|  | #include <linux/types.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/ctype.h> | 
|  | #include <linux/dmi.h> | 
|  | #include <linux/efi.h> | 
|  | #include <linux/bootmem.h> | 
|  | #include <asm/dmi.h> | 
|  |  | 
|  | /* | 
|  | * DMI stands for "Desktop Management Interface".  It is part | 
|  | * of and an antecedent to, SMBIOS, which stands for System | 
|  | * Management BIOS.  See further: http://www.dmtf.org/standards | 
|  | */ | 
|  | static char dmi_empty_string[] = "        "; | 
|  |  | 
|  | /* | 
|  | * Catch too early calls to dmi_check_system(): | 
|  | */ | 
|  | static int dmi_initialized; | 
|  |  | 
|  | static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s) | 
|  | { | 
|  | const u8 *bp = ((u8 *) dm) + dm->length; | 
|  |  | 
|  | if (s) { | 
|  | s--; | 
|  | while (s > 0 && *bp) { | 
|  | bp += strlen(bp) + 1; | 
|  | s--; | 
|  | } | 
|  |  | 
|  | if (*bp != 0) { | 
|  | size_t len = strlen(bp)+1; | 
|  | size_t cmp_len = len > 8 ? 8 : len; | 
|  |  | 
|  | if (!memcmp(bp, dmi_empty_string, cmp_len)) | 
|  | return dmi_empty_string; | 
|  | return bp; | 
|  | } | 
|  | } | 
|  |  | 
|  | return ""; | 
|  | } | 
|  |  | 
|  | static char * __init dmi_string(const struct dmi_header *dm, u8 s) | 
|  | { | 
|  | const char *bp = dmi_string_nosave(dm, s); | 
|  | char *str; | 
|  | size_t len; | 
|  |  | 
|  | if (bp == dmi_empty_string) | 
|  | return dmi_empty_string; | 
|  |  | 
|  | len = strlen(bp) + 1; | 
|  | str = dmi_alloc(len); | 
|  | if (str != NULL) | 
|  | strcpy(str, bp); | 
|  | else | 
|  | printk(KERN_ERR "dmi_string: cannot allocate %Zu bytes.\n", len); | 
|  |  | 
|  | return str; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	We have to be cautious here. We have seen BIOSes with DMI pointers | 
|  | *	pointing to completely the wrong place for example | 
|  | */ | 
|  | static void dmi_table(u8 *buf, int len, int num, | 
|  | void (*decode)(const struct dmi_header *, void *), | 
|  | void *private_data) | 
|  | { | 
|  | u8 *data = buf; | 
|  | int i = 0; | 
|  |  | 
|  | /* | 
|  | *	Stop when we see all the items the table claimed to have | 
|  | *	OR we run off the end of the table (also happens) | 
|  | */ | 
|  | while ((i < num) && (data - buf + sizeof(struct dmi_header)) <= len) { | 
|  | const struct dmi_header *dm = (const struct dmi_header *)data; | 
|  |  | 
|  | /* | 
|  | *  We want to know the total length (formatted area and | 
|  | *  strings) before decoding to make sure we won't run off the | 
|  | *  table in dmi_decode or dmi_string | 
|  | */ | 
|  | data += dm->length; | 
|  | while ((data - buf < len - 1) && (data[0] || data[1])) | 
|  | data++; | 
|  | if (data - buf < len - 1) | 
|  | decode(dm, private_data); | 
|  | data += 2; | 
|  | i++; | 
|  | } | 
|  | } | 
|  |  | 
|  | static u32 dmi_base; | 
|  | static u16 dmi_len; | 
|  | static u16 dmi_num; | 
|  |  | 
|  | static int __init dmi_walk_early(void (*decode)(const struct dmi_header *, | 
|  | void *)) | 
|  | { | 
|  | u8 *buf; | 
|  |  | 
|  | buf = dmi_ioremap(dmi_base, dmi_len); | 
|  | if (buf == NULL) | 
|  | return -1; | 
|  |  | 
|  | dmi_table(buf, dmi_len, dmi_num, decode, NULL); | 
|  |  | 
|  | dmi_iounmap(buf, dmi_len); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int __init dmi_checksum(const u8 *buf) | 
|  | { | 
|  | u8 sum = 0; | 
|  | int a; | 
|  |  | 
|  | for (a = 0; a < 15; a++) | 
|  | sum += buf[a]; | 
|  |  | 
|  | return sum == 0; | 
|  | } | 
|  |  | 
|  | static char *dmi_ident[DMI_STRING_MAX]; | 
|  | static LIST_HEAD(dmi_devices); | 
|  | int dmi_available; | 
|  |  | 
|  | /* | 
|  | *	Save a DMI string | 
|  | */ | 
|  | static void __init dmi_save_ident(const struct dmi_header *dm, int slot, int string) | 
|  | { | 
|  | const char *d = (const char*) dm; | 
|  | char *p; | 
|  |  | 
|  | if (dmi_ident[slot]) | 
|  | return; | 
|  |  | 
|  | p = dmi_string(dm, d[string]); | 
|  | if (p == NULL) | 
|  | return; | 
|  |  | 
|  | dmi_ident[slot] = p; | 
|  | } | 
|  |  | 
|  | static void __init dmi_save_uuid(const struct dmi_header *dm, int slot, int index) | 
|  | { | 
|  | const u8 *d = (u8*) dm + index; | 
|  | char *s; | 
|  | int is_ff = 1, is_00 = 1, i; | 
|  |  | 
|  | if (dmi_ident[slot]) | 
|  | return; | 
|  |  | 
|  | for (i = 0; i < 16 && (is_ff || is_00); i++) { | 
|  | if(d[i] != 0x00) is_ff = 0; | 
|  | if(d[i] != 0xFF) is_00 = 0; | 
|  | } | 
|  |  | 
|  | if (is_ff || is_00) | 
|  | return; | 
|  |  | 
|  | s = dmi_alloc(16*2+4+1); | 
|  | if (!s) | 
|  | return; | 
|  |  | 
|  | sprintf(s, "%pUB", d); | 
|  |  | 
|  | dmi_ident[slot] = s; | 
|  | } | 
|  |  | 
|  | static void __init dmi_save_type(const struct dmi_header *dm, int slot, int index) | 
|  | { | 
|  | const u8 *d = (u8*) dm + index; | 
|  | char *s; | 
|  |  | 
|  | if (dmi_ident[slot]) | 
|  | return; | 
|  |  | 
|  | s = dmi_alloc(4); | 
|  | if (!s) | 
|  | return; | 
|  |  | 
|  | sprintf(s, "%u", *d & 0x7F); | 
|  | dmi_ident[slot] = s; | 
|  | } | 
|  |  | 
|  | static void __init dmi_save_one_device(int type, const char *name) | 
|  | { | 
|  | struct dmi_device *dev; | 
|  |  | 
|  | /* No duplicate device */ | 
|  | if (dmi_find_device(type, name, NULL)) | 
|  | return; | 
|  |  | 
|  | dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1); | 
|  | if (!dev) { | 
|  | printk(KERN_ERR "dmi_save_one_device: out of memory.\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | dev->type = type; | 
|  | strcpy((char *)(dev + 1), name); | 
|  | dev->name = (char *)(dev + 1); | 
|  | dev->device_data = NULL; | 
|  | list_add(&dev->list, &dmi_devices); | 
|  | } | 
|  |  | 
|  | static void __init dmi_save_devices(const struct dmi_header *dm) | 
|  | { | 
|  | int i, count = (dm->length - sizeof(struct dmi_header)) / 2; | 
|  |  | 
|  | for (i = 0; i < count; i++) { | 
|  | const char *d = (char *)(dm + 1) + (i * 2); | 
|  |  | 
|  | /* Skip disabled device */ | 
|  | if ((*d & 0x80) == 0) | 
|  | continue; | 
|  |  | 
|  | dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1))); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm) | 
|  | { | 
|  | int i, count = *(u8 *)(dm + 1); | 
|  | struct dmi_device *dev; | 
|  |  | 
|  | for (i = 1; i <= count; i++) { | 
|  | char *devname = dmi_string(dm, i); | 
|  |  | 
|  | if (devname == dmi_empty_string) | 
|  | continue; | 
|  |  | 
|  | dev = dmi_alloc(sizeof(*dev)); | 
|  | if (!dev) { | 
|  | printk(KERN_ERR | 
|  | "dmi_save_oem_strings_devices: out of memory.\n"); | 
|  | break; | 
|  | } | 
|  |  | 
|  | dev->type = DMI_DEV_TYPE_OEM_STRING; | 
|  | dev->name = devname; | 
|  | dev->device_data = NULL; | 
|  |  | 
|  | list_add(&dev->list, &dmi_devices); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void __init dmi_save_ipmi_device(const struct dmi_header *dm) | 
|  | { | 
|  | struct dmi_device *dev; | 
|  | void * data; | 
|  |  | 
|  | data = dmi_alloc(dm->length); | 
|  | if (data == NULL) { | 
|  | printk(KERN_ERR "dmi_save_ipmi_device: out of memory.\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | memcpy(data, dm, dm->length); | 
|  |  | 
|  | dev = dmi_alloc(sizeof(*dev)); | 
|  | if (!dev) { | 
|  | printk(KERN_ERR "dmi_save_ipmi_device: out of memory.\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | dev->type = DMI_DEV_TYPE_IPMI; | 
|  | dev->name = "IPMI controller"; | 
|  | dev->device_data = data; | 
|  |  | 
|  | list_add_tail(&dev->list, &dmi_devices); | 
|  | } | 
|  |  | 
|  | static void __init dmi_save_dev_onboard(int instance, int segment, int bus, | 
|  | int devfn, const char *name) | 
|  | { | 
|  | struct dmi_dev_onboard *onboard_dev; | 
|  |  | 
|  | onboard_dev = dmi_alloc(sizeof(*onboard_dev) + strlen(name) + 1); | 
|  | if (!onboard_dev) { | 
|  | printk(KERN_ERR "dmi_save_dev_onboard: out of memory.\n"); | 
|  | return; | 
|  | } | 
|  | onboard_dev->instance = instance; | 
|  | onboard_dev->segment = segment; | 
|  | onboard_dev->bus = bus; | 
|  | onboard_dev->devfn = devfn; | 
|  |  | 
|  | strcpy((char *)&onboard_dev[1], name); | 
|  | onboard_dev->dev.type = DMI_DEV_TYPE_DEV_ONBOARD; | 
|  | onboard_dev->dev.name = (char *)&onboard_dev[1]; | 
|  | onboard_dev->dev.device_data = onboard_dev; | 
|  |  | 
|  | list_add(&onboard_dev->dev.list, &dmi_devices); | 
|  | } | 
|  |  | 
|  | static void __init dmi_save_extended_devices(const struct dmi_header *dm) | 
|  | { | 
|  | const u8 *d = (u8*) dm + 5; | 
|  |  | 
|  | /* Skip disabled device */ | 
|  | if ((*d & 0x80) == 0) | 
|  | return; | 
|  |  | 
|  | dmi_save_dev_onboard(*(d+1), *(u16 *)(d+2), *(d+4), *(d+5), | 
|  | dmi_string_nosave(dm, *(d-1))); | 
|  | dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d - 1))); | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	Process a DMI table entry. Right now all we care about are the BIOS | 
|  | *	and machine entries. For 2.5 we should pull the smbus controller info | 
|  | *	out of here. | 
|  | */ | 
|  | static void __init dmi_decode(const struct dmi_header *dm, void *dummy) | 
|  | { | 
|  | switch(dm->type) { | 
|  | case 0:		/* BIOS Information */ | 
|  | dmi_save_ident(dm, DMI_BIOS_VENDOR, 4); | 
|  | dmi_save_ident(dm, DMI_BIOS_VERSION, 5); | 
|  | dmi_save_ident(dm, DMI_BIOS_DATE, 8); | 
|  | break; | 
|  | case 1:		/* System Information */ | 
|  | dmi_save_ident(dm, DMI_SYS_VENDOR, 4); | 
|  | dmi_save_ident(dm, DMI_PRODUCT_NAME, 5); | 
|  | dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6); | 
|  | dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7); | 
|  | dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8); | 
|  | break; | 
|  | case 2:		/* Base Board Information */ | 
|  | dmi_save_ident(dm, DMI_BOARD_VENDOR, 4); | 
|  | dmi_save_ident(dm, DMI_BOARD_NAME, 5); | 
|  | dmi_save_ident(dm, DMI_BOARD_VERSION, 6); | 
|  | dmi_save_ident(dm, DMI_BOARD_SERIAL, 7); | 
|  | dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8); | 
|  | break; | 
|  | case 3:		/* Chassis Information */ | 
|  | dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4); | 
|  | dmi_save_type(dm, DMI_CHASSIS_TYPE, 5); | 
|  | dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6); | 
|  | dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7); | 
|  | dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8); | 
|  | break; | 
|  | case 10:	/* Onboard Devices Information */ | 
|  | dmi_save_devices(dm); | 
|  | break; | 
|  | case 11:	/* OEM Strings */ | 
|  | dmi_save_oem_strings_devices(dm); | 
|  | break; | 
|  | case 38:	/* IPMI Device Information */ | 
|  | dmi_save_ipmi_device(dm); | 
|  | break; | 
|  | case 41:	/* Onboard Devices Extended Information */ | 
|  | dmi_save_extended_devices(dm); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void __init print_filtered(const char *info) | 
|  | { | 
|  | const char *p; | 
|  |  | 
|  | if (!info) | 
|  | return; | 
|  |  | 
|  | for (p = info; *p; p++) | 
|  | if (isprint(*p)) | 
|  | printk(KERN_CONT "%c", *p); | 
|  | else | 
|  | printk(KERN_CONT "\\x%02x", *p & 0xff); | 
|  | } | 
|  |  | 
|  | static void __init dmi_dump_ids(void) | 
|  | { | 
|  | const char *board;	/* Board Name is optional */ | 
|  |  | 
|  | printk(KERN_DEBUG "DMI: "); | 
|  | print_filtered(dmi_get_system_info(DMI_SYS_VENDOR)); | 
|  | printk(KERN_CONT " "); | 
|  | print_filtered(dmi_get_system_info(DMI_PRODUCT_NAME)); | 
|  | board = dmi_get_system_info(DMI_BOARD_NAME); | 
|  | if (board) { | 
|  | printk(KERN_CONT "/"); | 
|  | print_filtered(board); | 
|  | } | 
|  | printk(KERN_CONT ", BIOS "); | 
|  | print_filtered(dmi_get_system_info(DMI_BIOS_VERSION)); | 
|  | printk(KERN_CONT " "); | 
|  | print_filtered(dmi_get_system_info(DMI_BIOS_DATE)); | 
|  | printk(KERN_CONT "\n"); | 
|  | } | 
|  |  | 
|  | static int __init dmi_present(const char __iomem *p) | 
|  | { | 
|  | u8 buf[15]; | 
|  |  | 
|  | memcpy_fromio(buf, p, 15); | 
|  | if ((memcmp(buf, "_DMI_", 5) == 0) && dmi_checksum(buf)) { | 
|  | dmi_num = (buf[13] << 8) | buf[12]; | 
|  | dmi_len = (buf[7] << 8) | buf[6]; | 
|  | dmi_base = (buf[11] << 24) | (buf[10] << 16) | | 
|  | (buf[9] << 8) | buf[8]; | 
|  |  | 
|  | /* | 
|  | * DMI version 0.0 means that the real version is taken from | 
|  | * the SMBIOS version, which we don't know at this point. | 
|  | */ | 
|  | if (buf[14] != 0) | 
|  | printk(KERN_INFO "DMI %d.%d present.\n", | 
|  | buf[14] >> 4, buf[14] & 0xF); | 
|  | else | 
|  | printk(KERN_INFO "DMI present.\n"); | 
|  | if (dmi_walk_early(dmi_decode) == 0) { | 
|  | dmi_dump_ids(); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | void __init dmi_scan_machine(void) | 
|  | { | 
|  | char __iomem *p, *q; | 
|  | int rc; | 
|  |  | 
|  | if (efi_enabled) { | 
|  | if (efi.smbios == EFI_INVALID_TABLE_ADDR) | 
|  | goto error; | 
|  |  | 
|  | /* This is called as a core_initcall() because it isn't | 
|  | * needed during early boot.  This also means we can | 
|  | * iounmap the space when we're done with it. | 
|  | */ | 
|  | p = dmi_ioremap(efi.smbios, 32); | 
|  | if (p == NULL) | 
|  | goto error; | 
|  |  | 
|  | rc = dmi_present(p + 0x10); /* offset of _DMI_ string */ | 
|  | dmi_iounmap(p, 32); | 
|  | if (!rc) { | 
|  | dmi_available = 1; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | else { | 
|  | /* | 
|  | * no iounmap() for that ioremap(); it would be a no-op, but | 
|  | * it's so early in setup that sucker gets confused into doing | 
|  | * what it shouldn't if we actually call it. | 
|  | */ | 
|  | p = dmi_ioremap(0xF0000, 0x10000); | 
|  | if (p == NULL) | 
|  | goto error; | 
|  |  | 
|  | for (q = p; q < p + 0x10000; q += 16) { | 
|  | rc = dmi_present(q); | 
|  | if (!rc) { | 
|  | dmi_available = 1; | 
|  | dmi_iounmap(p, 0x10000); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | dmi_iounmap(p, 0x10000); | 
|  | } | 
|  | error: | 
|  | printk(KERN_INFO "DMI not present or invalid.\n"); | 
|  | out: | 
|  | dmi_initialized = 1; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	dmi_matches - check if dmi_system_id structure matches system DMI data | 
|  | *	@dmi: pointer to the dmi_system_id structure to check | 
|  | */ | 
|  | static bool dmi_matches(const struct dmi_system_id *dmi) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | WARN(!dmi_initialized, KERN_ERR "dmi check: not initialized yet.\n"); | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) { | 
|  | int s = dmi->matches[i].slot; | 
|  | if (s == DMI_NONE) | 
|  | break; | 
|  | if (dmi_ident[s] | 
|  | && strstr(dmi_ident[s], dmi->matches[i].substr)) | 
|  | continue; | 
|  | /* No match */ | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	dmi_is_end_of_table - check for end-of-table marker | 
|  | *	@dmi: pointer to the dmi_system_id structure to check | 
|  | */ | 
|  | static bool dmi_is_end_of_table(const struct dmi_system_id *dmi) | 
|  | { | 
|  | return dmi->matches[0].slot == DMI_NONE; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	dmi_check_system - check system DMI data | 
|  | *	@list: array of dmi_system_id structures to match against | 
|  | *		All non-null elements of the list must match | 
|  | *		their slot's (field index's) data (i.e., each | 
|  | *		list string must be a substring of the specified | 
|  | *		DMI slot's string data) to be considered a | 
|  | *		successful match. | 
|  | * | 
|  | *	Walk the blacklist table running matching functions until someone | 
|  | *	returns non zero or we hit the end. Callback function is called for | 
|  | *	each successful match. Returns the number of matches. | 
|  | */ | 
|  | int dmi_check_system(const struct dmi_system_id *list) | 
|  | { | 
|  | int count = 0; | 
|  | const struct dmi_system_id *d; | 
|  |  | 
|  | for (d = list; !dmi_is_end_of_table(d); d++) | 
|  | if (dmi_matches(d)) { | 
|  | count++; | 
|  | if (d->callback && d->callback(d)) | 
|  | break; | 
|  | } | 
|  |  | 
|  | return count; | 
|  | } | 
|  | EXPORT_SYMBOL(dmi_check_system); | 
|  |  | 
|  | /** | 
|  | *	dmi_first_match - find dmi_system_id structure matching system DMI data | 
|  | *	@list: array of dmi_system_id structures to match against | 
|  | *		All non-null elements of the list must match | 
|  | *		their slot's (field index's) data (i.e., each | 
|  | *		list string must be a substring of the specified | 
|  | *		DMI slot's string data) to be considered a | 
|  | *		successful match. | 
|  | * | 
|  | *	Walk the blacklist table until the first match is found.  Return the | 
|  | *	pointer to the matching entry or NULL if there's no match. | 
|  | */ | 
|  | const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list) | 
|  | { | 
|  | const struct dmi_system_id *d; | 
|  |  | 
|  | for (d = list; !dmi_is_end_of_table(d); d++) | 
|  | if (dmi_matches(d)) | 
|  | return d; | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  | EXPORT_SYMBOL(dmi_first_match); | 
|  |  | 
|  | /** | 
|  | *	dmi_get_system_info - return DMI data value | 
|  | *	@field: data index (see enum dmi_field) | 
|  | * | 
|  | *	Returns one DMI data value, can be used to perform | 
|  | *	complex DMI data checks. | 
|  | */ | 
|  | const char *dmi_get_system_info(int field) | 
|  | { | 
|  | return dmi_ident[field]; | 
|  | } | 
|  | EXPORT_SYMBOL(dmi_get_system_info); | 
|  |  | 
|  | /** | 
|  | * dmi_name_in_serial - Check if string is in the DMI product serial information | 
|  | * @str: string to check for | 
|  | */ | 
|  | int dmi_name_in_serial(const char *str) | 
|  | { | 
|  | int f = DMI_PRODUCT_SERIAL; | 
|  | if (dmi_ident[f] && strstr(dmi_ident[f], str)) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	dmi_name_in_vendors - Check if string is anywhere in the DMI vendor information. | 
|  | *	@str: 	Case sensitive Name | 
|  | */ | 
|  | int dmi_name_in_vendors(const char *str) | 
|  | { | 
|  | static int fields[] = { DMI_BIOS_VENDOR, DMI_BIOS_VERSION, DMI_SYS_VENDOR, | 
|  | DMI_PRODUCT_NAME, DMI_PRODUCT_VERSION, DMI_BOARD_VENDOR, | 
|  | DMI_BOARD_NAME, DMI_BOARD_VERSION, DMI_NONE }; | 
|  | int i; | 
|  | for (i = 0; fields[i] != DMI_NONE; i++) { | 
|  | int f = fields[i]; | 
|  | if (dmi_ident[f] && strstr(dmi_ident[f], str)) | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(dmi_name_in_vendors); | 
|  |  | 
|  | /** | 
|  | *	dmi_find_device - find onboard device by type/name | 
|  | *	@type: device type or %DMI_DEV_TYPE_ANY to match all device types | 
|  | *	@name: device name string or %NULL to match all | 
|  | *	@from: previous device found in search, or %NULL for new search. | 
|  | * | 
|  | *	Iterates through the list of known onboard devices. If a device is | 
|  | *	found with a matching @vendor and @device, a pointer to its device | 
|  | *	structure is returned.  Otherwise, %NULL is returned. | 
|  | *	A new search is initiated by passing %NULL as the @from argument. | 
|  | *	If @from is not %NULL, searches continue from next device. | 
|  | */ | 
|  | const struct dmi_device * dmi_find_device(int type, const char *name, | 
|  | const struct dmi_device *from) | 
|  | { | 
|  | const struct list_head *head = from ? &from->list : &dmi_devices; | 
|  | struct list_head *d; | 
|  |  | 
|  | for(d = head->next; d != &dmi_devices; d = d->next) { | 
|  | const struct dmi_device *dev = | 
|  | list_entry(d, struct dmi_device, list); | 
|  |  | 
|  | if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) && | 
|  | ((name == NULL) || (strcmp(dev->name, name) == 0))) | 
|  | return dev; | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  | EXPORT_SYMBOL(dmi_find_device); | 
|  |  | 
|  | /** | 
|  | *	dmi_get_date - parse a DMI date | 
|  | *	@field:	data index (see enum dmi_field) | 
|  | *	@yearp: optional out parameter for the year | 
|  | *	@monthp: optional out parameter for the month | 
|  | *	@dayp: optional out parameter for the day | 
|  | * | 
|  | *	The date field is assumed to be in the form resembling | 
|  | *	[mm[/dd]]/yy[yy] and the result is stored in the out | 
|  | *	parameters any or all of which can be omitted. | 
|  | * | 
|  | *	If the field doesn't exist, all out parameters are set to zero | 
|  | *	and false is returned.  Otherwise, true is returned with any | 
|  | *	invalid part of date set to zero. | 
|  | * | 
|  | *	On return, year, month and day are guaranteed to be in the | 
|  | *	range of [0,9999], [0,12] and [0,31] respectively. | 
|  | */ | 
|  | bool dmi_get_date(int field, int *yearp, int *monthp, int *dayp) | 
|  | { | 
|  | int year = 0, month = 0, day = 0; | 
|  | bool exists; | 
|  | const char *s, *y; | 
|  | char *e; | 
|  |  | 
|  | s = dmi_get_system_info(field); | 
|  | exists = s; | 
|  | if (!exists) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * Determine year first.  We assume the date string resembles | 
|  | * mm/dd/yy[yy] but the original code extracted only the year | 
|  | * from the end.  Keep the behavior in the spirit of no | 
|  | * surprises. | 
|  | */ | 
|  | y = strrchr(s, '/'); | 
|  | if (!y) | 
|  | goto out; | 
|  |  | 
|  | y++; | 
|  | year = simple_strtoul(y, &e, 10); | 
|  | if (y != e && year < 100) {	/* 2-digit year */ | 
|  | year += 1900; | 
|  | if (year < 1996)	/* no dates < spec 1.0 */ | 
|  | year += 100; | 
|  | } | 
|  | if (year > 9999)		/* year should fit in %04d */ | 
|  | year = 0; | 
|  |  | 
|  | /* parse the mm and dd */ | 
|  | month = simple_strtoul(s, &e, 10); | 
|  | if (s == e || *e != '/' || !month || month > 12) { | 
|  | month = 0; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | s = e + 1; | 
|  | day = simple_strtoul(s, &e, 10); | 
|  | if (s == y || s == e || *e != '/' || day > 31) | 
|  | day = 0; | 
|  | out: | 
|  | if (yearp) | 
|  | *yearp = year; | 
|  | if (monthp) | 
|  | *monthp = month; | 
|  | if (dayp) | 
|  | *dayp = day; | 
|  | return exists; | 
|  | } | 
|  | EXPORT_SYMBOL(dmi_get_date); | 
|  |  | 
|  | /** | 
|  | *	dmi_walk - Walk the DMI table and get called back for every record | 
|  | *	@decode: Callback function | 
|  | *	@private_data: Private data to be passed to the callback function | 
|  | * | 
|  | *	Returns -1 when the DMI table can't be reached, 0 on success. | 
|  | */ | 
|  | int dmi_walk(void (*decode)(const struct dmi_header *, void *), | 
|  | void *private_data) | 
|  | { | 
|  | u8 *buf; | 
|  |  | 
|  | if (!dmi_available) | 
|  | return -1; | 
|  |  | 
|  | buf = ioremap(dmi_base, dmi_len); | 
|  | if (buf == NULL) | 
|  | return -1; | 
|  |  | 
|  | dmi_table(buf, dmi_len, dmi_num, decode, private_data); | 
|  |  | 
|  | iounmap(buf); | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(dmi_walk); | 
|  |  | 
|  | /** | 
|  | * dmi_match - compare a string to the dmi field (if exists) | 
|  | * @f: DMI field identifier | 
|  | * @str: string to compare the DMI field to | 
|  | * | 
|  | * Returns true if the requested field equals to the str (including NULL). | 
|  | */ | 
|  | bool dmi_match(enum dmi_field f, const char *str) | 
|  | { | 
|  | const char *info = dmi_get_system_info(f); | 
|  |  | 
|  | if (info == NULL || str == NULL) | 
|  | return info == str; | 
|  |  | 
|  | return !strcmp(info, str); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(dmi_match); |