|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. | 
|  | * All Rights Reserved. | 
|  | */ | 
|  | #include "libxfs_priv.h" | 
|  | #include "xfs_fs.h" | 
|  | #include "xfs_shared.h" | 
|  | #include "xfs_format.h" | 
|  | #include "xfs_log_format.h" | 
|  | #include "xfs_trans_resv.h" | 
|  | #include "xfs_bit.h" | 
|  | #include "xfs_mount.h" | 
|  | #include "xfs_inode.h" | 
|  | #include "xfs_btree.h" | 
|  | #include "xfs_ialloc.h" | 
|  | #include "xfs_ialloc_btree.h" | 
|  | #include "xfs_alloc.h" | 
|  | #include "xfs_errortag.h" | 
|  | #include "xfs_bmap.h" | 
|  | #include "xfs_trans.h" | 
|  | #include "xfs_trace.h" | 
|  | #include "xfs_rmap.h" | 
|  | #include "xfs_ag.h" | 
|  |  | 
|  | /* | 
|  | * Lookup a record by ino in the btree given by cur. | 
|  | */ | 
|  | int					/* error */ | 
|  | xfs_inobt_lookup( | 
|  | struct xfs_btree_cur	*cur,	/* btree cursor */ | 
|  | xfs_agino_t		ino,	/* starting inode of chunk */ | 
|  | xfs_lookup_t		dir,	/* <=, >=, == */ | 
|  | int			*stat)	/* success/failure */ | 
|  | { | 
|  | cur->bc_rec.i.ir_startino = ino; | 
|  | cur->bc_rec.i.ir_holemask = 0; | 
|  | cur->bc_rec.i.ir_count = 0; | 
|  | cur->bc_rec.i.ir_freecount = 0; | 
|  | cur->bc_rec.i.ir_free = 0; | 
|  | return xfs_btree_lookup(cur, dir, stat); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Update the record referred to by cur to the value given. | 
|  | * This either works (return 0) or gets an EFSCORRUPTED error. | 
|  | */ | 
|  | STATIC int				/* error */ | 
|  | xfs_inobt_update( | 
|  | struct xfs_btree_cur	*cur,	/* btree cursor */ | 
|  | xfs_inobt_rec_incore_t	*irec)	/* btree record */ | 
|  | { | 
|  | union xfs_btree_rec	rec; | 
|  |  | 
|  | rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino); | 
|  | if (xfs_has_sparseinodes(cur->bc_mp)) { | 
|  | rec.inobt.ir_u.sp.ir_holemask = cpu_to_be16(irec->ir_holemask); | 
|  | rec.inobt.ir_u.sp.ir_count = irec->ir_count; | 
|  | rec.inobt.ir_u.sp.ir_freecount = irec->ir_freecount; | 
|  | } else { | 
|  | /* ir_holemask/ir_count not supported on-disk */ | 
|  | rec.inobt.ir_u.f.ir_freecount = cpu_to_be32(irec->ir_freecount); | 
|  | } | 
|  | rec.inobt.ir_free = cpu_to_be64(irec->ir_free); | 
|  | return xfs_btree_update(cur, &rec); | 
|  | } | 
|  |  | 
|  | /* Convert on-disk btree record to incore inobt record. */ | 
|  | void | 
|  | xfs_inobt_btrec_to_irec( | 
|  | struct xfs_mount		*mp, | 
|  | const union xfs_btree_rec	*rec, | 
|  | struct xfs_inobt_rec_incore	*irec) | 
|  | { | 
|  | irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino); | 
|  | if (xfs_has_sparseinodes(mp)) { | 
|  | irec->ir_holemask = be16_to_cpu(rec->inobt.ir_u.sp.ir_holemask); | 
|  | irec->ir_count = rec->inobt.ir_u.sp.ir_count; | 
|  | irec->ir_freecount = rec->inobt.ir_u.sp.ir_freecount; | 
|  | } else { | 
|  | /* | 
|  | * ir_holemask/ir_count not supported on-disk. Fill in hardcoded | 
|  | * values for full inode chunks. | 
|  | */ | 
|  | irec->ir_holemask = XFS_INOBT_HOLEMASK_FULL; | 
|  | irec->ir_count = XFS_INODES_PER_CHUNK; | 
|  | irec->ir_freecount = | 
|  | be32_to_cpu(rec->inobt.ir_u.f.ir_freecount); | 
|  | } | 
|  | irec->ir_free = be64_to_cpu(rec->inobt.ir_free); | 
|  | } | 
|  |  | 
|  | /* Simple checks for inode records. */ | 
|  | xfs_failaddr_t | 
|  | xfs_inobt_check_irec( | 
|  | struct xfs_btree_cur			*cur, | 
|  | const struct xfs_inobt_rec_incore	*irec) | 
|  | { | 
|  | uint64_t			realfree; | 
|  |  | 
|  | /* Record has to be properly aligned within the AG. */ | 
|  | if (!xfs_verify_agino(cur->bc_ag.pag, irec->ir_startino)) | 
|  | return __this_address; | 
|  | if (!xfs_verify_agino(cur->bc_ag.pag, | 
|  | irec->ir_startino + XFS_INODES_PER_CHUNK - 1)) | 
|  | return __this_address; | 
|  | if (irec->ir_count < XFS_INODES_PER_HOLEMASK_BIT || | 
|  | irec->ir_count > XFS_INODES_PER_CHUNK) | 
|  | return __this_address; | 
|  | if (irec->ir_freecount > XFS_INODES_PER_CHUNK) | 
|  | return __this_address; | 
|  |  | 
|  | /* if there are no holes, return the first available offset */ | 
|  | if (!xfs_inobt_issparse(irec->ir_holemask)) | 
|  | realfree = irec->ir_free; | 
|  | else | 
|  | realfree = irec->ir_free & xfs_inobt_irec_to_allocmask(irec); | 
|  | if (hweight64(realfree) != irec->ir_freecount) | 
|  | return __this_address; | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static inline int | 
|  | xfs_inobt_complain_bad_rec( | 
|  | struct xfs_btree_cur		*cur, | 
|  | xfs_failaddr_t			fa, | 
|  | const struct xfs_inobt_rec_incore *irec) | 
|  | { | 
|  | struct xfs_mount		*mp = cur->bc_mp; | 
|  |  | 
|  | xfs_warn(mp, | 
|  | "%s Inode BTree record corruption in AG %d detected at %pS!", | 
|  | cur->bc_btnum == XFS_BTNUM_INO ? "Used" : "Free", | 
|  | cur->bc_ag.pag->pag_agno, fa); | 
|  | xfs_warn(mp, | 
|  | "start inode 0x%x, count 0x%x, free 0x%x freemask 0x%llx, holemask 0x%x", | 
|  | irec->ir_startino, irec->ir_count, irec->ir_freecount, | 
|  | irec->ir_free, irec->ir_holemask); | 
|  | return -EFSCORRUPTED; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Get the data from the pointed-to record. | 
|  | */ | 
|  | int | 
|  | xfs_inobt_get_rec( | 
|  | struct xfs_btree_cur		*cur, | 
|  | struct xfs_inobt_rec_incore	*irec, | 
|  | int				*stat) | 
|  | { | 
|  | struct xfs_mount		*mp = cur->bc_mp; | 
|  | union xfs_btree_rec		*rec; | 
|  | xfs_failaddr_t			fa; | 
|  | int				error; | 
|  |  | 
|  | error = xfs_btree_get_rec(cur, &rec, stat); | 
|  | if (error || *stat == 0) | 
|  | return error; | 
|  |  | 
|  | xfs_inobt_btrec_to_irec(mp, rec, irec); | 
|  | fa = xfs_inobt_check_irec(cur, irec); | 
|  | if (fa) | 
|  | return xfs_inobt_complain_bad_rec(cur, fa, irec); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Insert a single inobt record. Cursor must already point to desired location. | 
|  | */ | 
|  | int | 
|  | xfs_inobt_insert_rec( | 
|  | struct xfs_btree_cur	*cur, | 
|  | uint16_t		holemask, | 
|  | uint8_t			count, | 
|  | int32_t			freecount, | 
|  | xfs_inofree_t		free, | 
|  | int			*stat) | 
|  | { | 
|  | cur->bc_rec.i.ir_holemask = holemask; | 
|  | cur->bc_rec.i.ir_count = count; | 
|  | cur->bc_rec.i.ir_freecount = freecount; | 
|  | cur->bc_rec.i.ir_free = free; | 
|  | return xfs_btree_insert(cur, stat); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Insert records describing a newly allocated inode chunk into the inobt. | 
|  | */ | 
|  | STATIC int | 
|  | xfs_inobt_insert( | 
|  | struct xfs_perag	*pag, | 
|  | struct xfs_trans	*tp, | 
|  | struct xfs_buf		*agbp, | 
|  | xfs_agino_t		newino, | 
|  | xfs_agino_t		newlen, | 
|  | xfs_btnum_t		btnum) | 
|  | { | 
|  | struct xfs_btree_cur	*cur; | 
|  | xfs_agino_t		thisino; | 
|  | int			i; | 
|  | int			error; | 
|  |  | 
|  | cur = xfs_inobt_init_cursor(pag, tp, agbp, btnum); | 
|  |  | 
|  | for (thisino = newino; | 
|  | thisino < newino + newlen; | 
|  | thisino += XFS_INODES_PER_CHUNK) { | 
|  | error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i); | 
|  | if (error) { | 
|  | xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); | 
|  | return error; | 
|  | } | 
|  | ASSERT(i == 0); | 
|  |  | 
|  | error = xfs_inobt_insert_rec(cur, XFS_INOBT_HOLEMASK_FULL, | 
|  | XFS_INODES_PER_CHUNK, | 
|  | XFS_INODES_PER_CHUNK, | 
|  | XFS_INOBT_ALL_FREE, &i); | 
|  | if (error) { | 
|  | xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); | 
|  | return error; | 
|  | } | 
|  | ASSERT(i == 1); | 
|  | } | 
|  |  | 
|  | xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Verify that the number of free inodes in the AGI is correct. | 
|  | */ | 
|  | #ifdef DEBUG | 
|  | static int | 
|  | xfs_check_agi_freecount( | 
|  | struct xfs_btree_cur	*cur) | 
|  | { | 
|  | if (cur->bc_nlevels == 1) { | 
|  | xfs_inobt_rec_incore_t rec; | 
|  | int		freecount = 0; | 
|  | int		error; | 
|  | int		i; | 
|  |  | 
|  | error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | do { | 
|  | error = xfs_inobt_get_rec(cur, &rec, &i); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | if (i) { | 
|  | freecount += rec.ir_freecount; | 
|  | error = xfs_btree_increment(cur, 0, &i); | 
|  | if (error) | 
|  | return error; | 
|  | } | 
|  | } while (i == 1); | 
|  |  | 
|  | if (!xfs_is_shutdown(cur->bc_mp)) | 
|  | ASSERT(freecount == cur->bc_ag.pag->pagi_freecount); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | #else | 
|  | #define xfs_check_agi_freecount(cur)	0 | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Initialise a new set of inodes. When called without a transaction context | 
|  | * (e.g. from recovery) we initiate a delayed write of the inode buffers rather | 
|  | * than logging them (which in a transaction context puts them into the AIL | 
|  | * for writeback rather than the xfsbufd queue). | 
|  | */ | 
|  | int | 
|  | xfs_ialloc_inode_init( | 
|  | struct xfs_mount	*mp, | 
|  | struct xfs_trans	*tp, | 
|  | struct list_head	*buffer_list, | 
|  | int			icount, | 
|  | xfs_agnumber_t		agno, | 
|  | xfs_agblock_t		agbno, | 
|  | xfs_agblock_t		length, | 
|  | unsigned int		gen) | 
|  | { | 
|  | struct xfs_buf		*fbuf; | 
|  | struct xfs_dinode	*free; | 
|  | int			nbufs; | 
|  | int			version; | 
|  | int			i, j; | 
|  | xfs_daddr_t		d; | 
|  | xfs_ino_t		ino = 0; | 
|  | int			error; | 
|  |  | 
|  | /* | 
|  | * Loop over the new block(s), filling in the inodes.  For small block | 
|  | * sizes, manipulate the inodes in buffers  which are multiples of the | 
|  | * blocks size. | 
|  | */ | 
|  | nbufs = length / M_IGEO(mp)->blocks_per_cluster; | 
|  |  | 
|  | /* | 
|  | * Figure out what version number to use in the inodes we create.  If | 
|  | * the superblock version has caught up to the one that supports the new | 
|  | * inode format, then use the new inode version.  Otherwise use the old | 
|  | * version so that old kernels will continue to be able to use the file | 
|  | * system. | 
|  | * | 
|  | * For v3 inodes, we also need to write the inode number into the inode, | 
|  | * so calculate the first inode number of the chunk here as | 
|  | * XFS_AGB_TO_AGINO() only works within a filesystem block, not | 
|  | * across multiple filesystem blocks (such as a cluster) and so cannot | 
|  | * be used in the cluster buffer loop below. | 
|  | * | 
|  | * Further, because we are writing the inode directly into the buffer | 
|  | * and calculating a CRC on the entire inode, we have ot log the entire | 
|  | * inode so that the entire range the CRC covers is present in the log. | 
|  | * That means for v3 inode we log the entire buffer rather than just the | 
|  | * inode cores. | 
|  | */ | 
|  | if (xfs_has_v3inodes(mp)) { | 
|  | version = 3; | 
|  | ino = XFS_AGINO_TO_INO(mp, agno, XFS_AGB_TO_AGINO(mp, agbno)); | 
|  |  | 
|  | /* | 
|  | * log the initialisation that is about to take place as an | 
|  | * logical operation. This means the transaction does not | 
|  | * need to log the physical changes to the inode buffers as log | 
|  | * recovery will know what initialisation is actually needed. | 
|  | * Hence we only need to log the buffers as "ordered" buffers so | 
|  | * they track in the AIL as if they were physically logged. | 
|  | */ | 
|  | if (tp) | 
|  | xfs_icreate_log(tp, agno, agbno, icount, | 
|  | mp->m_sb.sb_inodesize, length, gen); | 
|  | } else | 
|  | version = 2; | 
|  |  | 
|  | for (j = 0; j < nbufs; j++) { | 
|  | /* | 
|  | * Get the block. | 
|  | */ | 
|  | d = XFS_AGB_TO_DADDR(mp, agno, agbno + | 
|  | (j * M_IGEO(mp)->blocks_per_cluster)); | 
|  | error = xfs_trans_get_buf(tp, mp->m_ddev_targp, d, | 
|  | mp->m_bsize * M_IGEO(mp)->blocks_per_cluster, | 
|  | XBF_UNMAPPED, &fbuf); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | /* Initialize the inode buffers and log them appropriately. */ | 
|  | fbuf->b_ops = &xfs_inode_buf_ops; | 
|  | xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length)); | 
|  | for (i = 0; i < M_IGEO(mp)->inodes_per_cluster; i++) { | 
|  | int	ioffset = i << mp->m_sb.sb_inodelog; | 
|  |  | 
|  | free = xfs_make_iptr(mp, fbuf, i); | 
|  | free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC); | 
|  | free->di_version = version; | 
|  | free->di_gen = cpu_to_be32(gen); | 
|  | free->di_next_unlinked = cpu_to_be32(NULLAGINO); | 
|  |  | 
|  | if (version == 3) { | 
|  | free->di_ino = cpu_to_be64(ino); | 
|  | ino++; | 
|  | uuid_copy(&free->di_uuid, | 
|  | &mp->m_sb.sb_meta_uuid); | 
|  | xfs_dinode_calc_crc(mp, free); | 
|  | } else if (tp) { | 
|  | /* just log the inode core */ | 
|  | xfs_trans_log_buf(tp, fbuf, ioffset, | 
|  | ioffset + XFS_DINODE_SIZE(mp) - 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (tp) { | 
|  | /* | 
|  | * Mark the buffer as an inode allocation buffer so it | 
|  | * sticks in AIL at the point of this allocation | 
|  | * transaction. This ensures the they are on disk before | 
|  | * the tail of the log can be moved past this | 
|  | * transaction (i.e. by preventing relogging from moving | 
|  | * it forward in the log). | 
|  | */ | 
|  | xfs_trans_inode_alloc_buf(tp, fbuf); | 
|  | if (version == 3) { | 
|  | /* | 
|  | * Mark the buffer as ordered so that they are | 
|  | * not physically logged in the transaction but | 
|  | * still tracked in the AIL as part of the | 
|  | * transaction and pin the log appropriately. | 
|  | */ | 
|  | xfs_trans_ordered_buf(tp, fbuf); | 
|  | } | 
|  | } else { | 
|  | fbuf->b_flags |= XBF_DONE; | 
|  | xfs_buf_delwri_queue(fbuf, buffer_list); | 
|  | xfs_buf_relse(fbuf); | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Align startino and allocmask for a recently allocated sparse chunk such that | 
|  | * they are fit for insertion (or merge) into the on-disk inode btrees. | 
|  | * | 
|  | * Background: | 
|  | * | 
|  | * When enabled, sparse inode support increases the inode alignment from cluster | 
|  | * size to inode chunk size. This means that the minimum range between two | 
|  | * non-adjacent inode records in the inobt is large enough for a full inode | 
|  | * record. This allows for cluster sized, cluster aligned block allocation | 
|  | * without need to worry about whether the resulting inode record overlaps with | 
|  | * another record in the tree. Without this basic rule, we would have to deal | 
|  | * with the consequences of overlap by potentially undoing recent allocations in | 
|  | * the inode allocation codepath. | 
|  | * | 
|  | * Because of this alignment rule (which is enforced on mount), there are two | 
|  | * inobt possibilities for newly allocated sparse chunks. One is that the | 
|  | * aligned inode record for the chunk covers a range of inodes not already | 
|  | * covered in the inobt (i.e., it is safe to insert a new sparse record). The | 
|  | * other is that a record already exists at the aligned startino that considers | 
|  | * the newly allocated range as sparse. In the latter case, record content is | 
|  | * merged in hope that sparse inode chunks fill to full chunks over time. | 
|  | */ | 
|  | STATIC void | 
|  | xfs_align_sparse_ino( | 
|  | struct xfs_mount		*mp, | 
|  | xfs_agino_t			*startino, | 
|  | uint16_t			*allocmask) | 
|  | { | 
|  | xfs_agblock_t			agbno; | 
|  | xfs_agblock_t			mod; | 
|  | int				offset; | 
|  |  | 
|  | agbno = XFS_AGINO_TO_AGBNO(mp, *startino); | 
|  | mod = agbno % mp->m_sb.sb_inoalignmt; | 
|  | if (!mod) | 
|  | return; | 
|  |  | 
|  | /* calculate the inode offset and align startino */ | 
|  | offset = XFS_AGB_TO_AGINO(mp, mod); | 
|  | *startino -= offset; | 
|  |  | 
|  | /* | 
|  | * Since startino has been aligned down, left shift allocmask such that | 
|  | * it continues to represent the same physical inodes relative to the | 
|  | * new startino. | 
|  | */ | 
|  | *allocmask <<= offset / XFS_INODES_PER_HOLEMASK_BIT; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Determine whether the source inode record can merge into the target. Both | 
|  | * records must be sparse, the inode ranges must match and there must be no | 
|  | * allocation overlap between the records. | 
|  | */ | 
|  | STATIC bool | 
|  | __xfs_inobt_can_merge( | 
|  | struct xfs_inobt_rec_incore	*trec,	/* tgt record */ | 
|  | struct xfs_inobt_rec_incore	*srec)	/* src record */ | 
|  | { | 
|  | uint64_t			talloc; | 
|  | uint64_t			salloc; | 
|  |  | 
|  | /* records must cover the same inode range */ | 
|  | if (trec->ir_startino != srec->ir_startino) | 
|  | return false; | 
|  |  | 
|  | /* both records must be sparse */ | 
|  | if (!xfs_inobt_issparse(trec->ir_holemask) || | 
|  | !xfs_inobt_issparse(srec->ir_holemask)) | 
|  | return false; | 
|  |  | 
|  | /* both records must track some inodes */ | 
|  | if (!trec->ir_count || !srec->ir_count) | 
|  | return false; | 
|  |  | 
|  | /* can't exceed capacity of a full record */ | 
|  | if (trec->ir_count + srec->ir_count > XFS_INODES_PER_CHUNK) | 
|  | return false; | 
|  |  | 
|  | /* verify there is no allocation overlap */ | 
|  | talloc = xfs_inobt_irec_to_allocmask(trec); | 
|  | salloc = xfs_inobt_irec_to_allocmask(srec); | 
|  | if (talloc & salloc) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Merge the source inode record into the target. The caller must call | 
|  | * __xfs_inobt_can_merge() to ensure the merge is valid. | 
|  | */ | 
|  | STATIC void | 
|  | __xfs_inobt_rec_merge( | 
|  | struct xfs_inobt_rec_incore	*trec,	/* target */ | 
|  | struct xfs_inobt_rec_incore	*srec)	/* src */ | 
|  | { | 
|  | ASSERT(trec->ir_startino == srec->ir_startino); | 
|  |  | 
|  | /* combine the counts */ | 
|  | trec->ir_count += srec->ir_count; | 
|  | trec->ir_freecount += srec->ir_freecount; | 
|  |  | 
|  | /* | 
|  | * Merge the holemask and free mask. For both fields, 0 bits refer to | 
|  | * allocated inodes. We combine the allocated ranges with bitwise AND. | 
|  | */ | 
|  | trec->ir_holemask &= srec->ir_holemask; | 
|  | trec->ir_free &= srec->ir_free; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Insert a new sparse inode chunk into the associated inode btree. The inode | 
|  | * record for the sparse chunk is pre-aligned to a startino that should match | 
|  | * any pre-existing sparse inode record in the tree. This allows sparse chunks | 
|  | * to fill over time. | 
|  | * | 
|  | * This function supports two modes of handling preexisting records depending on | 
|  | * the merge flag. If merge is true, the provided record is merged with the | 
|  | * existing record and updated in place. The merged record is returned in nrec. | 
|  | * If merge is false, an existing record is replaced with the provided record. | 
|  | * If no preexisting record exists, the provided record is always inserted. | 
|  | * | 
|  | * It is considered corruption if a merge is requested and not possible. Given | 
|  | * the sparse inode alignment constraints, this should never happen. | 
|  | */ | 
|  | STATIC int | 
|  | xfs_inobt_insert_sprec( | 
|  | struct xfs_perag		*pag, | 
|  | struct xfs_trans		*tp, | 
|  | struct xfs_buf			*agbp, | 
|  | int				btnum, | 
|  | struct xfs_inobt_rec_incore	*nrec,	/* in/out: new/merged rec. */ | 
|  | bool				merge)	/* merge or replace */ | 
|  | { | 
|  | struct xfs_mount		*mp = pag->pag_mount; | 
|  | struct xfs_btree_cur		*cur; | 
|  | int				error; | 
|  | int				i; | 
|  | struct xfs_inobt_rec_incore	rec; | 
|  |  | 
|  | cur = xfs_inobt_init_cursor(pag, tp, agbp, btnum); | 
|  |  | 
|  | /* the new record is pre-aligned so we know where to look */ | 
|  | error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i); | 
|  | if (error) | 
|  | goto error; | 
|  | /* if nothing there, insert a new record and return */ | 
|  | if (i == 0) { | 
|  | error = xfs_inobt_insert_rec(cur, nrec->ir_holemask, | 
|  | nrec->ir_count, nrec->ir_freecount, | 
|  | nrec->ir_free, &i); | 
|  | if (error) | 
|  | goto error; | 
|  | if (XFS_IS_CORRUPT(mp, i != 1)) { | 
|  | error = -EFSCORRUPTED; | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * A record exists at this startino. Merge or replace the record | 
|  | * depending on what we've been asked to do. | 
|  | */ | 
|  | if (merge) { | 
|  | error = xfs_inobt_get_rec(cur, &rec, &i); | 
|  | if (error) | 
|  | goto error; | 
|  | if (XFS_IS_CORRUPT(mp, i != 1)) { | 
|  | error = -EFSCORRUPTED; | 
|  | goto error; | 
|  | } | 
|  | if (XFS_IS_CORRUPT(mp, rec.ir_startino != nrec->ir_startino)) { | 
|  | error = -EFSCORRUPTED; | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This should never fail. If we have coexisting records that | 
|  | * cannot merge, something is seriously wrong. | 
|  | */ | 
|  | if (XFS_IS_CORRUPT(mp, !__xfs_inobt_can_merge(nrec, &rec))) { | 
|  | error = -EFSCORRUPTED; | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | trace_xfs_irec_merge_pre(mp, pag->pag_agno, rec.ir_startino, | 
|  | rec.ir_holemask, nrec->ir_startino, | 
|  | nrec->ir_holemask); | 
|  |  | 
|  | /* merge to nrec to output the updated record */ | 
|  | __xfs_inobt_rec_merge(nrec, &rec); | 
|  |  | 
|  | trace_xfs_irec_merge_post(mp, pag->pag_agno, nrec->ir_startino, | 
|  | nrec->ir_holemask); | 
|  |  | 
|  | error = xfs_inobt_rec_check_count(mp, nrec); | 
|  | if (error) | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | error = xfs_inobt_update(cur, nrec); | 
|  | if (error) | 
|  | goto error; | 
|  |  | 
|  | out: | 
|  | xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); | 
|  | return 0; | 
|  | error: | 
|  | xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocate new inodes in the allocation group specified by agbp.  Returns 0 if | 
|  | * inodes were allocated in this AG; -EAGAIN if there was no space in this AG so | 
|  | * the caller knows it can try another AG, a hard -ENOSPC when over the maximum | 
|  | * inode count threshold, or the usual negative error code for other errors. | 
|  | */ | 
|  | STATIC int | 
|  | xfs_ialloc_ag_alloc( | 
|  | struct xfs_perag	*pag, | 
|  | struct xfs_trans	*tp, | 
|  | struct xfs_buf		*agbp) | 
|  | { | 
|  | struct xfs_agi		*agi; | 
|  | struct xfs_alloc_arg	args; | 
|  | int			error; | 
|  | xfs_agino_t		newino;		/* new first inode's number */ | 
|  | xfs_agino_t		newlen;		/* new number of inodes */ | 
|  | int			isaligned = 0;	/* inode allocation at stripe */ | 
|  | /* unit boundary */ | 
|  | /* init. to full chunk */ | 
|  | struct xfs_inobt_rec_incore rec; | 
|  | struct xfs_ino_geometry	*igeo = M_IGEO(tp->t_mountp); | 
|  | uint16_t		allocmask = (uint16_t) -1; | 
|  | int			do_sparse = 0; | 
|  |  | 
|  | memset(&args, 0, sizeof(args)); | 
|  | args.tp = tp; | 
|  | args.mp = tp->t_mountp; | 
|  | args.fsbno = NULLFSBLOCK; | 
|  | args.oinfo = XFS_RMAP_OINFO_INODES; | 
|  | args.pag = pag; | 
|  |  | 
|  | #ifdef DEBUG | 
|  | /* randomly do sparse inode allocations */ | 
|  | if (xfs_has_sparseinodes(tp->t_mountp) && | 
|  | igeo->ialloc_min_blks < igeo->ialloc_blks) | 
|  | do_sparse = get_random_u32_below(2); | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Locking will ensure that we don't have two callers in here | 
|  | * at one time. | 
|  | */ | 
|  | newlen = igeo->ialloc_inos; | 
|  | if (igeo->maxicount && | 
|  | percpu_counter_read_positive(&args.mp->m_icount) + newlen > | 
|  | igeo->maxicount) | 
|  | return -ENOSPC; | 
|  | args.minlen = args.maxlen = igeo->ialloc_blks; | 
|  | /* | 
|  | * First try to allocate inodes contiguous with the last-allocated | 
|  | * chunk of inodes.  If the filesystem is striped, this will fill | 
|  | * an entire stripe unit with inodes. | 
|  | */ | 
|  | agi = agbp->b_addr; | 
|  | newino = be32_to_cpu(agi->agi_newino); | 
|  | args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) + | 
|  | igeo->ialloc_blks; | 
|  | if (do_sparse) | 
|  | goto sparse_alloc; | 
|  | if (likely(newino != NULLAGINO && | 
|  | (args.agbno < be32_to_cpu(agi->agi_length)))) { | 
|  | args.prod = 1; | 
|  |  | 
|  | /* | 
|  | * We need to take into account alignment here to ensure that | 
|  | * we don't modify the free list if we fail to have an exact | 
|  | * block. If we don't have an exact match, and every oher | 
|  | * attempt allocation attempt fails, we'll end up cancelling | 
|  | * a dirty transaction and shutting down. | 
|  | * | 
|  | * For an exact allocation, alignment must be 1, | 
|  | * however we need to take cluster alignment into account when | 
|  | * fixing up the freelist. Use the minalignslop field to | 
|  | * indicate that extra blocks might be required for alignment, | 
|  | * but not to use them in the actual exact allocation. | 
|  | */ | 
|  | args.alignment = 1; | 
|  | args.minalignslop = igeo->cluster_align - 1; | 
|  |  | 
|  | /* Allow space for the inode btree to split. */ | 
|  | args.minleft = igeo->inobt_maxlevels; | 
|  | error = xfs_alloc_vextent_exact_bno(&args, | 
|  | XFS_AGB_TO_FSB(args.mp, pag->pag_agno, | 
|  | args.agbno)); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | /* | 
|  | * This request might have dirtied the transaction if the AG can | 
|  | * satisfy the request, but the exact block was not available. | 
|  | * If the allocation did fail, subsequent requests will relax | 
|  | * the exact agbno requirement and increase the alignment | 
|  | * instead. It is critical that the total size of the request | 
|  | * (len + alignment + slop) does not increase from this point | 
|  | * on, so reset minalignslop to ensure it is not included in | 
|  | * subsequent requests. | 
|  | */ | 
|  | args.minalignslop = 0; | 
|  | } | 
|  |  | 
|  | if (unlikely(args.fsbno == NULLFSBLOCK)) { | 
|  | /* | 
|  | * Set the alignment for the allocation. | 
|  | * If stripe alignment is turned on then align at stripe unit | 
|  | * boundary. | 
|  | * If the cluster size is smaller than a filesystem block | 
|  | * then we're doing I/O for inodes in filesystem block size | 
|  | * pieces, so don't need alignment anyway. | 
|  | */ | 
|  | isaligned = 0; | 
|  | if (igeo->ialloc_align) { | 
|  | ASSERT(!xfs_has_noalign(args.mp)); | 
|  | args.alignment = args.mp->m_dalign; | 
|  | isaligned = 1; | 
|  | } else | 
|  | args.alignment = igeo->cluster_align; | 
|  | /* | 
|  | * Allocate a fixed-size extent of inodes. | 
|  | */ | 
|  | args.prod = 1; | 
|  | /* | 
|  | * Allow space for the inode btree to split. | 
|  | */ | 
|  | args.minleft = igeo->inobt_maxlevels; | 
|  | error = xfs_alloc_vextent_near_bno(&args, | 
|  | XFS_AGB_TO_FSB(args.mp, pag->pag_agno, | 
|  | be32_to_cpu(agi->agi_root))); | 
|  | if (error) | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If stripe alignment is turned on, then try again with cluster | 
|  | * alignment. | 
|  | */ | 
|  | if (isaligned && args.fsbno == NULLFSBLOCK) { | 
|  | args.alignment = igeo->cluster_align; | 
|  | error = xfs_alloc_vextent_near_bno(&args, | 
|  | XFS_AGB_TO_FSB(args.mp, pag->pag_agno, | 
|  | be32_to_cpu(agi->agi_root))); | 
|  | if (error) | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Finally, try a sparse allocation if the filesystem supports it and | 
|  | * the sparse allocation length is smaller than a full chunk. | 
|  | */ | 
|  | if (xfs_has_sparseinodes(args.mp) && | 
|  | igeo->ialloc_min_blks < igeo->ialloc_blks && | 
|  | args.fsbno == NULLFSBLOCK) { | 
|  | sparse_alloc: | 
|  | args.alignment = args.mp->m_sb.sb_spino_align; | 
|  | args.prod = 1; | 
|  |  | 
|  | args.minlen = igeo->ialloc_min_blks; | 
|  | args.maxlen = args.minlen; | 
|  |  | 
|  | /* | 
|  | * The inode record will be aligned to full chunk size. We must | 
|  | * prevent sparse allocation from AG boundaries that result in | 
|  | * invalid inode records, such as records that start at agbno 0 | 
|  | * or extend beyond the AG. | 
|  | * | 
|  | * Set min agbno to the first aligned, non-zero agbno and max to | 
|  | * the last aligned agbno that is at least one full chunk from | 
|  | * the end of the AG. | 
|  | */ | 
|  | args.min_agbno = args.mp->m_sb.sb_inoalignmt; | 
|  | args.max_agbno = round_down(args.mp->m_sb.sb_agblocks, | 
|  | args.mp->m_sb.sb_inoalignmt) - | 
|  | igeo->ialloc_blks; | 
|  |  | 
|  | error = xfs_alloc_vextent_near_bno(&args, | 
|  | XFS_AGB_TO_FSB(args.mp, pag->pag_agno, | 
|  | be32_to_cpu(agi->agi_root))); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | newlen = XFS_AGB_TO_AGINO(args.mp, args.len); | 
|  | ASSERT(newlen <= XFS_INODES_PER_CHUNK); | 
|  | allocmask = (1 << (newlen / XFS_INODES_PER_HOLEMASK_BIT)) - 1; | 
|  | } | 
|  |  | 
|  | if (args.fsbno == NULLFSBLOCK) | 
|  | return -EAGAIN; | 
|  |  | 
|  | ASSERT(args.len == args.minlen); | 
|  |  | 
|  | /* | 
|  | * Stamp and write the inode buffers. | 
|  | * | 
|  | * Seed the new inode cluster with a random generation number. This | 
|  | * prevents short-term reuse of generation numbers if a chunk is | 
|  | * freed and then immediately reallocated. We use random numbers | 
|  | * rather than a linear progression to prevent the next generation | 
|  | * number from being easily guessable. | 
|  | */ | 
|  | error = xfs_ialloc_inode_init(args.mp, tp, NULL, newlen, pag->pag_agno, | 
|  | args.agbno, args.len, get_random_u32()); | 
|  |  | 
|  | if (error) | 
|  | return error; | 
|  | /* | 
|  | * Convert the results. | 
|  | */ | 
|  | newino = XFS_AGB_TO_AGINO(args.mp, args.agbno); | 
|  |  | 
|  | if (xfs_inobt_issparse(~allocmask)) { | 
|  | /* | 
|  | * We've allocated a sparse chunk. Align the startino and mask. | 
|  | */ | 
|  | xfs_align_sparse_ino(args.mp, &newino, &allocmask); | 
|  |  | 
|  | rec.ir_startino = newino; | 
|  | rec.ir_holemask = ~allocmask; | 
|  | rec.ir_count = newlen; | 
|  | rec.ir_freecount = newlen; | 
|  | rec.ir_free = XFS_INOBT_ALL_FREE; | 
|  |  | 
|  | /* | 
|  | * Insert the sparse record into the inobt and allow for a merge | 
|  | * if necessary. If a merge does occur, rec is updated to the | 
|  | * merged record. | 
|  | */ | 
|  | error = xfs_inobt_insert_sprec(pag, tp, agbp, | 
|  | XFS_BTNUM_INO, &rec, true); | 
|  | if (error == -EFSCORRUPTED) { | 
|  | xfs_alert(args.mp, | 
|  | "invalid sparse inode record: ino 0x%llx holemask 0x%x count %u", | 
|  | XFS_AGINO_TO_INO(args.mp, pag->pag_agno, | 
|  | rec.ir_startino), | 
|  | rec.ir_holemask, rec.ir_count); | 
|  | xfs_force_shutdown(args.mp, SHUTDOWN_CORRUPT_INCORE); | 
|  | } | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | /* | 
|  | * We can't merge the part we've just allocated as for the inobt | 
|  | * due to finobt semantics. The original record may or may not | 
|  | * exist independent of whether physical inodes exist in this | 
|  | * sparse chunk. | 
|  | * | 
|  | * We must update the finobt record based on the inobt record. | 
|  | * rec contains the fully merged and up to date inobt record | 
|  | * from the previous call. Set merge false to replace any | 
|  | * existing record with this one. | 
|  | */ | 
|  | if (xfs_has_finobt(args.mp)) { | 
|  | error = xfs_inobt_insert_sprec(pag, tp, agbp, | 
|  | XFS_BTNUM_FINO, &rec, false); | 
|  | if (error) | 
|  | return error; | 
|  | } | 
|  | } else { | 
|  | /* full chunk - insert new records to both btrees */ | 
|  | error = xfs_inobt_insert(pag, tp, agbp, newino, newlen, | 
|  | XFS_BTNUM_INO); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | if (xfs_has_finobt(args.mp)) { | 
|  | error = xfs_inobt_insert(pag, tp, agbp, newino, | 
|  | newlen, XFS_BTNUM_FINO); | 
|  | if (error) | 
|  | return error; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Update AGI counts and newino. | 
|  | */ | 
|  | be32_add_cpu(&agi->agi_count, newlen); | 
|  | be32_add_cpu(&agi->agi_freecount, newlen); | 
|  | pag->pagi_freecount += newlen; | 
|  | pag->pagi_count += newlen; | 
|  | agi->agi_newino = cpu_to_be32(newino); | 
|  |  | 
|  | /* | 
|  | * Log allocation group header fields | 
|  | */ | 
|  | xfs_ialloc_log_agi(tp, agbp, | 
|  | XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO); | 
|  | /* | 
|  | * Modify/log superblock values for inode count and inode free count. | 
|  | */ | 
|  | xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen); | 
|  | xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Try to retrieve the next record to the left/right from the current one. | 
|  | */ | 
|  | STATIC int | 
|  | xfs_ialloc_next_rec( | 
|  | struct xfs_btree_cur	*cur, | 
|  | xfs_inobt_rec_incore_t	*rec, | 
|  | int			*done, | 
|  | int			left) | 
|  | { | 
|  | int                     error; | 
|  | int			i; | 
|  |  | 
|  | if (left) | 
|  | error = xfs_btree_decrement(cur, 0, &i); | 
|  | else | 
|  | error = xfs_btree_increment(cur, 0, &i); | 
|  |  | 
|  | if (error) | 
|  | return error; | 
|  | *done = !i; | 
|  | if (i) { | 
|  | error = xfs_inobt_get_rec(cur, rec, &i); | 
|  | if (error) | 
|  | return error; | 
|  | if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) | 
|  | return -EFSCORRUPTED; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | STATIC int | 
|  | xfs_ialloc_get_rec( | 
|  | struct xfs_btree_cur	*cur, | 
|  | xfs_agino_t		agino, | 
|  | xfs_inobt_rec_incore_t	*rec, | 
|  | int			*done) | 
|  | { | 
|  | int                     error; | 
|  | int			i; | 
|  |  | 
|  | error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i); | 
|  | if (error) | 
|  | return error; | 
|  | *done = !i; | 
|  | if (i) { | 
|  | error = xfs_inobt_get_rec(cur, rec, &i); | 
|  | if (error) | 
|  | return error; | 
|  | if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) | 
|  | return -EFSCORRUPTED; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return the offset of the first free inode in the record. If the inode chunk | 
|  | * is sparsely allocated, we convert the record holemask to inode granularity | 
|  | * and mask off the unallocated regions from the inode free mask. | 
|  | */ | 
|  | STATIC int | 
|  | xfs_inobt_first_free_inode( | 
|  | struct xfs_inobt_rec_incore	*rec) | 
|  | { | 
|  | xfs_inofree_t			realfree; | 
|  |  | 
|  | /* if there are no holes, return the first available offset */ | 
|  | if (!xfs_inobt_issparse(rec->ir_holemask)) | 
|  | return xfs_lowbit64(rec->ir_free); | 
|  |  | 
|  | realfree = xfs_inobt_irec_to_allocmask(rec); | 
|  | realfree &= rec->ir_free; | 
|  |  | 
|  | return xfs_lowbit64(realfree); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocate an inode using the inobt-only algorithm. | 
|  | */ | 
|  | STATIC int | 
|  | xfs_dialloc_ag_inobt( | 
|  | struct xfs_perag	*pag, | 
|  | struct xfs_trans	*tp, | 
|  | struct xfs_buf		*agbp, | 
|  | xfs_ino_t		parent, | 
|  | xfs_ino_t		*inop) | 
|  | { | 
|  | struct xfs_mount	*mp = tp->t_mountp; | 
|  | struct xfs_agi		*agi = agbp->b_addr; | 
|  | xfs_agnumber_t		pagno = XFS_INO_TO_AGNO(mp, parent); | 
|  | xfs_agino_t		pagino = XFS_INO_TO_AGINO(mp, parent); | 
|  | struct xfs_btree_cur	*cur, *tcur; | 
|  | struct xfs_inobt_rec_incore rec, trec; | 
|  | xfs_ino_t		ino; | 
|  | int			error; | 
|  | int			offset; | 
|  | int			i, j; | 
|  | int			searchdistance = 10; | 
|  |  | 
|  | ASSERT(xfs_perag_initialised_agi(pag)); | 
|  | ASSERT(xfs_perag_allows_inodes(pag)); | 
|  | ASSERT(pag->pagi_freecount > 0); | 
|  |  | 
|  | restart_pagno: | 
|  | cur = xfs_inobt_init_cursor(pag, tp, agbp, XFS_BTNUM_INO); | 
|  | /* | 
|  | * If pagino is 0 (this is the root inode allocation) use newino. | 
|  | * This must work because we've just allocated some. | 
|  | */ | 
|  | if (!pagino) | 
|  | pagino = be32_to_cpu(agi->agi_newino); | 
|  |  | 
|  | error = xfs_check_agi_freecount(cur); | 
|  | if (error) | 
|  | goto error0; | 
|  |  | 
|  | /* | 
|  | * If in the same AG as the parent, try to get near the parent. | 
|  | */ | 
|  | if (pagno == pag->pag_agno) { | 
|  | int		doneleft;	/* done, to the left */ | 
|  | int		doneright;	/* done, to the right */ | 
|  |  | 
|  | error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i); | 
|  | if (error) | 
|  | goto error0; | 
|  | if (XFS_IS_CORRUPT(mp, i != 1)) { | 
|  | error = -EFSCORRUPTED; | 
|  | goto error0; | 
|  | } | 
|  |  | 
|  | error = xfs_inobt_get_rec(cur, &rec, &j); | 
|  | if (error) | 
|  | goto error0; | 
|  | if (XFS_IS_CORRUPT(mp, j != 1)) { | 
|  | error = -EFSCORRUPTED; | 
|  | goto error0; | 
|  | } | 
|  |  | 
|  | if (rec.ir_freecount > 0) { | 
|  | /* | 
|  | * Found a free inode in the same chunk | 
|  | * as the parent, done. | 
|  | */ | 
|  | goto alloc_inode; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * In the same AG as parent, but parent's chunk is full. | 
|  | */ | 
|  |  | 
|  | /* duplicate the cursor, search left & right simultaneously */ | 
|  | error = xfs_btree_dup_cursor(cur, &tcur); | 
|  | if (error) | 
|  | goto error0; | 
|  |  | 
|  | /* | 
|  | * Skip to last blocks looked up if same parent inode. | 
|  | */ | 
|  | if (pagino != NULLAGINO && | 
|  | pag->pagl_pagino == pagino && | 
|  | pag->pagl_leftrec != NULLAGINO && | 
|  | pag->pagl_rightrec != NULLAGINO) { | 
|  | error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec, | 
|  | &trec, &doneleft); | 
|  | if (error) | 
|  | goto error1; | 
|  |  | 
|  | error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec, | 
|  | &rec, &doneright); | 
|  | if (error) | 
|  | goto error1; | 
|  | } else { | 
|  | /* search left with tcur, back up 1 record */ | 
|  | error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1); | 
|  | if (error) | 
|  | goto error1; | 
|  |  | 
|  | /* search right with cur, go forward 1 record. */ | 
|  | error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0); | 
|  | if (error) | 
|  | goto error1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Loop until we find an inode chunk with a free inode. | 
|  | */ | 
|  | while (--searchdistance > 0 && (!doneleft || !doneright)) { | 
|  | int	useleft;  /* using left inode chunk this time */ | 
|  |  | 
|  | /* figure out the closer block if both are valid. */ | 
|  | if (!doneleft && !doneright) { | 
|  | useleft = pagino - | 
|  | (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) < | 
|  | rec.ir_startino - pagino; | 
|  | } else { | 
|  | useleft = !doneleft; | 
|  | } | 
|  |  | 
|  | /* free inodes to the left? */ | 
|  | if (useleft && trec.ir_freecount) { | 
|  | xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); | 
|  | cur = tcur; | 
|  |  | 
|  | pag->pagl_leftrec = trec.ir_startino; | 
|  | pag->pagl_rightrec = rec.ir_startino; | 
|  | pag->pagl_pagino = pagino; | 
|  | rec = trec; | 
|  | goto alloc_inode; | 
|  | } | 
|  |  | 
|  | /* free inodes to the right? */ | 
|  | if (!useleft && rec.ir_freecount) { | 
|  | xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); | 
|  |  | 
|  | pag->pagl_leftrec = trec.ir_startino; | 
|  | pag->pagl_rightrec = rec.ir_startino; | 
|  | pag->pagl_pagino = pagino; | 
|  | goto alloc_inode; | 
|  | } | 
|  |  | 
|  | /* get next record to check */ | 
|  | if (useleft) { | 
|  | error = xfs_ialloc_next_rec(tcur, &trec, | 
|  | &doneleft, 1); | 
|  | } else { | 
|  | error = xfs_ialloc_next_rec(cur, &rec, | 
|  | &doneright, 0); | 
|  | } | 
|  | if (error) | 
|  | goto error1; | 
|  | } | 
|  |  | 
|  | if (searchdistance <= 0) { | 
|  | /* | 
|  | * Not in range - save last search | 
|  | * location and allocate a new inode | 
|  | */ | 
|  | xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); | 
|  | pag->pagl_leftrec = trec.ir_startino; | 
|  | pag->pagl_rightrec = rec.ir_startino; | 
|  | pag->pagl_pagino = pagino; | 
|  |  | 
|  | } else { | 
|  | /* | 
|  | * We've reached the end of the btree. because | 
|  | * we are only searching a small chunk of the | 
|  | * btree each search, there is obviously free | 
|  | * inodes closer to the parent inode than we | 
|  | * are now. restart the search again. | 
|  | */ | 
|  | pag->pagl_pagino = NULLAGINO; | 
|  | pag->pagl_leftrec = NULLAGINO; | 
|  | pag->pagl_rightrec = NULLAGINO; | 
|  | xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); | 
|  | xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); | 
|  | goto restart_pagno; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * In a different AG from the parent. | 
|  | * See if the most recently allocated block has any free. | 
|  | */ | 
|  | if (agi->agi_newino != cpu_to_be32(NULLAGINO)) { | 
|  | error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino), | 
|  | XFS_LOOKUP_EQ, &i); | 
|  | if (error) | 
|  | goto error0; | 
|  |  | 
|  | if (i == 1) { | 
|  | error = xfs_inobt_get_rec(cur, &rec, &j); | 
|  | if (error) | 
|  | goto error0; | 
|  |  | 
|  | if (j == 1 && rec.ir_freecount > 0) { | 
|  | /* | 
|  | * The last chunk allocated in the group | 
|  | * still has a free inode. | 
|  | */ | 
|  | goto alloc_inode; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * None left in the last group, search the whole AG | 
|  | */ | 
|  | error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i); | 
|  | if (error) | 
|  | goto error0; | 
|  | if (XFS_IS_CORRUPT(mp, i != 1)) { | 
|  | error = -EFSCORRUPTED; | 
|  | goto error0; | 
|  | } | 
|  |  | 
|  | for (;;) { | 
|  | error = xfs_inobt_get_rec(cur, &rec, &i); | 
|  | if (error) | 
|  | goto error0; | 
|  | if (XFS_IS_CORRUPT(mp, i != 1)) { | 
|  | error = -EFSCORRUPTED; | 
|  | goto error0; | 
|  | } | 
|  | if (rec.ir_freecount > 0) | 
|  | break; | 
|  | error = xfs_btree_increment(cur, 0, &i); | 
|  | if (error) | 
|  | goto error0; | 
|  | if (XFS_IS_CORRUPT(mp, i != 1)) { | 
|  | error = -EFSCORRUPTED; | 
|  | goto error0; | 
|  | } | 
|  | } | 
|  |  | 
|  | alloc_inode: | 
|  | offset = xfs_inobt_first_free_inode(&rec); | 
|  | ASSERT(offset >= 0); | 
|  | ASSERT(offset < XFS_INODES_PER_CHUNK); | 
|  | ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) % | 
|  | XFS_INODES_PER_CHUNK) == 0); | 
|  | ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, rec.ir_startino + offset); | 
|  | rec.ir_free &= ~XFS_INOBT_MASK(offset); | 
|  | rec.ir_freecount--; | 
|  | error = xfs_inobt_update(cur, &rec); | 
|  | if (error) | 
|  | goto error0; | 
|  | be32_add_cpu(&agi->agi_freecount, -1); | 
|  | xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT); | 
|  | pag->pagi_freecount--; | 
|  |  | 
|  | error = xfs_check_agi_freecount(cur); | 
|  | if (error) | 
|  | goto error0; | 
|  |  | 
|  | xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); | 
|  | xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1); | 
|  | *inop = ino; | 
|  | return 0; | 
|  | error1: | 
|  | xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR); | 
|  | error0: | 
|  | xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Use the free inode btree to allocate an inode based on distance from the | 
|  | * parent. Note that the provided cursor may be deleted and replaced. | 
|  | */ | 
|  | STATIC int | 
|  | xfs_dialloc_ag_finobt_near( | 
|  | xfs_agino_t			pagino, | 
|  | struct xfs_btree_cur		**ocur, | 
|  | struct xfs_inobt_rec_incore	*rec) | 
|  | { | 
|  | struct xfs_btree_cur		*lcur = *ocur;	/* left search cursor */ | 
|  | struct xfs_btree_cur		*rcur;	/* right search cursor */ | 
|  | struct xfs_inobt_rec_incore	rrec; | 
|  | int				error; | 
|  | int				i, j; | 
|  |  | 
|  | error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | if (i == 1) { | 
|  | error = xfs_inobt_get_rec(lcur, rec, &i); | 
|  | if (error) | 
|  | return error; | 
|  | if (XFS_IS_CORRUPT(lcur->bc_mp, i != 1)) | 
|  | return -EFSCORRUPTED; | 
|  |  | 
|  | /* | 
|  | * See if we've landed in the parent inode record. The finobt | 
|  | * only tracks chunks with at least one free inode, so record | 
|  | * existence is enough. | 
|  | */ | 
|  | if (pagino >= rec->ir_startino && | 
|  | pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK)) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | error = xfs_btree_dup_cursor(lcur, &rcur); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j); | 
|  | if (error) | 
|  | goto error_rcur; | 
|  | if (j == 1) { | 
|  | error = xfs_inobt_get_rec(rcur, &rrec, &j); | 
|  | if (error) | 
|  | goto error_rcur; | 
|  | if (XFS_IS_CORRUPT(lcur->bc_mp, j != 1)) { | 
|  | error = -EFSCORRUPTED; | 
|  | goto error_rcur; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (XFS_IS_CORRUPT(lcur->bc_mp, i != 1 && j != 1)) { | 
|  | error = -EFSCORRUPTED; | 
|  | goto error_rcur; | 
|  | } | 
|  | if (i == 1 && j == 1) { | 
|  | /* | 
|  | * Both the left and right records are valid. Choose the closer | 
|  | * inode chunk to the target. | 
|  | */ | 
|  | if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) > | 
|  | (rrec.ir_startino - pagino)) { | 
|  | *rec = rrec; | 
|  | xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR); | 
|  | *ocur = rcur; | 
|  | } else { | 
|  | xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR); | 
|  | } | 
|  | } else if (j == 1) { | 
|  | /* only the right record is valid */ | 
|  | *rec = rrec; | 
|  | xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR); | 
|  | *ocur = rcur; | 
|  | } else if (i == 1) { | 
|  | /* only the left record is valid */ | 
|  | xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | error_rcur: | 
|  | xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Use the free inode btree to find a free inode based on a newino hint. If | 
|  | * the hint is NULL, find the first free inode in the AG. | 
|  | */ | 
|  | STATIC int | 
|  | xfs_dialloc_ag_finobt_newino( | 
|  | struct xfs_agi			*agi, | 
|  | struct xfs_btree_cur		*cur, | 
|  | struct xfs_inobt_rec_incore	*rec) | 
|  | { | 
|  | int error; | 
|  | int i; | 
|  |  | 
|  | if (agi->agi_newino != cpu_to_be32(NULLAGINO)) { | 
|  | error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino), | 
|  | XFS_LOOKUP_EQ, &i); | 
|  | if (error) | 
|  | return error; | 
|  | if (i == 1) { | 
|  | error = xfs_inobt_get_rec(cur, rec, &i); | 
|  | if (error) | 
|  | return error; | 
|  | if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) | 
|  | return -EFSCORRUPTED; | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Find the first inode available in the AG. | 
|  | */ | 
|  | error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i); | 
|  | if (error) | 
|  | return error; | 
|  | if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) | 
|  | return -EFSCORRUPTED; | 
|  |  | 
|  | error = xfs_inobt_get_rec(cur, rec, &i); | 
|  | if (error) | 
|  | return error; | 
|  | if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) | 
|  | return -EFSCORRUPTED; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Update the inobt based on a modification made to the finobt. Also ensure that | 
|  | * the records from both trees are equivalent post-modification. | 
|  | */ | 
|  | STATIC int | 
|  | xfs_dialloc_ag_update_inobt( | 
|  | struct xfs_btree_cur		*cur,	/* inobt cursor */ | 
|  | struct xfs_inobt_rec_incore	*frec,	/* finobt record */ | 
|  | int				offset) /* inode offset */ | 
|  | { | 
|  | struct xfs_inobt_rec_incore	rec; | 
|  | int				error; | 
|  | int				i; | 
|  |  | 
|  | error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i); | 
|  | if (error) | 
|  | return error; | 
|  | if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) | 
|  | return -EFSCORRUPTED; | 
|  |  | 
|  | error = xfs_inobt_get_rec(cur, &rec, &i); | 
|  | if (error) | 
|  | return error; | 
|  | if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) | 
|  | return -EFSCORRUPTED; | 
|  | ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) % | 
|  | XFS_INODES_PER_CHUNK) == 0); | 
|  |  | 
|  | rec.ir_free &= ~XFS_INOBT_MASK(offset); | 
|  | rec.ir_freecount--; | 
|  |  | 
|  | if (XFS_IS_CORRUPT(cur->bc_mp, | 
|  | rec.ir_free != frec->ir_free || | 
|  | rec.ir_freecount != frec->ir_freecount)) | 
|  | return -EFSCORRUPTED; | 
|  |  | 
|  | return xfs_inobt_update(cur, &rec); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocate an inode using the free inode btree, if available. Otherwise, fall | 
|  | * back to the inobt search algorithm. | 
|  | * | 
|  | * The caller selected an AG for us, and made sure that free inodes are | 
|  | * available. | 
|  | */ | 
|  | static int | 
|  | xfs_dialloc_ag( | 
|  | struct xfs_perag	*pag, | 
|  | struct xfs_trans	*tp, | 
|  | struct xfs_buf		*agbp, | 
|  | xfs_ino_t		parent, | 
|  | xfs_ino_t		*inop) | 
|  | { | 
|  | struct xfs_mount		*mp = tp->t_mountp; | 
|  | struct xfs_agi			*agi = agbp->b_addr; | 
|  | xfs_agnumber_t			pagno = XFS_INO_TO_AGNO(mp, parent); | 
|  | xfs_agino_t			pagino = XFS_INO_TO_AGINO(mp, parent); | 
|  | struct xfs_btree_cur		*cur;	/* finobt cursor */ | 
|  | struct xfs_btree_cur		*icur;	/* inobt cursor */ | 
|  | struct xfs_inobt_rec_incore	rec; | 
|  | xfs_ino_t			ino; | 
|  | int				error; | 
|  | int				offset; | 
|  | int				i; | 
|  |  | 
|  | if (!xfs_has_finobt(mp)) | 
|  | return xfs_dialloc_ag_inobt(pag, tp, agbp, parent, inop); | 
|  |  | 
|  | /* | 
|  | * If pagino is 0 (this is the root inode allocation) use newino. | 
|  | * This must work because we've just allocated some. | 
|  | */ | 
|  | if (!pagino) | 
|  | pagino = be32_to_cpu(agi->agi_newino); | 
|  |  | 
|  | cur = xfs_inobt_init_cursor(pag, tp, agbp, XFS_BTNUM_FINO); | 
|  |  | 
|  | error = xfs_check_agi_freecount(cur); | 
|  | if (error) | 
|  | goto error_cur; | 
|  |  | 
|  | /* | 
|  | * The search algorithm depends on whether we're in the same AG as the | 
|  | * parent. If so, find the closest available inode to the parent. If | 
|  | * not, consider the agi hint or find the first free inode in the AG. | 
|  | */ | 
|  | if (pag->pag_agno == pagno) | 
|  | error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec); | 
|  | else | 
|  | error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec); | 
|  | if (error) | 
|  | goto error_cur; | 
|  |  | 
|  | offset = xfs_inobt_first_free_inode(&rec); | 
|  | ASSERT(offset >= 0); | 
|  | ASSERT(offset < XFS_INODES_PER_CHUNK); | 
|  | ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) % | 
|  | XFS_INODES_PER_CHUNK) == 0); | 
|  | ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, rec.ir_startino + offset); | 
|  |  | 
|  | /* | 
|  | * Modify or remove the finobt record. | 
|  | */ | 
|  | rec.ir_free &= ~XFS_INOBT_MASK(offset); | 
|  | rec.ir_freecount--; | 
|  | if (rec.ir_freecount) | 
|  | error = xfs_inobt_update(cur, &rec); | 
|  | else | 
|  | error = xfs_btree_delete(cur, &i); | 
|  | if (error) | 
|  | goto error_cur; | 
|  |  | 
|  | /* | 
|  | * The finobt has now been updated appropriately. We haven't updated the | 
|  | * agi and superblock yet, so we can create an inobt cursor and validate | 
|  | * the original freecount. If all is well, make the equivalent update to | 
|  | * the inobt using the finobt record and offset information. | 
|  | */ | 
|  | icur = xfs_inobt_init_cursor(pag, tp, agbp, XFS_BTNUM_INO); | 
|  |  | 
|  | error = xfs_check_agi_freecount(icur); | 
|  | if (error) | 
|  | goto error_icur; | 
|  |  | 
|  | error = xfs_dialloc_ag_update_inobt(icur, &rec, offset); | 
|  | if (error) | 
|  | goto error_icur; | 
|  |  | 
|  | /* | 
|  | * Both trees have now been updated. We must update the perag and | 
|  | * superblock before we can check the freecount for each btree. | 
|  | */ | 
|  | be32_add_cpu(&agi->agi_freecount, -1); | 
|  | xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT); | 
|  | pag->pagi_freecount--; | 
|  |  | 
|  | xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1); | 
|  |  | 
|  | error = xfs_check_agi_freecount(icur); | 
|  | if (error) | 
|  | goto error_icur; | 
|  | error = xfs_check_agi_freecount(cur); | 
|  | if (error) | 
|  | goto error_icur; | 
|  |  | 
|  | xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR); | 
|  | xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); | 
|  | *inop = ino; | 
|  | return 0; | 
|  |  | 
|  | error_icur: | 
|  | xfs_btree_del_cursor(icur, XFS_BTREE_ERROR); | 
|  | error_cur: | 
|  | xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | static int | 
|  | xfs_dialloc_roll( | 
|  | struct xfs_trans	**tpp, | 
|  | struct xfs_buf		*agibp) | 
|  | { | 
|  | struct xfs_trans	*tp = *tpp; | 
|  | struct xfs_dquot_acct	*dqinfo; | 
|  | int			error; | 
|  |  | 
|  | /* | 
|  | * Hold to on to the agibp across the commit so no other allocation can | 
|  | * come in and take the free inodes we just allocated for our caller. | 
|  | */ | 
|  | xfs_trans_bhold(tp, agibp); | 
|  |  | 
|  | /* | 
|  | * We want the quota changes to be associated with the next transaction, | 
|  | * NOT this one. So, detach the dqinfo from this and attach it to the | 
|  | * next transaction. | 
|  | */ | 
|  | dqinfo = tp->t_dqinfo; | 
|  | tp->t_dqinfo = NULL; | 
|  |  | 
|  | error = xfs_trans_roll(&tp); | 
|  |  | 
|  | /* Re-attach the quota info that we detached from prev trx. */ | 
|  | tp->t_dqinfo = dqinfo; | 
|  |  | 
|  | /* | 
|  | * Join the buffer even on commit error so that the buffer is released | 
|  | * when the caller cancels the transaction and doesn't have to handle | 
|  | * this error case specially. | 
|  | */ | 
|  | xfs_trans_bjoin(tp, agibp); | 
|  | *tpp = tp; | 
|  | return error; | 
|  | } | 
|  |  | 
|  | static bool | 
|  | xfs_dialloc_good_ag( | 
|  | struct xfs_perag	*pag, | 
|  | struct xfs_trans	*tp, | 
|  | umode_t			mode, | 
|  | int			flags, | 
|  | bool			ok_alloc) | 
|  | { | 
|  | struct xfs_mount	*mp = tp->t_mountp; | 
|  | xfs_extlen_t		ineed; | 
|  | xfs_extlen_t		longest = 0; | 
|  | int			needspace; | 
|  | int			error; | 
|  |  | 
|  | if (!pag) | 
|  | return false; | 
|  | if (!xfs_perag_allows_inodes(pag)) | 
|  | return false; | 
|  |  | 
|  | if (!xfs_perag_initialised_agi(pag)) { | 
|  | error = xfs_ialloc_read_agi(pag, tp, NULL); | 
|  | if (error) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (pag->pagi_freecount) | 
|  | return true; | 
|  | if (!ok_alloc) | 
|  | return false; | 
|  |  | 
|  | if (!xfs_perag_initialised_agf(pag)) { | 
|  | error = xfs_alloc_read_agf(pag, tp, flags, NULL); | 
|  | if (error) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check that there is enough free space for the file plus a chunk of | 
|  | * inodes if we need to allocate some. If this is the first pass across | 
|  | * the AGs, take into account the potential space needed for alignment | 
|  | * of inode chunks when checking the longest contiguous free space in | 
|  | * the AG - this prevents us from getting ENOSPC because we have free | 
|  | * space larger than ialloc_blks but alignment constraints prevent us | 
|  | * from using it. | 
|  | * | 
|  | * If we can't find an AG with space for full alignment slack to be | 
|  | * taken into account, we must be near ENOSPC in all AGs.  Hence we | 
|  | * don't include alignment for the second pass and so if we fail | 
|  | * allocation due to alignment issues then it is most likely a real | 
|  | * ENOSPC condition. | 
|  | * | 
|  | * XXX(dgc): this calculation is now bogus thanks to the per-ag | 
|  | * reservations that xfs_alloc_fix_freelist() now does via | 
|  | * xfs_alloc_space_available(). When the AG fills up, pagf_freeblks will | 
|  | * be more than large enough for the check below to succeed, but | 
|  | * xfs_alloc_space_available() will fail because of the non-zero | 
|  | * metadata reservation and hence we won't actually be able to allocate | 
|  | * more inodes in this AG. We do soooo much unnecessary work near ENOSPC | 
|  | * because of this. | 
|  | */ | 
|  | ineed = M_IGEO(mp)->ialloc_min_blks; | 
|  | if (flags && ineed > 1) | 
|  | ineed += M_IGEO(mp)->cluster_align; | 
|  | longest = pag->pagf_longest; | 
|  | if (!longest) | 
|  | longest = pag->pagf_flcount > 0; | 
|  | needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode); | 
|  |  | 
|  | if (pag->pagf_freeblks < needspace + ineed || longest < ineed) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static int | 
|  | xfs_dialloc_try_ag( | 
|  | struct xfs_perag	*pag, | 
|  | struct xfs_trans	**tpp, | 
|  | xfs_ino_t		parent, | 
|  | xfs_ino_t		*new_ino, | 
|  | bool			ok_alloc) | 
|  | { | 
|  | struct xfs_buf		*agbp; | 
|  | xfs_ino_t		ino; | 
|  | int			error; | 
|  |  | 
|  | /* | 
|  | * Then read in the AGI buffer and recheck with the AGI buffer | 
|  | * lock held. | 
|  | */ | 
|  | error = xfs_ialloc_read_agi(pag, *tpp, &agbp); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | if (!pag->pagi_freecount) { | 
|  | if (!ok_alloc) { | 
|  | error = -EAGAIN; | 
|  | goto out_release; | 
|  | } | 
|  |  | 
|  | error = xfs_ialloc_ag_alloc(pag, *tpp, agbp); | 
|  | if (error < 0) | 
|  | goto out_release; | 
|  |  | 
|  | /* | 
|  | * We successfully allocated space for an inode cluster in this | 
|  | * AG.  Roll the transaction so that we can allocate one of the | 
|  | * new inodes. | 
|  | */ | 
|  | ASSERT(pag->pagi_freecount > 0); | 
|  | error = xfs_dialloc_roll(tpp, agbp); | 
|  | if (error) | 
|  | goto out_release; | 
|  | } | 
|  |  | 
|  | /* Allocate an inode in the found AG */ | 
|  | error = xfs_dialloc_ag(pag, *tpp, agbp, parent, &ino); | 
|  | if (!error) | 
|  | *new_ino = ino; | 
|  | return error; | 
|  |  | 
|  | out_release: | 
|  | xfs_trans_brelse(*tpp, agbp); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocate an on-disk inode. | 
|  | * | 
|  | * Mode is used to tell whether the new inode is a directory and hence where to | 
|  | * locate it. The on-disk inode that is allocated will be returned in @new_ino | 
|  | * on success, otherwise an error will be set to indicate the failure (e.g. | 
|  | * -ENOSPC). | 
|  | */ | 
|  | int | 
|  | xfs_dialloc( | 
|  | struct xfs_trans	**tpp, | 
|  | xfs_ino_t		parent, | 
|  | umode_t			mode, | 
|  | xfs_ino_t		*new_ino) | 
|  | { | 
|  | struct xfs_mount	*mp = (*tpp)->t_mountp; | 
|  | xfs_agnumber_t		agno; | 
|  | int			error = 0; | 
|  | xfs_agnumber_t		start_agno; | 
|  | struct xfs_perag	*pag; | 
|  | struct xfs_ino_geometry	*igeo = M_IGEO(mp); | 
|  | bool			ok_alloc = true; | 
|  | bool			low_space = false; | 
|  | int			flags; | 
|  | xfs_ino_t		ino = NULLFSINO; | 
|  |  | 
|  | /* | 
|  | * Directories, symlinks, and regular files frequently allocate at least | 
|  | * one block, so factor that potential expansion when we examine whether | 
|  | * an AG has enough space for file creation. | 
|  | */ | 
|  | if (S_ISDIR(mode)) | 
|  | start_agno = (atomic_inc_return(&mp->m_agirotor) - 1) % | 
|  | mp->m_maxagi; | 
|  | else { | 
|  | start_agno = XFS_INO_TO_AGNO(mp, parent); | 
|  | if (start_agno >= mp->m_maxagi) | 
|  | start_agno = 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we have already hit the ceiling of inode blocks then clear | 
|  | * ok_alloc so we scan all available agi structures for a free | 
|  | * inode. | 
|  | * | 
|  | * Read rough value of mp->m_icount by percpu_counter_read_positive, | 
|  | * which will sacrifice the preciseness but improve the performance. | 
|  | */ | 
|  | if (igeo->maxicount && | 
|  | percpu_counter_read_positive(&mp->m_icount) + igeo->ialloc_inos | 
|  | > igeo->maxicount) { | 
|  | ok_alloc = false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we are near to ENOSPC, we want to prefer allocation from AGs that | 
|  | * have free inodes in them rather than use up free space allocating new | 
|  | * inode chunks. Hence we turn off allocation for the first non-blocking | 
|  | * pass through the AGs if we are near ENOSPC to consume free inodes | 
|  | * that we can immediately allocate, but then we allow allocation on the | 
|  | * second pass if we fail to find an AG with free inodes in it. | 
|  | */ | 
|  | if (percpu_counter_read_positive(&mp->m_fdblocks) < | 
|  | mp->m_low_space[XFS_LOWSP_1_PCNT]) { | 
|  | ok_alloc = false; | 
|  | low_space = true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Loop until we find an allocation group that either has free inodes | 
|  | * or in which we can allocate some inodes.  Iterate through the | 
|  | * allocation groups upward, wrapping at the end. | 
|  | */ | 
|  | flags = XFS_ALLOC_FLAG_TRYLOCK; | 
|  | retry: | 
|  | for_each_perag_wrap_at(mp, start_agno, mp->m_maxagi, agno, pag) { | 
|  | if (xfs_dialloc_good_ag(pag, *tpp, mode, flags, ok_alloc)) { | 
|  | error = xfs_dialloc_try_ag(pag, tpp, parent, | 
|  | &ino, ok_alloc); | 
|  | if (error != -EAGAIN) | 
|  | break; | 
|  | error = 0; | 
|  | } | 
|  |  | 
|  | if (xfs_is_shutdown(mp)) { | 
|  | error = -EFSCORRUPTED; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (pag) | 
|  | xfs_perag_rele(pag); | 
|  | if (error) | 
|  | return error; | 
|  | if (ino == NULLFSINO) { | 
|  | if (flags) { | 
|  | flags = 0; | 
|  | if (low_space) | 
|  | ok_alloc = true; | 
|  | goto retry; | 
|  | } | 
|  | return -ENOSPC; | 
|  | } | 
|  | *new_ino = ino; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Free the blocks of an inode chunk. We must consider that the inode chunk | 
|  | * might be sparse and only free the regions that are allocated as part of the | 
|  | * chunk. | 
|  | */ | 
|  | static int | 
|  | xfs_difree_inode_chunk( | 
|  | struct xfs_trans		*tp, | 
|  | xfs_agnumber_t			agno, | 
|  | struct xfs_inobt_rec_incore	*rec) | 
|  | { | 
|  | struct xfs_mount		*mp = tp->t_mountp; | 
|  | xfs_agblock_t			sagbno = XFS_AGINO_TO_AGBNO(mp, | 
|  | rec->ir_startino); | 
|  | int				startidx, endidx; | 
|  | int				nextbit; | 
|  | xfs_agblock_t			agbno; | 
|  | int				contigblk; | 
|  | DECLARE_BITMAP(holemask, XFS_INOBT_HOLEMASK_BITS); | 
|  |  | 
|  | if (!xfs_inobt_issparse(rec->ir_holemask)) { | 
|  | /* not sparse, calculate extent info directly */ | 
|  | return xfs_free_extent_later(tp, | 
|  | XFS_AGB_TO_FSB(mp, agno, sagbno), | 
|  | M_IGEO(mp)->ialloc_blks, &XFS_RMAP_OINFO_INODES, | 
|  | XFS_AG_RESV_NONE); | 
|  | } | 
|  |  | 
|  | /* holemask is only 16-bits (fits in an unsigned long) */ | 
|  | ASSERT(sizeof(rec->ir_holemask) <= sizeof(holemask[0])); | 
|  | holemask[0] = rec->ir_holemask; | 
|  |  | 
|  | /* | 
|  | * Find contiguous ranges of zeroes (i.e., allocated regions) in the | 
|  | * holemask and convert the start/end index of each range to an extent. | 
|  | * We start with the start and end index both pointing at the first 0 in | 
|  | * the mask. | 
|  | */ | 
|  | startidx = endidx = find_first_zero_bit(holemask, | 
|  | XFS_INOBT_HOLEMASK_BITS); | 
|  | nextbit = startidx + 1; | 
|  | while (startidx < XFS_INOBT_HOLEMASK_BITS) { | 
|  | int error; | 
|  |  | 
|  | nextbit = find_next_zero_bit(holemask, XFS_INOBT_HOLEMASK_BITS, | 
|  | nextbit); | 
|  | /* | 
|  | * If the next zero bit is contiguous, update the end index of | 
|  | * the current range and continue. | 
|  | */ | 
|  | if (nextbit != XFS_INOBT_HOLEMASK_BITS && | 
|  | nextbit == endidx + 1) { | 
|  | endidx = nextbit; | 
|  | goto next; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * nextbit is not contiguous with the current end index. Convert | 
|  | * the current start/end to an extent and add it to the free | 
|  | * list. | 
|  | */ | 
|  | agbno = sagbno + (startidx * XFS_INODES_PER_HOLEMASK_BIT) / | 
|  | mp->m_sb.sb_inopblock; | 
|  | contigblk = ((endidx - startidx + 1) * | 
|  | XFS_INODES_PER_HOLEMASK_BIT) / | 
|  | mp->m_sb.sb_inopblock; | 
|  |  | 
|  | ASSERT(agbno % mp->m_sb.sb_spino_align == 0); | 
|  | ASSERT(contigblk % mp->m_sb.sb_spino_align == 0); | 
|  | error = xfs_free_extent_later(tp, | 
|  | XFS_AGB_TO_FSB(mp, agno, agbno), contigblk, | 
|  | &XFS_RMAP_OINFO_INODES, XFS_AG_RESV_NONE); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | /* reset range to current bit and carry on... */ | 
|  | startidx = endidx = nextbit; | 
|  |  | 
|  | next: | 
|  | nextbit++; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | STATIC int | 
|  | xfs_difree_inobt( | 
|  | struct xfs_perag		*pag, | 
|  | struct xfs_trans		*tp, | 
|  | struct xfs_buf			*agbp, | 
|  | xfs_agino_t			agino, | 
|  | struct xfs_icluster		*xic, | 
|  | struct xfs_inobt_rec_incore	*orec) | 
|  | { | 
|  | struct xfs_mount		*mp = pag->pag_mount; | 
|  | struct xfs_agi			*agi = agbp->b_addr; | 
|  | struct xfs_btree_cur		*cur; | 
|  | struct xfs_inobt_rec_incore	rec; | 
|  | int				ilen; | 
|  | int				error; | 
|  | int				i; | 
|  | int				off; | 
|  |  | 
|  | ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC)); | 
|  | ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length)); | 
|  |  | 
|  | /* | 
|  | * Initialize the cursor. | 
|  | */ | 
|  | cur = xfs_inobt_init_cursor(pag, tp, agbp, XFS_BTNUM_INO); | 
|  |  | 
|  | error = xfs_check_agi_freecount(cur); | 
|  | if (error) | 
|  | goto error0; | 
|  |  | 
|  | /* | 
|  | * Look for the entry describing this inode. | 
|  | */ | 
|  | if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) { | 
|  | xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.", | 
|  | __func__, error); | 
|  | goto error0; | 
|  | } | 
|  | if (XFS_IS_CORRUPT(mp, i != 1)) { | 
|  | error = -EFSCORRUPTED; | 
|  | goto error0; | 
|  | } | 
|  | error = xfs_inobt_get_rec(cur, &rec, &i); | 
|  | if (error) { | 
|  | xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.", | 
|  | __func__, error); | 
|  | goto error0; | 
|  | } | 
|  | if (XFS_IS_CORRUPT(mp, i != 1)) { | 
|  | error = -EFSCORRUPTED; | 
|  | goto error0; | 
|  | } | 
|  | /* | 
|  | * Get the offset in the inode chunk. | 
|  | */ | 
|  | off = agino - rec.ir_startino; | 
|  | ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK); | 
|  | ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off))); | 
|  | /* | 
|  | * Mark the inode free & increment the count. | 
|  | */ | 
|  | rec.ir_free |= XFS_INOBT_MASK(off); | 
|  | rec.ir_freecount++; | 
|  |  | 
|  | /* | 
|  | * When an inode chunk is free, it becomes eligible for removal. Don't | 
|  | * remove the chunk if the block size is large enough for multiple inode | 
|  | * chunks (that might not be free). | 
|  | */ | 
|  | if (!xfs_has_ikeep(mp) && rec.ir_free == XFS_INOBT_ALL_FREE && | 
|  | mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) { | 
|  | xic->deleted = true; | 
|  | xic->first_ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, | 
|  | rec.ir_startino); | 
|  | xic->alloc = xfs_inobt_irec_to_allocmask(&rec); | 
|  |  | 
|  | /* | 
|  | * Remove the inode cluster from the AGI B+Tree, adjust the | 
|  | * AGI and Superblock inode counts, and mark the disk space | 
|  | * to be freed when the transaction is committed. | 
|  | */ | 
|  | ilen = rec.ir_freecount; | 
|  | be32_add_cpu(&agi->agi_count, -ilen); | 
|  | be32_add_cpu(&agi->agi_freecount, -(ilen - 1)); | 
|  | xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT); | 
|  | pag->pagi_freecount -= ilen - 1; | 
|  | pag->pagi_count -= ilen; | 
|  | xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen); | 
|  | xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1)); | 
|  |  | 
|  | if ((error = xfs_btree_delete(cur, &i))) { | 
|  | xfs_warn(mp, "%s: xfs_btree_delete returned error %d.", | 
|  | __func__, error); | 
|  | goto error0; | 
|  | } | 
|  |  | 
|  | error = xfs_difree_inode_chunk(tp, pag->pag_agno, &rec); | 
|  | if (error) | 
|  | goto error0; | 
|  | } else { | 
|  | xic->deleted = false; | 
|  |  | 
|  | error = xfs_inobt_update(cur, &rec); | 
|  | if (error) { | 
|  | xfs_warn(mp, "%s: xfs_inobt_update returned error %d.", | 
|  | __func__, error); | 
|  | goto error0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Change the inode free counts and log the ag/sb changes. | 
|  | */ | 
|  | be32_add_cpu(&agi->agi_freecount, 1); | 
|  | xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT); | 
|  | pag->pagi_freecount++; | 
|  | xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1); | 
|  | } | 
|  |  | 
|  | error = xfs_check_agi_freecount(cur); | 
|  | if (error) | 
|  | goto error0; | 
|  |  | 
|  | *orec = rec; | 
|  | xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); | 
|  | return 0; | 
|  |  | 
|  | error0: | 
|  | xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Free an inode in the free inode btree. | 
|  | */ | 
|  | STATIC int | 
|  | xfs_difree_finobt( | 
|  | struct xfs_perag		*pag, | 
|  | struct xfs_trans		*tp, | 
|  | struct xfs_buf			*agbp, | 
|  | xfs_agino_t			agino, | 
|  | struct xfs_inobt_rec_incore	*ibtrec) /* inobt record */ | 
|  | { | 
|  | struct xfs_mount		*mp = pag->pag_mount; | 
|  | struct xfs_btree_cur		*cur; | 
|  | struct xfs_inobt_rec_incore	rec; | 
|  | int				offset = agino - ibtrec->ir_startino; | 
|  | int				error; | 
|  | int				i; | 
|  |  | 
|  | cur = xfs_inobt_init_cursor(pag, tp, agbp, XFS_BTNUM_FINO); | 
|  |  | 
|  | error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i); | 
|  | if (error) | 
|  | goto error; | 
|  | if (i == 0) { | 
|  | /* | 
|  | * If the record does not exist in the finobt, we must have just | 
|  | * freed an inode in a previously fully allocated chunk. If not, | 
|  | * something is out of sync. | 
|  | */ | 
|  | if (XFS_IS_CORRUPT(mp, ibtrec->ir_freecount != 1)) { | 
|  | error = -EFSCORRUPTED; | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | error = xfs_inobt_insert_rec(cur, ibtrec->ir_holemask, | 
|  | ibtrec->ir_count, | 
|  | ibtrec->ir_freecount, | 
|  | ibtrec->ir_free, &i); | 
|  | if (error) | 
|  | goto error; | 
|  | ASSERT(i == 1); | 
|  |  | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Read and update the existing record. We could just copy the ibtrec | 
|  | * across here, but that would defeat the purpose of having redundant | 
|  | * metadata. By making the modifications independently, we can catch | 
|  | * corruptions that we wouldn't see if we just copied from one record | 
|  | * to another. | 
|  | */ | 
|  | error = xfs_inobt_get_rec(cur, &rec, &i); | 
|  | if (error) | 
|  | goto error; | 
|  | if (XFS_IS_CORRUPT(mp, i != 1)) { | 
|  | error = -EFSCORRUPTED; | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | rec.ir_free |= XFS_INOBT_MASK(offset); | 
|  | rec.ir_freecount++; | 
|  |  | 
|  | if (XFS_IS_CORRUPT(mp, | 
|  | rec.ir_free != ibtrec->ir_free || | 
|  | rec.ir_freecount != ibtrec->ir_freecount)) { | 
|  | error = -EFSCORRUPTED; | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The content of inobt records should always match between the inobt | 
|  | * and finobt. The lifecycle of records in the finobt is different from | 
|  | * the inobt in that the finobt only tracks records with at least one | 
|  | * free inode. Hence, if all of the inodes are free and we aren't | 
|  | * keeping inode chunks permanently on disk, remove the record. | 
|  | * Otherwise, update the record with the new information. | 
|  | * | 
|  | * Note that we currently can't free chunks when the block size is large | 
|  | * enough for multiple chunks. Leave the finobt record to remain in sync | 
|  | * with the inobt. | 
|  | */ | 
|  | if (!xfs_has_ikeep(mp) && rec.ir_free == XFS_INOBT_ALL_FREE && | 
|  | mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) { | 
|  | error = xfs_btree_delete(cur, &i); | 
|  | if (error) | 
|  | goto error; | 
|  | ASSERT(i == 1); | 
|  | } else { | 
|  | error = xfs_inobt_update(cur, &rec); | 
|  | if (error) | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | out: | 
|  | error = xfs_check_agi_freecount(cur); | 
|  | if (error) | 
|  | goto error; | 
|  |  | 
|  | xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); | 
|  | return 0; | 
|  |  | 
|  | error: | 
|  | xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Free disk inode.  Carefully avoids touching the incore inode, all | 
|  | * manipulations incore are the caller's responsibility. | 
|  | * The on-disk inode is not changed by this operation, only the | 
|  | * btree (free inode mask) is changed. | 
|  | */ | 
|  | int | 
|  | xfs_difree( | 
|  | struct xfs_trans	*tp, | 
|  | struct xfs_perag	*pag, | 
|  | xfs_ino_t		inode, | 
|  | struct xfs_icluster	*xic) | 
|  | { | 
|  | /* REFERENCED */ | 
|  | xfs_agblock_t		agbno;	/* block number containing inode */ | 
|  | struct xfs_buf		*agbp;	/* buffer for allocation group header */ | 
|  | xfs_agino_t		agino;	/* allocation group inode number */ | 
|  | int			error;	/* error return value */ | 
|  | struct xfs_mount	*mp = tp->t_mountp; | 
|  | struct xfs_inobt_rec_incore rec;/* btree record */ | 
|  |  | 
|  | /* | 
|  | * Break up inode number into its components. | 
|  | */ | 
|  | if (pag->pag_agno != XFS_INO_TO_AGNO(mp, inode)) { | 
|  | xfs_warn(mp, "%s: agno != pag->pag_agno (%d != %d).", | 
|  | __func__, XFS_INO_TO_AGNO(mp, inode), pag->pag_agno); | 
|  | ASSERT(0); | 
|  | return -EINVAL; | 
|  | } | 
|  | agino = XFS_INO_TO_AGINO(mp, inode); | 
|  | if (inode != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino))  { | 
|  | xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).", | 
|  | __func__, (unsigned long long)inode, | 
|  | (unsigned long long)XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)); | 
|  | ASSERT(0); | 
|  | return -EINVAL; | 
|  | } | 
|  | agbno = XFS_AGINO_TO_AGBNO(mp, agino); | 
|  | if (agbno >= mp->m_sb.sb_agblocks)  { | 
|  | xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).", | 
|  | __func__, agbno, mp->m_sb.sb_agblocks); | 
|  | ASSERT(0); | 
|  | return -EINVAL; | 
|  | } | 
|  | /* | 
|  | * Get the allocation group header. | 
|  | */ | 
|  | error = xfs_ialloc_read_agi(pag, tp, &agbp); | 
|  | if (error) { | 
|  | xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.", | 
|  | __func__, error); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Fix up the inode allocation btree. | 
|  | */ | 
|  | error = xfs_difree_inobt(pag, tp, agbp, agino, xic, &rec); | 
|  | if (error) | 
|  | goto error0; | 
|  |  | 
|  | /* | 
|  | * Fix up the free inode btree. | 
|  | */ | 
|  | if (xfs_has_finobt(mp)) { | 
|  | error = xfs_difree_finobt(pag, tp, agbp, agino, &rec); | 
|  | if (error) | 
|  | goto error0; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | error0: | 
|  | return error; | 
|  | } | 
|  |  | 
|  | STATIC int | 
|  | xfs_imap_lookup( | 
|  | struct xfs_perag	*pag, | 
|  | struct xfs_trans	*tp, | 
|  | xfs_agino_t		agino, | 
|  | xfs_agblock_t		agbno, | 
|  | xfs_agblock_t		*chunk_agbno, | 
|  | xfs_agblock_t		*offset_agbno, | 
|  | int			flags) | 
|  | { | 
|  | struct xfs_mount	*mp = pag->pag_mount; | 
|  | struct xfs_inobt_rec_incore rec; | 
|  | struct xfs_btree_cur	*cur; | 
|  | struct xfs_buf		*agbp; | 
|  | int			error; | 
|  | int			i; | 
|  |  | 
|  | error = xfs_ialloc_read_agi(pag, tp, &agbp); | 
|  | if (error) { | 
|  | xfs_alert(mp, | 
|  | "%s: xfs_ialloc_read_agi() returned error %d, agno %d", | 
|  | __func__, error, pag->pag_agno); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Lookup the inode record for the given agino. If the record cannot be | 
|  | * found, then it's an invalid inode number and we should abort. Once | 
|  | * we have a record, we need to ensure it contains the inode number | 
|  | * we are looking up. | 
|  | */ | 
|  | cur = xfs_inobt_init_cursor(pag, tp, agbp, XFS_BTNUM_INO); | 
|  | error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i); | 
|  | if (!error) { | 
|  | if (i) | 
|  | error = xfs_inobt_get_rec(cur, &rec, &i); | 
|  | if (!error && i == 0) | 
|  | error = -EINVAL; | 
|  | } | 
|  |  | 
|  | xfs_trans_brelse(tp, agbp); | 
|  | xfs_btree_del_cursor(cur, error); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | /* check that the returned record contains the required inode */ | 
|  | if (rec.ir_startino > agino || | 
|  | rec.ir_startino + M_IGEO(mp)->ialloc_inos <= agino) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* for untrusted inodes check it is allocated first */ | 
|  | if ((flags & XFS_IGET_UNTRUSTED) && | 
|  | (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino))) | 
|  | return -EINVAL; | 
|  |  | 
|  | *chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino); | 
|  | *offset_agbno = agbno - *chunk_agbno; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return the location of the inode in imap, for mapping it into a buffer. | 
|  | */ | 
|  | int | 
|  | xfs_imap( | 
|  | struct xfs_perag	*pag, | 
|  | struct xfs_trans	*tp, | 
|  | xfs_ino_t		ino,	/* inode to locate */ | 
|  | struct xfs_imap		*imap,	/* location map structure */ | 
|  | uint			flags)	/* flags for inode btree lookup */ | 
|  | { | 
|  | struct xfs_mount	*mp = pag->pag_mount; | 
|  | xfs_agblock_t		agbno;	/* block number of inode in the alloc group */ | 
|  | xfs_agino_t		agino;	/* inode number within alloc group */ | 
|  | xfs_agblock_t		chunk_agbno;	/* first block in inode chunk */ | 
|  | xfs_agblock_t		cluster_agbno;	/* first block in inode cluster */ | 
|  | int			error;	/* error code */ | 
|  | int			offset;	/* index of inode in its buffer */ | 
|  | xfs_agblock_t		offset_agbno;	/* blks from chunk start to inode */ | 
|  |  | 
|  | ASSERT(ino != NULLFSINO); | 
|  |  | 
|  | /* | 
|  | * Split up the inode number into its parts. | 
|  | */ | 
|  | agino = XFS_INO_TO_AGINO(mp, ino); | 
|  | agbno = XFS_AGINO_TO_AGBNO(mp, agino); | 
|  | if (agbno >= mp->m_sb.sb_agblocks || | 
|  | ino != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)) { | 
|  | error = -EINVAL; | 
|  | #ifdef DEBUG | 
|  | /* | 
|  | * Don't output diagnostic information for untrusted inodes | 
|  | * as they can be invalid without implying corruption. | 
|  | */ | 
|  | if (flags & XFS_IGET_UNTRUSTED) | 
|  | return error; | 
|  | if (agbno >= mp->m_sb.sb_agblocks) { | 
|  | xfs_alert(mp, | 
|  | "%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)", | 
|  | __func__, (unsigned long long)agbno, | 
|  | (unsigned long)mp->m_sb.sb_agblocks); | 
|  | } | 
|  | if (ino != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)) { | 
|  | xfs_alert(mp, | 
|  | "%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)", | 
|  | __func__, ino, | 
|  | XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)); | 
|  | } | 
|  | xfs_stack_trace(); | 
|  | #endif /* DEBUG */ | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * For bulkstat and handle lookups, we have an untrusted inode number | 
|  | * that we have to verify is valid. We cannot do this just by reading | 
|  | * the inode buffer as it may have been unlinked and removed leaving | 
|  | * inodes in stale state on disk. Hence we have to do a btree lookup | 
|  | * in all cases where an untrusted inode number is passed. | 
|  | */ | 
|  | if (flags & XFS_IGET_UNTRUSTED) { | 
|  | error = xfs_imap_lookup(pag, tp, agino, agbno, | 
|  | &chunk_agbno, &offset_agbno, flags); | 
|  | if (error) | 
|  | return error; | 
|  | goto out_map; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the inode cluster size is the same as the blocksize or | 
|  | * smaller we get to the buffer by simple arithmetics. | 
|  | */ | 
|  | if (M_IGEO(mp)->blocks_per_cluster == 1) { | 
|  | offset = XFS_INO_TO_OFFSET(mp, ino); | 
|  | ASSERT(offset < mp->m_sb.sb_inopblock); | 
|  |  | 
|  | imap->im_blkno = XFS_AGB_TO_DADDR(mp, pag->pag_agno, agbno); | 
|  | imap->im_len = XFS_FSB_TO_BB(mp, 1); | 
|  | imap->im_boffset = (unsigned short)(offset << | 
|  | mp->m_sb.sb_inodelog); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the inode chunks are aligned then use simple maths to | 
|  | * find the location. Otherwise we have to do a btree | 
|  | * lookup to find the location. | 
|  | */ | 
|  | if (M_IGEO(mp)->inoalign_mask) { | 
|  | offset_agbno = agbno & M_IGEO(mp)->inoalign_mask; | 
|  | chunk_agbno = agbno - offset_agbno; | 
|  | } else { | 
|  | error = xfs_imap_lookup(pag, tp, agino, agbno, | 
|  | &chunk_agbno, &offset_agbno, flags); | 
|  | if (error) | 
|  | return error; | 
|  | } | 
|  |  | 
|  | out_map: | 
|  | ASSERT(agbno >= chunk_agbno); | 
|  | cluster_agbno = chunk_agbno + | 
|  | ((offset_agbno / M_IGEO(mp)->blocks_per_cluster) * | 
|  | M_IGEO(mp)->blocks_per_cluster); | 
|  | offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) + | 
|  | XFS_INO_TO_OFFSET(mp, ino); | 
|  |  | 
|  | imap->im_blkno = XFS_AGB_TO_DADDR(mp, pag->pag_agno, cluster_agbno); | 
|  | imap->im_len = XFS_FSB_TO_BB(mp, M_IGEO(mp)->blocks_per_cluster); | 
|  | imap->im_boffset = (unsigned short)(offset << mp->m_sb.sb_inodelog); | 
|  |  | 
|  | /* | 
|  | * If the inode number maps to a block outside the bounds | 
|  | * of the file system then return NULL rather than calling | 
|  | * read_buf and panicing when we get an error from the | 
|  | * driver. | 
|  | */ | 
|  | if ((imap->im_blkno + imap->im_len) > | 
|  | XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) { | 
|  | xfs_alert(mp, | 
|  | "%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)", | 
|  | __func__, (unsigned long long) imap->im_blkno, | 
|  | (unsigned long long) imap->im_len, | 
|  | XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)); | 
|  | return -EINVAL; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Log specified fields for the ag hdr (inode section). The growth of the agi | 
|  | * structure over time requires that we interpret the buffer as two logical | 
|  | * regions delineated by the end of the unlinked list. This is due to the size | 
|  | * of the hash table and its location in the middle of the agi. | 
|  | * | 
|  | * For example, a request to log a field before agi_unlinked and a field after | 
|  | * agi_unlinked could cause us to log the entire hash table and use an excessive | 
|  | * amount of log space. To avoid this behavior, log the region up through | 
|  | * agi_unlinked in one call and the region after agi_unlinked through the end of | 
|  | * the structure in another. | 
|  | */ | 
|  | void | 
|  | xfs_ialloc_log_agi( | 
|  | struct xfs_trans	*tp, | 
|  | struct xfs_buf		*bp, | 
|  | uint32_t		fields) | 
|  | { | 
|  | int			first;		/* first byte number */ | 
|  | int			last;		/* last byte number */ | 
|  | static const short	offsets[] = {	/* field starting offsets */ | 
|  | /* keep in sync with bit definitions */ | 
|  | offsetof(xfs_agi_t, agi_magicnum), | 
|  | offsetof(xfs_agi_t, agi_versionnum), | 
|  | offsetof(xfs_agi_t, agi_seqno), | 
|  | offsetof(xfs_agi_t, agi_length), | 
|  | offsetof(xfs_agi_t, agi_count), | 
|  | offsetof(xfs_agi_t, agi_root), | 
|  | offsetof(xfs_agi_t, agi_level), | 
|  | offsetof(xfs_agi_t, agi_freecount), | 
|  | offsetof(xfs_agi_t, agi_newino), | 
|  | offsetof(xfs_agi_t, agi_dirino), | 
|  | offsetof(xfs_agi_t, agi_unlinked), | 
|  | offsetof(xfs_agi_t, agi_free_root), | 
|  | offsetof(xfs_agi_t, agi_free_level), | 
|  | offsetof(xfs_agi_t, agi_iblocks), | 
|  | sizeof(xfs_agi_t) | 
|  | }; | 
|  | #ifdef DEBUG | 
|  | struct xfs_agi		*agi = bp->b_addr; | 
|  |  | 
|  | ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC)); | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Compute byte offsets for the first and last fields in the first | 
|  | * region and log the agi buffer. This only logs up through | 
|  | * agi_unlinked. | 
|  | */ | 
|  | if (fields & XFS_AGI_ALL_BITS_R1) { | 
|  | xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1, | 
|  | &first, &last); | 
|  | xfs_trans_log_buf(tp, bp, first, last); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Mask off the bits in the first region and calculate the first and | 
|  | * last field offsets for any bits in the second region. | 
|  | */ | 
|  | fields &= ~XFS_AGI_ALL_BITS_R1; | 
|  | if (fields) { | 
|  | xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2, | 
|  | &first, &last); | 
|  | xfs_trans_log_buf(tp, bp, first, last); | 
|  | } | 
|  | } | 
|  |  | 
|  | static xfs_failaddr_t | 
|  | xfs_agi_verify( | 
|  | struct xfs_buf		*bp) | 
|  | { | 
|  | struct xfs_mount	*mp = bp->b_mount; | 
|  | struct xfs_agi		*agi = bp->b_addr; | 
|  | xfs_failaddr_t		fa; | 
|  | uint32_t		agi_seqno = be32_to_cpu(agi->agi_seqno); | 
|  | uint32_t		agi_length = be32_to_cpu(agi->agi_length); | 
|  | int			i; | 
|  |  | 
|  | if (xfs_has_crc(mp)) { | 
|  | if (!uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid)) | 
|  | return __this_address; | 
|  | if (!xfs_log_check_lsn(mp, be64_to_cpu(agi->agi_lsn))) | 
|  | return __this_address; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Validate the magic number of the agi block. | 
|  | */ | 
|  | if (!xfs_verify_magic(bp, agi->agi_magicnum)) | 
|  | return __this_address; | 
|  | if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum))) | 
|  | return __this_address; | 
|  |  | 
|  | fa = xfs_validate_ag_length(bp, agi_seqno, agi_length); | 
|  | if (fa) | 
|  | return fa; | 
|  |  | 
|  | if (be32_to_cpu(agi->agi_level) < 1 || | 
|  | be32_to_cpu(agi->agi_level) > M_IGEO(mp)->inobt_maxlevels) | 
|  | return __this_address; | 
|  |  | 
|  | if (xfs_has_finobt(mp) && | 
|  | (be32_to_cpu(agi->agi_free_level) < 1 || | 
|  | be32_to_cpu(agi->agi_free_level) > M_IGEO(mp)->inobt_maxlevels)) | 
|  | return __this_address; | 
|  |  | 
|  | for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++) { | 
|  | if (agi->agi_unlinked[i] == cpu_to_be32(NULLAGINO)) | 
|  | continue; | 
|  | if (!xfs_verify_ino(mp, be32_to_cpu(agi->agi_unlinked[i]))) | 
|  | return __this_address; | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void | 
|  | xfs_agi_read_verify( | 
|  | struct xfs_buf	*bp) | 
|  | { | 
|  | struct xfs_mount *mp = bp->b_mount; | 
|  | xfs_failaddr_t	fa; | 
|  |  | 
|  | if (xfs_has_crc(mp) && | 
|  | !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF)) | 
|  | xfs_verifier_error(bp, -EFSBADCRC, __this_address); | 
|  | else { | 
|  | fa = xfs_agi_verify(bp); | 
|  | if (XFS_TEST_ERROR(fa, mp, XFS_ERRTAG_IALLOC_READ_AGI)) | 
|  | xfs_verifier_error(bp, -EFSCORRUPTED, fa); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void | 
|  | xfs_agi_write_verify( | 
|  | struct xfs_buf	*bp) | 
|  | { | 
|  | struct xfs_mount	*mp = bp->b_mount; | 
|  | struct xfs_buf_log_item	*bip = bp->b_log_item; | 
|  | struct xfs_agi		*agi = bp->b_addr; | 
|  | xfs_failaddr_t		fa; | 
|  |  | 
|  | fa = xfs_agi_verify(bp); | 
|  | if (fa) { | 
|  | xfs_verifier_error(bp, -EFSCORRUPTED, fa); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!xfs_has_crc(mp)) | 
|  | return; | 
|  |  | 
|  | if (bip) | 
|  | agi->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn); | 
|  | xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF); | 
|  | } | 
|  |  | 
|  | const struct xfs_buf_ops xfs_agi_buf_ops = { | 
|  | .name = "xfs_agi", | 
|  | .magic = { cpu_to_be32(XFS_AGI_MAGIC), cpu_to_be32(XFS_AGI_MAGIC) }, | 
|  | .verify_read = xfs_agi_read_verify, | 
|  | .verify_write = xfs_agi_write_verify, | 
|  | .verify_struct = xfs_agi_verify, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Read in the allocation group header (inode allocation section) | 
|  | */ | 
|  | int | 
|  | xfs_read_agi( | 
|  | struct xfs_perag	*pag, | 
|  | struct xfs_trans	*tp, | 
|  | struct xfs_buf		**agibpp) | 
|  | { | 
|  | struct xfs_mount	*mp = pag->pag_mount; | 
|  | int			error; | 
|  |  | 
|  | trace_xfs_read_agi(pag->pag_mount, pag->pag_agno); | 
|  |  | 
|  | error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, | 
|  | XFS_AG_DADDR(mp, pag->pag_agno, XFS_AGI_DADDR(mp)), | 
|  | XFS_FSS_TO_BB(mp, 1), 0, agibpp, &xfs_agi_buf_ops); | 
|  | if (error) | 
|  | return error; | 
|  | if (tp) | 
|  | xfs_trans_buf_set_type(tp, *agibpp, XFS_BLFT_AGI_BUF); | 
|  |  | 
|  | xfs_buf_set_ref(*agibpp, XFS_AGI_REF); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Read in the agi and initialise the per-ag data. If the caller supplies a | 
|  | * @agibpp, return the locked AGI buffer to them, otherwise release it. | 
|  | */ | 
|  | int | 
|  | xfs_ialloc_read_agi( | 
|  | struct xfs_perag	*pag, | 
|  | struct xfs_trans	*tp, | 
|  | struct xfs_buf		**agibpp) | 
|  | { | 
|  | struct xfs_buf		*agibp; | 
|  | struct xfs_agi		*agi; | 
|  | int			error; | 
|  |  | 
|  | trace_xfs_ialloc_read_agi(pag->pag_mount, pag->pag_agno); | 
|  |  | 
|  | error = xfs_read_agi(pag, tp, &agibp); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | agi = agibp->b_addr; | 
|  | if (!xfs_perag_initialised_agi(pag)) { | 
|  | pag->pagi_freecount = be32_to_cpu(agi->agi_freecount); | 
|  | pag->pagi_count = be32_to_cpu(agi->agi_count); | 
|  | set_bit(XFS_AGSTATE_AGI_INIT, &pag->pag_opstate); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * It's possible for these to be out of sync if | 
|  | * we are in the middle of a forced shutdown. | 
|  | */ | 
|  | ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) || | 
|  | xfs_is_shutdown(pag->pag_mount)); | 
|  | if (agibpp) | 
|  | *agibpp = agibp; | 
|  | else | 
|  | xfs_trans_brelse(tp, agibp); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* How many inodes are backed by inode clusters ondisk? */ | 
|  | STATIC int | 
|  | xfs_ialloc_count_ondisk( | 
|  | struct xfs_btree_cur		*cur, | 
|  | xfs_agino_t			low, | 
|  | xfs_agino_t			high, | 
|  | unsigned int			*allocated) | 
|  | { | 
|  | struct xfs_inobt_rec_incore	irec; | 
|  | unsigned int			ret = 0; | 
|  | int				has_record; | 
|  | int				error; | 
|  |  | 
|  | error = xfs_inobt_lookup(cur, low, XFS_LOOKUP_LE, &has_record); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | while (has_record) { | 
|  | unsigned int		i, hole_idx; | 
|  |  | 
|  | error = xfs_inobt_get_rec(cur, &irec, &has_record); | 
|  | if (error) | 
|  | return error; | 
|  | if (irec.ir_startino > high) | 
|  | break; | 
|  |  | 
|  | for (i = 0; i < XFS_INODES_PER_CHUNK; i++) { | 
|  | if (irec.ir_startino + i < low) | 
|  | continue; | 
|  | if (irec.ir_startino + i > high) | 
|  | break; | 
|  |  | 
|  | hole_idx = i / XFS_INODES_PER_HOLEMASK_BIT; | 
|  | if (!(irec.ir_holemask & (1U << hole_idx))) | 
|  | ret++; | 
|  | } | 
|  |  | 
|  | error = xfs_btree_increment(cur, 0, &has_record); | 
|  | if (error) | 
|  | return error; | 
|  | } | 
|  |  | 
|  | *allocated = ret; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Is there an inode record covering a given extent? */ | 
|  | int | 
|  | xfs_ialloc_has_inodes_at_extent( | 
|  | struct xfs_btree_cur	*cur, | 
|  | xfs_agblock_t		bno, | 
|  | xfs_extlen_t		len, | 
|  | enum xbtree_recpacking	*outcome) | 
|  | { | 
|  | xfs_agino_t		agino; | 
|  | xfs_agino_t		last_agino; | 
|  | unsigned int		allocated; | 
|  | int			error; | 
|  |  | 
|  | agino = XFS_AGB_TO_AGINO(cur->bc_mp, bno); | 
|  | last_agino = XFS_AGB_TO_AGINO(cur->bc_mp, bno + len) - 1; | 
|  |  | 
|  | error = xfs_ialloc_count_ondisk(cur, agino, last_agino, &allocated); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | if (allocated == 0) | 
|  | *outcome = XBTREE_RECPACKING_EMPTY; | 
|  | else if (allocated == last_agino - agino + 1) | 
|  | *outcome = XBTREE_RECPACKING_FULL; | 
|  | else | 
|  | *outcome = XBTREE_RECPACKING_SPARSE; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | struct xfs_ialloc_count_inodes { | 
|  | xfs_agino_t			count; | 
|  | xfs_agino_t			freecount; | 
|  | }; | 
|  |  | 
|  | /* Record inode counts across all inobt records. */ | 
|  | STATIC int | 
|  | xfs_ialloc_count_inodes_rec( | 
|  | struct xfs_btree_cur		*cur, | 
|  | const union xfs_btree_rec	*rec, | 
|  | void				*priv) | 
|  | { | 
|  | struct xfs_inobt_rec_incore	irec; | 
|  | struct xfs_ialloc_count_inodes	*ci = priv; | 
|  | xfs_failaddr_t			fa; | 
|  |  | 
|  | xfs_inobt_btrec_to_irec(cur->bc_mp, rec, &irec); | 
|  | fa = xfs_inobt_check_irec(cur, &irec); | 
|  | if (fa) | 
|  | return xfs_inobt_complain_bad_rec(cur, fa, &irec); | 
|  |  | 
|  | ci->count += irec.ir_count; | 
|  | ci->freecount += irec.ir_freecount; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Count allocated and free inodes under an inobt. */ | 
|  | int | 
|  | xfs_ialloc_count_inodes( | 
|  | struct xfs_btree_cur		*cur, | 
|  | xfs_agino_t			*count, | 
|  | xfs_agino_t			*freecount) | 
|  | { | 
|  | struct xfs_ialloc_count_inodes	ci = {0}; | 
|  | int				error; | 
|  |  | 
|  | ASSERT(cur->bc_btnum == XFS_BTNUM_INO); | 
|  | error = xfs_btree_query_all(cur, xfs_ialloc_count_inodes_rec, &ci); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | *count = ci.count; | 
|  | *freecount = ci.freecount; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialize inode-related geometry information. | 
|  | * | 
|  | * Compute the inode btree min and max levels and set maxicount. | 
|  | * | 
|  | * Set the inode cluster size.  This may still be overridden by the file | 
|  | * system block size if it is larger than the chosen cluster size. | 
|  | * | 
|  | * For v5 filesystems, scale the cluster size with the inode size to keep a | 
|  | * constant ratio of inode per cluster buffer, but only if mkfs has set the | 
|  | * inode alignment value appropriately for larger cluster sizes. | 
|  | * | 
|  | * Then compute the inode cluster alignment information. | 
|  | */ | 
|  | void | 
|  | xfs_ialloc_setup_geometry( | 
|  | struct xfs_mount	*mp) | 
|  | { | 
|  | struct xfs_sb		*sbp = &mp->m_sb; | 
|  | struct xfs_ino_geometry	*igeo = M_IGEO(mp); | 
|  | uint64_t		icount; | 
|  | uint			inodes; | 
|  |  | 
|  | igeo->new_diflags2 = 0; | 
|  | if (xfs_has_bigtime(mp)) | 
|  | igeo->new_diflags2 |= XFS_DIFLAG2_BIGTIME; | 
|  | if (xfs_has_large_extent_counts(mp)) | 
|  | igeo->new_diflags2 |= XFS_DIFLAG2_NREXT64; | 
|  |  | 
|  | /* Compute inode btree geometry. */ | 
|  | igeo->agino_log = sbp->sb_inopblog + sbp->sb_agblklog; | 
|  | igeo->inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1); | 
|  | igeo->inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0); | 
|  | igeo->inobt_mnr[0] = igeo->inobt_mxr[0] / 2; | 
|  | igeo->inobt_mnr[1] = igeo->inobt_mxr[1] / 2; | 
|  |  | 
|  | igeo->ialloc_inos = max_t(uint16_t, XFS_INODES_PER_CHUNK, | 
|  | sbp->sb_inopblock); | 
|  | igeo->ialloc_blks = igeo->ialloc_inos >> sbp->sb_inopblog; | 
|  |  | 
|  | if (sbp->sb_spino_align) | 
|  | igeo->ialloc_min_blks = sbp->sb_spino_align; | 
|  | else | 
|  | igeo->ialloc_min_blks = igeo->ialloc_blks; | 
|  |  | 
|  | /* Compute and fill in value of m_ino_geo.inobt_maxlevels. */ | 
|  | inodes = (1LL << XFS_INO_AGINO_BITS(mp)) >> XFS_INODES_PER_CHUNK_LOG; | 
|  | igeo->inobt_maxlevels = xfs_btree_compute_maxlevels(igeo->inobt_mnr, | 
|  | inodes); | 
|  | ASSERT(igeo->inobt_maxlevels <= xfs_iallocbt_maxlevels_ondisk()); | 
|  |  | 
|  | /* | 
|  | * Set the maximum inode count for this filesystem, being careful not | 
|  | * to use obviously garbage sb_inopblog/sb_inopblock values.  Regular | 
|  | * users should never get here due to failing sb verification, but | 
|  | * certain users (xfs_db) need to be usable even with corrupt metadata. | 
|  | */ | 
|  | if (sbp->sb_imax_pct && igeo->ialloc_blks) { | 
|  | /* | 
|  | * Make sure the maximum inode count is a multiple | 
|  | * of the units we allocate inodes in. | 
|  | */ | 
|  | icount = sbp->sb_dblocks * sbp->sb_imax_pct; | 
|  | do_div(icount, 100); | 
|  | do_div(icount, igeo->ialloc_blks); | 
|  | igeo->maxicount = XFS_FSB_TO_INO(mp, | 
|  | icount * igeo->ialloc_blks); | 
|  | } else { | 
|  | igeo->maxicount = 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Compute the desired size of an inode cluster buffer size, which | 
|  | * starts at 8K and (on v5 filesystems) scales up with larger inode | 
|  | * sizes. | 
|  | * | 
|  | * Preserve the desired inode cluster size because the sparse inodes | 
|  | * feature uses that desired size (not the actual size) to compute the | 
|  | * sparse inode alignment.  The mount code validates this value, so we | 
|  | * cannot change the behavior. | 
|  | */ | 
|  | igeo->inode_cluster_size_raw = XFS_INODE_BIG_CLUSTER_SIZE; | 
|  | if (xfs_has_v3inodes(mp)) { | 
|  | int	new_size = igeo->inode_cluster_size_raw; | 
|  |  | 
|  | new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE; | 
|  | if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size)) | 
|  | igeo->inode_cluster_size_raw = new_size; | 
|  | } | 
|  |  | 
|  | /* Calculate inode cluster ratios. */ | 
|  | if (igeo->inode_cluster_size_raw > mp->m_sb.sb_blocksize) | 
|  | igeo->blocks_per_cluster = XFS_B_TO_FSBT(mp, | 
|  | igeo->inode_cluster_size_raw); | 
|  | else | 
|  | igeo->blocks_per_cluster = 1; | 
|  | igeo->inode_cluster_size = XFS_FSB_TO_B(mp, igeo->blocks_per_cluster); | 
|  | igeo->inodes_per_cluster = XFS_FSB_TO_INO(mp, igeo->blocks_per_cluster); | 
|  |  | 
|  | /* Calculate inode cluster alignment. */ | 
|  | if (xfs_has_align(mp) && | 
|  | mp->m_sb.sb_inoalignmt >= igeo->blocks_per_cluster) | 
|  | igeo->cluster_align = mp->m_sb.sb_inoalignmt; | 
|  | else | 
|  | igeo->cluster_align = 1; | 
|  | igeo->inoalign_mask = igeo->cluster_align - 1; | 
|  | igeo->cluster_align_inodes = XFS_FSB_TO_INO(mp, igeo->cluster_align); | 
|  |  | 
|  | /* | 
|  | * If we are using stripe alignment, check whether | 
|  | * the stripe unit is a multiple of the inode alignment | 
|  | */ | 
|  | if (mp->m_dalign && igeo->inoalign_mask && | 
|  | !(mp->m_dalign & igeo->inoalign_mask)) | 
|  | igeo->ialloc_align = mp->m_dalign; | 
|  | else | 
|  | igeo->ialloc_align = 0; | 
|  | } | 
|  |  | 
|  | /* Compute the location of the root directory inode that is laid out by mkfs. */ | 
|  | xfs_ino_t | 
|  | xfs_ialloc_calc_rootino( | 
|  | struct xfs_mount	*mp, | 
|  | int			sunit) | 
|  | { | 
|  | struct xfs_ino_geometry	*igeo = M_IGEO(mp); | 
|  | xfs_agblock_t		first_bno; | 
|  |  | 
|  | /* | 
|  | * Pre-calculate the geometry of AG 0.  We know what it looks like | 
|  | * because libxfs knows how to create allocation groups now. | 
|  | * | 
|  | * first_bno is the first block in which mkfs could possibly have | 
|  | * allocated the root directory inode, once we factor in the metadata | 
|  | * that mkfs formats before it.  Namely, the four AG headers... | 
|  | */ | 
|  | first_bno = howmany(4 * mp->m_sb.sb_sectsize, mp->m_sb.sb_blocksize); | 
|  |  | 
|  | /* ...the two free space btree roots... */ | 
|  | first_bno += 2; | 
|  |  | 
|  | /* ...the inode btree root... */ | 
|  | first_bno += 1; | 
|  |  | 
|  | /* ...the initial AGFL... */ | 
|  | first_bno += xfs_alloc_min_freelist(mp, NULL); | 
|  |  | 
|  | /* ...the free inode btree root... */ | 
|  | if (xfs_has_finobt(mp)) | 
|  | first_bno++; | 
|  |  | 
|  | /* ...the reverse mapping btree root... */ | 
|  | if (xfs_has_rmapbt(mp)) | 
|  | first_bno++; | 
|  |  | 
|  | /* ...the reference count btree... */ | 
|  | if (xfs_has_reflink(mp)) | 
|  | first_bno++; | 
|  |  | 
|  | /* | 
|  | * ...and the log, if it is allocated in the first allocation group. | 
|  | * | 
|  | * This can happen with filesystems that only have a single | 
|  | * allocation group, or very odd geometries created by old mkfs | 
|  | * versions on very small filesystems. | 
|  | */ | 
|  | if (xfs_ag_contains_log(mp, 0)) | 
|  | first_bno += mp->m_sb.sb_logblocks; | 
|  |  | 
|  | /* | 
|  | * Now round first_bno up to whatever allocation alignment is given | 
|  | * by the filesystem or was passed in. | 
|  | */ | 
|  | if (xfs_has_dalign(mp) && igeo->ialloc_align > 0) | 
|  | first_bno = roundup(first_bno, sunit); | 
|  | else if (xfs_has_align(mp) && | 
|  | mp->m_sb.sb_inoalignmt > 1) | 
|  | first_bno = roundup(first_bno, mp->m_sb.sb_inoalignmt); | 
|  |  | 
|  | return XFS_AGINO_TO_INO(mp, 0, XFS_AGB_TO_AGINO(mp, first_bno)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Ensure there are not sparse inode clusters that cross the new EOAG. | 
|  | * | 
|  | * This is a no-op for non-spinode filesystems since clusters are always fully | 
|  | * allocated and checking the bnobt suffices.  However, a spinode filesystem | 
|  | * could have a record where the upper inodes are free blocks.  If those blocks | 
|  | * were removed from the filesystem, the inode record would extend beyond EOAG, | 
|  | * which will be flagged as corruption. | 
|  | */ | 
|  | int | 
|  | xfs_ialloc_check_shrink( | 
|  | struct xfs_perag	*pag, | 
|  | struct xfs_trans	*tp, | 
|  | struct xfs_buf		*agibp, | 
|  | xfs_agblock_t		new_length) | 
|  | { | 
|  | struct xfs_inobt_rec_incore rec; | 
|  | struct xfs_btree_cur	*cur; | 
|  | xfs_agino_t		agino; | 
|  | int			has; | 
|  | int			error; | 
|  |  | 
|  | if (!xfs_has_sparseinodes(pag->pag_mount)) | 
|  | return 0; | 
|  |  | 
|  | cur = xfs_inobt_init_cursor(pag, tp, agibp, XFS_BTNUM_INO); | 
|  |  | 
|  | /* Look up the inobt record that would correspond to the new EOFS. */ | 
|  | agino = XFS_AGB_TO_AGINO(pag->pag_mount, new_length); | 
|  | error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &has); | 
|  | if (error || !has) | 
|  | goto out; | 
|  |  | 
|  | error = xfs_inobt_get_rec(cur, &rec, &has); | 
|  | if (error) | 
|  | goto out; | 
|  |  | 
|  | if (!has) { | 
|  | error = -EFSCORRUPTED; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* If the record covers inodes that would be beyond EOFS, bail out. */ | 
|  | if (rec.ir_startino + XFS_INODES_PER_CHUNK > agino) { | 
|  | error = -ENOSPC; | 
|  | goto out; | 
|  | } | 
|  | out: | 
|  | xfs_btree_del_cursor(cur, error); | 
|  | return error; | 
|  | } |