|  | /* | 
|  | * Interface for controlling IO bandwidth on a request queue | 
|  | * | 
|  | * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com> | 
|  | */ | 
|  |  | 
|  | #include <linux/module.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/blkdev.h> | 
|  | #include <linux/bio.h> | 
|  | #include <linux/blktrace_api.h> | 
|  | #include "blk-cgroup.h" | 
|  |  | 
|  | /* Max dispatch from a group in 1 round */ | 
|  | static int throtl_grp_quantum = 8; | 
|  |  | 
|  | /* Total max dispatch from all groups in one round */ | 
|  | static int throtl_quantum = 32; | 
|  |  | 
|  | /* Throttling is performed over 100ms slice and after that slice is renewed */ | 
|  | static unsigned long throtl_slice = HZ/10;	/* 100 ms */ | 
|  |  | 
|  | /* A workqueue to queue throttle related work */ | 
|  | static struct workqueue_struct *kthrotld_workqueue; | 
|  | static void throtl_schedule_delayed_work(struct throtl_data *td, | 
|  | unsigned long delay); | 
|  |  | 
|  | struct throtl_rb_root { | 
|  | struct rb_root rb; | 
|  | struct rb_node *left; | 
|  | unsigned int count; | 
|  | unsigned long min_disptime; | 
|  | }; | 
|  |  | 
|  | #define THROTL_RB_ROOT	(struct throtl_rb_root) { .rb = RB_ROOT, .left = NULL, \ | 
|  | .count = 0, .min_disptime = 0} | 
|  |  | 
|  | #define rb_entry_tg(node)	rb_entry((node), struct throtl_grp, rb_node) | 
|  |  | 
|  | struct throtl_grp { | 
|  | /* List of throtl groups on the request queue*/ | 
|  | struct hlist_node tg_node; | 
|  |  | 
|  | /* active throtl group service_tree member */ | 
|  | struct rb_node rb_node; | 
|  |  | 
|  | /* | 
|  | * Dispatch time in jiffies. This is the estimated time when group | 
|  | * will unthrottle and is ready to dispatch more bio. It is used as | 
|  | * key to sort active groups in service tree. | 
|  | */ | 
|  | unsigned long disptime; | 
|  |  | 
|  | struct blkio_group blkg; | 
|  | atomic_t ref; | 
|  | unsigned int flags; | 
|  |  | 
|  | /* Two lists for READ and WRITE */ | 
|  | struct bio_list bio_lists[2]; | 
|  |  | 
|  | /* Number of queued bios on READ and WRITE lists */ | 
|  | unsigned int nr_queued[2]; | 
|  |  | 
|  | /* bytes per second rate limits */ | 
|  | uint64_t bps[2]; | 
|  |  | 
|  | /* IOPS limits */ | 
|  | unsigned int iops[2]; | 
|  |  | 
|  | /* Number of bytes disptached in current slice */ | 
|  | uint64_t bytes_disp[2]; | 
|  | /* Number of bio's dispatched in current slice */ | 
|  | unsigned int io_disp[2]; | 
|  |  | 
|  | /* When did we start a new slice */ | 
|  | unsigned long slice_start[2]; | 
|  | unsigned long slice_end[2]; | 
|  |  | 
|  | /* Some throttle limits got updated for the group */ | 
|  | int limits_changed; | 
|  |  | 
|  | struct rcu_head rcu_head; | 
|  | }; | 
|  |  | 
|  | struct throtl_data | 
|  | { | 
|  | /* List of throtl groups */ | 
|  | struct hlist_head tg_list; | 
|  |  | 
|  | /* service tree for active throtl groups */ | 
|  | struct throtl_rb_root tg_service_tree; | 
|  |  | 
|  | struct throtl_grp *root_tg; | 
|  | struct request_queue *queue; | 
|  |  | 
|  | /* Total Number of queued bios on READ and WRITE lists */ | 
|  | unsigned int nr_queued[2]; | 
|  |  | 
|  | /* | 
|  | * number of total undestroyed groups | 
|  | */ | 
|  | unsigned int nr_undestroyed_grps; | 
|  |  | 
|  | /* Work for dispatching throttled bios */ | 
|  | struct delayed_work throtl_work; | 
|  |  | 
|  | int limits_changed; | 
|  | }; | 
|  |  | 
|  | enum tg_state_flags { | 
|  | THROTL_TG_FLAG_on_rr = 0,	/* on round-robin busy list */ | 
|  | }; | 
|  |  | 
|  | #define THROTL_TG_FNS(name)						\ | 
|  | static inline void throtl_mark_tg_##name(struct throtl_grp *tg)		\ | 
|  | {									\ | 
|  | (tg)->flags |= (1 << THROTL_TG_FLAG_##name);			\ | 
|  | }									\ | 
|  | static inline void throtl_clear_tg_##name(struct throtl_grp *tg)	\ | 
|  | {									\ | 
|  | (tg)->flags &= ~(1 << THROTL_TG_FLAG_##name);			\ | 
|  | }									\ | 
|  | static inline int throtl_tg_##name(const struct throtl_grp *tg)		\ | 
|  | {									\ | 
|  | return ((tg)->flags & (1 << THROTL_TG_FLAG_##name)) != 0;	\ | 
|  | } | 
|  |  | 
|  | THROTL_TG_FNS(on_rr); | 
|  |  | 
|  | #define throtl_log_tg(td, tg, fmt, args...)				\ | 
|  | blk_add_trace_msg((td)->queue, "throtl %s " fmt,		\ | 
|  | blkg_path(&(tg)->blkg), ##args);      	\ | 
|  |  | 
|  | #define throtl_log(td, fmt, args...)	\ | 
|  | blk_add_trace_msg((td)->queue, "throtl " fmt, ##args) | 
|  |  | 
|  | static inline struct throtl_grp *tg_of_blkg(struct blkio_group *blkg) | 
|  | { | 
|  | if (blkg) | 
|  | return container_of(blkg, struct throtl_grp, blkg); | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static inline int total_nr_queued(struct throtl_data *td) | 
|  | { | 
|  | return (td->nr_queued[0] + td->nr_queued[1]); | 
|  | } | 
|  |  | 
|  | static inline struct throtl_grp *throtl_ref_get_tg(struct throtl_grp *tg) | 
|  | { | 
|  | atomic_inc(&tg->ref); | 
|  | return tg; | 
|  | } | 
|  |  | 
|  | static void throtl_free_tg(struct rcu_head *head) | 
|  | { | 
|  | struct throtl_grp *tg; | 
|  |  | 
|  | tg = container_of(head, struct throtl_grp, rcu_head); | 
|  | free_percpu(tg->blkg.stats_cpu); | 
|  | kfree(tg); | 
|  | } | 
|  |  | 
|  | static void throtl_put_tg(struct throtl_grp *tg) | 
|  | { | 
|  | BUG_ON(atomic_read(&tg->ref) <= 0); | 
|  | if (!atomic_dec_and_test(&tg->ref)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * A group is freed in rcu manner. But having an rcu lock does not | 
|  | * mean that one can access all the fields of blkg and assume these | 
|  | * are valid. For example, don't try to follow throtl_data and | 
|  | * request queue links. | 
|  | * | 
|  | * Having a reference to blkg under an rcu allows acess to only | 
|  | * values local to groups like group stats and group rate limits | 
|  | */ | 
|  | call_rcu(&tg->rcu_head, throtl_free_tg); | 
|  | } | 
|  |  | 
|  | static void throtl_init_group(struct throtl_grp *tg) | 
|  | { | 
|  | INIT_HLIST_NODE(&tg->tg_node); | 
|  | RB_CLEAR_NODE(&tg->rb_node); | 
|  | bio_list_init(&tg->bio_lists[0]); | 
|  | bio_list_init(&tg->bio_lists[1]); | 
|  | tg->limits_changed = false; | 
|  |  | 
|  | /* Practically unlimited BW */ | 
|  | tg->bps[0] = tg->bps[1] = -1; | 
|  | tg->iops[0] = tg->iops[1] = -1; | 
|  |  | 
|  | /* | 
|  | * Take the initial reference that will be released on destroy | 
|  | * This can be thought of a joint reference by cgroup and | 
|  | * request queue which will be dropped by either request queue | 
|  | * exit or cgroup deletion path depending on who is exiting first. | 
|  | */ | 
|  | atomic_set(&tg->ref, 1); | 
|  | } | 
|  |  | 
|  | /* Should be called with rcu read lock held (needed for blkcg) */ | 
|  | static void | 
|  | throtl_add_group_to_td_list(struct throtl_data *td, struct throtl_grp *tg) | 
|  | { | 
|  | hlist_add_head(&tg->tg_node, &td->tg_list); | 
|  | td->nr_undestroyed_grps++; | 
|  | } | 
|  |  | 
|  | static void | 
|  | __throtl_tg_fill_dev_details(struct throtl_data *td, struct throtl_grp *tg) | 
|  | { | 
|  | struct backing_dev_info *bdi = &td->queue->backing_dev_info; | 
|  | unsigned int major, minor; | 
|  |  | 
|  | if (!tg || tg->blkg.dev) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Fill in device details for a group which might not have been | 
|  | * filled at group creation time as queue was being instantiated | 
|  | * and driver had not attached a device yet | 
|  | */ | 
|  | if (bdi->dev && dev_name(bdi->dev)) { | 
|  | sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor); | 
|  | tg->blkg.dev = MKDEV(major, minor); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Should be called with without queue lock held. Here queue lock will be | 
|  | * taken rarely. It will be taken only once during life time of a group | 
|  | * if need be | 
|  | */ | 
|  | static void | 
|  | throtl_tg_fill_dev_details(struct throtl_data *td, struct throtl_grp *tg) | 
|  | { | 
|  | if (!tg || tg->blkg.dev) | 
|  | return; | 
|  |  | 
|  | spin_lock_irq(td->queue->queue_lock); | 
|  | __throtl_tg_fill_dev_details(td, tg); | 
|  | spin_unlock_irq(td->queue->queue_lock); | 
|  | } | 
|  |  | 
|  | static void throtl_init_add_tg_lists(struct throtl_data *td, | 
|  | struct throtl_grp *tg, struct blkio_cgroup *blkcg) | 
|  | { | 
|  | __throtl_tg_fill_dev_details(td, tg); | 
|  |  | 
|  | /* Add group onto cgroup list */ | 
|  | blkiocg_add_blkio_group(blkcg, &tg->blkg, (void *)td, | 
|  | tg->blkg.dev, BLKIO_POLICY_THROTL); | 
|  |  | 
|  | tg->bps[READ] = blkcg_get_read_bps(blkcg, tg->blkg.dev); | 
|  | tg->bps[WRITE] = blkcg_get_write_bps(blkcg, tg->blkg.dev); | 
|  | tg->iops[READ] = blkcg_get_read_iops(blkcg, tg->blkg.dev); | 
|  | tg->iops[WRITE] = blkcg_get_write_iops(blkcg, tg->blkg.dev); | 
|  |  | 
|  | throtl_add_group_to_td_list(td, tg); | 
|  | } | 
|  |  | 
|  | /* Should be called without queue lock and outside of rcu period */ | 
|  | static struct throtl_grp *throtl_alloc_tg(struct throtl_data *td) | 
|  | { | 
|  | struct throtl_grp *tg = NULL; | 
|  | int ret; | 
|  |  | 
|  | tg = kzalloc_node(sizeof(*tg), GFP_ATOMIC, td->queue->node); | 
|  | if (!tg) | 
|  | return NULL; | 
|  |  | 
|  | ret = blkio_alloc_blkg_stats(&tg->blkg); | 
|  |  | 
|  | if (ret) { | 
|  | kfree(tg); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | throtl_init_group(tg); | 
|  | return tg; | 
|  | } | 
|  |  | 
|  | static struct | 
|  | throtl_grp *throtl_find_tg(struct throtl_data *td, struct blkio_cgroup *blkcg) | 
|  | { | 
|  | struct throtl_grp *tg = NULL; | 
|  | void *key = td; | 
|  |  | 
|  | /* | 
|  | * This is the common case when there are no blkio cgroups. | 
|  | * Avoid lookup in this case | 
|  | */ | 
|  | if (blkcg == &blkio_root_cgroup) | 
|  | tg = td->root_tg; | 
|  | else | 
|  | tg = tg_of_blkg(blkiocg_lookup_group(blkcg, key)); | 
|  |  | 
|  | __throtl_tg_fill_dev_details(td, tg); | 
|  | return tg; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function returns with queue lock unlocked in case of error, like | 
|  | * request queue is no more | 
|  | */ | 
|  | static struct throtl_grp * throtl_get_tg(struct throtl_data *td) | 
|  | { | 
|  | struct throtl_grp *tg = NULL, *__tg = NULL; | 
|  | struct blkio_cgroup *blkcg; | 
|  | struct request_queue *q = td->queue; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | blkcg = task_blkio_cgroup(current); | 
|  | tg = throtl_find_tg(td, blkcg); | 
|  | if (tg) { | 
|  | rcu_read_unlock(); | 
|  | return tg; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Need to allocate a group. Allocation of group also needs allocation | 
|  | * of per cpu stats which in-turn takes a mutex() and can block. Hence | 
|  | * we need to drop rcu lock and queue_lock before we call alloc | 
|  | * | 
|  | * Take the request queue reference to make sure queue does not | 
|  | * go away once we return from allocation. | 
|  | */ | 
|  | blk_get_queue(q); | 
|  | rcu_read_unlock(); | 
|  | spin_unlock_irq(q->queue_lock); | 
|  |  | 
|  | tg = throtl_alloc_tg(td); | 
|  | /* | 
|  | * We might have slept in group allocation. Make sure queue is not | 
|  | * dead | 
|  | */ | 
|  | if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) { | 
|  | blk_put_queue(q); | 
|  | if (tg) | 
|  | kfree(tg); | 
|  |  | 
|  | return ERR_PTR(-ENODEV); | 
|  | } | 
|  | blk_put_queue(q); | 
|  |  | 
|  | /* Group allocated and queue is still alive. take the lock */ | 
|  | spin_lock_irq(q->queue_lock); | 
|  |  | 
|  | /* | 
|  | * Initialize the new group. After sleeping, read the blkcg again. | 
|  | */ | 
|  | rcu_read_lock(); | 
|  | blkcg = task_blkio_cgroup(current); | 
|  |  | 
|  | /* | 
|  | * If some other thread already allocated the group while we were | 
|  | * not holding queue lock, free up the group | 
|  | */ | 
|  | __tg = throtl_find_tg(td, blkcg); | 
|  |  | 
|  | if (__tg) { | 
|  | kfree(tg); | 
|  | rcu_read_unlock(); | 
|  | return __tg; | 
|  | } | 
|  |  | 
|  | /* Group allocation failed. Account the IO to root group */ | 
|  | if (!tg) { | 
|  | tg = td->root_tg; | 
|  | return tg; | 
|  | } | 
|  |  | 
|  | throtl_init_add_tg_lists(td, tg, blkcg); | 
|  | rcu_read_unlock(); | 
|  | return tg; | 
|  | } | 
|  |  | 
|  | static struct throtl_grp *throtl_rb_first(struct throtl_rb_root *root) | 
|  | { | 
|  | /* Service tree is empty */ | 
|  | if (!root->count) | 
|  | return NULL; | 
|  |  | 
|  | if (!root->left) | 
|  | root->left = rb_first(&root->rb); | 
|  |  | 
|  | if (root->left) | 
|  | return rb_entry_tg(root->left); | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void rb_erase_init(struct rb_node *n, struct rb_root *root) | 
|  | { | 
|  | rb_erase(n, root); | 
|  | RB_CLEAR_NODE(n); | 
|  | } | 
|  |  | 
|  | static void throtl_rb_erase(struct rb_node *n, struct throtl_rb_root *root) | 
|  | { | 
|  | if (root->left == n) | 
|  | root->left = NULL; | 
|  | rb_erase_init(n, &root->rb); | 
|  | --root->count; | 
|  | } | 
|  |  | 
|  | static void update_min_dispatch_time(struct throtl_rb_root *st) | 
|  | { | 
|  | struct throtl_grp *tg; | 
|  |  | 
|  | tg = throtl_rb_first(st); | 
|  | if (!tg) | 
|  | return; | 
|  |  | 
|  | st->min_disptime = tg->disptime; | 
|  | } | 
|  |  | 
|  | static void | 
|  | tg_service_tree_add(struct throtl_rb_root *st, struct throtl_grp *tg) | 
|  | { | 
|  | struct rb_node **node = &st->rb.rb_node; | 
|  | struct rb_node *parent = NULL; | 
|  | struct throtl_grp *__tg; | 
|  | unsigned long key = tg->disptime; | 
|  | int left = 1; | 
|  |  | 
|  | while (*node != NULL) { | 
|  | parent = *node; | 
|  | __tg = rb_entry_tg(parent); | 
|  |  | 
|  | if (time_before(key, __tg->disptime)) | 
|  | node = &parent->rb_left; | 
|  | else { | 
|  | node = &parent->rb_right; | 
|  | left = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (left) | 
|  | st->left = &tg->rb_node; | 
|  |  | 
|  | rb_link_node(&tg->rb_node, parent, node); | 
|  | rb_insert_color(&tg->rb_node, &st->rb); | 
|  | } | 
|  |  | 
|  | static void __throtl_enqueue_tg(struct throtl_data *td, struct throtl_grp *tg) | 
|  | { | 
|  | struct throtl_rb_root *st = &td->tg_service_tree; | 
|  |  | 
|  | tg_service_tree_add(st, tg); | 
|  | throtl_mark_tg_on_rr(tg); | 
|  | st->count++; | 
|  | } | 
|  |  | 
|  | static void throtl_enqueue_tg(struct throtl_data *td, struct throtl_grp *tg) | 
|  | { | 
|  | if (!throtl_tg_on_rr(tg)) | 
|  | __throtl_enqueue_tg(td, tg); | 
|  | } | 
|  |  | 
|  | static void __throtl_dequeue_tg(struct throtl_data *td, struct throtl_grp *tg) | 
|  | { | 
|  | throtl_rb_erase(&tg->rb_node, &td->tg_service_tree); | 
|  | throtl_clear_tg_on_rr(tg); | 
|  | } | 
|  |  | 
|  | static void throtl_dequeue_tg(struct throtl_data *td, struct throtl_grp *tg) | 
|  | { | 
|  | if (throtl_tg_on_rr(tg)) | 
|  | __throtl_dequeue_tg(td, tg); | 
|  | } | 
|  |  | 
|  | static void throtl_schedule_next_dispatch(struct throtl_data *td) | 
|  | { | 
|  | struct throtl_rb_root *st = &td->tg_service_tree; | 
|  |  | 
|  | /* | 
|  | * If there are more bios pending, schedule more work. | 
|  | */ | 
|  | if (!total_nr_queued(td)) | 
|  | return; | 
|  |  | 
|  | BUG_ON(!st->count); | 
|  |  | 
|  | update_min_dispatch_time(st); | 
|  |  | 
|  | if (time_before_eq(st->min_disptime, jiffies)) | 
|  | throtl_schedule_delayed_work(td, 0); | 
|  | else | 
|  | throtl_schedule_delayed_work(td, (st->min_disptime - jiffies)); | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | throtl_start_new_slice(struct throtl_data *td, struct throtl_grp *tg, bool rw) | 
|  | { | 
|  | tg->bytes_disp[rw] = 0; | 
|  | tg->io_disp[rw] = 0; | 
|  | tg->slice_start[rw] = jiffies; | 
|  | tg->slice_end[rw] = jiffies + throtl_slice; | 
|  | throtl_log_tg(td, tg, "[%c] new slice start=%lu end=%lu jiffies=%lu", | 
|  | rw == READ ? 'R' : 'W', tg->slice_start[rw], | 
|  | tg->slice_end[rw], jiffies); | 
|  | } | 
|  |  | 
|  | static inline void throtl_set_slice_end(struct throtl_data *td, | 
|  | struct throtl_grp *tg, bool rw, unsigned long jiffy_end) | 
|  | { | 
|  | tg->slice_end[rw] = roundup(jiffy_end, throtl_slice); | 
|  | } | 
|  |  | 
|  | static inline void throtl_extend_slice(struct throtl_data *td, | 
|  | struct throtl_grp *tg, bool rw, unsigned long jiffy_end) | 
|  | { | 
|  | tg->slice_end[rw] = roundup(jiffy_end, throtl_slice); | 
|  | throtl_log_tg(td, tg, "[%c] extend slice start=%lu end=%lu jiffies=%lu", | 
|  | rw == READ ? 'R' : 'W', tg->slice_start[rw], | 
|  | tg->slice_end[rw], jiffies); | 
|  | } | 
|  |  | 
|  | /* Determine if previously allocated or extended slice is complete or not */ | 
|  | static bool | 
|  | throtl_slice_used(struct throtl_data *td, struct throtl_grp *tg, bool rw) | 
|  | { | 
|  | if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw])) | 
|  | return 0; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* Trim the used slices and adjust slice start accordingly */ | 
|  | static inline void | 
|  | throtl_trim_slice(struct throtl_data *td, struct throtl_grp *tg, bool rw) | 
|  | { | 
|  | unsigned long nr_slices, time_elapsed, io_trim; | 
|  | u64 bytes_trim, tmp; | 
|  |  | 
|  | BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw])); | 
|  |  | 
|  | /* | 
|  | * If bps are unlimited (-1), then time slice don't get | 
|  | * renewed. Don't try to trim the slice if slice is used. A new | 
|  | * slice will start when appropriate. | 
|  | */ | 
|  | if (throtl_slice_used(td, tg, rw)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * A bio has been dispatched. Also adjust slice_end. It might happen | 
|  | * that initially cgroup limit was very low resulting in high | 
|  | * slice_end, but later limit was bumped up and bio was dispached | 
|  | * sooner, then we need to reduce slice_end. A high bogus slice_end | 
|  | * is bad because it does not allow new slice to start. | 
|  | */ | 
|  |  | 
|  | throtl_set_slice_end(td, tg, rw, jiffies + throtl_slice); | 
|  |  | 
|  | time_elapsed = jiffies - tg->slice_start[rw]; | 
|  |  | 
|  | nr_slices = time_elapsed / throtl_slice; | 
|  |  | 
|  | if (!nr_slices) | 
|  | return; | 
|  | tmp = tg->bps[rw] * throtl_slice * nr_slices; | 
|  | do_div(tmp, HZ); | 
|  | bytes_trim = tmp; | 
|  |  | 
|  | io_trim = (tg->iops[rw] * throtl_slice * nr_slices)/HZ; | 
|  |  | 
|  | if (!bytes_trim && !io_trim) | 
|  | return; | 
|  |  | 
|  | if (tg->bytes_disp[rw] >= bytes_trim) | 
|  | tg->bytes_disp[rw] -= bytes_trim; | 
|  | else | 
|  | tg->bytes_disp[rw] = 0; | 
|  |  | 
|  | if (tg->io_disp[rw] >= io_trim) | 
|  | tg->io_disp[rw] -= io_trim; | 
|  | else | 
|  | tg->io_disp[rw] = 0; | 
|  |  | 
|  | tg->slice_start[rw] += nr_slices * throtl_slice; | 
|  |  | 
|  | throtl_log_tg(td, tg, "[%c] trim slice nr=%lu bytes=%llu io=%lu" | 
|  | " start=%lu end=%lu jiffies=%lu", | 
|  | rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim, | 
|  | tg->slice_start[rw], tg->slice_end[rw], jiffies); | 
|  | } | 
|  |  | 
|  | static bool tg_with_in_iops_limit(struct throtl_data *td, struct throtl_grp *tg, | 
|  | struct bio *bio, unsigned long *wait) | 
|  | { | 
|  | bool rw = bio_data_dir(bio); | 
|  | unsigned int io_allowed; | 
|  | unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd; | 
|  | u64 tmp; | 
|  |  | 
|  | jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw]; | 
|  |  | 
|  | /* Slice has just started. Consider one slice interval */ | 
|  | if (!jiffy_elapsed) | 
|  | jiffy_elapsed_rnd = throtl_slice; | 
|  |  | 
|  | jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice); | 
|  |  | 
|  | /* | 
|  | * jiffy_elapsed_rnd should not be a big value as minimum iops can be | 
|  | * 1 then at max jiffy elapsed should be equivalent of 1 second as we | 
|  | * will allow dispatch after 1 second and after that slice should | 
|  | * have been trimmed. | 
|  | */ | 
|  |  | 
|  | tmp = (u64)tg->iops[rw] * jiffy_elapsed_rnd; | 
|  | do_div(tmp, HZ); | 
|  |  | 
|  | if (tmp > UINT_MAX) | 
|  | io_allowed = UINT_MAX; | 
|  | else | 
|  | io_allowed = tmp; | 
|  |  | 
|  | if (tg->io_disp[rw] + 1 <= io_allowed) { | 
|  | if (wait) | 
|  | *wait = 0; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* Calc approx time to dispatch */ | 
|  | jiffy_wait = ((tg->io_disp[rw] + 1) * HZ)/tg->iops[rw] + 1; | 
|  |  | 
|  | if (jiffy_wait > jiffy_elapsed) | 
|  | jiffy_wait = jiffy_wait - jiffy_elapsed; | 
|  | else | 
|  | jiffy_wait = 1; | 
|  |  | 
|  | if (wait) | 
|  | *wait = jiffy_wait; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static bool tg_with_in_bps_limit(struct throtl_data *td, struct throtl_grp *tg, | 
|  | struct bio *bio, unsigned long *wait) | 
|  | { | 
|  | bool rw = bio_data_dir(bio); | 
|  | u64 bytes_allowed, extra_bytes, tmp; | 
|  | unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd; | 
|  |  | 
|  | jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw]; | 
|  |  | 
|  | /* Slice has just started. Consider one slice interval */ | 
|  | if (!jiffy_elapsed) | 
|  | jiffy_elapsed_rnd = throtl_slice; | 
|  |  | 
|  | jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice); | 
|  |  | 
|  | tmp = tg->bps[rw] * jiffy_elapsed_rnd; | 
|  | do_div(tmp, HZ); | 
|  | bytes_allowed = tmp; | 
|  |  | 
|  | if (tg->bytes_disp[rw] + bio->bi_size <= bytes_allowed) { | 
|  | if (wait) | 
|  | *wait = 0; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* Calc approx time to dispatch */ | 
|  | extra_bytes = tg->bytes_disp[rw] + bio->bi_size - bytes_allowed; | 
|  | jiffy_wait = div64_u64(extra_bytes * HZ, tg->bps[rw]); | 
|  |  | 
|  | if (!jiffy_wait) | 
|  | jiffy_wait = 1; | 
|  |  | 
|  | /* | 
|  | * This wait time is without taking into consideration the rounding | 
|  | * up we did. Add that time also. | 
|  | */ | 
|  | jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed); | 
|  | if (wait) | 
|  | *wait = jiffy_wait; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static bool tg_no_rule_group(struct throtl_grp *tg, bool rw) { | 
|  | if (tg->bps[rw] == -1 && tg->iops[rw] == -1) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Returns whether one can dispatch a bio or not. Also returns approx number | 
|  | * of jiffies to wait before this bio is with-in IO rate and can be dispatched | 
|  | */ | 
|  | static bool tg_may_dispatch(struct throtl_data *td, struct throtl_grp *tg, | 
|  | struct bio *bio, unsigned long *wait) | 
|  | { | 
|  | bool rw = bio_data_dir(bio); | 
|  | unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0; | 
|  |  | 
|  | /* | 
|  | * Currently whole state machine of group depends on first bio | 
|  | * queued in the group bio list. So one should not be calling | 
|  | * this function with a different bio if there are other bios | 
|  | * queued. | 
|  | */ | 
|  | BUG_ON(tg->nr_queued[rw] && bio != bio_list_peek(&tg->bio_lists[rw])); | 
|  |  | 
|  | /* If tg->bps = -1, then BW is unlimited */ | 
|  | if (tg->bps[rw] == -1 && tg->iops[rw] == -1) { | 
|  | if (wait) | 
|  | *wait = 0; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If previous slice expired, start a new one otherwise renew/extend | 
|  | * existing slice to make sure it is at least throtl_slice interval | 
|  | * long since now. | 
|  | */ | 
|  | if (throtl_slice_used(td, tg, rw)) | 
|  | throtl_start_new_slice(td, tg, rw); | 
|  | else { | 
|  | if (time_before(tg->slice_end[rw], jiffies + throtl_slice)) | 
|  | throtl_extend_slice(td, tg, rw, jiffies + throtl_slice); | 
|  | } | 
|  |  | 
|  | if (tg_with_in_bps_limit(td, tg, bio, &bps_wait) | 
|  | && tg_with_in_iops_limit(td, tg, bio, &iops_wait)) { | 
|  | if (wait) | 
|  | *wait = 0; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | max_wait = max(bps_wait, iops_wait); | 
|  |  | 
|  | if (wait) | 
|  | *wait = max_wait; | 
|  |  | 
|  | if (time_before(tg->slice_end[rw], jiffies + max_wait)) | 
|  | throtl_extend_slice(td, tg, rw, jiffies + max_wait); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio) | 
|  | { | 
|  | bool rw = bio_data_dir(bio); | 
|  | bool sync = bio->bi_rw & REQ_SYNC; | 
|  |  | 
|  | /* Charge the bio to the group */ | 
|  | tg->bytes_disp[rw] += bio->bi_size; | 
|  | tg->io_disp[rw]++; | 
|  |  | 
|  | blkiocg_update_dispatch_stats(&tg->blkg, bio->bi_size, rw, sync); | 
|  | } | 
|  |  | 
|  | static void throtl_add_bio_tg(struct throtl_data *td, struct throtl_grp *tg, | 
|  | struct bio *bio) | 
|  | { | 
|  | bool rw = bio_data_dir(bio); | 
|  |  | 
|  | bio_list_add(&tg->bio_lists[rw], bio); | 
|  | /* Take a bio reference on tg */ | 
|  | throtl_ref_get_tg(tg); | 
|  | tg->nr_queued[rw]++; | 
|  | td->nr_queued[rw]++; | 
|  | throtl_enqueue_tg(td, tg); | 
|  | } | 
|  |  | 
|  | static void tg_update_disptime(struct throtl_data *td, struct throtl_grp *tg) | 
|  | { | 
|  | unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime; | 
|  | struct bio *bio; | 
|  |  | 
|  | if ((bio = bio_list_peek(&tg->bio_lists[READ]))) | 
|  | tg_may_dispatch(td, tg, bio, &read_wait); | 
|  |  | 
|  | if ((bio = bio_list_peek(&tg->bio_lists[WRITE]))) | 
|  | tg_may_dispatch(td, tg, bio, &write_wait); | 
|  |  | 
|  | min_wait = min(read_wait, write_wait); | 
|  | disptime = jiffies + min_wait; | 
|  |  | 
|  | /* Update dispatch time */ | 
|  | throtl_dequeue_tg(td, tg); | 
|  | tg->disptime = disptime; | 
|  | throtl_enqueue_tg(td, tg); | 
|  | } | 
|  |  | 
|  | static void tg_dispatch_one_bio(struct throtl_data *td, struct throtl_grp *tg, | 
|  | bool rw, struct bio_list *bl) | 
|  | { | 
|  | struct bio *bio; | 
|  |  | 
|  | bio = bio_list_pop(&tg->bio_lists[rw]); | 
|  | tg->nr_queued[rw]--; | 
|  | /* Drop bio reference on tg */ | 
|  | throtl_put_tg(tg); | 
|  |  | 
|  | BUG_ON(td->nr_queued[rw] <= 0); | 
|  | td->nr_queued[rw]--; | 
|  |  | 
|  | throtl_charge_bio(tg, bio); | 
|  | bio_list_add(bl, bio); | 
|  | bio->bi_rw |= REQ_THROTTLED; | 
|  |  | 
|  | throtl_trim_slice(td, tg, rw); | 
|  | } | 
|  |  | 
|  | static int throtl_dispatch_tg(struct throtl_data *td, struct throtl_grp *tg, | 
|  | struct bio_list *bl) | 
|  | { | 
|  | unsigned int nr_reads = 0, nr_writes = 0; | 
|  | unsigned int max_nr_reads = throtl_grp_quantum*3/4; | 
|  | unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads; | 
|  | struct bio *bio; | 
|  |  | 
|  | /* Try to dispatch 75% READS and 25% WRITES */ | 
|  |  | 
|  | while ((bio = bio_list_peek(&tg->bio_lists[READ])) | 
|  | && tg_may_dispatch(td, tg, bio, NULL)) { | 
|  |  | 
|  | tg_dispatch_one_bio(td, tg, bio_data_dir(bio), bl); | 
|  | nr_reads++; | 
|  |  | 
|  | if (nr_reads >= max_nr_reads) | 
|  | break; | 
|  | } | 
|  |  | 
|  | while ((bio = bio_list_peek(&tg->bio_lists[WRITE])) | 
|  | && tg_may_dispatch(td, tg, bio, NULL)) { | 
|  |  | 
|  | tg_dispatch_one_bio(td, tg, bio_data_dir(bio), bl); | 
|  | nr_writes++; | 
|  |  | 
|  | if (nr_writes >= max_nr_writes) | 
|  | break; | 
|  | } | 
|  |  | 
|  | return nr_reads + nr_writes; | 
|  | } | 
|  |  | 
|  | static int throtl_select_dispatch(struct throtl_data *td, struct bio_list *bl) | 
|  | { | 
|  | unsigned int nr_disp = 0; | 
|  | struct throtl_grp *tg; | 
|  | struct throtl_rb_root *st = &td->tg_service_tree; | 
|  |  | 
|  | while (1) { | 
|  | tg = throtl_rb_first(st); | 
|  |  | 
|  | if (!tg) | 
|  | break; | 
|  |  | 
|  | if (time_before(jiffies, tg->disptime)) | 
|  | break; | 
|  |  | 
|  | throtl_dequeue_tg(td, tg); | 
|  |  | 
|  | nr_disp += throtl_dispatch_tg(td, tg, bl); | 
|  |  | 
|  | if (tg->nr_queued[0] || tg->nr_queued[1]) { | 
|  | tg_update_disptime(td, tg); | 
|  | throtl_enqueue_tg(td, tg); | 
|  | } | 
|  |  | 
|  | if (nr_disp >= throtl_quantum) | 
|  | break; | 
|  | } | 
|  |  | 
|  | return nr_disp; | 
|  | } | 
|  |  | 
|  | static void throtl_process_limit_change(struct throtl_data *td) | 
|  | { | 
|  | struct throtl_grp *tg; | 
|  | struct hlist_node *pos, *n; | 
|  |  | 
|  | if (!td->limits_changed) | 
|  | return; | 
|  |  | 
|  | xchg(&td->limits_changed, false); | 
|  |  | 
|  | throtl_log(td, "limits changed"); | 
|  |  | 
|  | hlist_for_each_entry_safe(tg, pos, n, &td->tg_list, tg_node) { | 
|  | if (!tg->limits_changed) | 
|  | continue; | 
|  |  | 
|  | if (!xchg(&tg->limits_changed, false)) | 
|  | continue; | 
|  |  | 
|  | throtl_log_tg(td, tg, "limit change rbps=%llu wbps=%llu" | 
|  | " riops=%u wiops=%u", tg->bps[READ], tg->bps[WRITE], | 
|  | tg->iops[READ], tg->iops[WRITE]); | 
|  |  | 
|  | /* | 
|  | * Restart the slices for both READ and WRITES. It | 
|  | * might happen that a group's limit are dropped | 
|  | * suddenly and we don't want to account recently | 
|  | * dispatched IO with new low rate | 
|  | */ | 
|  | throtl_start_new_slice(td, tg, 0); | 
|  | throtl_start_new_slice(td, tg, 1); | 
|  |  | 
|  | if (throtl_tg_on_rr(tg)) | 
|  | tg_update_disptime(td, tg); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Dispatch throttled bios. Should be called without queue lock held. */ | 
|  | static int throtl_dispatch(struct request_queue *q) | 
|  | { | 
|  | struct throtl_data *td = q->td; | 
|  | unsigned int nr_disp = 0; | 
|  | struct bio_list bio_list_on_stack; | 
|  | struct bio *bio; | 
|  | struct blk_plug plug; | 
|  |  | 
|  | spin_lock_irq(q->queue_lock); | 
|  |  | 
|  | throtl_process_limit_change(td); | 
|  |  | 
|  | if (!total_nr_queued(td)) | 
|  | goto out; | 
|  |  | 
|  | bio_list_init(&bio_list_on_stack); | 
|  |  | 
|  | throtl_log(td, "dispatch nr_queued=%d read=%u write=%u", | 
|  | total_nr_queued(td), td->nr_queued[READ], | 
|  | td->nr_queued[WRITE]); | 
|  |  | 
|  | nr_disp = throtl_select_dispatch(td, &bio_list_on_stack); | 
|  |  | 
|  | if (nr_disp) | 
|  | throtl_log(td, "bios disp=%u", nr_disp); | 
|  |  | 
|  | throtl_schedule_next_dispatch(td); | 
|  | out: | 
|  | spin_unlock_irq(q->queue_lock); | 
|  |  | 
|  | /* | 
|  | * If we dispatched some requests, unplug the queue to make sure | 
|  | * immediate dispatch | 
|  | */ | 
|  | if (nr_disp) { | 
|  | blk_start_plug(&plug); | 
|  | while((bio = bio_list_pop(&bio_list_on_stack))) | 
|  | generic_make_request(bio); | 
|  | blk_finish_plug(&plug); | 
|  | } | 
|  | return nr_disp; | 
|  | } | 
|  |  | 
|  | void blk_throtl_work(struct work_struct *work) | 
|  | { | 
|  | struct throtl_data *td = container_of(work, struct throtl_data, | 
|  | throtl_work.work); | 
|  | struct request_queue *q = td->queue; | 
|  |  | 
|  | throtl_dispatch(q); | 
|  | } | 
|  |  | 
|  | /* Call with queue lock held */ | 
|  | static void | 
|  | throtl_schedule_delayed_work(struct throtl_data *td, unsigned long delay) | 
|  | { | 
|  |  | 
|  | struct delayed_work *dwork = &td->throtl_work; | 
|  |  | 
|  | /* schedule work if limits changed even if no bio is queued */ | 
|  | if (total_nr_queued(td) > 0 || td->limits_changed) { | 
|  | /* | 
|  | * We might have a work scheduled to be executed in future. | 
|  | * Cancel that and schedule a new one. | 
|  | */ | 
|  | __cancel_delayed_work(dwork); | 
|  | queue_delayed_work(kthrotld_workqueue, dwork, delay); | 
|  | throtl_log(td, "schedule work. delay=%lu jiffies=%lu", | 
|  | delay, jiffies); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void | 
|  | throtl_destroy_tg(struct throtl_data *td, struct throtl_grp *tg) | 
|  | { | 
|  | /* Something wrong if we are trying to remove same group twice */ | 
|  | BUG_ON(hlist_unhashed(&tg->tg_node)); | 
|  |  | 
|  | hlist_del_init(&tg->tg_node); | 
|  |  | 
|  | /* | 
|  | * Put the reference taken at the time of creation so that when all | 
|  | * queues are gone, group can be destroyed. | 
|  | */ | 
|  | throtl_put_tg(tg); | 
|  | td->nr_undestroyed_grps--; | 
|  | } | 
|  |  | 
|  | static void throtl_release_tgs(struct throtl_data *td) | 
|  | { | 
|  | struct hlist_node *pos, *n; | 
|  | struct throtl_grp *tg; | 
|  |  | 
|  | hlist_for_each_entry_safe(tg, pos, n, &td->tg_list, tg_node) { | 
|  | /* | 
|  | * If cgroup removal path got to blk_group first and removed | 
|  | * it from cgroup list, then it will take care of destroying | 
|  | * cfqg also. | 
|  | */ | 
|  | if (!blkiocg_del_blkio_group(&tg->blkg)) | 
|  | throtl_destroy_tg(td, tg); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void throtl_td_free(struct throtl_data *td) | 
|  | { | 
|  | kfree(td); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Blk cgroup controller notification saying that blkio_group object is being | 
|  | * delinked as associated cgroup object is going away. That also means that | 
|  | * no new IO will come in this group. So get rid of this group as soon as | 
|  | * any pending IO in the group is finished. | 
|  | * | 
|  | * This function is called under rcu_read_lock(). key is the rcu protected | 
|  | * pointer. That means "key" is a valid throtl_data pointer as long as we are | 
|  | * rcu read lock. | 
|  | * | 
|  | * "key" was fetched from blkio_group under blkio_cgroup->lock. That means | 
|  | * it should not be NULL as even if queue was going away, cgroup deltion | 
|  | * path got to it first. | 
|  | */ | 
|  | void throtl_unlink_blkio_group(void *key, struct blkio_group *blkg) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct throtl_data *td = key; | 
|  |  | 
|  | spin_lock_irqsave(td->queue->queue_lock, flags); | 
|  | throtl_destroy_tg(td, tg_of_blkg(blkg)); | 
|  | spin_unlock_irqrestore(td->queue->queue_lock, flags); | 
|  | } | 
|  |  | 
|  | static void throtl_update_blkio_group_common(struct throtl_data *td, | 
|  | struct throtl_grp *tg) | 
|  | { | 
|  | xchg(&tg->limits_changed, true); | 
|  | xchg(&td->limits_changed, true); | 
|  | /* Schedule a work now to process the limit change */ | 
|  | throtl_schedule_delayed_work(td, 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * For all update functions, key should be a valid pointer because these | 
|  | * update functions are called under blkcg_lock, that means, blkg is | 
|  | * valid and in turn key is valid. queue exit path can not race because | 
|  | * of blkcg_lock | 
|  | * | 
|  | * Can not take queue lock in update functions as queue lock under blkcg_lock | 
|  | * is not allowed. Under other paths we take blkcg_lock under queue_lock. | 
|  | */ | 
|  | static void throtl_update_blkio_group_read_bps(void *key, | 
|  | struct blkio_group *blkg, u64 read_bps) | 
|  | { | 
|  | struct throtl_data *td = key; | 
|  | struct throtl_grp *tg = tg_of_blkg(blkg); | 
|  |  | 
|  | tg->bps[READ] = read_bps; | 
|  | throtl_update_blkio_group_common(td, tg); | 
|  | } | 
|  |  | 
|  | static void throtl_update_blkio_group_write_bps(void *key, | 
|  | struct blkio_group *blkg, u64 write_bps) | 
|  | { | 
|  | struct throtl_data *td = key; | 
|  | struct throtl_grp *tg = tg_of_blkg(blkg); | 
|  |  | 
|  | tg->bps[WRITE] = write_bps; | 
|  | throtl_update_blkio_group_common(td, tg); | 
|  | } | 
|  |  | 
|  | static void throtl_update_blkio_group_read_iops(void *key, | 
|  | struct blkio_group *blkg, unsigned int read_iops) | 
|  | { | 
|  | struct throtl_data *td = key; | 
|  | struct throtl_grp *tg = tg_of_blkg(blkg); | 
|  |  | 
|  | tg->iops[READ] = read_iops; | 
|  | throtl_update_blkio_group_common(td, tg); | 
|  | } | 
|  |  | 
|  | static void throtl_update_blkio_group_write_iops(void *key, | 
|  | struct blkio_group *blkg, unsigned int write_iops) | 
|  | { | 
|  | struct throtl_data *td = key; | 
|  | struct throtl_grp *tg = tg_of_blkg(blkg); | 
|  |  | 
|  | tg->iops[WRITE] = write_iops; | 
|  | throtl_update_blkio_group_common(td, tg); | 
|  | } | 
|  |  | 
|  | static void throtl_shutdown_wq(struct request_queue *q) | 
|  | { | 
|  | struct throtl_data *td = q->td; | 
|  |  | 
|  | cancel_delayed_work_sync(&td->throtl_work); | 
|  | } | 
|  |  | 
|  | static struct blkio_policy_type blkio_policy_throtl = { | 
|  | .ops = { | 
|  | .blkio_unlink_group_fn = throtl_unlink_blkio_group, | 
|  | .blkio_update_group_read_bps_fn = | 
|  | throtl_update_blkio_group_read_bps, | 
|  | .blkio_update_group_write_bps_fn = | 
|  | throtl_update_blkio_group_write_bps, | 
|  | .blkio_update_group_read_iops_fn = | 
|  | throtl_update_blkio_group_read_iops, | 
|  | .blkio_update_group_write_iops_fn = | 
|  | throtl_update_blkio_group_write_iops, | 
|  | }, | 
|  | .plid = BLKIO_POLICY_THROTL, | 
|  | }; | 
|  |  | 
|  | int blk_throtl_bio(struct request_queue *q, struct bio **biop) | 
|  | { | 
|  | struct throtl_data *td = q->td; | 
|  | struct throtl_grp *tg; | 
|  | struct bio *bio = *biop; | 
|  | bool rw = bio_data_dir(bio), update_disptime = true; | 
|  | struct blkio_cgroup *blkcg; | 
|  |  | 
|  | if (bio->bi_rw & REQ_THROTTLED) { | 
|  | bio->bi_rw &= ~REQ_THROTTLED; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * A throtl_grp pointer retrieved under rcu can be used to access | 
|  | * basic fields like stats and io rates. If a group has no rules, | 
|  | * just update the dispatch stats in lockless manner and return. | 
|  | */ | 
|  |  | 
|  | rcu_read_lock(); | 
|  | blkcg = task_blkio_cgroup(current); | 
|  | tg = throtl_find_tg(td, blkcg); | 
|  | if (tg) { | 
|  | throtl_tg_fill_dev_details(td, tg); | 
|  |  | 
|  | if (tg_no_rule_group(tg, rw)) { | 
|  | blkiocg_update_dispatch_stats(&tg->blkg, bio->bi_size, | 
|  | rw, bio->bi_rw & REQ_SYNC); | 
|  | rcu_read_unlock(); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | /* | 
|  | * Either group has not been allocated yet or it is not an unlimited | 
|  | * IO group | 
|  | */ | 
|  |  | 
|  | spin_lock_irq(q->queue_lock); | 
|  | tg = throtl_get_tg(td); | 
|  |  | 
|  | if (IS_ERR(tg)) { | 
|  | if (PTR_ERR(tg)	== -ENODEV) { | 
|  | /* | 
|  | * Queue is gone. No queue lock held here. | 
|  | */ | 
|  | return -ENODEV; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (tg->nr_queued[rw]) { | 
|  | /* | 
|  | * There is already another bio queued in same dir. No | 
|  | * need to update dispatch time. | 
|  | */ | 
|  | update_disptime = false; | 
|  | goto queue_bio; | 
|  |  | 
|  | } | 
|  |  | 
|  | /* Bio is with-in rate limit of group */ | 
|  | if (tg_may_dispatch(td, tg, bio, NULL)) { | 
|  | throtl_charge_bio(tg, bio); | 
|  |  | 
|  | /* | 
|  | * We need to trim slice even when bios are not being queued | 
|  | * otherwise it might happen that a bio is not queued for | 
|  | * a long time and slice keeps on extending and trim is not | 
|  | * called for a long time. Now if limits are reduced suddenly | 
|  | * we take into account all the IO dispatched so far at new | 
|  | * low rate and * newly queued IO gets a really long dispatch | 
|  | * time. | 
|  | * | 
|  | * So keep on trimming slice even if bio is not queued. | 
|  | */ | 
|  | throtl_trim_slice(td, tg, rw); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | queue_bio: | 
|  | throtl_log_tg(td, tg, "[%c] bio. bdisp=%llu sz=%u bps=%llu" | 
|  | " iodisp=%u iops=%u queued=%d/%d", | 
|  | rw == READ ? 'R' : 'W', | 
|  | tg->bytes_disp[rw], bio->bi_size, tg->bps[rw], | 
|  | tg->io_disp[rw], tg->iops[rw], | 
|  | tg->nr_queued[READ], tg->nr_queued[WRITE]); | 
|  |  | 
|  | throtl_add_bio_tg(q->td, tg, bio); | 
|  | *biop = NULL; | 
|  |  | 
|  | if (update_disptime) { | 
|  | tg_update_disptime(td, tg); | 
|  | throtl_schedule_next_dispatch(td); | 
|  | } | 
|  |  | 
|  | out: | 
|  | spin_unlock_irq(q->queue_lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int blk_throtl_init(struct request_queue *q) | 
|  | { | 
|  | struct throtl_data *td; | 
|  | struct throtl_grp *tg; | 
|  |  | 
|  | td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node); | 
|  | if (!td) | 
|  | return -ENOMEM; | 
|  |  | 
|  | INIT_HLIST_HEAD(&td->tg_list); | 
|  | td->tg_service_tree = THROTL_RB_ROOT; | 
|  | td->limits_changed = false; | 
|  | INIT_DELAYED_WORK(&td->throtl_work, blk_throtl_work); | 
|  |  | 
|  | /* alloc and Init root group. */ | 
|  | td->queue = q; | 
|  | tg = throtl_alloc_tg(td); | 
|  |  | 
|  | if (!tg) { | 
|  | kfree(td); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | td->root_tg = tg; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | throtl_init_add_tg_lists(td, tg, &blkio_root_cgroup); | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | /* Attach throtl data to request queue */ | 
|  | q->td = td; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void blk_throtl_exit(struct request_queue *q) | 
|  | { | 
|  | struct throtl_data *td = q->td; | 
|  | bool wait = false; | 
|  |  | 
|  | BUG_ON(!td); | 
|  |  | 
|  | throtl_shutdown_wq(q); | 
|  |  | 
|  | spin_lock_irq(q->queue_lock); | 
|  | throtl_release_tgs(td); | 
|  |  | 
|  | /* If there are other groups */ | 
|  | if (td->nr_undestroyed_grps > 0) | 
|  | wait = true; | 
|  |  | 
|  | spin_unlock_irq(q->queue_lock); | 
|  |  | 
|  | /* | 
|  | * Wait for tg->blkg->key accessors to exit their grace periods. | 
|  | * Do this wait only if there are other undestroyed groups out | 
|  | * there (other than root group). This can happen if cgroup deletion | 
|  | * path claimed the responsibility of cleaning up a group before | 
|  | * queue cleanup code get to the group. | 
|  | * | 
|  | * Do not call synchronize_rcu() unconditionally as there are drivers | 
|  | * which create/delete request queue hundreds of times during scan/boot | 
|  | * and synchronize_rcu() can take significant time and slow down boot. | 
|  | */ | 
|  | if (wait) | 
|  | synchronize_rcu(); | 
|  |  | 
|  | /* | 
|  | * Just being safe to make sure after previous flush if some body did | 
|  | * update limits through cgroup and another work got queued, cancel | 
|  | * it. | 
|  | */ | 
|  | throtl_shutdown_wq(q); | 
|  | throtl_td_free(td); | 
|  | } | 
|  |  | 
|  | static int __init throtl_init(void) | 
|  | { | 
|  | kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0); | 
|  | if (!kthrotld_workqueue) | 
|  | panic("Failed to create kthrotld\n"); | 
|  |  | 
|  | blkio_policy_register(&blkio_policy_throtl); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | module_init(throtl_init); |