|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * Aug 8, 2011 Bob Pearson with help from Joakim Tjernlund and George Spelvin | 
|  | * cleaned up code to current version of sparse and added the slicing-by-8 | 
|  | * algorithm to the closely similar existing slicing-by-4 algorithm. | 
|  | * Oct 15, 2000 Matt Domsch <Matt_Domsch@dell.com> | 
|  | * Nicer crc32 functions/docs submitted by linux@horizon.com.  Thanks! | 
|  | * Code was from the public domain, copyright abandoned.  Code was | 
|  | * subsequently included in the kernel, thus was re-licensed under the | 
|  | * GNU GPL v2. | 
|  | * Oct 12, 2000 Matt Domsch <Matt_Domsch@dell.com> | 
|  | * Same crc32 function was used in 5 other places in the kernel. | 
|  | * I made one version, and deleted the others. | 
|  | * There are various incantations of crc32().  Some use a seed of 0 or ~0. | 
|  | * Some xor at the end with ~0.  The generic crc32() function takes | 
|  | * seed as an argument, and doesn't xor at the end.  Then individual | 
|  | * users can do whatever they need. | 
|  | *   drivers/net/smc9194.c uses seed ~0, doesn't xor with ~0. | 
|  | *   fs/jffs2 uses seed 0, doesn't xor with ~0. | 
|  | *   fs/partitions/efi.c uses seed ~0, xor's with ~0. | 
|  | */ | 
|  |  | 
|  | /* see: Documentation/crc32.txt for a description of algorithms */ | 
|  |  | 
|  | /* | 
|  | * lifted from the 3.8-rc2 kernel source for xfsprogs. Killed CONFIG_X86 | 
|  | * specific bits for just the generic algorithm. Also removed the big endian | 
|  | * version of the algorithm as XFS only uses the little endian CRC version to | 
|  | * match the hardware acceleration available on Intel CPUs. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Do not include platform_defs.h here; this will break cross builds if the | 
|  | * build host does not have liburcu-dev installed. | 
|  | */ | 
|  | #include <stdio.h> | 
|  | #include <sys/types.h> | 
|  | #include <inttypes.h> | 
|  | #include <asm/types.h> | 
|  | #include <sys/time.h> | 
|  | /* For endian conversion routines */ | 
|  | #include "xfs_arch.h" | 
|  | #include "crc32defs.h" | 
|  | #include "crc32c.h" | 
|  |  | 
|  | /* types specifc to this file */ | 
|  | typedef __u8	u8; | 
|  | typedef __u16	u16; | 
|  | typedef __u32	u32; | 
|  | typedef __u32	u64; | 
|  | #define __pure | 
|  |  | 
|  | #if CRC_LE_BITS > 8 | 
|  | # define tole(x) ((__force u32) __constant_cpu_to_le32(x)) | 
|  | #else | 
|  | # define tole(x) (x) | 
|  | #endif | 
|  |  | 
|  | #include "crc32table.h" | 
|  |  | 
|  | #if CRC_LE_BITS > 8 | 
|  |  | 
|  | /* implements slicing-by-4 or slicing-by-8 algorithm */ | 
|  | static inline u32 | 
|  | crc32_body(u32 crc, unsigned char const *buf, size_t len, const u32 (*tab)[256]) | 
|  | { | 
|  | #if __BYTE_ORDER == __LITTLE_ENDIAN | 
|  | #  define DO_CRC(x) crc = t0[(crc ^ (x)) & 255] ^ (crc >> 8) | 
|  | #  define DO_CRC4 (t3[(q) & 255] ^ t2[(q >> 8) & 255] ^ \ | 
|  | t1[(q >> 16) & 255] ^ t0[(q >> 24) & 255]) | 
|  | #  define DO_CRC8 (t7[(q) & 255] ^ t6[(q >> 8) & 255] ^ \ | 
|  | t5[(q >> 16) & 255] ^ t4[(q >> 24) & 255]) | 
|  | # elif __BYTE_ORDER == __BIG_ENDIAN | 
|  | #  define DO_CRC(x) crc = t0[((crc >> 24) ^ (x)) & 255] ^ (crc << 8) | 
|  | #  define DO_CRC4 (t0[(q) & 255] ^ t1[(q >> 8) & 255] ^ \ | 
|  | t2[(q >> 16) & 255] ^ t3[(q >> 24) & 255]) | 
|  | #  define DO_CRC8 (t4[(q) & 255] ^ t5[(q >> 8) & 255] ^ \ | 
|  | t6[(q >> 16) & 255] ^ t7[(q >> 24) & 255]) | 
|  | # else | 
|  | #  error What endian are you? | 
|  | # endif | 
|  | const u32 *b; | 
|  | size_t    rem_len; | 
|  | const u32 *t0=tab[0], *t1=tab[1], *t2=tab[2], *t3=tab[3]; | 
|  | # if CRC_LE_BITS != 32 | 
|  | const u32 *t4 = tab[4], *t5 = tab[5], *t6 = tab[6], *t7 = tab[7]; | 
|  | # endif | 
|  | u32 q; | 
|  |  | 
|  | /* Align it */ | 
|  | if (((long)buf & 3) && len) { | 
|  | do { | 
|  | DO_CRC(*buf++); | 
|  | } while ((--len) && ((long)buf)&3); | 
|  | } | 
|  |  | 
|  | # if CRC_LE_BITS == 32 | 
|  | rem_len = len & 3; | 
|  | len = len >> 2; | 
|  | # else | 
|  | rem_len = len & 7; | 
|  | len = len >> 3; | 
|  | # endif | 
|  |  | 
|  | b = (const u32 *)buf; | 
|  | for (--b; len; --len) { | 
|  | q = crc ^ *++b; /* use pre increment for speed */ | 
|  | # if CRC_LE_BITS == 32 | 
|  | crc = DO_CRC4; | 
|  | # else | 
|  | crc = DO_CRC8; | 
|  | q = *++b; | 
|  | crc ^= DO_CRC4; | 
|  | # endif | 
|  | } | 
|  | len = rem_len; | 
|  | /* And the last few bytes */ | 
|  | if (len) { | 
|  | u8 *p = (u8 *)(b + 1) - 1; | 
|  | do { | 
|  | DO_CRC(*++p); /* use pre increment for speed */ | 
|  | } while (--len); | 
|  | } | 
|  | return crc; | 
|  | #undef DO_CRC | 
|  | #undef DO_CRC4 | 
|  | #undef DO_CRC8 | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /** | 
|  | * crc32_le() - Calculate bitwise little-endian Ethernet AUTODIN II CRC32 | 
|  | * @crc: seed value for computation.  ~0 for Ethernet, sometimes 0 for | 
|  | *	other uses, or the previous crc32 value if computing incrementally. | 
|  | * @p: pointer to buffer over which CRC is run | 
|  | * @len: length of buffer @p | 
|  | */ | 
|  | static inline u32 __pure crc32_le_generic(u32 crc, unsigned char const *p, | 
|  | size_t len, const u32 (*tab)[256], | 
|  | u32 polynomial) | 
|  | { | 
|  | #if CRC_LE_BITS == 1 | 
|  | int i; | 
|  | while (len--) { | 
|  | crc ^= *p++; | 
|  | for (i = 0; i < 8; i++) | 
|  | crc = (crc >> 1) ^ ((crc & 1) ? polynomial : 0); | 
|  | } | 
|  | # elif CRC_LE_BITS == 2 | 
|  | while (len--) { | 
|  | crc ^= *p++; | 
|  | crc = (crc >> 2) ^ tab[0][crc & 3]; | 
|  | crc = (crc >> 2) ^ tab[0][crc & 3]; | 
|  | crc = (crc >> 2) ^ tab[0][crc & 3]; | 
|  | crc = (crc >> 2) ^ tab[0][crc & 3]; | 
|  | } | 
|  | # elif CRC_LE_BITS == 4 | 
|  | while (len--) { | 
|  | crc ^= *p++; | 
|  | crc = (crc >> 4) ^ tab[0][crc & 15]; | 
|  | crc = (crc >> 4) ^ tab[0][crc & 15]; | 
|  | } | 
|  | # elif CRC_LE_BITS == 8 | 
|  | /* aka Sarwate algorithm */ | 
|  | while (len--) { | 
|  | crc ^= *p++; | 
|  | crc = (crc >> 8) ^ tab[0][crc & 255]; | 
|  | } | 
|  | # else | 
|  | crc = (__force u32) cpu_to_le32(crc); | 
|  | crc = crc32_body(crc, p, len, tab); | 
|  | crc = le32_to_cpu((__force __le32)crc); | 
|  | #endif | 
|  | return crc; | 
|  | } | 
|  |  | 
|  | #if CRC_LE_BITS == 1 | 
|  | u32 __pure crc32c_le(u32 crc, unsigned char const *p, size_t len) | 
|  | { | 
|  | return crc32_le_generic(crc, p, len, NULL, CRC32C_POLY_LE); | 
|  | } | 
|  | #else | 
|  | u32 __pure crc32c_le(u32 crc, unsigned char const *p, size_t len) | 
|  | { | 
|  | return crc32_le_generic(crc, p, len, | 
|  | (const u32 (*)[256])crc32ctable_le, CRC32C_POLY_LE); | 
|  | } | 
|  | #endif | 
|  |  | 
|  |  | 
|  | #ifdef CRC32_SELFTEST | 
|  | # include "crc32cselftest.h" | 
|  |  | 
|  | /* | 
|  | * make sure we always return 0 for a successful test run, and non-zero for a | 
|  | * failed run. The build infrastructure is looking for this information to | 
|  | * determine whether to allow the build to proceed. | 
|  | */ | 
|  | int main(int argc, char **argv) | 
|  | { | 
|  | int errors; | 
|  |  | 
|  | printf("CRC_LE_BITS = %d\n", CRC_LE_BITS); | 
|  |  | 
|  | errors = crc32c_test(0); | 
|  |  | 
|  | return errors != 0; | 
|  | } | 
|  | #endif /* CRC32_SELFTEST */ |