | */ | 
|  | nr_failed = queue_pages_range(mm, start, end, nmask, | 
|  | flags | MPOL_MF_INVERT | MPOL_MF_WRLOCK, &pagelist); | 
|  |  | 
|  | if (nr_failed < 0) { | 
|  | err = nr_failed; | 
|  | nr_failed = 0; | 
|  | } else { | 
|  | vma_iter_init(&vmi, mm, start); | 
|  | prev = vma_prev(&vmi); | 
|  | for_each_vma_range(vmi, vma, end) { | 
|  | err = mbind_range(&vmi, vma, &prev, start, end, new); | 
|  | if (err) | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!err && !list_empty(&pagelist)) { | 
|  | /* Convert MPOL_DEFAULT's NULL to task or default policy */ | 
|  | if (!new) { | 
|  | new = get_task_policy(current); | 
|  | mpol_get(new); | 
|  | } | 
|  | mmpol.pol = new; | 
|  | mmpol.ilx = 0; | 
|  |  | 
|  | /* | 
|  | * In the interleaved case, attempt to allocate on exactly the | 
|  | * targeted nodes, for the first VMA to be migrated; for later | 
|  | * VMAs, the nodes will still be interleaved from the targeted | 
|  | * nodemask, but one by one may be selected differently. | 
|  | */ | 
|  | if (new->mode == MPOL_INTERLEAVE || | 
|  | new->mode == MPOL_WEIGHTED_INTERLEAVE) { | 
|  | struct folio *folio; | 
|  | unsigned int order; | 
|  | unsigned long addr = -EFAULT; | 
|  |  | 
|  | list_for_each_entry(folio, &pagelist, lru) { | 
|  | if (!folio_test_ksm(folio)) | 
|  | break; | 
|  | } | 
|  | if (!list_entry_is_head(folio, &pagelist, lru)) { | 
|  | vma_iter_init(&vmi, mm, start); | 
|  | for_each_vma_range(vmi, vma, end) { | 
|  | addr = page_address_in_vma( | 
|  | folio_page(folio, 0), vma); | 
|  | if (addr != -EFAULT) | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (addr != -EFAULT) { | 
|  | order = folio_order(folio); | 
|  | /* We already know the pol, but not the ilx */ | 
|  | mpol_cond_put(get_vma_policy(vma, addr, order, | 
|  | &mmpol.ilx)); | 
|  | /* Set base from which to increment by index */ | 
|  | mmpol.ilx -= folio->index >> order; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | mmap_write_unlock(mm); | 
|  |  | 
|  | if (!err && !list_empty(&pagelist)) { | 
|  | nr_failed |= migrate_pages(&pagelist, | 
|  | alloc_migration_target_by_mpol, NULL, | 
|  | (unsigned long)&mmpol, MIGRATE_SYNC, | 
|  | MR_MEMPOLICY_MBIND, NULL); | 
|  | } | 
|  |  | 
|  | if (nr_failed && (flags & MPOL_MF_STRICT)) | 
|  | err = -EIO; | 
|  | if (!list_empty(&pagelist)) | 
|  | putback_movable_pages(&pagelist); | 
|  | mpol_out: | 
|  | mpol_put(new); | 
|  | if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) | 
|  | lru_cache_enable(); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * User space interface with variable sized bitmaps for nodelists. | 
|  | */ | 
|  | static int get_bitmap(unsigned long *mask, const unsigned long __user *nmask, | 
|  | unsigned long maxnode) | 
|  | { | 
|  | unsigned long nlongs = BITS_TO_LONGS(maxnode); | 
|  | int ret; | 
|  |  | 
|  | if (in_compat_syscall()) | 
|  | ret = compat_get_bitmap(mask, | 
|  | (const compat_ulong_t __user *)nmask, | 
|  | maxnode); | 
|  | else | 
|  | ret = copy_from_user(mask, nmask, | 
|  | nlongs * sizeof(unsigned long)); | 
|  |  | 
|  | if (ret) | 
|  | return -EFAULT; | 
|  |  | 
|  | if (maxnode % BITS_PER_LONG) | 
|  | mask[nlongs - 1] &= (1UL << (maxnode % BITS_PER_LONG)) - 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Copy a node mask from user space. */ | 
|  | static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask, | 
|  | unsigned long maxnode) | 
|  | { | 
|  | --maxnode; | 
|  | nodes_clear(*nodes); | 
|  | if (maxnode == 0 || !nmask) | 
|  | return 0; | 
|  | if (maxnode > PAGE_SIZE*BITS_PER_BYTE) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * When the user specified more nodes than supported just check | 
|  | * if the non supported part is all zero, one word at a time, | 
|  | * starting at the end. | 
|  | */ | 
|  | while (maxnode > MAX_NUMNODES) { | 
|  | unsigned long bits = min_t(unsigned long, maxnode, BITS_PER_LONG); | 
|  | unsigned long t; | 
|  |  | 
|  | if (get_bitmap(&t, &nmask[(maxnode - 1) / BITS_PER_LONG], bits)) | 
|  | return -EFAULT; | 
|  |  | 
|  | if (maxnode - bits >= MAX_NUMNODES) { | 
|  | maxnode -= bits; | 
|  | } else { | 
|  | maxnode = MAX_NUMNODES; | 
|  | t &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1); | 
|  | } | 
|  | if (t) | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return get_bitmap(nodes_addr(*nodes), nmask, maxnode); | 
|  | } | 
|  |  | 
|  | /* Copy a kernel node mask to user space */ | 
|  | static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode, | 
|  | nodemask_t *nodes) | 
|  | { | 
|  | unsigned long copy = ALIGN(maxnode-1, 64) / 8; | 
|  | unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long); | 
|  | bool compat = in_compat_syscall(); | 
|  |  | 
|  | if (compat) | 
|  | nbytes = BITS_TO_COMPAT_LONGS(nr_node_ids) * sizeof(compat_long_t); | 
|  |  | 
|  | if (copy > nbytes) { | 
|  | if (copy > PAGE_SIZE) | 
|  | return -EINVAL; | 
|  | if (clear_user((char __user *)mask + nbytes, copy - nbytes)) | 
|  | return -EFAULT; | 
|  | copy = nbytes; | 
|  | maxnode = nr_node_ids; | 
|  | } | 
|  |  | 
|  | if (compat) | 
|  | return compat_put_bitmap((compat_ulong_t __user *)mask, | 
|  | nodes_addr(*nodes), maxnode); | 
|  |  | 
|  | return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0; | 
|  | } | 
|  |  | 
|  | /* Basic parameter sanity check used by both mbind() and set_mempolicy() */ | 
|  | static inline int sanitize_mpol_flags(int *mode, unsigned short *flags) | 
|  | { | 
|  | *flags = *mode & MPOL_MODE_FLAGS; | 
|  | *mode &= ~MPOL_MODE_FLAGS; | 
|  |  | 
|  | if ((unsigned int)(*mode) >=  MPOL_MAX) | 
|  | return -EINVAL; | 
|  | if ((*flags & MPOL_F_STATIC_NODES) && (*flags & MPOL_F_RELATIVE_NODES)) | 
|  | return -EINVAL; | 
|  | if (*flags & MPOL_F_NUMA_BALANCING) { | 
|  | if (*mode != MPOL_BIND) | 
|  | return -EINVAL; | 
|  | *flags |= (MPOL_F_MOF | MPOL_F_MORON); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static long kernel_mbind(unsigned long start, unsigned long len, | 
|  | unsigned long mode, const unsigned long __user *nmask, | 
|  | unsigned long maxnode, unsigned int flags) | 
|  | { | 
|  | unsigned short mode_flags; | 
|  | nodemask_t nodes; | 
|  | int lmode = mode; | 
|  | int err; | 
|  |  | 
|  | start = untagged_addr(start); | 
|  | err = sanitize_mpol_flags(&lmode, &mode_flags); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | err = get_nodes(&nodes, nmask, maxnode); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | return do_mbind(start, len, lmode, mode_flags, &nodes, flags); | 
|  | } | 
|  |  | 
|  | SYSCALL_DEFINE4(set_mempolicy_home_node, unsigned long, start, unsigned long, len, | 
|  | unsigned long, home_node, unsigned long, flags) | 
|  | { | 
|  | struct mm_struct *mm = current->mm; | 
|  | struct vm_area_struct *vma, *prev; | 
|  | struct mempolicy *new, *old; | 
|  | unsigned long end; | 
|  | int err = -ENOENT; | 
|  | VMA_ITERATOR(vmi, mm, start); | 
|  |  | 
|  | start = untagged_addr(start); | 
|  | if (start & ~PAGE_MASK) | 
|  | return -EINVAL; | 
|  | /* | 
|  | * flags is used for future extension if any. | 
|  | */ | 
|  | if (flags != 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * Check home_node is online to avoid accessing uninitialized | 
|  | * NODE_DATA. | 
|  | */ | 
|  | if (home_node >= MAX_NUMNODES || !node_online(home_node)) | 
|  | return -EINVAL; | 
|  |  | 
|  | len = PAGE_ALIGN(len); | 
|  | end = start + len; | 
|  |  | 
|  | if (end < start) | 
|  | return -EINVAL; | 
|  | if (end == start) | 
|  | return 0; | 
|  | mmap_write_lock(mm); | 
|  | prev = vma_prev(&vmi); | 
|  | for_each_vma_range(vmi, vma, end) { | 
|  | /* | 
|  | * If any vma in the range got policy other than MPOL_BIND | 
|  | * or MPOL_PREFERRED_MANY we return error. We don't reset | 
|  | * the home node for vmas we already updated before. | 
|  | */ | 
|  | old = vma_policy(vma); | 
|  | if (!old) { | 
|  | prev = vma; | 
|  | continue; | 
|  | } | 
|  | if (old->mode != MPOL_BIND && old->mode != MPOL_PREFERRED_MANY) { | 
|  | err = -EOPNOTSUPP; | 
|  | break; | 
|  | } | 
|  | new = mpol_dup(old); | 
|  | if (IS_ERR(new)) { | 
|  | err = PTR_ERR(new); | 
|  | break; | 
|  | } | 
|  |  | 
|  | vma_start_write(vma); | 
|  | new->home_node = home_node; | 
|  | err = mbind_range(&vmi, vma, &prev, start, end, new); | 
|  | mpol_put(new); | 
|  | if (err) | 
|  | break; | 
|  | } | 
|  | mmap_write_unlock(mm); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len, | 
|  | unsigned long, mode, const unsigned long __user *, nmask, | 
|  | unsigned long, maxnode, unsigned int, flags) | 
|  | { | 
|  | return kernel_mbind(start, len, mode, nmask, maxnode, flags); | 
|  | } | 
|  |  | 
|  | /* Set the process memory policy */ | 
|  | static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask, | 
|  | unsigned long maxnode) | 
|  | { | 
|  | unsigned short mode_flags; | 
|  | nodemask_t nodes; | 
|  | int lmode = mode; | 
|  | int err; | 
|  |  | 
|  | err = sanitize_mpol_flags(&lmode, &mode_flags); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | err = get_nodes(&nodes, nmask, maxnode); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | return do_set_mempolicy(lmode, mode_flags, &nodes); | 
|  | } | 
|  |  | 
|  | SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask, | 
|  | unsigned long, maxnode) | 
|  | { | 
|  | return kernel_set_mempolicy(mode, nmask, maxnode); | 
|  | } | 
|  |  | 
|  | static int kernel_migrate_pages(pid_t pid, unsigned long maxnode, | 
|  | const unsigned long __user *old_nodes, | 
|  | const unsigned long __user *new_nodes) | 
|  | { | 
|  | struct mm_struct *mm = NULL; | 
|  | struct task_struct *task; | 
|  | nodemask_t task_nodes; | 
|  | int err; | 
|  | nodemask_t *old; | 
|  | nodemask_t *new; | 
|  | NODEMASK_SCRATCH(scratch); | 
|  |  | 
|  | if (!scratch) | 
|  | return -ENOMEM; | 
|  |  | 
|  | old = &scratch->mask1; | 
|  | new = &scratch->mask2; | 
|  |  | 
|  | err = get_nodes(old, old_nodes, maxnode); | 
|  | if (err) | 
|  | goto out; | 
|  |  | 
|  | err = get_nodes(new, new_nodes, maxnode); | 
|  | if (err) | 
|  | goto out; | 
|  |  | 
|  | /* Find the mm_struct */ | 
|  | rcu_read_lock(); | 
|  | task = pid ? find_task_by_vpid(pid) : current; | 
|  | if (!task) { | 
|  | rcu_read_unlock(); | 
|  | err = -ESRCH; | 
|  | goto out; | 
|  | } | 
|  | get_task_struct(task); | 
|  |  | 
|  | err = -EINVAL; | 
|  |  | 
|  | /* | 
|  | * Check if this process has the right to modify the specified process. | 
|  | * Use the regular "ptrace_may_access()" checks. | 
|  | */ | 
|  | if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { | 
|  | rcu_read_unlock(); | 
|  | err = -EPERM; | 
|  | goto out_put; | 
|  | } | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | task_nodes = cpuset_mems_allowed(task); | 
|  | /* Is the user allowed to access the target nodes? */ | 
|  | if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) { | 
|  | err = -EPERM; | 
|  | goto out_put; | 
|  | } | 
|  |  | 
|  | task_nodes = cpuset_mems_allowed(current); | 
|  | nodes_and(*new, *new, task_nodes); | 
|  | if (nodes_empty(*new)) | 
|  | goto out_put; | 
|  |  | 
|  | err = security_task_movememory(task); | 
|  | if (err) | 
|  | goto out_put; | 
|  |  | 
|  | mm = get_task_mm(task); | 
|  | put_task_struct(task); | 
|  |  | 
|  | if (!mm) { | 
|  | err = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | err = do_migrate_pages(mm, old, new, | 
|  | capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE); | 
|  |  | 
|  | mmput(mm); | 
|  | out: | 
|  | NODEMASK_SCRATCH_FREE(scratch); | 
|  |  | 
|  | return err; | 
|  |  | 
|  | out_put: | 
|  | put_task_struct(task); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode, | 
|  | const unsigned long __user *, old_nodes, | 
|  | const unsigned long __user *, new_nodes) | 
|  | { | 
|  | return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes); | 
|  | } | 
|  |  | 
|  | /* Retrieve NUMA policy */ | 
|  | static int kernel_get_mempolicy(int __user *policy, | 
|  | unsigned long __user *nmask, | 
|  | unsigned long maxnode, | 
|  | unsigned long addr, | 
|  | unsigned long flags) | 
|  | { | 
|  | int err; | 
|  | int pval; | 
|  | nodemask_t nodes; | 
|  |  | 
|  | if (nmask != NULL && maxnode < nr_node_ids) | 
|  | return -EINVAL; | 
|  |  | 
|  | addr = untagged_addr(addr); | 
|  |  | 
|  | err = do_get_mempolicy(&pval, &nodes, addr, flags); | 
|  |  | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | if (policy && put_user(pval, policy)) | 
|  | return -EFAULT; | 
|  |  | 
|  | if (nmask) | 
|  | err = copy_nodes_to_user(nmask, maxnode, &nodes); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | SYSCALL_DEFINE5(get_mempolicy, int __user *, policy, | 
|  | unsigned long __user *, nmask, unsigned long, maxnode, | 
|  | unsigned long, addr, unsigned long, flags) | 
|  | { | 
|  | return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags); | 
|  | } | 
|  |  | 
|  | bool vma_migratable(struct vm_area_struct *vma) | 
|  | { | 
|  | if (vma->vm_flags & (VM_IO | VM_PFNMAP)) | 
|  | return false; | 
|  |  | 
|  | /* | 
|  | * DAX device mappings require predictable access latency, so avoid | 
|  | * incurring periodic faults. | 
|  | */ | 
|  | if (vma_is_dax(vma)) | 
|  | return false; | 
|  |  | 
|  | if (is_vm_hugetlb_page(vma) && | 
|  | !hugepage_migration_supported(hstate_vma(vma))) | 
|  | return false; | 
|  |  | 
|  | /* | 
|  | * Migration allocates pages in the highest zone. If we cannot | 
|  | * do so then migration (at least from node to node) is not | 
|  | * possible. | 
|  | */ | 
|  | if (vma->vm_file && | 
|  | gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping)) | 
|  | < policy_zone) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | struct mempolicy *__get_vma_policy(struct vm_area_struct *vma, | 
|  | unsigned long addr, pgoff_t *ilx) | 
|  | { | 
|  | *ilx = 0; | 
|  | return (vma->vm_ops && vma->vm_ops->get_policy) ? | 
|  | vma->vm_ops->get_policy(vma, addr, ilx) : vma->vm_policy; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * get_vma_policy(@vma, @addr, @order, @ilx) | 
|  | * @vma: virtual memory area whose policy is sought | 
|  | * @addr: address in @vma for shared policy lookup | 
|  | * @order: 0, or appropriate huge_page_order for interleaving | 
|  | * @ilx: interleave index (output), for use only when MPOL_INTERLEAVE or | 
|  | *       MPOL_WEIGHTED_INTERLEAVE | 
|  | * | 
|  | * Returns effective policy for a VMA at specified address. | 
|  | * Falls back to current->mempolicy or system default policy, as necessary. | 
|  | * Shared policies [those marked as MPOL_F_SHARED] require an extra reference | 
|  | * count--added by the get_policy() vm_op, as appropriate--to protect against | 
|  | * freeing by another task.  It is the caller's responsibility to free the | 
|  | * extra reference for shared policies. | 
|  | */ | 
|  | struct mempolicy *get_vma_policy(struct vm_area_struct *vma, | 
|  | unsigned long addr, int order, pgoff_t *ilx) | 
|  | { | 
|  | struct mempolicy *pol; | 
|  |  | 
|  | pol = __get_vma_policy(vma, addr, ilx); | 
|  | if (!pol) | 
|  | pol = get_task_policy(current); | 
|  | if (pol->mode == MPOL_INTERLEAVE || | 
|  | pol->mode == MPOL_WEIGHTED_INTERLEAVE) { | 
|  | *ilx += vma->vm_pgoff >> order; | 
|  | *ilx += (addr - vma->vm_start) >> (PAGE_SHIFT + order); | 
|  | } | 
|  | return pol; | 
|  | } | 
|  |  | 
|  | bool vma_policy_mof(struct vm_area_struct *vma) | 
|  | { | 
|  | struct mempolicy *pol; | 
|  |  | 
|  | if (vma->vm_ops && vma->vm_ops->get_policy) { | 
|  | bool ret = false; | 
|  | pgoff_t ilx;		/* ignored here */ | 
|  |  | 
|  | pol = vma->vm_ops->get_policy(vma, vma->vm_start, &ilx); | 
|  | if (pol && (pol->flags & MPOL_F_MOF)) | 
|  | ret = true; | 
|  | mpol_cond_put(pol); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | pol = vma->vm_policy; | 
|  | if (!pol) | 
|  | pol = get_task_policy(current); | 
|  |  | 
|  | return pol->flags & MPOL_F_MOF; | 
|  | } | 
|  |  | 
|  | bool apply_policy_zone(struct mempolicy *policy, enum zone_type zone) | 
|  | { | 
|  | enum zone_type dynamic_policy_zone = policy_zone; | 
|  |  | 
|  | BUG_ON(dynamic_policy_zone == ZONE_MOVABLE); | 
|  |  | 
|  | /* | 
|  | * if policy->nodes has movable memory only, | 
|  | * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only. | 
|  | * | 
|  | * policy->nodes is intersect with node_states[N_MEMORY]. | 
|  | * so if the following test fails, it implies | 
|  | * policy->nodes has movable memory only. | 
|  | */ | 
|  | if (!nodes_intersects(policy->nodes, node_states[N_HIGH_MEMORY])) | 
|  | dynamic_policy_zone = ZONE_MOVABLE; | 
|  |  | 
|  | return zone >= dynamic_policy_zone; | 
|  | } | 
|  |  | 
|  | static unsigned int weighted_interleave_nodes(struct mempolicy *policy) | 
|  | { | 
|  | unsigned int node; | 
|  | unsigned int cpuset_mems_cookie; | 
|  |  | 
|  | retry: | 
|  | /* to prevent miscount use tsk->mems_allowed_seq to detect rebind */ | 
|  | cpuset_mems_cookie = read_mems_allowed_begin(); | 
|  | node = current->il_prev; | 
|  | if (!current->il_weight || !node_isset(node, policy->nodes)) { | 
|  | node = next_node_in(node, policy->nodes); | 
|  | if (read_mems_allowed_retry(cpuset_mems_cookie)) | 
|  | goto retry; | 
|  | if (node == MAX_NUMNODES) | 
|  | return node; | 
|  | current->il_prev = node; | 
|  | current->il_weight = get_il_weight(node); | 
|  | } | 
|  | current->il_weight--; | 
|  | return node; | 
|  | } | 
|  |  | 
|  | /* Do dynamic interleaving for a process */ | 
|  | static unsigned int interleave_nodes(struct mempolicy *policy) | 
|  | { | 
|  | unsigned int nid; | 
|  | unsigned int cpuset_mems_cookie; | 
|  |  | 
|  | /* to prevent miscount, use tsk->mems_allowed_seq to detect rebind */ | 
|  | do { | 
|  | cpuset_mems_cookie = read_mems_allowed_begin(); | 
|  | nid = next_node_in(current->il_prev, policy->nodes); | 
|  | } while (read_mems_allowed_retry(cpuset_mems_cookie)); | 
|  |  | 
|  | if (nid < MAX_NUMNODES) | 
|  | current->il_prev = nid; | 
|  | return nid; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Depending on the memory policy provide a node from which to allocate the | 
|  | * next slab entry. | 
|  | */ | 
|  | unsigned int mempolicy_slab_node(void) | 
|  | { | 
|  | struct mempolicy *policy; | 
|  | int node = numa_mem_id(); | 
|  |  | 
|  | if (!in_task()) | 
|  | return node; | 
|  |  | 
|  | policy = current->mempolicy; | 
|  | if (!policy) | 
|  | return node; | 
|  |  | 
|  | switch (policy->mode) { | 
|  | case MPOL_PREFERRED: | 
|  | return first_node(policy->nodes); | 
|  |  | 
|  | case MPOL_INTERLEAVE: | 
|  | return interleave_nodes(policy); | 
|  |  | 
|  | case MPOL_WEIGHTED_INTERLEAVE: | 
|  | return weighted_interleave_nodes(policy); | 
|  |  | 
|  | case MPOL_BIND: | 
|  | case MPOL_PREFERRED_MANY: | 
|  | { | 
|  | struct zoneref *z; | 
|  |  | 
|  | /* | 
|  | * Follow bind policy behavior and start allocation at the | 
|  | * first node. | 
|  | */ | 
|  | struct zonelist *zonelist; | 
|  | enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL); | 
|  | zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK]; | 
|  | z = first_zones_zonelist(zonelist, highest_zoneidx, | 
|  | &policy->nodes); | 
|  | return z->zone ? zone_to_nid(z->zone) : node; | 
|  | } | 
|  | case MPOL_LOCAL: | 
|  | return node; | 
|  |  | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static unsigned int read_once_policy_nodemask(struct mempolicy *pol, | 
|  | nodemask_t *mask) | 
|  | { | 
|  | /* | 
|  | * barrier stabilizes the nodemask locally so that it can be iterated | 
|  | * over safely without concern for changes. Allocators validate node | 
|  | * selection does not violate mems_allowed, so this is safe. | 
|  | */ | 
|  | barrier(); | 
|  | memcpy(mask, &pol->nodes, sizeof(nodemask_t)); | 
|  | barrier(); | 
|  | return nodes_weight(*mask); | 
|  | } | 
|  |  | 
|  | static unsigned int weighted_interleave_nid(struct mempolicy *pol, pgoff_t ilx) | 
|  | { | 
|  | nodemask_t nodemask; | 
|  | unsigned int target, nr_nodes; | 
|  | u8 *table; | 
|  | unsigned int weight_total = 0; | 
|  | u8 weight; | 
|  | int nid; | 
|  |  | 
|  | nr_nodes = read_once_policy_nodemask(pol, &nodemask); | 
|  | if (!nr_nodes) | 
|  | return numa_node_id(); | 
|  |  | 
|  | rcu_read_lock(); | 
|  | table = rcu_dereference(iw_table); | 
|  | /* calculate the total weight */ | 
|  | for_each_node_mask(nid, nodemask) { | 
|  | /* detect system default usage */ | 
|  | weight = table ? table[nid] : 1; | 
|  | weight = weight ? weight : 1; | 
|  | weight_total += weight; | 
|  | } | 
|  |  | 
|  | /* Calculate the node offset based on totals */ | 
|  | target = ilx % weight_total; | 
|  | nid = first_node(nodemask); | 
|  | while (target) { | 
|  | /* detect system default usage */ | 
|  | weight = table ? table[nid] : 1; | 
|  | weight = weight ? weight : 1; | 
|  | if (target < weight) | 
|  | break; | 
|  | target -= weight; | 
|  | nid = next_node_in(nid, nodemask); | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | return nid; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Do static interleaving for interleave index @ilx.  Returns the ilx'th | 
|  | * node in pol->nodes (starting from ilx=0), wrapping around if ilx | 
|  | * exceeds the number of present nodes. | 
|  | */ | 
|  | static unsigned int interleave_nid(struct mempolicy *pol, pgoff_t ilx) | 
|  | { | 
|  | nodemask_t nodemask; | 
|  | unsigned int target, nnodes; | 
|  | int i; | 
|  | int nid; | 
|  |  | 
|  | nnodes = read_once_policy_nodemask(pol, &nodemask); | 
|  | if (!nnodes) | 
|  | return numa_node_id(); | 
|  | target = ilx % nnodes; | 
|  | nid = first_node(nodemask); | 
|  | for (i = 0; i < target; i++) | 
|  | nid = next_node(nid, nodemask); | 
|  | return nid; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return a nodemask representing a mempolicy for filtering nodes for | 
|  | * page allocation, together with preferred node id (or the input node id). | 
|  | */ | 
|  | static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *pol, | 
|  | pgoff_t ilx, int *nid) | 
|  | { | 
|  | nodemask_t *nodemask = NULL; | 
|  |  | 
|  | switch (pol->mode) { | 
|  | case MPOL_PREFERRED: | 
|  | /* Override input node id */ | 
|  | *nid = first_node(pol->nodes); | 
|  | break; | 
|  | case MPOL_PREFERRED_MANY: | 
|  | nodemask = &pol->nodes; | 
|  | if (pol->home_node != NUMA_NO_NODE) | 
|  | *nid = pol->home_node; | 
|  | break; | 
|  | case MPOL_BIND: | 
|  | /* Restrict to nodemask (but not on lower zones) */ | 
|  | if (apply_policy_zone(pol, gfp_zone(gfp)) && | 
|  | cpuset_nodemask_valid_mems_allowed(&pol->nodes)) | 
|  | nodemask = &pol->nodes; | 
|  | if (pol->home_node != NUMA_NO_NODE) | 
|  | *nid = pol->home_node; | 
|  | /* | 
|  | * __GFP_THISNODE shouldn't even be used with the bind policy | 
|  | * because we might easily break the expectation to stay on the | 
|  | * requested node and not break the policy. | 
|  | */ | 
|  | WARN_ON_ONCE(gfp & __GFP_THISNODE); | 
|  | break; | 
|  | case MPOL_INTERLEAVE: | 
|  | /* Override input node id */ | 
|  | *nid = (ilx == NO_INTERLEAVE_INDEX) ? | 
|  | interleave_nodes(pol) : interleave_nid(pol, ilx); | 
|  | break; | 
|  | case MPOL_WEIGHTED_INTERLEAVE: | 
|  | *nid = (ilx == NO_INTERLEAVE_INDEX) ? | 
|  | weighted_interleave_nodes(pol) : | 
|  | weighted_interleave_nid(pol, ilx); | 
|  | break; | 
|  | } | 
|  |  | 
|  | return nodemask; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_HUGETLBFS | 
|  | /* | 
|  | * huge_node(@vma, @addr, @gfp_flags, @mpol) | 
|  | * @vma: virtual memory area whose policy is sought | 
|  | * @addr: address in @vma for shared policy lookup and interleave policy | 
|  | * @gfp_flags: for requested zone | 
|  | * @mpol: pointer to mempolicy pointer for reference counted mempolicy | 
|  | * @nodemask: pointer to nodemask pointer for 'bind' and 'prefer-many' policy | 
|  | * | 
|  | * Returns a nid suitable for a huge page allocation and a pointer | 
|  | * to the struct mempolicy for conditional unref after allocation. | 
|  | * If the effective policy is 'bind' or 'prefer-many', returns a pointer | 
|  | * to the mempolicy's @nodemask for filtering the zonelist. | 
|  | */ | 
|  | int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags, | 
|  | struct mempolicy **mpol, nodemask_t **nodemask) | 
|  | { | 
|  | pgoff_t ilx; | 
|  | int nid; | 
|  |  | 
|  | nid = numa_node_id(); | 
|  | *mpol = get_vma_policy(vma, addr, hstate_vma(vma)->order, &ilx); | 
|  | *nodemask = policy_nodemask(gfp_flags, *mpol, ilx, &nid); | 
|  | return nid; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * init_nodemask_of_mempolicy | 
|  | * | 
|  | * If the current task's mempolicy is "default" [NULL], return 'false' | 
|  | * to indicate default policy.  Otherwise, extract the policy nodemask | 
|  | * for 'bind' or 'interleave' policy into the argument nodemask, or | 
|  | * initialize the argument nodemask to contain the single node for | 
|  | * 'preferred' or 'local' policy and return 'true' to indicate presence | 
|  | * of non-default mempolicy. | 
|  | * | 
|  | * We don't bother with reference counting the mempolicy [mpol_get/put] | 
|  | * because the current task is examining it's own mempolicy and a task's | 
|  | * mempolicy is only ever changed by the task itself. | 
|  | * | 
|  | * N.B., it is the caller's responsibility to free a returned nodemask. | 
|  | */ | 
|  | bool init_nodemask_of_mempolicy(nodemask_t *mask) | 
|  | { | 
|  | struct mempolicy *mempolicy; | 
|  |  | 
|  | if (!(mask && current->mempolicy)) | 
|  | return false; | 
|  |  | 
|  | task_lock(current); | 
|  | mempolicy = current->mempolicy; | 
|  | switch (mempolicy->mode) { | 
|  | case MPOL_PREFERRED: | 
|  | case MPOL_PREFERRED_MANY: | 
|  | case MPOL_BIND: | 
|  | case MPOL_INTERLEAVE: | 
|  | case MPOL_WEIGHTED_INTERLEAVE: | 
|  | *mask = mempolicy->nodes; | 
|  | break; | 
|  |  | 
|  | case MPOL_LOCAL: | 
|  | init_nodemask_of_node(mask, numa_node_id()); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  | task_unlock(current); | 
|  |  | 
|  | return true; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * mempolicy_in_oom_domain | 
|  | * | 
|  | * If tsk's mempolicy is "bind", check for intersection between mask and | 
|  | * the policy nodemask. Otherwise, return true for all other policies | 
|  | * including "interleave", as a tsk with "interleave" policy may have | 
|  | * memory allocated from all nodes in system. | 
|  | * | 
|  | * Takes task_lock(tsk) to prevent freeing of its mempolicy. | 
|  | */ | 
|  | bool mempolicy_in_oom_domain(struct task_struct *tsk, | 
|  | const nodemask_t *mask) | 
|  | { | 
|  | struct mempolicy *mempolicy; | 
|  | bool ret = true; | 
|  |  | 
|  | if (!mask) | 
|  | return ret; | 
|  |  | 
|  | task_lock(tsk); | 
|  | mempolicy = tsk->mempolicy; | 
|  | if (mempolicy && mempolicy->mode == MPOL_BIND) | 
|  | ret = nodes_intersects(mempolicy->nodes, *mask); | 
|  | task_unlock(tsk); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static struct page *alloc_pages_preferred_many(gfp_t gfp, unsigned int order, | 
|  | int nid, nodemask_t *nodemask) | 
|  | { | 
|  | struct page *page; | 
|  | gfp_t preferred_gfp; | 
|  |  | 
|  | /* | 
|  | * This is a two pass approach. The first pass will only try the | 
|  | * preferred nodes but skip the direct reclaim and allow the | 
|  | * allocation to fail, while the second pass will try all the | 
|  | * nodes in system. | 
|  | */ | 
|  | preferred_gfp = gfp | __GFP_NOWARN; | 
|  | preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL); | 
|  | page = __alloc_pages(preferred_gfp, order, nid, nodemask); | 
|  | if (!page) | 
|  | page = __alloc_pages(gfp, order, nid, NULL); | 
|  |  | 
|  | return page; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * alloc_pages_mpol - Allocate pages according to NUMA mempolicy. | 
|  | * @gfp: GFP flags. | 
|  | * @order: Order of the page allocation. | 
|  | * @pol: Pointer to the NUMA mempolicy. | 
|  | * @ilx: Index for interleave mempolicy (also distinguishes alloc_pages()). | 
|  | * @nid: Preferred node (usually numa_node_id() but @mpol may override it). | 
|  | * | 
|  | * Return: The page on success or NULL if allocation fails. | 
|  | */ | 
|  | struct page *alloc_pages_mpol(gfp_t gfp, unsigned int order, | 
|  | struct mempolicy *pol, pgoff_t ilx, int nid) | 
|  | { | 
|  | nodemask_t *nodemask; | 
|  | struct page *page; | 
|  |  | 
|  | nodemask = policy_nodemask(gfp, pol, ilx, &nid); | 
|  |  | 
|  | if (pol->mode == MPOL_PREFERRED_MANY) | 
|  | return alloc_pages_preferred_many(gfp, order, nid, nodemask); | 
|  |  | 
|  | if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && | 
|  | /* filter "hugepage" allocation, unless from alloc_pages() */ | 
|  | order == HPAGE_PMD_ORDER && ilx != NO_INTERLEAVE_INDEX) { | 
|  | /* | 
|  | * For hugepage allocation and non-interleave policy which | 
|  | * allows the current node (or other explicitly preferred | 
|  | * node) we only try to allocate from the current/preferred | 
|  | * node and don't fall back to other nodes, as the cost of | 
|  | * remote accesses would likely offset THP benefits. | 
|  | * | 
|  | * If the policy is interleave or does not allow the current | 
|  | * node in its nodemask, we allocate the standard way. | 
|  | */ | 
|  | if (pol->mode != MPOL_INTERLEAVE && | 
|  | pol->mode != MPOL_WEIGHTED_INTERLEAVE && | 
|  | (!nodemask || node_isset(nid, *nodemask))) { | 
|  | /* | 
|  | * First, try to allocate THP only on local node, but | 
|  | * don't reclaim unnecessarily, just compact. | 
|  | */ | 
|  | page = __alloc_pages_node(nid, | 
|  | gfp | __GFP_THISNODE | __GFP_NORETRY, order); | 
|  | if (page || !(gfp & __GFP_DIRECT_RECLAIM)) | 
|  | return page; | 
|  | /* | 
|  | * If hugepage allocations are configured to always | 
|  | * synchronous compact or the vma has been madvised | 
|  | * to prefer hugepage backing, retry allowing remote | 
|  | * memory with both reclaim and compact as well. | 
|  | */ | 
|  | } | 
|  | } | 
|  |  | 
|  | page = __alloc_pages(gfp, order, nid, nodemask); | 
|  |  | 
|  | if (unlikely(pol->mode == MPOL_INTERLEAVE) && page) { | 
|  | /* skip NUMA_INTERLEAVE_HIT update if numa stats is disabled */ | 
|  | if (static_branch_likely(&vm_numa_stat_key) && | 
|  | page_to_nid(page) == nid) { | 
|  | preempt_disable(); | 
|  | __count_numa_event(page_zone(page), NUMA_INTERLEAVE_HIT); | 
|  | preempt_enable(); | 
|  | } | 
|  | } | 
|  |  | 
|  | return page; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * vma_alloc_folio - Allocate a folio for a VMA. | 
|  | * @gfp: GFP flags. | 
|  | * @order: Order of the folio. | 
|  | * @vma: Pointer to VMA. | 
|  | * @addr: Virtual address of the allocation.  Must be inside @vma. | 
|  | * @hugepage: Unused (was: For hugepages try only preferred node if possible). | 
|  | * | 
|  | * Allocate a folio for a specific address in @vma, using the appropriate | 
|  | * NUMA policy.  The caller must hold the mmap_lock of the mm_struct of the | 
|  | * VMA to prevent it from going away.  Should be used for all allocations | 
|  | * for folios that will be mapped into user space, excepting hugetlbfs, and | 
|  | * excepting where direct use of alloc_pages_mpol() is more appropriate. | 
|  | * | 
|  | * Return: The folio on success or NULL if allocation fails. | 
|  | */ | 
|  | struct folio *vma_alloc_folio(gfp_t gfp, int order, struct vm_area_struct *vma, | 
|  | unsigned long addr, bool hugepage) | 
|  | { | 
|  | struct mempolicy *pol; | 
|  | pgoff_t ilx; | 
|  | struct page *page; | 
|  |  | 
|  | pol = get_vma_policy(vma, addr, order, &ilx); | 
|  | page = alloc_pages_mpol(gfp | __GFP_COMP, order, | 
|  | pol, ilx, numa_node_id()); | 
|  | mpol_cond_put(pol); | 
|  | return page_rmappable_folio(page); | 
|  | } | 
|  | EXPORT_SYMBOL(vma_alloc_folio); | 
|  |  | 
|  | /** | 
|  | * alloc_pages - Allocate pages. | 
|  | * @gfp: GFP flags. | 
|  | * @order: Power of two of number of pages to allocate. | 
|  | * | 
|  | * Allocate 1 << @order contiguous pages.  The physical address of the | 
|  | * first page is naturally aligned (eg an order-3 allocation will be aligned | 
|  | * to a multiple of 8 * PAGE_SIZE bytes).  The NUMA policy of the current | 
|  | * process is honoured when in process context. | 
|  | * | 
|  | * Context: Can be called from any context, providing the appropriate GFP | 
|  | * flags are used. | 
|  | * Return: The page on success or NULL if allocation fails. | 
|  | */ | 
|  | struct page *alloc_pages(gfp_t gfp, unsigned int order) | 
|  | { | 
|  | struct mempolicy *pol = &default_policy; | 
|  |  | 
|  | /* | 
|  | * No reference counting needed for current->mempolicy | 
|  | * nor system default_policy | 
|  | */ | 
|  | if (!in_interrupt() && !(gfp & __GFP_THISNODE)) | 
|  | pol = get_task_policy(current); | 
|  |  | 
|  | return alloc_pages_mpol(gfp, order, | 
|  | pol, NO_INTERLEAVE_INDEX, numa_node_id()); | 
|  | } | 
|  | EXPORT_SYMBOL(alloc_pages); | 
|  |  | 
|  | struct folio *folio_alloc(gfp_t gfp, unsigned int order) | 
|  | { | 
|  | return page_rmappable_folio(alloc_pages(gfp | __GFP_COMP, order)); | 
|  | } | 
|  | EXPORT_SYMBOL(folio_alloc); | 
|  |  | 
|  | static unsigned long alloc_pages_bulk_array_interleave(gfp_t gfp, | 
|  | struct mempolicy *pol, unsigned long nr_pages, | 
|  | struct page **page_array) | 
|  | { | 
|  | int nodes; | 
|  | unsigned long nr_pages_per_node; | 
|  | int delta; | 
|  | int i; | 
|  | unsigned long nr_allocated; | 
|  | unsigned long total_allocated = 0; | 
|  |  | 
|  | nodes = nodes_weight(pol->nodes); | 
|  | nr_pages_per_node = nr_pages / nodes; | 
|  | delta = nr_pages - nodes * nr_pages_per_node; | 
|  |  | 
|  | for (i = 0; i < nodes; i++) { | 
|  | if (delta) { | 
|  | nr_allocated = __alloc_pages_bulk(gfp, | 
|  | interleave_nodes(pol), NULL, | 
|  | nr_pages_per_node + 1, NULL, | 
|  | page_array); | 
|  | delta--; | 
|  | } else { | 
|  | nr_allocated = __alloc_pages_bulk(gfp, | 
|  | interleave_nodes(pol), NULL, | 
|  | nr_pages_per_node, NULL, page_array); | 
|  | } | 
|  |  | 
|  | page_array += nr_allocated; | 
|  | total_allocated += nr_allocated; | 
|  | } | 
|  |  | 
|  | return total_allocated; | 
|  | } | 
|  |  | 
|  | static unsigned long alloc_pages_bulk_array_weighted_interleave(gfp_t gfp, | 
|  | struct mempolicy *pol, unsigned long nr_pages, | 
|  | struct page **page_array) | 
|  | { | 
|  | struct task_struct *me = current; | 
|  | unsigned int cpuset_mems_cookie; | 
|  | unsigned long total_allocated = 0; | 
|  | unsigned long nr_allocated = 0; | 
|  | unsigned long rounds; | 
|  | unsigned long node_pages, delta; | 
|  | u8 *table, *weights, weight; | 
|  | unsigned int weight_total = 0; | 
|  | unsigned long rem_pages = nr_pages; | 
|  | nodemask_t nodes; | 
|  | int nnodes, node; | 
|  | int resume_node = MAX_NUMNODES - 1; | 
|  | u8 resume_weight = 0; | 
|  | int prev_node; | 
|  | int i; | 
|  |  | 
|  | if (!nr_pages) | 
|  | return 0; | 
|  |  | 
|  | /* read the nodes onto the stack, retry if done during rebind */ | 
|  | do { | 
|  | cpuset_mems_cookie = read_mems_allowed_begin(); | 
|  | nnodes = read_once_policy_nodemask(pol, &nodes); | 
|  | } while (read_mems_allowed_retry(cpuset_mems_cookie)); | 
|  |  | 
|  | /* if the nodemask has become invalid, we cannot do anything */ | 
|  | if (!nnodes) | 
|  | return 0; | 
|  |  | 
|  | /* Continue allocating from most recent node and adjust the nr_pages */ | 
|  | node = me->il_prev; | 
|  | weight = me->il_weight; | 
|  | if (weight && node_isset(node, nodes)) { | 
|  | node_pages = min(rem_pages, weight); | 
|  | nr_allocated = __alloc_pages_bulk(gfp, node, NULL, node_pages, | 
|  | NULL, page_array); | 
|  | page_array += nr_allocated; | 
|  | total_allocated += nr_allocated; | 
|  | /* if that's all the pages, no need to interleave */ | 
|  | if (rem_pages <= weight) { | 
|  | me->il_weight -= rem_pages; | 
|  | return total_allocated; | 
|  | } | 
|  | /* Otherwise we adjust remaining pages, continue from there */ | 
|  | rem_pages -= weight; | 
|  | } | 
|  | /* clear active weight in case of an allocation failure */ | 
|  | me->il_weight = 0; | 
|  | prev_node = node; | 
|  |  | 
|  | /* create a local copy of node weights to operate on outside rcu */ | 
|  | weights = kzalloc(nr_node_ids, GFP_KERNEL); | 
|  | if (!weights) | 
|  | return total_allocated; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | table = rcu_dereference(iw_table); | 
|  | if (table) | 
|  | memcpy(weights, table, nr_node_ids); | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | /* calculate total, detect system default usage */ | 
|  | for_each_node_mask(node, nodes) { | 
|  | if (!weights[node]) | 
|  | weights[node] = 1; | 
|  | weight_total += weights[node]; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Calculate rounds/partial rounds to minimize __alloc_pages_bulk calls. | 
|  | * Track which node weighted interleave should resume from. | 
|  | * | 
|  | * if (rounds > 0) and (delta == 0), resume_node will always be | 
|  | * the node following prev_node and its weight. | 
|  | */ | 
|  | rounds = rem_pages / weight_total; | 
|  | delta = rem_pages % weight_total; | 
|  | resume_node = next_node_in(prev_node, nodes); | 
|  | resume_weight = weights[resume_node]; | 
|  | for (i = 0; i < nnodes; i++) { | 
|  | node = next_node_in(prev_node, nodes); | 
|  | weight = weights[node]; | 
|  | node_pages = weight * rounds; | 
|  | /* If a delta exists, add this node's portion of the delta */ | 
|  | if (delta > weight) { | 
|  | node_pages += weight; | 
|  | delta -= weight; | 
|  | } else if (delta) { | 
|  | /* when delta is depleted, resume from that node */ | 
|  | node_pages += delta; | 
|  | resume_node = node; | 
|  | resume_weight = weight - delta; | 
|  | delta = 0; | 
|  | } | 
|  | /* node_pages can be 0 if an allocation fails and rounds == 0 */ | 
|  | if (!node_pages) | 
|  | break; | 
|  | nr_allocated = __alloc_pages_bulk(gfp, node, NULL, node_pages, | 
|  | NULL, page_array); | 
|  | page_array += nr_allocated; | 
|  | total_allocated += nr_allocated; | 
|  | if (total_allocated == nr_pages) | 
|  | break; | 
|  | prev_node = node; | 
|  | } | 
|  | me->il_prev = resume_node; | 
|  | me->il_weight = resume_weight; | 
|  | kfree(weights); | 
|  | return total_allocated; | 
|  | } | 
|  |  | 
|  | static unsigned long alloc_pages_bulk_array_preferred_many(gfp_t gfp, int nid, | 
|  | struct mempolicy *pol, unsigned long nr_pages, | 
|  | struct page **page_array) | 
|  | { | 
|  | gfp_t preferred_gfp; | 
|  | unsigned long nr_allocated = 0; | 
|  |  | 
|  | preferred_gfp = gfp | __GFP_NOWARN; | 
|  | preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL); | 
|  |  | 
|  | nr_allocated  = __alloc_pages_bulk(preferred_gfp, nid, &pol->nodes, | 
|  | nr_pages, NULL, page_array); | 
|  |  | 
|  | if (nr_allocated < nr_pages) | 
|  | nr_allocated += __alloc_pages_bulk(gfp, numa_node_id(), NULL, | 
|  | nr_pages - nr_allocated, NULL, | 
|  | page_array + nr_allocated); | 
|  | return nr_allocated; | 
|  | } | 
|  |  | 
|  | /* alloc pages bulk and mempolicy should be considered at the | 
|  | * same time in some situation such as vmalloc. | 
|  | * | 
|  | * It can accelerate memory allocation especially interleaving | 
|  | * allocate memory. | 
|  | */ | 
|  | unsigned long alloc_pages_bulk_array_mempolicy(gfp_t gfp, | 
|  | unsigned long nr_pages, struct page **page_array) | 
|  | { | 
|  | struct mempolicy *pol = &default_policy; | 
|  | nodemask_t *nodemask; | 
|  | int nid; | 
|  |  | 
|  | if (!in_interrupt() && !(gfp & __GFP_THISNODE)) | 
|  | pol = get_task_policy(current); | 
|  |  | 
|  | if (pol->mode == MPOL_INTERLEAVE) | 
|  | return alloc_pages_bulk_array_interleave(gfp, pol, | 
|  | nr_pages, page_array); | 
|  |  | 
|  | if (pol->mode == MPOL_WEIGHTED_INTERLEAVE) | 
|  | return alloc_pages_bulk_array_weighted_interleave( | 
|  | gfp, pol, nr_pages, page_array); | 
|  |  | 
|  | if (pol->mode == MPOL_PREFERRED_MANY) | 
|  | return alloc_pages_bulk_array_preferred_many(gfp, | 
|  | numa_node_id(), pol, nr_pages, page_array); | 
|  |  | 
|  | nid = numa_node_id(); | 
|  | nodemask = policy_nodemask(gfp, pol, NO_INTERLEAVE_INDEX, &nid); | 
|  | return __alloc_pages_bulk(gfp, nid, nodemask, | 
|  | nr_pages, NULL, page_array); | 
|  | } | 
|  |  | 
|  | int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst) | 
|  | { | 
|  | struct mempolicy *pol = mpol_dup(src->vm_policy); | 
|  |  | 
|  | if (IS_ERR(pol)) | 
|  | return PTR_ERR(pol); | 
|  | dst->vm_policy = pol; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it | 
|  | * rebinds the mempolicy its copying by calling mpol_rebind_policy() | 
|  | * with the mems_allowed returned by cpuset_mems_allowed().  This | 
|  | * keeps mempolicies cpuset relative after its cpuset moves.  See | 
|  | * further kernel/cpuset.c update_nodemask(). | 
|  | * | 
|  | * current's mempolicy may be rebinded by the other task(the task that changes | 
|  | * cpuset's mems), so we needn't do rebind work for current task. | 
|  | */ | 
|  |  | 
|  | /* Slow path of a mempolicy duplicate */ | 
|  | struct mempolicy *__mpol_dup(struct mempolicy *old) | 
|  | { | 
|  | struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL); | 
|  |  | 
|  | if (!new) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | /* task's mempolicy is protected by alloc_lock */ | 
|  | if (old == current->mempolicy) { | 
|  | task_lock(current); | 
|  | *new = *old; | 
|  | task_unlock(current); | 
|  | } else | 
|  | *new = *old; | 
|  |  | 
|  | if (current_cpuset_is_being_rebound()) { | 
|  | nodemask_t mems = cpuset_mems_allowed(current); | 
|  | mpol_rebind_policy(new, &mems); | 
|  | } | 
|  | atomic_set(&new->refcnt, 1); | 
|  | return new; | 
|  | } | 
|  |  | 
|  | /* Slow path of a mempolicy comparison */ | 
|  | bool __mpol_equal(struct mempolicy *a, struct mempolicy *b) | 
|  | { | 
|  | if (!a || !b) | 
|  | return false; | 
|  | if (a->mode != b->mode) | 
|  | return false; | 
|  | if (a->flags != b->flags) | 
|  | return false; | 
|  | if (a->home_node != b->home_node) | 
|  | return false; | 
|  | if (mpol_store_user_nodemask(a)) | 
|  | if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask)) | 
|  | return false; | 
|  |  | 
|  | switch (a->mode) { | 
|  | case MPOL_BIND: | 
|  | case MPOL_INTERLEAVE: | 
|  | case MPOL_PREFERRED: | 
|  | case MPOL_PREFERRED_MANY: | 
|  | case MPOL_WEIGHTED_INTERLEAVE: | 
|  | return !!nodes_equal(a->nodes, b->nodes); | 
|  | case MPOL_LOCAL: | 
|  | return true; | 
|  | default: | 
|  | BUG(); | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Shared memory backing store policy support. | 
|  | * | 
|  | * Remember policies even when nobody has shared memory mapped. | 
|  | * The policies are kept in Red-Black tree linked from the inode. | 
|  | * They are protected by the sp->lock rwlock, which should be held | 
|  | * for any accesses to the tree. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * lookup first element intersecting start-end.  Caller holds sp->lock for | 
|  | * reading or for writing | 
|  | */ | 
|  | static struct sp_node *sp_lookup(struct shared_policy *sp, | 
|  | pgoff_t start, pgoff_t end) | 
|  | { | 
|  | struct rb_node *n = sp->root.rb_node; | 
|  |  | 
|  | while (n) { | 
|  | struct sp_node *p = rb_entry(n, struct sp_node, nd); | 
|  |  | 
|  | if (start >= p->end) | 
|  | n = n->rb_right; | 
|  | else if (end <= p->start) | 
|  | n = n->rb_left; | 
|  | else | 
|  | break; | 
|  | } | 
|  | if (!n) | 
|  | return NULL; | 
|  | for (;;) { | 
|  | struct sp_node *w = NULL; | 
|  | struct rb_node *prev = rb_prev(n); | 
|  | if (!prev) | 
|  | break; | 
|  | w = rb_entry(prev, struct sp_node, nd); | 
|  | if (w->end <= start) | 
|  | break; | 
|  | n = prev; | 
|  | } | 
|  | return rb_entry(n, struct sp_node, nd); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Insert a new shared policy into the list.  Caller holds sp->lock for | 
|  | * writing. | 
|  | */ | 
|  | static void sp_insert(struct shared_policy *sp, struct sp_node *new) | 
|  | { | 
|  | struct rb_node **p = &sp->root.rb_node; | 
|  | struct rb_node *parent = NULL; | 
|  | struct sp_node *nd; | 
|  |  | 
|  | while (*p) { | 
|  | parent = *p; | 
|  | nd = rb_entry(parent, struct sp_node, nd); | 
|  | if (new->start < nd->start) | 
|  | p = &(*p)->rb_left; | 
|  | else if (new->end > nd->end) | 
|  | p = &(*p)->rb_right; | 
|  | else | 
|  | BUG(); | 
|  | } | 
|  | rb_link_node(&new->nd, parent, p); | 
|  | rb_insert_color(&new->nd, &sp->root); | 
|  | } | 
|  |  | 
|  | /* Find shared policy intersecting idx */ | 
|  | struct mempolicy *mpol_shared_policy_lookup(struct shared_policy *sp, | 
|  | pgoff_t idx) | 
|  | { | 
|  | struct mempolicy *pol = NULL; | 
|  | struct sp_node *sn; | 
|  |  | 
|  | if (!sp->root.rb_node) | 
|  | return NULL; | 
|  | read_lock(&sp->lock); | 
|  | sn = sp_lookup(sp, idx, idx+1); | 
|  | if (sn) { | 
|  | mpol_get(sn->policy); | 
|  | pol = sn->policy; | 
|  | } | 
|  | read_unlock(&sp->lock); | 
|  | return pol; | 
|  | } | 
|  |  | 
|  | static void sp_free(struct sp_node *n) | 
|  | { | 
|  | mpol_put(n->policy); | 
|  | kmem_cache_free(sn_cache, n); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * mpol_misplaced - check whether current folio node is valid in policy | 
|  | * | 
|  | * @folio: folio to be checked | 
|  | * @vma: vm area where folio mapped | 
|  | * @addr: virtual address in @vma for shared policy lookup and interleave policy | 
|  | * | 
|  | * Lookup current policy node id for vma,addr and "compare to" folio's | 
|  | * node id.  Policy determination "mimics" alloc_page_vma(). | 
|  | * Called from fault path where we know the vma and faulting address. | 
|  | * | 
|  | * Return: NUMA_NO_NODE if the page is in a node that is valid for this | 
|  | * policy, or a suitable node ID to allocate a replacement folio from. | 
|  | */ | 
|  | int mpol_misplaced(struct folio *folio, struct vm_area_struct *vma, | 
|  | unsigned long addr) | 
|  | { | 
|  | struct mempolicy *pol; | 
|  | pgoff_t ilx; | 
|  | struct zoneref *z; | 
|  | int curnid = folio_nid(folio); | 
|  | int thiscpu = raw_smp_processor_id(); | 
|  | int thisnid = cpu_to_node(thiscpu); | 
|  | int polnid = NUMA_NO_NODE; | 
|  | int ret = NUMA_NO_NODE; | 
|  |  | 
|  | pol = get_vma_policy(vma, addr, folio_order(folio), &ilx); | 
|  | if (!(pol->flags & MPOL_F_MOF)) | 
|  | goto out; | 
|  |  | 
|  | switch (pol->mode) { | 
|  | case MPOL_INTERLEAVE: | 
|  | polnid = interleave_nid(pol, ilx); | 
|  | break; | 
|  |  | 
|  | case MPOL_WEIGHTED_INTERLEAVE: | 
|  | polnid = weighted_interleave_nid(pol, ilx); | 
|  | break; | 
|  |  | 
|  | case MPOL_PREFERRED: | 
|  | if (node_isset(curnid, pol->nodes)) | 
|  | goto out; | 
|  | polnid = first_node(pol->nodes); | 
|  | break; | 
|  |  | 
|  | case MPOL_LOCAL: | 
|  | polnid = numa_node_id(); | 
|  | break; | 
|  |  | 
|  | case MPOL_BIND: | 
|  | /* Optimize placement among multiple nodes via NUMA balancing */ | 
|  | if (pol->flags & MPOL_F_MORON) { | 
|  | if (node_isset(thisnid, pol->nodes)) | 
|  | break; | 
|  | goto out; | 
|  | } | 
|  | fallthrough; | 
|  |  | 
|  | case MPOL_PREFERRED_MANY: | 
|  | /* | 
|  | * use current page if in policy nodemask, | 
|  | * else select nearest allowed node, if any. | 
|  | * If no allowed nodes, use current [!misplaced]. | 
|  | */ | 
|  | if (node_isset(curnid, pol->nodes)) | 
|  | goto out; | 
|  | z = first_zones_zonelist( | 
|  | node_zonelist(numa_node_id(), GFP_HIGHUSER), | 
|  | gfp_zone(GFP_HIGHUSER), | 
|  | &pol->nodes); | 
|  | polnid = zone_to_nid(z->zone); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | /* Migrate the folio towards the node whose CPU is referencing it */ | 
|  | if (pol->flags & MPOL_F_MORON) { | 
|  | polnid = thisnid; | 
|  |  | 
|  | if (!should_numa_migrate_memory(current, folio, curnid, | 
|  | thiscpu)) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (curnid != polnid) | 
|  | ret = polnid; | 
|  | out: | 
|  | mpol_cond_put(pol); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Drop the (possibly final) reference to task->mempolicy.  It needs to be | 
|  | * dropped after task->mempolicy is set to NULL so that any allocation done as | 
|  | * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed | 
|  | * policy. | 
|  | */ | 
|  | void mpol_put_task_policy(struct task_struct *task) | 
|  | { | 
|  | struct mempolicy *pol; | 
|  |  | 
|  | task_lock(task); | 
|  | pol = task->mempolicy; | 
|  | task->mempolicy = NULL; | 
|  | task_unlock(task); | 
|  | mpol_put(pol); | 
|  | } | 
|  |  | 
|  | static void sp_delete(struct shared_policy *sp, struct sp_node *n) | 
|  | { | 
|  | rb_erase(&n->nd, &sp->root); | 
|  | sp_free(n); | 
|  | } | 
|  |  | 
|  | static void sp_node_init(struct sp_node *node, unsigned long start, | 
|  | unsigned long end, struct mempolicy *pol) | 
|  | { | 
|  | node->start = start; | 
|  | node->end = end; | 
|  | node->policy = pol; | 
|  | } | 
|  |  | 
|  | static struct sp_node *sp_alloc(unsigned long start, unsigned long end, | 
|  | struct mempolicy *pol) | 
|  | { | 
|  | struct sp_node *n; | 
|  | struct mempolicy *newpol; | 
|  |  | 
|  | n = kmem_cache_alloc(sn_cache, GFP_KERNEL); | 
|  | if (!n) | 
|  | return NULL; | 
|  |  | 
|  | newpol = mpol_dup(pol); | 
|  | if (IS_ERR(newpol)) { | 
|  | kmem_cache_free(sn_cache, n); | 
|  | return NULL; | 
|  | } | 
|  | newpol->flags |= MPOL_F_SHARED; | 
|  | sp_node_init(n, start, end, newpol); | 
|  |  | 
|  | return n; | 
|  | } | 
|  |  | 
|  | /* Replace a policy range. */ | 
|  | static int shared_policy_replace(struct shared_policy *sp, pgoff_t start, | 
|  | pgoff_t end, struct sp_node *new) | 
|  | { | 
|  | struct sp_node *n; | 
|  | struct sp_node *n_new = NULL; | 
|  | struct mempolicy *mpol_new = NULL; | 
|  | int ret = 0; | 
|  |  | 
|  | restart: | 
|  | write_lock(&sp->lock); | 
|  | n = sp_lookup(sp, start, end); | 
|  | /* Take care of old policies in the same range. */ | 
|  | while (n && n->start < end) { | 
|  | struct rb_node *next = rb_next(&n->nd); | 
|  | if (n->start >= start) { | 
|  | if (n->end <= end) | 
|  | sp_delete(sp, n); | 
|  | else | 
|  | n->start = end; | 
|  | } else { | 
|  | /* Old policy spanning whole new range. */ | 
|  | if (n->end > end) { | 
|  | if (!n_new) | 
|  | goto alloc_new; | 
|  |  | 
|  | *mpol_new = *n->policy; | 
|  | atomic_set(&mpol_new->refcnt, 1); | 
|  | sp_node_init(n_new, end, n->end, mpol_new); | 
|  | n->end = start; | 
|  | sp_insert(sp, n_new); | 
|  | n_new = NULL; | 
|  | mpol_new = NULL; | 
|  | break; | 
|  | } else | 
|  | n->end = start; | 
|  | } | 
|  | if (!next) | 
|  | break; | 
|  | n = rb_entry(next, struct sp_node, nd); | 
|  | } | 
|  | if (new) | 
|  | sp_insert(sp, new); | 
|  | write_unlock(&sp->lock); | 
|  | ret = 0; | 
|  |  | 
|  | err_out: | 
|  | if (mpol_new) | 
|  | mpol_put(mpol_new); | 
|  | if (n_new) | 
|  | kmem_cache_free(sn_cache, n_new); | 
|  |  | 
|  | return ret; | 
|  |  | 
|  | alloc_new: | 
|  | write_unlock(&sp->lock); | 
|  | ret = -ENOMEM; | 
|  | n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL); | 
|  | if (!n_new) | 
|  | goto err_out; | 
|  | mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL); | 
|  | if (!mpol_new) | 
|  | goto err_out; | 
|  | atomic_set(&mpol_new->refcnt, 1); | 
|  | goto restart; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * mpol_shared_policy_init - initialize shared policy for inode | 
|  | * @sp: pointer to inode shared policy | 
|  | * @mpol:  struct mempolicy to install | 
|  | * | 
|  | * Install non-NULL @mpol in inode's shared policy rb-tree. | 
|  | * On entry, the current task has a reference on a non-NULL @mpol. | 
|  | * This must be released on exit. | 
|  | * This is called at get_inode() calls and we can use GFP_KERNEL. | 
|  | */ | 
|  | void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | sp->root = RB_ROOT;		/* empty tree == default mempolicy */ | 
|  | rwlock_init(&sp->lock); | 
|  |  | 
|  | if (mpol) { | 
|  | struct sp_node *sn; | 
|  | struct mempolicy *npol; | 
|  | NODEMASK_SCRATCH(scratch); | 
|  |  | 
|  | if (!scratch) | 
|  | goto put_mpol; | 
|  |  | 
|  | /* contextualize the tmpfs mount point mempolicy to this file */ | 
|  | npol = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask); | 
|  | if (IS_ERR(npol)) | 
|  | goto free_scratch; /* no valid nodemask intersection */ | 
|  |  | 
|  | task_lock(current); | 
|  | ret = mpol_set_nodemask(npol, &mpol->w.user_nodemask, scratch); | 
|  | task_unlock(current); | 
|  | if (ret) | 
|  | goto put_npol; | 
|  |  | 
|  | /* alloc node covering entire file; adds ref to file's npol */ | 
|  | sn = sp_alloc(0, MAX_LFS_FILESIZE >> PAGE_SHIFT, npol); | 
|  | if (sn) | 
|  | sp_insert(sp, sn); | 
|  | put_npol: | 
|  | mpol_put(npol);	/* drop initial ref on file's npol */ | 
|  | free_scratch: | 
|  | NODEMASK_SCRATCH_FREE(scratch); | 
|  | put_mpol: | 
|  | mpol_put(mpol);	/* drop our incoming ref on sb mpol */ | 
|  | } | 
|  | } | 
|  |  | 
|  | int mpol_set_shared_policy(struct shared_policy *sp, | 
|  | struct vm_area_struct *vma, struct mempolicy *pol) | 
|  | { | 
|  | int err; | 
|  | struct sp_node *new = NULL; | 
|  | unsigned long sz = vma_pages(vma); | 
|  |  | 
|  | if (pol) { | 
|  | new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, pol); | 
|  | if (!new) | 
|  | return -ENOMEM; | 
|  | } | 
|  | err = shared_policy_replace(sp, vma->vm_pgoff, vma->vm_pgoff + sz, new); | 
|  | if (err && new) | 
|  | sp_free(new); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* Free a backing policy store on inode delete. */ | 
|  | void mpol_free_shared_policy(struct shared_policy *sp) | 
|  | { | 
|  | struct sp_node *n; | 
|  | struct rb_node *next; | 
|  |  | 
|  | if (!sp->root.rb_node) | 
|  | return; | 
|  | write_lock(&sp->lock); | 
|  | next = rb_first(&sp->root); | 
|  | while (next) { | 
|  | n = rb_entry(next, struct sp_node, nd); | 
|  | next = rb_next(&n->nd); | 
|  | sp_delete(sp, n); | 
|  | } | 
|  | write_unlock(&sp->lock); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_NUMA_BALANCING | 
|  | static int __initdata numabalancing_override; | 
|  |  | 
|  | static void __init check_numabalancing_enable(void) | 
|  | { | 
|  | bool numabalancing_default = false; | 
|  |  | 
|  | if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED)) | 
|  | numabalancing_default = true; | 
|  |  | 
|  | /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */ | 
|  | if (numabalancing_override) | 
|  | set_numabalancing_state(numabalancing_override == 1); | 
|  |  | 
|  | if (num_online_nodes() > 1 && !numabalancing_override) { | 
|  | pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n", | 
|  | numabalancing_default ? "Enabling" : "Disabling"); | 
|  | set_numabalancing_state(numabalancing_default); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int __init setup_numabalancing(char *str) | 
|  | { | 
|  | int ret = 0; | 
|  | if (!str) | 
|  | goto out; | 
|  |  | 
|  | if (!strcmp(str, "enable")) { | 
|  | numabalancing_override = 1; | 
|  | ret = 1; | 
|  | } else if (!strcmp(str, "disable")) { | 
|  | numabalancing_override = -1; | 
|  | ret = 1; | 
|  | } | 
|  | out: | 
|  | if (!ret) | 
|  | pr_warn("Unable to parse numa_balancing=\n"); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | __setup("numa_balancing=", setup_numabalancing); | 
|  | #else | 
|  | static inline void __init check_numabalancing_enable(void) | 
|  | { | 
|  | } | 
|  | #endif /* CONFIG_NUMA_BALANCING */ | 
|  |  | 
|  | void __init numa_policy_init(void) | 
|  | { | 
|  | nodemask_t interleave_nodes; | 
|  | unsigned long largest = 0; | 
|  | int nid, prefer = 0; | 
|  |  | 
|  | policy_cache = kmem_cache_create("numa_policy", | 
|  | sizeof(struct mempolicy), | 
|  | 0, SLAB_PANIC, NULL); | 
|  |  | 
|  | sn_cache = kmem_cache_create("shared_policy_node", | 
|  | sizeof(struct sp_node), | 
|  | 0, SLAB_PANIC, NULL); | 
|  |  | 
|  | for_each_node(nid) { | 
|  | preferred_node_policy[nid] = (struct mempolicy) { | 
|  | .refcnt = ATOMIC_INIT(1), | 
|  | .mode = MPOL_PREFERRED, | 
|  | .flags = MPOL_F_MOF | MPOL_F_MORON, | 
|  | .nodes = nodemask_of_node(nid), | 
|  | }; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set interleaving policy for system init. Interleaving is only | 
|  | * enabled across suitably sized nodes (default is >= 16MB), or | 
|  | * fall back to the largest node if they're all smaller. | 
|  | */ | 
|  | nodes_clear(interleave_nodes); | 
|  | for_each_node_state(nid, N_MEMORY) { | 
|  | unsigned long total_pages = node_present_pages(nid); | 
|  |  | 
|  | /* Preserve the largest node */ | 
|  | if (largest < total_pages) { | 
|  | largest = total_pages; | 
|  | prefer = nid; | 
|  | } | 
|  |  | 
|  | /* Interleave this node? */ | 
|  | if ((total_pages << PAGE_SHIFT) >= (16 << 20)) | 
|  | node_set(nid, interleave_nodes); | 
|  | } | 
|  |  | 
|  | /* All too small, use the largest */ | 
|  | if (unlikely(nodes_empty(interleave_nodes))) | 
|  | node_set(prefer, interleave_nodes); | 
|  |  | 
|  | if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes)) | 
|  | pr_err("%s: interleaving failed\n", __func__); | 
|  |  | 
|  | check_numabalancing_enable(); | 
|  | } | 
|  |  | 
|  | /* Reset policy of current process to default */ | 
|  | void numa_default_policy(void) | 
|  | { | 
|  | do_set_mempolicy(MPOL_DEFAULT, 0, NULL); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Parse and format mempolicy from/to strings | 
|  | */ | 
|  | static const char * const policy_modes[] = | 
|  | { | 
|  | [MPOL_DEFAULT]    = "default", | 
|  | [MPOL_PREFERRED]  = "prefer", | 
|  | [MPOL_BIND]       = "bind", | 
|  | [MPOL_INTERLEAVE] = "interleave", | 
|  | [MPOL_WEIGHTED_INTERLEAVE] = "weighted interleave", | 
|  | [MPOL_LOCAL]      = "local", | 
|  | [MPOL_PREFERRED_MANY]  = "prefer (many)", | 
|  | }; | 
|  |  | 
|  | #ifdef CONFIG_TMPFS | 
|  | /** | 
|  | * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option. | 
|  | * @str:  string containing mempolicy to parse | 
|  | * @mpol:  pointer to struct mempolicy pointer, returned on success. | 
|  | * | 
|  | * Format of input: | 
|  | *	<mode>[=<flags>][:<nodelist>] | 
|  | * | 
|  | * Return: %0 on success, else %1 | 
|  | */ | 
|  | int mpol_parse_str(char *str, struct mempolicy **mpol) | 
|  | { | 
|  | struct mempolicy *new = NULL; | 
|  | unsigned short mode_flags; | 
|  | nodemask_t nodes; | 
|  | char *nodelist = strchr(str, ':'); | 
|  | char *flags = strchr(str, '='); | 
|  | int err = 1, mode; | 
|  |  | 
|  | if (flags) | 
|  | *flags++ = '\0';	/* terminate mode string */ | 
|  |  | 
|  | if (nodelist) { | 
|  | /* NUL-terminate mode or flags string */ | 
|  | *nodelist++ = '\0'; | 
|  | if (nodelist_parse(nodelist, nodes)) | 
|  | goto out; | 
|  | if (!nodes_subset(nodes, node_states[N_MEMORY])) | 
|  | goto out; | 
|  | } else | 
|  | nodes_clear(nodes); | 
|  |  | 
|  | mode = match_string(policy_modes, MPOL_MAX, str); | 
|  | if (mode < 0) | 
|  | goto out; | 
|  |  | 
|  | switch (mode) { | 
|  | case MPOL_PREFERRED: | 
|  | /* | 
|  | * Insist on a nodelist of one node only, although later | 
|  | * we use first_node(nodes) to grab a single node, so here | 
|  | * nodelist (or nodes) cannot be empty. | 
|  | */ | 
|  | if (nodelist) { | 
|  | char *rest = nodelist; | 
|  | while (isdigit(*rest)) | 
|  | rest++; | 
|  | if (*rest) | 
|  | goto out; | 
|  | if (nodes_empty(nodes)) | 
|  | goto out; | 
|  | } | 
|  | break; | 
|  | case MPOL_INTERLEAVE: | 
|  | case MPOL_WEIGHTED_INTERLEAVE: | 
|  | /* | 
|  | * Default to online nodes with memory if no nodelist | 
|  | */ | 
|  | if (!nodelist) | 
|  | nodes = node_states[N_MEMORY]; | 
|  | break; | 
|  | case MPOL_LOCAL: | 
|  | /* | 
|  | * Don't allow a nodelist;  mpol_new() checks flags | 
|  | */ | 
|  | if (nodelist) | 
|  | goto out; | 
|  | break; | 
|  | case MPOL_DEFAULT: | 
|  | /* | 
|  | * Insist on a empty nodelist | 
|  | */ | 
|  | if (!nodelist) | 
|  | err = 0; | 
|  | goto out; | 
|  | case MPOL_PREFERRED_MANY: | 
|  | case MPOL_BIND: | 
|  | /* | 
|  | * Insist on a nodelist | 
|  | */ | 
|  | if (!nodelist) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | mode_flags = 0; | 
|  | if (flags) { | 
|  | /* | 
|  | * Currently, we only support two mutually exclusive | 
|  | * mode flags. | 
|  | */ | 
|  | if (!strcmp(flags, "static")) | 
|  | mode_flags |= MPOL_F_STATIC_NODES; | 
|  | else if (!strcmp(flags, "relative")) | 
|  | mode_flags |= MPOL_F_RELATIVE_NODES; | 
|  | else | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | new = mpol_new(mode, mode_flags, &nodes); | 
|  | if (IS_ERR(new)) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * Save nodes for mpol_to_str() to show the tmpfs mount options | 
|  | * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo. | 
|  | */ | 
|  | if (mode != MPOL_PREFERRED) { | 
|  | new->nodes = nodes; | 
|  | } else if (nodelist) { | 
|  | nodes_clear(new->nodes); | 
|  | node_set(first_node(nodes), new->nodes); | 
|  | } else { | 
|  | new->mode = MPOL_LOCAL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Save nodes for contextualization: this will be used to "clone" | 
|  | * the mempolicy in a specific context [cpuset] at a later time. | 
|  | */ | 
|  | new->w.user_nodemask = nodes; | 
|  |  | 
|  | err = 0; | 
|  |  | 
|  | out: | 
|  | /* Restore string for error message */ | 
|  | if (nodelist) | 
|  | *--nodelist = ':'; | 
|  | if (flags) | 
|  | *--flags = '='; | 
|  | if (!err) | 
|  | *mpol = new; | 
|  | return err; | 
|  | } | 
|  | #endif /* CONFIG_TMPFS */ | 
|  |  | 
|  | /** | 
|  | * mpol_to_str - format a mempolicy structure for printing | 
|  | * @buffer:  to contain formatted mempolicy string | 
|  | * @maxlen:  length of @buffer | 
|  | * @pol:  pointer to mempolicy to be formatted | 
|  | * | 
|  | * Convert @pol into a string.  If @buffer is too short, truncate the string. | 
|  | * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the | 
|  | * longest flag, "relative", and to display at least a few node ids. | 
|  | */ | 
|  | void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol) | 
|  | { | 
|  | char *p = buffer; | 
|  | nodemask_t nodes = NODE_MASK_NONE; | 
|  | unsigned short mode = MPOL_DEFAULT; | 
|  | unsigned short flags = 0; | 
|  |  | 
|  | if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) { | 
|  | mode = pol->mode; | 
|  | flags = pol->flags; | 
|  | } | 
|  |  | 
|  | switch (mode) { | 
|  | case MPOL_DEFAULT: | 
|  | case MPOL_LOCAL: | 
|  | break; | 
|  | case MPOL_PREFERRED: | 
|  | case MPOL_PREFERRED_MANY: | 
|  | case MPOL_BIND: | 
|  | case MPOL_INTERLEAVE: | 
|  | case MPOL_WEIGHTED_INTERLEAVE: | 
|  | nodes = pol->nodes; | 
|  | break; | 
|  | default: | 
|  | WARN_ON_ONCE(1); | 
|  | snprintf(p, maxlen, "unknown"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | p += snprintf(p, maxlen, "%s", policy_modes[mode]); | 
|  |  | 
|  | if (flags & MPOL_MODE_FLAGS) { | 
|  | p += snprintf(p, buffer + maxlen - p, "="); | 
|  |  | 
|  | /* | 
|  | * Currently, the only defined flags are mutually exclusive | 
|  | */ | 
|  | if (flags & MPOL_F_STATIC_NODES) | 
|  | p += snprintf(p, buffer + maxlen - p, "static"); | 
|  | else if (flags & MPOL_F_RELATIVE_NODES) | 
|  | p += snprintf(p, buffer + maxlen - p, "relative"); | 
|  | } | 
|  |  | 
|  | if (!nodes_empty(nodes)) | 
|  | p += scnprintf(p, buffer + maxlen - p, ":%*pbl", | 
|  | nodemask_pr_args(&nodes)); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SYSFS | 
|  | struct iw_node_attr { | 
|  | struct kobj_attribute kobj_attr; | 
|  | int nid; | 
|  | }; | 
|  |  | 
|  | static ssize_t node_show(struct kobject *kobj, struct kobj_attribute *attr, | 
|  | char *buf) | 
|  | { | 
|  | struct iw_node_attr *node_attr; | 
|  | u8 weight; | 
|  |  | 
|  | node_attr = container_of(attr, struct iw_node_attr, kobj_attr); | 
|  | weight = get_il_weight(node_attr->nid); | 
|  | return sysfs_emit(buf, "%d\n", weight); | 
|  | } | 
|  |  | 
|  | static ssize_t node_store(struct kobject *kobj, struct kobj_attribute *attr, | 
|  | const char *buf, size_t count) | 
|  | { | 
|  | struct iw_node_attr *node_attr; | 
|  | u8 *new; | 
|  | u8 *old; | 
|  | u8 weight = 0; | 
|  |  | 
|  | node_attr = container_of(attr, struct iw_node_attr, kobj_attr); | 
|  | if (count == 0 || sysfs_streq(buf, "")) | 
|  | weight = 0; | 
|  | else if (kstrtou8(buf, 0, &weight)) | 
|  | return -EINVAL; | 
|  |  | 
|  | new = kzalloc(nr_node_ids, GFP_KERNEL); | 
|  | if (!new) | 
|  | return -ENOMEM; | 
|  |  | 
|  | mutex_lock(&iw_table_lock); | 
|  | old = rcu_dereference_protected(iw_table, | 
|  | lockdep_is_held(&iw_table_lock)); | 
|  | if (old) | 
|  | memcpy(new, old, nr_node_ids); | 
|  | new[node_attr->nid] = weight; | 
|  | rcu_assign_pointer(iw_table, new); | 
|  | mutex_unlock(&iw_table_lock); | 
|  | synchronize_rcu(); | 
|  | kfree(old); | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static struct iw_node_attr **node_attrs; | 
|  |  | 
|  | static void sysfs_wi_node_release(struct iw_node_attr *node_attr, | 
|  | struct kobject *parent) | 
|  | { | 
|  | if (!node_attr) | 
|  | return; | 
|  | sysfs_remove_file(parent, &node_attr->kobj_attr.attr); | 
|  | kfree(node_attr->kobj_attr.attr.name); | 
|  | kfree(node_attr); | 
|  | } | 
|  |  | 
|  | static void sysfs_wi_release(struct kobject *wi_kobj) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < nr_node_ids; i++) | 
|  | sysfs_wi_node_release(node_attrs[i], wi_kobj); | 
|  | kobject_put(wi_kobj); | 
|  | } | 
|  |  | 
|  | static const struct kobj_type wi_ktype = { | 
|  | .sysfs_ops = &kobj_sysfs_ops, | 
|  | .release = sysfs_wi_release, | 
|  | }; | 
|  |  | 
|  | static int add_weight_node(int nid, struct kobject *wi_kobj) | 
|  | { | 
|  | struct iw_node_attr *node_attr; | 
|  | char *name; | 
|  |  | 
|  | node_attr = kzalloc(sizeof(*node_attr), GFP_KERNEL); | 
|  | if (!node_attr) | 
|  | return -ENOMEM; | 
|  |  | 
|  | name = kasprintf(GFP_KERNEL, "node%d", nid); | 
|  | if (!name) { | 
|  | kfree(node_attr); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | sysfs_attr_init(&node_attr->kobj_attr.attr); | 
|  | node_attr->kobj_attr.attr.name = name; | 
|  | node_attr->kobj_attr.attr.mode = 0644; | 
|  | node_attr->kobj_attr.show = node_show; | 
|  | node_attr->kobj_attr.store = node_store; | 
|  | node_attr->nid = nid; | 
|  |  | 
|  | if (sysfs_create_file(wi_kobj, &node_attr->kobj_attr.attr)) { | 
|  | kfree(node_attr->kobj_attr.attr.name); | 
|  | kfree(node_attr); | 
|  | pr_err("failed to add attribute to weighted_interleave\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | node_attrs[nid] = node_attr; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int add_weighted_interleave_group(struct kobject *root_kobj) | 
|  | { | 
|  | struct kobject *wi_kobj; | 
|  | int nid, err; | 
|  |  | 
|  | wi_kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL); | 
|  | if (!wi_kobj) | 
|  | return -ENOMEM; | 
|  |  | 
|  | err = kobject_init_and_add(wi_kobj, &wi_ktype, root_kobj, | 
|  | "weighted_interleave"); | 
|  | if (err) { | 
|  | kfree(wi_kobj); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | for_each_node_state(nid, N_POSSIBLE) { | 
|  | err = add_weight_node(nid, wi_kobj); | 
|  | if (err) { | 
|  | pr_err("failed to add sysfs [node%d]\n", nid); | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (err) | 
|  | kobject_put(wi_kobj); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void mempolicy_kobj_release(struct kobject *kobj) | 
|  | { | 
|  | u8 *old; | 
|  |  | 
|  | mutex_lock(&iw_table_lock); | 
|  | old = rcu_dereference_protected(iw_table, | 
|  | lockdep_is_held(&iw_table_lock)); | 
|  | rcu_assign_pointer(iw_table, NULL); | 
|  | mutex_unlock(&iw_table_lock); | 
|  | synchronize_rcu(); | 
|  | kfree(old); | 
|  | kfree(node_attrs); | 
|  | kfree(kobj); | 
|  | } | 
|  |  | 
|  | static const struct kobj_type mempolicy_ktype = { | 
|  | .release = mempolicy_kobj_release | 
|  | }; | 
|  |  | 
|  | static int __init mempolicy_sysfs_init(void) | 
|  | { | 
|  | int err; | 
|  | static struct kobject *mempolicy_kobj; | 
|  |  | 
|  | mempolicy_kobj = kzalloc(sizeof(*mempolicy_kobj), GFP_KERNEL); | 
|  | if (!mempolicy_kobj) { | 
|  | err = -ENOMEM; | 
|  | goto err_out; | 
|  | } | 
|  |  | 
|  | node_attrs = kcalloc(nr_node_ids, sizeof(struct iw_node_attr *), | 
|  | GFP_KERNEL); | 
|  | if (!node_attrs) { | 
|  | err = -ENOMEM; | 
|  | goto mempol_out; | 
|  | } | 
|  |  | 
|  | err = kobject_init_and_add(mempolicy_kobj, &mempolicy_ktype, mm_kobj, | 
|  | "mempolicy"); | 
|  | if (err) | 
|  | goto node_out; | 
|  |  | 
|  | err = add_weighted_interleave_group(mempolicy_kobj); | 
|  | if (err) { | 
|  | pr_err("mempolicy sysfs structure failed to initialize\n"); | 
|  | kobject_put(mempolicy_kobj); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | return err; | 
|  | node_out: | 
|  | kfree(node_attrs); | 
|  | mempol_out: | 
|  | kfree(mempolicy_kobj); | 
|  | err_out: | 
|  | pr_err("failed to add mempolicy kobject to the system\n"); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | late_initcall(mempolicy_sysfs_init); | 
|  | #endif /* CONFIG_SYSFS */ |