|  | /* | 
|  | ** | 
|  | **  PCI Lower Bus Adapter (LBA) manager | 
|  | ** | 
|  | **	(c) Copyright 1999,2000 Grant Grundler | 
|  | **	(c) Copyright 1999,2000 Hewlett-Packard Company | 
|  | ** | 
|  | **	This program is free software; you can redistribute it and/or modify | 
|  | **	it under the terms of the GNU General Public License as published by | 
|  | **      the Free Software Foundation; either version 2 of the License, or | 
|  | **      (at your option) any later version. | 
|  | ** | 
|  | ** | 
|  | ** This module primarily provides access to PCI bus (config/IOport | 
|  | ** spaces) on platforms with an SBA/LBA chipset. A/B/C/J/L/N-class | 
|  | ** with 4 digit model numbers - eg C3000 (and A400...sigh). | 
|  | ** | 
|  | ** LBA driver isn't as simple as the Dino driver because: | 
|  | **   (a) this chip has substantial bug fixes between revisions | 
|  | **       (Only one Dino bug has a software workaround :^(  ) | 
|  | **   (b) has more options which we don't (yet) support (DMA hints, OLARD) | 
|  | **   (c) IRQ support lives in the I/O SAPIC driver (not with PCI driver) | 
|  | **   (d) play nicely with both PAT and "Legacy" PA-RISC firmware (PDC). | 
|  | **       (dino only deals with "Legacy" PDC) | 
|  | ** | 
|  | ** LBA driver passes the I/O SAPIC HPA to the I/O SAPIC driver. | 
|  | ** (I/O SAPIC is integratd in the LBA chip). | 
|  | ** | 
|  | ** FIXME: Add support to SBA and LBA drivers for DMA hint sets | 
|  | ** FIXME: Add support for PCI card hot-plug (OLARD). | 
|  | */ | 
|  |  | 
|  | #include <linux/delay.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/init.h>		/* for __init and __devinit */ | 
|  | #include <linux/pci.h> | 
|  | #include <linux/ioport.h> | 
|  | #include <linux/slab.h> | 
|  |  | 
|  | #include <asm/byteorder.h> | 
|  | #include <asm/pdc.h> | 
|  | #include <asm/pdcpat.h> | 
|  | #include <asm/page.h> | 
|  | #include <asm/system.h> | 
|  |  | 
|  | #include <asm/ropes.h> | 
|  | #include <asm/hardware.h>	/* for register_parisc_driver() stuff */ | 
|  | #include <asm/parisc-device.h> | 
|  | #include <asm/io.h>		/* read/write stuff */ | 
|  |  | 
|  | #undef DEBUG_LBA	/* general stuff */ | 
|  | #undef DEBUG_LBA_PORT	/* debug I/O Port access */ | 
|  | #undef DEBUG_LBA_CFG	/* debug Config Space Access (ie PCI Bus walk) */ | 
|  | #undef DEBUG_LBA_PAT	/* debug PCI Resource Mgt code - PDC PAT only */ | 
|  |  | 
|  | #undef FBB_SUPPORT	/* Fast Back-Back xfers - NOT READY YET */ | 
|  |  | 
|  |  | 
|  | #ifdef DEBUG_LBA | 
|  | #define DBG(x...)	printk(x) | 
|  | #else | 
|  | #define DBG(x...) | 
|  | #endif | 
|  |  | 
|  | #ifdef DEBUG_LBA_PORT | 
|  | #define DBG_PORT(x...)	printk(x) | 
|  | #else | 
|  | #define DBG_PORT(x...) | 
|  | #endif | 
|  |  | 
|  | #ifdef DEBUG_LBA_CFG | 
|  | #define DBG_CFG(x...)	printk(x) | 
|  | #else | 
|  | #define DBG_CFG(x...) | 
|  | #endif | 
|  |  | 
|  | #ifdef DEBUG_LBA_PAT | 
|  | #define DBG_PAT(x...)	printk(x) | 
|  | #else | 
|  | #define DBG_PAT(x...) | 
|  | #endif | 
|  |  | 
|  |  | 
|  | /* | 
|  | ** Config accessor functions only pass in the 8-bit bus number and not | 
|  | ** the 8-bit "PCI Segment" number. Each LBA will be assigned a PCI bus | 
|  | ** number based on what firmware wrote into the scratch register. | 
|  | ** | 
|  | ** The "secondary" bus number is set to this before calling | 
|  | ** pci_register_ops(). If any PPB's are present, the scan will | 
|  | ** discover them and update the "secondary" and "subordinate" | 
|  | ** fields in the pci_bus structure. | 
|  | ** | 
|  | ** Changes in the configuration *may* result in a different | 
|  | ** bus number for each LBA depending on what firmware does. | 
|  | */ | 
|  |  | 
|  | #define MODULE_NAME "LBA" | 
|  |  | 
|  | /* non-postable I/O port space, densely packed */ | 
|  | #define LBA_PORT_BASE	(PCI_F_EXTEND | 0xfee00000UL) | 
|  | static void __iomem *astro_iop_base __read_mostly; | 
|  |  | 
|  | static u32 lba_t32; | 
|  |  | 
|  | /* lba flags */ | 
|  | #define LBA_FLAG_SKIP_PROBE	0x10 | 
|  |  | 
|  | #define LBA_SKIP_PROBE(d) ((d)->flags & LBA_FLAG_SKIP_PROBE) | 
|  |  | 
|  |  | 
|  | /* Looks nice and keeps the compiler happy */ | 
|  | #define LBA_DEV(d) ((struct lba_device *) (d)) | 
|  |  | 
|  |  | 
|  | /* | 
|  | ** Only allow 8 subsidiary busses per LBA | 
|  | ** Problem is the PCI bus numbering is globally shared. | 
|  | */ | 
|  | #define LBA_MAX_NUM_BUSES 8 | 
|  |  | 
|  | /************************************ | 
|  | * LBA register read and write support | 
|  | * | 
|  | * BE WARNED: register writes are posted. | 
|  | *  (ie follow writes which must reach HW with a read) | 
|  | */ | 
|  | #define READ_U8(addr)  __raw_readb(addr) | 
|  | #define READ_U16(addr) __raw_readw(addr) | 
|  | #define READ_U32(addr) __raw_readl(addr) | 
|  | #define WRITE_U8(value, addr)  __raw_writeb(value, addr) | 
|  | #define WRITE_U16(value, addr) __raw_writew(value, addr) | 
|  | #define WRITE_U32(value, addr) __raw_writel(value, addr) | 
|  |  | 
|  | #define READ_REG8(addr)  readb(addr) | 
|  | #define READ_REG16(addr) readw(addr) | 
|  | #define READ_REG32(addr) readl(addr) | 
|  | #define READ_REG64(addr) readq(addr) | 
|  | #define WRITE_REG8(value, addr)  writeb(value, addr) | 
|  | #define WRITE_REG16(value, addr) writew(value, addr) | 
|  | #define WRITE_REG32(value, addr) writel(value, addr) | 
|  |  | 
|  |  | 
|  | #define LBA_CFG_TOK(bus,dfn) ((u32) ((bus)<<16 | (dfn)<<8)) | 
|  | #define LBA_CFG_BUS(tok)  ((u8) ((tok)>>16)) | 
|  | #define LBA_CFG_DEV(tok)  ((u8) ((tok)>>11) & 0x1f) | 
|  | #define LBA_CFG_FUNC(tok) ((u8) ((tok)>>8 ) & 0x7) | 
|  |  | 
|  |  | 
|  | /* | 
|  | ** Extract LBA (Rope) number from HPA | 
|  | ** REVISIT: 16 ropes for Stretch/Ike? | 
|  | */ | 
|  | #define ROPES_PER_IOC	8 | 
|  | #define LBA_NUM(x)    ((((unsigned long) x) >> 13) & (ROPES_PER_IOC-1)) | 
|  |  | 
|  |  | 
|  | static void | 
|  | lba_dump_res(struct resource *r, int d) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | if (NULL == r) | 
|  | return; | 
|  |  | 
|  | printk(KERN_DEBUG "(%p)", r->parent); | 
|  | for (i = d; i ; --i) printk(" "); | 
|  | printk(KERN_DEBUG "%p [%lx,%lx]/%lx\n", r, | 
|  | (long)r->start, (long)r->end, r->flags); | 
|  | lba_dump_res(r->child, d+2); | 
|  | lba_dump_res(r->sibling, d); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | ** LBA rev 2.0, 2.1, 2.2, and 3.0 bus walks require a complex | 
|  | ** workaround for cfg cycles: | 
|  | **	-- preserve  LBA state | 
|  | **	-- prevent any DMA from occurring | 
|  | **	-- turn on smart mode | 
|  | **	-- probe with config writes before doing config reads | 
|  | **	-- check ERROR_STATUS | 
|  | **	-- clear ERROR_STATUS | 
|  | **	-- restore LBA state | 
|  | ** | 
|  | ** The workaround is only used for device discovery. | 
|  | */ | 
|  |  | 
|  | static int lba_device_present(u8 bus, u8 dfn, struct lba_device *d) | 
|  | { | 
|  | u8 first_bus = d->hba.hba_bus->secondary; | 
|  | u8 last_sub_bus = d->hba.hba_bus->subordinate; | 
|  |  | 
|  | if ((bus < first_bus) || | 
|  | (bus > last_sub_bus) || | 
|  | ((bus - first_bus) >= LBA_MAX_NUM_BUSES)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | #define LBA_CFG_SETUP(d, tok) {				\ | 
|  | /* Save contents of error config register.  */			\ | 
|  | error_config = READ_REG32(d->hba.base_addr + LBA_ERROR_CONFIG);		\ | 
|  | \ | 
|  | /* Save contents of status control register.  */			\ | 
|  | status_control = READ_REG32(d->hba.base_addr + LBA_STAT_CTL);		\ | 
|  | \ | 
|  | /* For LBA rev 2.0, 2.1, 2.2, and 3.0, we must disable DMA		\ | 
|  | ** arbitration for full bus walks.					\ | 
|  | */									\ | 
|  | /* Save contents of arb mask register. */			\ | 
|  | arb_mask = READ_REG32(d->hba.base_addr + LBA_ARB_MASK);		\ | 
|  | \ | 
|  | /*								\ | 
|  | * Turn off all device arbitration bits (i.e. everything	\ | 
|  | * except arbitration enable bit).				\ | 
|  | */								\ | 
|  | WRITE_REG32(0x1, d->hba.base_addr + LBA_ARB_MASK);		\ | 
|  | \ | 
|  | /*									\ | 
|  | * Set the smart mode bit so that master aborts don't cause		\ | 
|  | * LBA to go into PCI fatal mode (required).			\ | 
|  | */									\ | 
|  | WRITE_REG32(error_config | LBA_SMART_MODE, d->hba.base_addr + LBA_ERROR_CONFIG);	\ | 
|  | } | 
|  |  | 
|  |  | 
|  | #define LBA_CFG_PROBE(d, tok) {				\ | 
|  | /*									\ | 
|  | * Setup Vendor ID write and read back the address register		\ | 
|  | * to make sure that LBA is the bus master.				\ | 
|  | */									\ | 
|  | WRITE_REG32(tok | PCI_VENDOR_ID, (d)->hba.base_addr + LBA_PCI_CFG_ADDR);\ | 
|  | /*									\ | 
|  | * Read address register to ensure that LBA is the bus master,	\ | 
|  | * which implies that DMA traffic has stopped when DMA arb is off.	\ | 
|  | */									\ | 
|  | lba_t32 = READ_REG32((d)->hba.base_addr + LBA_PCI_CFG_ADDR);	\ | 
|  | /*									\ | 
|  | * Generate a cfg write cycle (will have no affect on		\ | 
|  | * Vendor ID register since read-only).				\ | 
|  | */									\ | 
|  | WRITE_REG32(~0, (d)->hba.base_addr + LBA_PCI_CFG_DATA);		\ | 
|  | /*									\ | 
|  | * Make sure write has completed before proceeding further,		\ | 
|  | * i.e. before setting clear enable.				\ | 
|  | */									\ | 
|  | lba_t32 = READ_REG32((d)->hba.base_addr + LBA_PCI_CFG_ADDR);	\ | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * HPREVISIT: | 
|  | *   -- Can't tell if config cycle got the error. | 
|  | * | 
|  | *		OV bit is broken until rev 4.0, so can't use OV bit and | 
|  | *		LBA_ERROR_LOG_ADDR to tell if error belongs to config cycle. | 
|  | * | 
|  | *		As of rev 4.0, no longer need the error check. | 
|  | * | 
|  | *   -- Even if we could tell, we still want to return -1 | 
|  | *	for **ANY** error (not just master abort). | 
|  | * | 
|  | *   -- Only clear non-fatal errors (we don't want to bring | 
|  | *	LBA out of pci-fatal mode). | 
|  | * | 
|  | *		Actually, there is still a race in which | 
|  | *		we could be clearing a fatal error.  We will | 
|  | *		live with this during our initial bus walk | 
|  | *		until rev 4.0 (no driver activity during | 
|  | *		initial bus walk).  The initial bus walk | 
|  | *		has race conditions concerning the use of | 
|  | *		smart mode as well. | 
|  | */ | 
|  |  | 
|  | #define LBA_MASTER_ABORT_ERROR 0xc | 
|  | #define LBA_FATAL_ERROR 0x10 | 
|  |  | 
|  | #define LBA_CFG_MASTER_ABORT_CHECK(d, base, tok, error) {		\ | 
|  | u32 error_status = 0;						\ | 
|  | /*									\ | 
|  | * Set clear enable (CE) bit. Unset by HW when new			\ | 
|  | * errors are logged -- LBA HW ERS section 14.3.3).		\ | 
|  | */									\ | 
|  | WRITE_REG32(status_control | CLEAR_ERRLOG_ENABLE, base + LBA_STAT_CTL); \ | 
|  | error_status = READ_REG32(base + LBA_ERROR_STATUS);		\ | 
|  | if ((error_status & 0x1f) != 0) {					\ | 
|  | /*								\ | 
|  | * Fail the config read request.				\ | 
|  | */								\ | 
|  | error = 1;							\ | 
|  | if ((error_status & LBA_FATAL_ERROR) == 0) {			\ | 
|  | /*								\ | 
|  | * Clear error status (if fatal bit not set) by setting	\ | 
|  | * clear error log bit (CL).				\ | 
|  | */								\ | 
|  | WRITE_REG32(status_control | CLEAR_ERRLOG, base + LBA_STAT_CTL); \ | 
|  | }								\ | 
|  | }									\ | 
|  | } | 
|  |  | 
|  | #define LBA_CFG_TR4_ADDR_SETUP(d, addr)					\ | 
|  | WRITE_REG32(((addr) & ~3), (d)->hba.base_addr + LBA_PCI_CFG_ADDR); | 
|  |  | 
|  | #define LBA_CFG_ADDR_SETUP(d, addr) {					\ | 
|  | WRITE_REG32(((addr) & ~3), (d)->hba.base_addr + LBA_PCI_CFG_ADDR);	\ | 
|  | /*									\ | 
|  | * Read address register to ensure that LBA is the bus master,	\ | 
|  | * which implies that DMA traffic has stopped when DMA arb is off.	\ | 
|  | */									\ | 
|  | lba_t32 = READ_REG32((d)->hba.base_addr + LBA_PCI_CFG_ADDR);	\ | 
|  | } | 
|  |  | 
|  |  | 
|  | #define LBA_CFG_RESTORE(d, base) {					\ | 
|  | /*									\ | 
|  | * Restore status control register (turn off clear enable).		\ | 
|  | */									\ | 
|  | WRITE_REG32(status_control, base + LBA_STAT_CTL);			\ | 
|  | /*									\ | 
|  | * Restore error config register (turn off smart mode).		\ | 
|  | */									\ | 
|  | WRITE_REG32(error_config, base + LBA_ERROR_CONFIG);			\ | 
|  | /*								\ | 
|  | * Restore arb mask register (reenables DMA arbitration).	\ | 
|  | */								\ | 
|  | WRITE_REG32(arb_mask, base + LBA_ARB_MASK);			\ | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | static unsigned int | 
|  | lba_rd_cfg(struct lba_device *d, u32 tok, u8 reg, u32 size) | 
|  | { | 
|  | u32 data = ~0U; | 
|  | int error = 0; | 
|  | u32 arb_mask = 0;	/* used by LBA_CFG_SETUP/RESTORE */ | 
|  | u32 error_config = 0;	/* used by LBA_CFG_SETUP/RESTORE */ | 
|  | u32 status_control = 0;	/* used by LBA_CFG_SETUP/RESTORE */ | 
|  |  | 
|  | LBA_CFG_SETUP(d, tok); | 
|  | LBA_CFG_PROBE(d, tok); | 
|  | LBA_CFG_MASTER_ABORT_CHECK(d, d->hba.base_addr, tok, error); | 
|  | if (!error) { | 
|  | void __iomem *data_reg = d->hba.base_addr + LBA_PCI_CFG_DATA; | 
|  |  | 
|  | LBA_CFG_ADDR_SETUP(d, tok | reg); | 
|  | switch (size) { | 
|  | case 1: data = (u32) READ_REG8(data_reg + (reg & 3)); break; | 
|  | case 2: data = (u32) READ_REG16(data_reg+ (reg & 2)); break; | 
|  | case 4: data = READ_REG32(data_reg); break; | 
|  | } | 
|  | } | 
|  | LBA_CFG_RESTORE(d, d->hba.base_addr); | 
|  | return(data); | 
|  | } | 
|  |  | 
|  |  | 
|  | static int elroy_cfg_read(struct pci_bus *bus, unsigned int devfn, int pos, int size, u32 *data) | 
|  | { | 
|  | struct lba_device *d = LBA_DEV(parisc_walk_tree(bus->bridge)); | 
|  | u32 local_bus = (bus->parent == NULL) ? 0 : bus->secondary; | 
|  | u32 tok = LBA_CFG_TOK(local_bus, devfn); | 
|  | void __iomem *data_reg = d->hba.base_addr + LBA_PCI_CFG_DATA; | 
|  |  | 
|  | if ((pos > 255) || (devfn > 255)) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* FIXME: B2K/C3600 workaround is always use old method... */ | 
|  | /* if (!LBA_SKIP_PROBE(d)) */ { | 
|  | /* original - Generate config cycle on broken elroy | 
|  | with risk we will miss PCI bus errors. */ | 
|  | *data = lba_rd_cfg(d, tok, pos, size); | 
|  | DBG_CFG("%s(%x+%2x) -> 0x%x (a)\n", __func__, tok, pos, *data); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (LBA_SKIP_PROBE(d) && !lba_device_present(bus->secondary, devfn, d)) { | 
|  | DBG_CFG("%s(%x+%2x) -> -1 (b)\n", __func__, tok, pos); | 
|  | /* either don't want to look or know device isn't present. */ | 
|  | *data = ~0U; | 
|  | return(0); | 
|  | } | 
|  |  | 
|  | /* Basic Algorithm | 
|  | ** Should only get here on fully working LBA rev. | 
|  | ** This is how simple the code should have been. | 
|  | */ | 
|  | LBA_CFG_ADDR_SETUP(d, tok | pos); | 
|  | switch(size) { | 
|  | case 1: *data = READ_REG8 (data_reg + (pos & 3)); break; | 
|  | case 2: *data = READ_REG16(data_reg + (pos & 2)); break; | 
|  | case 4: *data = READ_REG32(data_reg); break; | 
|  | } | 
|  | DBG_CFG("%s(%x+%2x) -> 0x%x (c)\n", __func__, tok, pos, *data); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | static void | 
|  | lba_wr_cfg(struct lba_device *d, u32 tok, u8 reg, u32 data, u32 size) | 
|  | { | 
|  | int error = 0; | 
|  | u32 arb_mask = 0; | 
|  | u32 error_config = 0; | 
|  | u32 status_control = 0; | 
|  | void __iomem *data_reg = d->hba.base_addr + LBA_PCI_CFG_DATA; | 
|  |  | 
|  | LBA_CFG_SETUP(d, tok); | 
|  | LBA_CFG_ADDR_SETUP(d, tok | reg); | 
|  | switch (size) { | 
|  | case 1: WRITE_REG8 (data, data_reg + (reg & 3)); break; | 
|  | case 2: WRITE_REG16(data, data_reg + (reg & 2)); break; | 
|  | case 4: WRITE_REG32(data, data_reg);             break; | 
|  | } | 
|  | LBA_CFG_MASTER_ABORT_CHECK(d, d->hba.base_addr, tok, error); | 
|  | LBA_CFG_RESTORE(d, d->hba.base_addr); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * LBA 4.0 config write code implements non-postable semantics | 
|  | * by doing a read of CONFIG ADDR after the write. | 
|  | */ | 
|  |  | 
|  | static int elroy_cfg_write(struct pci_bus *bus, unsigned int devfn, int pos, int size, u32 data) | 
|  | { | 
|  | struct lba_device *d = LBA_DEV(parisc_walk_tree(bus->bridge)); | 
|  | u32 local_bus = (bus->parent == NULL) ? 0 : bus->secondary; | 
|  | u32 tok = LBA_CFG_TOK(local_bus,devfn); | 
|  |  | 
|  | if ((pos > 255) || (devfn > 255)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (!LBA_SKIP_PROBE(d)) { | 
|  | /* Original Workaround */ | 
|  | lba_wr_cfg(d, tok, pos, (u32) data, size); | 
|  | DBG_CFG("%s(%x+%2x) = 0x%x (a)\n", __func__, tok, pos,data); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (LBA_SKIP_PROBE(d) && (!lba_device_present(bus->secondary, devfn, d))) { | 
|  | DBG_CFG("%s(%x+%2x) = 0x%x (b)\n", __func__, tok, pos,data); | 
|  | return 1; /* New Workaround */ | 
|  | } | 
|  |  | 
|  | DBG_CFG("%s(%x+%2x) = 0x%x (c)\n", __func__, tok, pos, data); | 
|  |  | 
|  | /* Basic Algorithm */ | 
|  | LBA_CFG_ADDR_SETUP(d, tok | pos); | 
|  | switch(size) { | 
|  | case 1: WRITE_REG8 (data, d->hba.base_addr + LBA_PCI_CFG_DATA + (pos & 3)); | 
|  | break; | 
|  | case 2: WRITE_REG16(data, d->hba.base_addr + LBA_PCI_CFG_DATA + (pos & 2)); | 
|  | break; | 
|  | case 4: WRITE_REG32(data, d->hba.base_addr + LBA_PCI_CFG_DATA); | 
|  | break; | 
|  | } | 
|  | /* flush posted write */ | 
|  | lba_t32 = READ_REG32(d->hba.base_addr + LBA_PCI_CFG_ADDR); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | static struct pci_ops elroy_cfg_ops = { | 
|  | .read =		elroy_cfg_read, | 
|  | .write =	elroy_cfg_write, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * The mercury_cfg_ops are slightly misnamed; they're also used for Elroy | 
|  | * TR4.0 as no additional bugs were found in this areea between Elroy and | 
|  | * Mercury | 
|  | */ | 
|  |  | 
|  | static int mercury_cfg_read(struct pci_bus *bus, unsigned int devfn, int pos, int size, u32 *data) | 
|  | { | 
|  | struct lba_device *d = LBA_DEV(parisc_walk_tree(bus->bridge)); | 
|  | u32 local_bus = (bus->parent == NULL) ? 0 : bus->secondary; | 
|  | u32 tok = LBA_CFG_TOK(local_bus, devfn); | 
|  | void __iomem *data_reg = d->hba.base_addr + LBA_PCI_CFG_DATA; | 
|  |  | 
|  | if ((pos > 255) || (devfn > 255)) | 
|  | return -EINVAL; | 
|  |  | 
|  | LBA_CFG_TR4_ADDR_SETUP(d, tok | pos); | 
|  | switch(size) { | 
|  | case 1: | 
|  | *data = READ_REG8(data_reg + (pos & 3)); | 
|  | break; | 
|  | case 2: | 
|  | *data = READ_REG16(data_reg + (pos & 2)); | 
|  | break; | 
|  | case 4: | 
|  | *data = READ_REG32(data_reg);             break; | 
|  | break; | 
|  | } | 
|  |  | 
|  | DBG_CFG("mercury_cfg_read(%x+%2x) -> 0x%x\n", tok, pos, *data); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * LBA 4.0 config write code implements non-postable semantics | 
|  | * by doing a read of CONFIG ADDR after the write. | 
|  | */ | 
|  |  | 
|  | static int mercury_cfg_write(struct pci_bus *bus, unsigned int devfn, int pos, int size, u32 data) | 
|  | { | 
|  | struct lba_device *d = LBA_DEV(parisc_walk_tree(bus->bridge)); | 
|  | void __iomem *data_reg = d->hba.base_addr + LBA_PCI_CFG_DATA; | 
|  | u32 local_bus = (bus->parent == NULL) ? 0 : bus->secondary; | 
|  | u32 tok = LBA_CFG_TOK(local_bus,devfn); | 
|  |  | 
|  | if ((pos > 255) || (devfn > 255)) | 
|  | return -EINVAL; | 
|  |  | 
|  | DBG_CFG("%s(%x+%2x) <- 0x%x (c)\n", __func__, tok, pos, data); | 
|  |  | 
|  | LBA_CFG_TR4_ADDR_SETUP(d, tok | pos); | 
|  | switch(size) { | 
|  | case 1: | 
|  | WRITE_REG8 (data, data_reg + (pos & 3)); | 
|  | break; | 
|  | case 2: | 
|  | WRITE_REG16(data, data_reg + (pos & 2)); | 
|  | break; | 
|  | case 4: | 
|  | WRITE_REG32(data, data_reg); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* flush posted write */ | 
|  | lba_t32 = READ_U32(d->hba.base_addr + LBA_PCI_CFG_ADDR); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct pci_ops mercury_cfg_ops = { | 
|  | .read =		mercury_cfg_read, | 
|  | .write =	mercury_cfg_write, | 
|  | }; | 
|  |  | 
|  |  | 
|  | static void | 
|  | lba_bios_init(void) | 
|  | { | 
|  | DBG(MODULE_NAME ": lba_bios_init\n"); | 
|  | } | 
|  |  | 
|  |  | 
|  | #ifdef CONFIG_64BIT | 
|  |  | 
|  | /* | 
|  | * truncate_pat_collision:  Deal with overlaps or outright collisions | 
|  | *			between PAT PDC reported ranges. | 
|  | * | 
|  | *   Broken PA8800 firmware will report lmmio range that | 
|  | *   overlaps with CPU HPA. Just truncate the lmmio range. | 
|  | * | 
|  | *   BEWARE: conflicts with this lmmio range may be an | 
|  | *   elmmio range which is pointing down another rope. | 
|  | * | 
|  | *  FIXME: only deals with one collision per range...theoretically we | 
|  | *  could have several. Supporting more than one collision will get messy. | 
|  | */ | 
|  | static unsigned long | 
|  | truncate_pat_collision(struct resource *root, struct resource *new) | 
|  | { | 
|  | unsigned long start = new->start; | 
|  | unsigned long end = new->end; | 
|  | struct resource *tmp = root->child; | 
|  |  | 
|  | if (end <= start || start < root->start || !tmp) | 
|  | return 0; | 
|  |  | 
|  | /* find first overlap */ | 
|  | while (tmp && tmp->end < start) | 
|  | tmp = tmp->sibling; | 
|  |  | 
|  | /* no entries overlap */ | 
|  | if (!tmp)  return 0; | 
|  |  | 
|  | /* found one that starts behind the new one | 
|  | ** Don't need to do anything. | 
|  | */ | 
|  | if (tmp->start >= end) return 0; | 
|  |  | 
|  | if (tmp->start <= start) { | 
|  | /* "front" of new one overlaps */ | 
|  | new->start = tmp->end + 1; | 
|  |  | 
|  | if (tmp->end >= end) { | 
|  | /* AACCKK! totally overlaps! drop this range. */ | 
|  | return 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (tmp->end < end ) { | 
|  | /* "end" of new one overlaps */ | 
|  | new->end = tmp->start - 1; | 
|  | } | 
|  |  | 
|  | printk(KERN_WARNING "LBA: Truncating lmmio_space [%lx/%lx] " | 
|  | "to [%lx,%lx]\n", | 
|  | start, end, | 
|  | (long)new->start, (long)new->end ); | 
|  |  | 
|  | return 0;	/* truncation successful */ | 
|  | } | 
|  |  | 
|  | #else | 
|  | #define truncate_pat_collision(r,n)  (0) | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | ** The algorithm is generic code. | 
|  | ** But it needs to access local data structures to get the IRQ base. | 
|  | ** Could make this a "pci_fixup_irq(bus, region)" but not sure | 
|  | ** it's worth it. | 
|  | ** | 
|  | ** Called by do_pci_scan_bus() immediately after each PCI bus is walked. | 
|  | ** Resources aren't allocated until recursive buswalk below HBA is completed. | 
|  | */ | 
|  | static void | 
|  | lba_fixup_bus(struct pci_bus *bus) | 
|  | { | 
|  | struct list_head *ln; | 
|  | #ifdef FBB_SUPPORT | 
|  | u16 status; | 
|  | #endif | 
|  | struct lba_device *ldev = LBA_DEV(parisc_walk_tree(bus->bridge)); | 
|  | int lba_portbase = HBA_PORT_BASE(ldev->hba.hba_num); | 
|  |  | 
|  | DBG("lba_fixup_bus(0x%p) bus %d platform_data 0x%p\n", | 
|  | bus, bus->secondary, bus->bridge->platform_data); | 
|  |  | 
|  | /* | 
|  | ** Properly Setup MMIO resources for this bus. | 
|  | ** pci_alloc_primary_bus() mangles this. | 
|  | */ | 
|  | if (bus->parent) { | 
|  | int i; | 
|  | /* PCI-PCI Bridge */ | 
|  | pci_read_bridge_bases(bus); | 
|  | for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) { | 
|  | pci_claim_resource(bus->self, i); | 
|  | } | 
|  | } else { | 
|  | /* Host-PCI Bridge */ | 
|  | int err, i; | 
|  |  | 
|  | DBG("lba_fixup_bus() %s [%lx/%lx]/%lx\n", | 
|  | ldev->hba.io_space.name, | 
|  | ldev->hba.io_space.start, ldev->hba.io_space.end, | 
|  | ldev->hba.io_space.flags); | 
|  | DBG("lba_fixup_bus() %s [%lx/%lx]/%lx\n", | 
|  | ldev->hba.lmmio_space.name, | 
|  | ldev->hba.lmmio_space.start, ldev->hba.lmmio_space.end, | 
|  | ldev->hba.lmmio_space.flags); | 
|  |  | 
|  | err = request_resource(&ioport_resource, &(ldev->hba.io_space)); | 
|  | if (err < 0) { | 
|  | lba_dump_res(&ioport_resource, 2); | 
|  | BUG(); | 
|  | } | 
|  | /* advertize Host bridge resources to PCI bus */ | 
|  | bus->resource[0] = &(ldev->hba.io_space); | 
|  | i = 1; | 
|  |  | 
|  | if (ldev->hba.elmmio_space.start) { | 
|  | err = request_resource(&iomem_resource, | 
|  | &(ldev->hba.elmmio_space)); | 
|  | if (err < 0) { | 
|  |  | 
|  | printk("FAILED: lba_fixup_bus() request for " | 
|  | "elmmio_space [%lx/%lx]\n", | 
|  | (long)ldev->hba.elmmio_space.start, | 
|  | (long)ldev->hba.elmmio_space.end); | 
|  |  | 
|  | /* lba_dump_res(&iomem_resource, 2); */ | 
|  | /* BUG(); */ | 
|  | } else | 
|  | bus->resource[i++] = &(ldev->hba.elmmio_space); | 
|  | } | 
|  |  | 
|  |  | 
|  | /*   Overlaps with elmmio can (and should) fail here. | 
|  | *   We will prune (or ignore) the distributed range. | 
|  | * | 
|  | *   FIXME: SBA code should register all elmmio ranges first. | 
|  | *      that would take care of elmmio ranges routed | 
|  | *	to a different rope (already discovered) from | 
|  | *	getting registered *after* LBA code has already | 
|  | *	registered it's distributed lmmio range. | 
|  | */ | 
|  | if (truncate_pat_collision(&iomem_resource, | 
|  | &(ldev->hba.lmmio_space))) { | 
|  |  | 
|  | printk(KERN_WARNING "LBA: lmmio_space [%lx/%lx] duplicate!\n", | 
|  | (long)ldev->hba.lmmio_space.start, | 
|  | (long)ldev->hba.lmmio_space.end); | 
|  | } else { | 
|  | err = request_resource(&iomem_resource, &(ldev->hba.lmmio_space)); | 
|  | if (err < 0) { | 
|  | printk(KERN_ERR "FAILED: lba_fixup_bus() request for " | 
|  | "lmmio_space [%lx/%lx]\n", | 
|  | (long)ldev->hba.lmmio_space.start, | 
|  | (long)ldev->hba.lmmio_space.end); | 
|  | } else | 
|  | bus->resource[i++] = &(ldev->hba.lmmio_space); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_64BIT | 
|  | /* GMMIO is  distributed range. Every LBA/Rope gets part it. */ | 
|  | if (ldev->hba.gmmio_space.flags) { | 
|  | err = request_resource(&iomem_resource, &(ldev->hba.gmmio_space)); | 
|  | if (err < 0) { | 
|  | printk("FAILED: lba_fixup_bus() request for " | 
|  | "gmmio_space [%lx/%lx]\n", | 
|  | (long)ldev->hba.gmmio_space.start, | 
|  | (long)ldev->hba.gmmio_space.end); | 
|  | lba_dump_res(&iomem_resource, 2); | 
|  | BUG(); | 
|  | } | 
|  | bus->resource[i++] = &(ldev->hba.gmmio_space); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | } | 
|  |  | 
|  | list_for_each(ln, &bus->devices) { | 
|  | int i; | 
|  | struct pci_dev *dev = pci_dev_b(ln); | 
|  |  | 
|  | DBG("lba_fixup_bus() %s\n", pci_name(dev)); | 
|  |  | 
|  | /* Virtualize Device/Bridge Resources. */ | 
|  | for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) { | 
|  | struct resource *res = &dev->resource[i]; | 
|  |  | 
|  | /* If resource not allocated - skip it */ | 
|  | if (!res->start) | 
|  | continue; | 
|  |  | 
|  | if (res->flags & IORESOURCE_IO) { | 
|  | DBG("lba_fixup_bus() I/O Ports [%lx/%lx] -> ", | 
|  | res->start, res->end); | 
|  | res->start |= lba_portbase; | 
|  | res->end   |= lba_portbase; | 
|  | DBG("[%lx/%lx]\n", res->start, res->end); | 
|  | } else if (res->flags & IORESOURCE_MEM) { | 
|  | /* | 
|  | ** Convert PCI (IO_VIEW) addresses to | 
|  | ** processor (PA_VIEW) addresses | 
|  | */ | 
|  | DBG("lba_fixup_bus() MMIO [%lx/%lx] -> ", | 
|  | res->start, res->end); | 
|  | res->start = PCI_HOST_ADDR(HBA_DATA(ldev), res->start); | 
|  | res->end   = PCI_HOST_ADDR(HBA_DATA(ldev), res->end); | 
|  | DBG("[%lx/%lx]\n", res->start, res->end); | 
|  | } else { | 
|  | DBG("lba_fixup_bus() WTF? 0x%lx [%lx/%lx] XXX", | 
|  | res->flags, res->start, res->end); | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** FIXME: this will result in whinging for devices | 
|  | ** that share expansion ROMs (think quad tulip), but | 
|  | ** isn't harmful. | 
|  | */ | 
|  | pci_claim_resource(dev, i); | 
|  | } | 
|  |  | 
|  | #ifdef FBB_SUPPORT | 
|  | /* | 
|  | ** If one device does not support FBB transfers, | 
|  | ** No one on the bus can be allowed to use them. | 
|  | */ | 
|  | (void) pci_read_config_word(dev, PCI_STATUS, &status); | 
|  | bus->bridge_ctl &= ~(status & PCI_STATUS_FAST_BACK); | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | ** P2PB's have no IRQs. ignore them. | 
|  | */ | 
|  | if ((dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) | 
|  | continue; | 
|  |  | 
|  | /* Adjust INTERRUPT_LINE for this dev */ | 
|  | iosapic_fixup_irq(ldev->iosapic_obj, dev); | 
|  | } | 
|  |  | 
|  | #ifdef FBB_SUPPORT | 
|  | /* FIXME/REVISIT - finish figuring out to set FBB on both | 
|  | ** pci_setup_bridge() clobbers PCI_BRIDGE_CONTROL. | 
|  | ** Can't fixup here anyway....garr... | 
|  | */ | 
|  | if (fbb_enable) { | 
|  | if (bus->parent) { | 
|  | u8 control; | 
|  | /* enable on PPB */ | 
|  | (void) pci_read_config_byte(bus->self, PCI_BRIDGE_CONTROL, &control); | 
|  | (void) pci_write_config_byte(bus->self, PCI_BRIDGE_CONTROL, control | PCI_STATUS_FAST_BACK); | 
|  |  | 
|  | } else { | 
|  | /* enable on LBA */ | 
|  | } | 
|  | fbb_enable = PCI_COMMAND_FAST_BACK; | 
|  | } | 
|  |  | 
|  | /* Lastly enable FBB/PERR/SERR on all devices too */ | 
|  | list_for_each(ln, &bus->devices) { | 
|  | (void) pci_read_config_word(dev, PCI_COMMAND, &status); | 
|  | status |= PCI_COMMAND_PARITY | PCI_COMMAND_SERR | fbb_enable; | 
|  | (void) pci_write_config_word(dev, PCI_COMMAND, status); | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  |  | 
|  | static struct pci_bios_ops lba_bios_ops = { | 
|  | .init =		lba_bios_init, | 
|  | .fixup_bus =	lba_fixup_bus, | 
|  | }; | 
|  |  | 
|  |  | 
|  |  | 
|  |  | 
|  | /******************************************************* | 
|  | ** | 
|  | ** LBA Sprockets "I/O Port" Space Accessor Functions | 
|  | ** | 
|  | ** This set of accessor functions is intended for use with | 
|  | ** "legacy firmware" (ie Sprockets on Allegro/Forte boxes). | 
|  | ** | 
|  | ** Many PCI devices don't require use of I/O port space (eg Tulip, | 
|  | ** NCR720) since they export the same registers to both MMIO and | 
|  | ** I/O port space. In general I/O port space is slower than | 
|  | ** MMIO since drivers are designed so PIO writes can be posted. | 
|  | ** | 
|  | ********************************************************/ | 
|  |  | 
|  | #define LBA_PORT_IN(size, mask) \ | 
|  | static u##size lba_astro_in##size (struct pci_hba_data *d, u16 addr) \ | 
|  | { \ | 
|  | u##size t; \ | 
|  | t = READ_REG##size(astro_iop_base + addr); \ | 
|  | DBG_PORT(" 0x%x\n", t); \ | 
|  | return (t); \ | 
|  | } | 
|  |  | 
|  | LBA_PORT_IN( 8, 3) | 
|  | LBA_PORT_IN(16, 2) | 
|  | LBA_PORT_IN(32, 0) | 
|  |  | 
|  |  | 
|  |  | 
|  | /* | 
|  | ** BUG X4107:  Ordering broken - DMA RD return can bypass PIO WR | 
|  | ** | 
|  | ** Fixed in Elroy 2.2. The READ_U32(..., LBA_FUNC_ID) below is | 
|  | ** guarantee non-postable completion semantics - not avoid X4107. | 
|  | ** The READ_U32 only guarantees the write data gets to elroy but | 
|  | ** out to the PCI bus. We can't read stuff from I/O port space | 
|  | ** since we don't know what has side-effects. Attempting to read | 
|  | ** from configuration space would be suicidal given the number of | 
|  | ** bugs in that elroy functionality. | 
|  | ** | 
|  | **      Description: | 
|  | **          DMA read results can improperly pass PIO writes (X4107).  The | 
|  | **          result of this bug is that if a processor modifies a location in | 
|  | **          memory after having issued PIO writes, the PIO writes are not | 
|  | **          guaranteed to be completed before a PCI device is allowed to see | 
|  | **          the modified data in a DMA read. | 
|  | ** | 
|  | **          Note that IKE bug X3719 in TR1 IKEs will result in the same | 
|  | **          symptom. | 
|  | ** | 
|  | **      Workaround: | 
|  | **          The workaround for this bug is to always follow a PIO write with | 
|  | **          a PIO read to the same bus before starting DMA on that PCI bus. | 
|  | ** | 
|  | */ | 
|  | #define LBA_PORT_OUT(size, mask) \ | 
|  | static void lba_astro_out##size (struct pci_hba_data *d, u16 addr, u##size val) \ | 
|  | { \ | 
|  | DBG_PORT("%s(0x%p, 0x%x, 0x%x)\n", __func__, d, addr, val); \ | 
|  | WRITE_REG##size(val, astro_iop_base + addr); \ | 
|  | if (LBA_DEV(d)->hw_rev < 3) \ | 
|  | lba_t32 = READ_U32(d->base_addr + LBA_FUNC_ID); \ | 
|  | } | 
|  |  | 
|  | LBA_PORT_OUT( 8, 3) | 
|  | LBA_PORT_OUT(16, 2) | 
|  | LBA_PORT_OUT(32, 0) | 
|  |  | 
|  |  | 
|  | static struct pci_port_ops lba_astro_port_ops = { | 
|  | .inb =	lba_astro_in8, | 
|  | .inw =	lba_astro_in16, | 
|  | .inl =	lba_astro_in32, | 
|  | .outb =	lba_astro_out8, | 
|  | .outw =	lba_astro_out16, | 
|  | .outl =	lba_astro_out32 | 
|  | }; | 
|  |  | 
|  |  | 
|  | #ifdef CONFIG_64BIT | 
|  | #define PIOP_TO_GMMIO(lba, addr) \ | 
|  | ((lba)->iop_base + (((addr)&0xFFFC)<<10) + ((addr)&3)) | 
|  |  | 
|  | /******************************************************* | 
|  | ** | 
|  | ** LBA PAT "I/O Port" Space Accessor Functions | 
|  | ** | 
|  | ** This set of accessor functions is intended for use with | 
|  | ** "PAT PDC" firmware (ie Prelude/Rhapsody/Piranha boxes). | 
|  | ** | 
|  | ** This uses the PIOP space located in the first 64MB of GMMIO. | 
|  | ** Each rope gets a full 64*KB* (ie 4 bytes per page) this way. | 
|  | ** bits 1:0 stay the same.  bits 15:2 become 25:12. | 
|  | ** Then add the base and we can generate an I/O Port cycle. | 
|  | ********************************************************/ | 
|  | #undef LBA_PORT_IN | 
|  | #define LBA_PORT_IN(size, mask) \ | 
|  | static u##size lba_pat_in##size (struct pci_hba_data *l, u16 addr) \ | 
|  | { \ | 
|  | u##size t; \ | 
|  | DBG_PORT("%s(0x%p, 0x%x) ->", __func__, l, addr); \ | 
|  | t = READ_REG##size(PIOP_TO_GMMIO(LBA_DEV(l), addr)); \ | 
|  | DBG_PORT(" 0x%x\n", t); \ | 
|  | return (t); \ | 
|  | } | 
|  |  | 
|  | LBA_PORT_IN( 8, 3) | 
|  | LBA_PORT_IN(16, 2) | 
|  | LBA_PORT_IN(32, 0) | 
|  |  | 
|  |  | 
|  | #undef LBA_PORT_OUT | 
|  | #define LBA_PORT_OUT(size, mask) \ | 
|  | static void lba_pat_out##size (struct pci_hba_data *l, u16 addr, u##size val) \ | 
|  | { \ | 
|  | void __iomem *where = PIOP_TO_GMMIO(LBA_DEV(l), addr); \ | 
|  | DBG_PORT("%s(0x%p, 0x%x, 0x%x)\n", __func__, l, addr, val); \ | 
|  | WRITE_REG##size(val, where); \ | 
|  | /* flush the I/O down to the elroy at least */ \ | 
|  | lba_t32 = READ_U32(l->base_addr + LBA_FUNC_ID); \ | 
|  | } | 
|  |  | 
|  | LBA_PORT_OUT( 8, 3) | 
|  | LBA_PORT_OUT(16, 2) | 
|  | LBA_PORT_OUT(32, 0) | 
|  |  | 
|  |  | 
|  | static struct pci_port_ops lba_pat_port_ops = { | 
|  | .inb =	lba_pat_in8, | 
|  | .inw =	lba_pat_in16, | 
|  | .inl =	lba_pat_in32, | 
|  | .outb =	lba_pat_out8, | 
|  | .outw =	lba_pat_out16, | 
|  | .outl =	lba_pat_out32 | 
|  | }; | 
|  |  | 
|  |  | 
|  |  | 
|  | /* | 
|  | ** make range information from PDC available to PCI subsystem. | 
|  | ** We make the PDC call here in order to get the PCI bus range | 
|  | ** numbers. The rest will get forwarded in pcibios_fixup_bus(). | 
|  | ** We don't have a struct pci_bus assigned to us yet. | 
|  | */ | 
|  | static void | 
|  | lba_pat_resources(struct parisc_device *pa_dev, struct lba_device *lba_dev) | 
|  | { | 
|  | unsigned long bytecnt; | 
|  | long io_count; | 
|  | long status;	/* PDC return status */ | 
|  | long pa_count; | 
|  | pdc_pat_cell_mod_maddr_block_t *pa_pdc_cell;	/* PA_VIEW */ | 
|  | pdc_pat_cell_mod_maddr_block_t *io_pdc_cell;	/* IO_VIEW */ | 
|  | int i; | 
|  |  | 
|  | pa_pdc_cell = kzalloc(sizeof(pdc_pat_cell_mod_maddr_block_t), GFP_KERNEL); | 
|  | if (!pa_pdc_cell) | 
|  | return; | 
|  |  | 
|  | io_pdc_cell = kzalloc(sizeof(pdc_pat_cell_mod_maddr_block_t), GFP_KERNEL); | 
|  | if (!io_pdc_cell) { | 
|  | kfree(pa_pdc_cell); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* return cell module (IO view) */ | 
|  | status = pdc_pat_cell_module(&bytecnt, pa_dev->pcell_loc, pa_dev->mod_index, | 
|  | PA_VIEW, pa_pdc_cell); | 
|  | pa_count = pa_pdc_cell->mod[1]; | 
|  |  | 
|  | status |= pdc_pat_cell_module(&bytecnt, pa_dev->pcell_loc, pa_dev->mod_index, | 
|  | IO_VIEW, io_pdc_cell); | 
|  | io_count = io_pdc_cell->mod[1]; | 
|  |  | 
|  | /* We've already done this once for device discovery...*/ | 
|  | if (status != PDC_OK) { | 
|  | panic("pdc_pat_cell_module() call failed for LBA!\n"); | 
|  | } | 
|  |  | 
|  | if (PAT_GET_ENTITY(pa_pdc_cell->mod_info) != PAT_ENTITY_LBA) { | 
|  | panic("pdc_pat_cell_module() entity returned != PAT_ENTITY_LBA!\n"); | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Inspect the resources PAT tells us about | 
|  | */ | 
|  | for (i = 0; i < pa_count; i++) { | 
|  | struct { | 
|  | unsigned long type; | 
|  | unsigned long start; | 
|  | unsigned long end;	/* aka finish */ | 
|  | } *p, *io; | 
|  | struct resource *r; | 
|  |  | 
|  | p = (void *) &(pa_pdc_cell->mod[2+i*3]); | 
|  | io = (void *) &(io_pdc_cell->mod[2+i*3]); | 
|  |  | 
|  | /* Convert the PAT range data to PCI "struct resource" */ | 
|  | switch(p->type & 0xff) { | 
|  | case PAT_PBNUM: | 
|  | lba_dev->hba.bus_num.start = p->start; | 
|  | lba_dev->hba.bus_num.end   = p->end; | 
|  | break; | 
|  |  | 
|  | case PAT_LMMIO: | 
|  | /* used to fix up pre-initialized MEM BARs */ | 
|  | if (!lba_dev->hba.lmmio_space.start) { | 
|  | sprintf(lba_dev->hba.lmmio_name, | 
|  | "PCI%02x LMMIO", | 
|  | (int)lba_dev->hba.bus_num.start); | 
|  | lba_dev->hba.lmmio_space_offset = p->start - | 
|  | io->start; | 
|  | r = &lba_dev->hba.lmmio_space; | 
|  | r->name = lba_dev->hba.lmmio_name; | 
|  | } else if (!lba_dev->hba.elmmio_space.start) { | 
|  | sprintf(lba_dev->hba.elmmio_name, | 
|  | "PCI%02x ELMMIO", | 
|  | (int)lba_dev->hba.bus_num.start); | 
|  | r = &lba_dev->hba.elmmio_space; | 
|  | r->name = lba_dev->hba.elmmio_name; | 
|  | } else { | 
|  | printk(KERN_WARNING MODULE_NAME | 
|  | " only supports 2 LMMIO resources!\n"); | 
|  | break; | 
|  | } | 
|  |  | 
|  | r->start  = p->start; | 
|  | r->end    = p->end; | 
|  | r->flags  = IORESOURCE_MEM; | 
|  | r->parent = r->sibling = r->child = NULL; | 
|  | break; | 
|  |  | 
|  | case PAT_GMMIO: | 
|  | /* MMIO space > 4GB phys addr; for 64-bit BAR */ | 
|  | sprintf(lba_dev->hba.gmmio_name, "PCI%02x GMMIO", | 
|  | (int)lba_dev->hba.bus_num.start); | 
|  | r = &lba_dev->hba.gmmio_space; | 
|  | r->name  = lba_dev->hba.gmmio_name; | 
|  | r->start  = p->start; | 
|  | r->end    = p->end; | 
|  | r->flags  = IORESOURCE_MEM; | 
|  | r->parent = r->sibling = r->child = NULL; | 
|  | break; | 
|  |  | 
|  | case PAT_NPIOP: | 
|  | printk(KERN_WARNING MODULE_NAME | 
|  | " range[%d] : ignoring NPIOP (0x%lx)\n", | 
|  | i, p->start); | 
|  | break; | 
|  |  | 
|  | case PAT_PIOP: | 
|  | /* | 
|  | ** Postable I/O port space is per PCI host adapter. | 
|  | ** base of 64MB PIOP region | 
|  | */ | 
|  | lba_dev->iop_base = ioremap_nocache(p->start, 64 * 1024 * 1024); | 
|  |  | 
|  | sprintf(lba_dev->hba.io_name, "PCI%02x Ports", | 
|  | (int)lba_dev->hba.bus_num.start); | 
|  | r = &lba_dev->hba.io_space; | 
|  | r->name  = lba_dev->hba.io_name; | 
|  | r->start  = HBA_PORT_BASE(lba_dev->hba.hba_num); | 
|  | r->end    = r->start + HBA_PORT_SPACE_SIZE - 1; | 
|  | r->flags  = IORESOURCE_IO; | 
|  | r->parent = r->sibling = r->child = NULL; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | printk(KERN_WARNING MODULE_NAME | 
|  | " range[%d] : unknown pat range type (0x%lx)\n", | 
|  | i, p->type & 0xff); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | kfree(pa_pdc_cell); | 
|  | kfree(io_pdc_cell); | 
|  | } | 
|  | #else | 
|  | /* keep compiler from complaining about missing declarations */ | 
|  | #define lba_pat_port_ops lba_astro_port_ops | 
|  | #define lba_pat_resources(pa_dev, lba_dev) | 
|  | #endif	/* CONFIG_64BIT */ | 
|  |  | 
|  |  | 
|  | extern void sba_distributed_lmmio(struct parisc_device *, struct resource *); | 
|  | extern void sba_directed_lmmio(struct parisc_device *, struct resource *); | 
|  |  | 
|  |  | 
|  | static void | 
|  | lba_legacy_resources(struct parisc_device *pa_dev, struct lba_device *lba_dev) | 
|  | { | 
|  | struct resource *r; | 
|  | int lba_num; | 
|  |  | 
|  | lba_dev->hba.lmmio_space_offset = PCI_F_EXTEND; | 
|  |  | 
|  | /* | 
|  | ** With "legacy" firmware, the lowest byte of FW_SCRATCH | 
|  | ** represents bus->secondary and the second byte represents | 
|  | ** bus->subsidiary (i.e. highest PPB programmed by firmware). | 
|  | ** PCI bus walk *should* end up with the same result. | 
|  | ** FIXME: But we don't have sanity checks in PCI or LBA. | 
|  | */ | 
|  | lba_num = READ_REG32(lba_dev->hba.base_addr + LBA_FW_SCRATCH); | 
|  | r = &(lba_dev->hba.bus_num); | 
|  | r->name = "LBA PCI Busses"; | 
|  | r->start = lba_num & 0xff; | 
|  | r->end = (lba_num>>8) & 0xff; | 
|  |  | 
|  | /* Set up local PCI Bus resources - we don't need them for | 
|  | ** Legacy boxes but it's nice to see in /proc/iomem. | 
|  | */ | 
|  | r = &(lba_dev->hba.lmmio_space); | 
|  | sprintf(lba_dev->hba.lmmio_name, "PCI%02x LMMIO", | 
|  | (int)lba_dev->hba.bus_num.start); | 
|  | r->name  = lba_dev->hba.lmmio_name; | 
|  |  | 
|  | #if 1 | 
|  | /* We want the CPU -> IO routing of addresses. | 
|  | * The SBA BASE/MASK registers control CPU -> IO routing. | 
|  | * Ask SBA what is routed to this rope/LBA. | 
|  | */ | 
|  | sba_distributed_lmmio(pa_dev, r); | 
|  | #else | 
|  | /* | 
|  | * The LBA BASE/MASK registers control IO -> System routing. | 
|  | * | 
|  | * The following code works but doesn't get us what we want. | 
|  | * Well, only because firmware (v5.0) on C3000 doesn't program | 
|  | * the LBA BASE/MASE registers to be the exact inverse of | 
|  | * the corresponding SBA registers. Other Astro/Pluto | 
|  | * based platform firmware may do it right. | 
|  | * | 
|  | * Should someone want to mess with MSI, they may need to | 
|  | * reprogram LBA BASE/MASK registers. Thus preserve the code | 
|  | * below until MSI is known to work on C3000/A500/N4000/RP3440. | 
|  | * | 
|  | * Using the code below, /proc/iomem shows: | 
|  | * ... | 
|  | * f0000000-f0ffffff : PCI00 LMMIO | 
|  | *   f05d0000-f05d0000 : lcd_data | 
|  | *   f05d0008-f05d0008 : lcd_cmd | 
|  | * f1000000-f1ffffff : PCI01 LMMIO | 
|  | * f4000000-f4ffffff : PCI02 LMMIO | 
|  | *   f4000000-f4001fff : sym53c8xx | 
|  | *   f4002000-f4003fff : sym53c8xx | 
|  | *   f4004000-f40043ff : sym53c8xx | 
|  | *   f4005000-f40053ff : sym53c8xx | 
|  | *   f4007000-f4007fff : ohci_hcd | 
|  | *   f4008000-f40083ff : tulip | 
|  | * f6000000-f6ffffff : PCI03 LMMIO | 
|  | * f8000000-fbffffff : PCI00 ELMMIO | 
|  | *   fa100000-fa4fffff : stifb mmio | 
|  | *   fb000000-fb1fffff : stifb fb | 
|  | * | 
|  | * But everything listed under PCI02 actually lives under PCI00. | 
|  | * This is clearly wrong. | 
|  | * | 
|  | * Asking SBA how things are routed tells the correct story: | 
|  | * LMMIO_BASE/MASK/ROUTE f4000001 fc000000 00000000 | 
|  | * DIR0_BASE/MASK/ROUTE fa000001 fe000000 00000006 | 
|  | * DIR1_BASE/MASK/ROUTE f9000001 ff000000 00000004 | 
|  | * DIR2_BASE/MASK/ROUTE f0000000 fc000000 00000000 | 
|  | * DIR3_BASE/MASK/ROUTE f0000000 fc000000 00000000 | 
|  | * | 
|  | * Which looks like this in /proc/iomem: | 
|  | * f4000000-f47fffff : PCI00 LMMIO | 
|  | *   f4000000-f4001fff : sym53c8xx | 
|  | *   ...[deteled core devices - same as above]... | 
|  | *   f4008000-f40083ff : tulip | 
|  | * f4800000-f4ffffff : PCI01 LMMIO | 
|  | * f6000000-f67fffff : PCI02 LMMIO | 
|  | * f7000000-f77fffff : PCI03 LMMIO | 
|  | * f9000000-f9ffffff : PCI02 ELMMIO | 
|  | * fa000000-fbffffff : PCI03 ELMMIO | 
|  | *   fa100000-fa4fffff : stifb mmio | 
|  | *   fb000000-fb1fffff : stifb fb | 
|  | * | 
|  | * ie all Built-in core are under now correctly under PCI00. | 
|  | * The "PCI02 ELMMIO" directed range is for: | 
|  | *  +-[02]---03.0  3Dfx Interactive, Inc. Voodoo 2 | 
|  | * | 
|  | * All is well now. | 
|  | */ | 
|  | r->start = READ_REG32(lba_dev->hba.base_addr + LBA_LMMIO_BASE); | 
|  | if (r->start & 1) { | 
|  | unsigned long rsize; | 
|  |  | 
|  | r->flags = IORESOURCE_MEM; | 
|  | /* mmio_mask also clears Enable bit */ | 
|  | r->start &= mmio_mask; | 
|  | r->start = PCI_HOST_ADDR(HBA_DATA(lba_dev), r->start); | 
|  | rsize = ~ READ_REG32(lba_dev->hba.base_addr + LBA_LMMIO_MASK); | 
|  |  | 
|  | /* | 
|  | ** Each rope only gets part of the distributed range. | 
|  | ** Adjust "window" for this rope. | 
|  | */ | 
|  | rsize /= ROPES_PER_IOC; | 
|  | r->start += (rsize + 1) * LBA_NUM(pa_dev->hpa.start); | 
|  | r->end = r->start + rsize; | 
|  | } else { | 
|  | r->end = r->start = 0;	/* Not enabled. */ | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | ** "Directed" ranges are used when the "distributed range" isn't | 
|  | ** sufficient for all devices below a given LBA.  Typically devices | 
|  | ** like graphics cards or X25 may need a directed range when the | 
|  | ** bus has multiple slots (ie multiple devices) or the device | 
|  | ** needs more than the typical 4 or 8MB a distributed range offers. | 
|  | ** | 
|  | ** The main reason for ignoring it now frigging complications. | 
|  | ** Directed ranges may overlap (and have precedence) over | 
|  | ** distributed ranges. Or a distributed range assigned to a unused | 
|  | ** rope may be used by a directed range on a different rope. | 
|  | ** Support for graphics devices may require fixing this | 
|  | ** since they may be assigned a directed range which overlaps | 
|  | ** an existing (but unused portion of) distributed range. | 
|  | */ | 
|  | r = &(lba_dev->hba.elmmio_space); | 
|  | sprintf(lba_dev->hba.elmmio_name, "PCI%02x ELMMIO", | 
|  | (int)lba_dev->hba.bus_num.start); | 
|  | r->name  = lba_dev->hba.elmmio_name; | 
|  |  | 
|  | #if 1 | 
|  | /* See comment which precedes call to sba_directed_lmmio() */ | 
|  | sba_directed_lmmio(pa_dev, r); | 
|  | #else | 
|  | r->start = READ_REG32(lba_dev->hba.base_addr + LBA_ELMMIO_BASE); | 
|  |  | 
|  | if (r->start & 1) { | 
|  | unsigned long rsize; | 
|  | r->flags = IORESOURCE_MEM; | 
|  | /* mmio_mask also clears Enable bit */ | 
|  | r->start &= mmio_mask; | 
|  | r->start = PCI_HOST_ADDR(HBA_DATA(lba_dev), r->start); | 
|  | rsize = READ_REG32(lba_dev->hba.base_addr + LBA_ELMMIO_MASK); | 
|  | r->end = r->start + ~rsize; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | r = &(lba_dev->hba.io_space); | 
|  | sprintf(lba_dev->hba.io_name, "PCI%02x Ports", | 
|  | (int)lba_dev->hba.bus_num.start); | 
|  | r->name  = lba_dev->hba.io_name; | 
|  | r->flags = IORESOURCE_IO; | 
|  | r->start = READ_REG32(lba_dev->hba.base_addr + LBA_IOS_BASE) & ~1L; | 
|  | r->end   = r->start + (READ_REG32(lba_dev->hba.base_addr + LBA_IOS_MASK) ^ (HBA_PORT_SPACE_SIZE - 1)); | 
|  |  | 
|  | /* Virtualize the I/O Port space ranges */ | 
|  | lba_num = HBA_PORT_BASE(lba_dev->hba.hba_num); | 
|  | r->start |= lba_num; | 
|  | r->end   |= lba_num; | 
|  | } | 
|  |  | 
|  |  | 
|  | /************************************************************************** | 
|  | ** | 
|  | **   LBA initialization code (HW and SW) | 
|  | ** | 
|  | **   o identify LBA chip itself | 
|  | **   o initialize LBA chip modes (HardFail) | 
|  | **   o FIXME: initialize DMA hints for reasonable defaults | 
|  | **   o enable configuration functions | 
|  | **   o call pci_register_ops() to discover devs (fixup/fixup_bus get invoked) | 
|  | ** | 
|  | **************************************************************************/ | 
|  |  | 
|  | static int __init | 
|  | lba_hw_init(struct lba_device *d) | 
|  | { | 
|  | u32 stat; | 
|  | u32 bus_reset;	/* PDC_PAT_BUG */ | 
|  |  | 
|  | #if 0 | 
|  | printk(KERN_DEBUG "LBA %lx  STAT_CTL %Lx  ERROR_CFG %Lx  STATUS %Lx DMA_CTL %Lx\n", | 
|  | d->hba.base_addr, | 
|  | READ_REG64(d->hba.base_addr + LBA_STAT_CTL), | 
|  | READ_REG64(d->hba.base_addr + LBA_ERROR_CONFIG), | 
|  | READ_REG64(d->hba.base_addr + LBA_ERROR_STATUS), | 
|  | READ_REG64(d->hba.base_addr + LBA_DMA_CTL) ); | 
|  | printk(KERN_DEBUG "	ARB mask %Lx  pri %Lx  mode %Lx  mtlt %Lx\n", | 
|  | READ_REG64(d->hba.base_addr + LBA_ARB_MASK), | 
|  | READ_REG64(d->hba.base_addr + LBA_ARB_PRI), | 
|  | READ_REG64(d->hba.base_addr + LBA_ARB_MODE), | 
|  | READ_REG64(d->hba.base_addr + LBA_ARB_MTLT) ); | 
|  | printk(KERN_DEBUG "	HINT cfg 0x%Lx\n", | 
|  | READ_REG64(d->hba.base_addr + LBA_HINT_CFG)); | 
|  | printk(KERN_DEBUG "	HINT reg "); | 
|  | { int i; | 
|  | for (i=LBA_HINT_BASE; i< (14*8 + LBA_HINT_BASE); i+=8) | 
|  | printk(" %Lx", READ_REG64(d->hba.base_addr + i)); | 
|  | } | 
|  | printk("\n"); | 
|  | #endif	/* DEBUG_LBA_PAT */ | 
|  |  | 
|  | #ifdef CONFIG_64BIT | 
|  | /* | 
|  | * FIXME add support for PDC_PAT_IO "Get slot status" - OLAR support | 
|  | * Only N-Class and up can really make use of Get slot status. | 
|  | * maybe L-class too but I've never played with it there. | 
|  | */ | 
|  | #endif | 
|  |  | 
|  | /* PDC_PAT_BUG: exhibited in rev 40.48  on L2000 */ | 
|  | bus_reset = READ_REG32(d->hba.base_addr + LBA_STAT_CTL + 4) & 1; | 
|  | if (bus_reset) { | 
|  | printk(KERN_DEBUG "NOTICE: PCI bus reset still asserted! (clearing)\n"); | 
|  | } | 
|  |  | 
|  | stat = READ_REG32(d->hba.base_addr + LBA_ERROR_CONFIG); | 
|  | if (stat & LBA_SMART_MODE) { | 
|  | printk(KERN_DEBUG "NOTICE: LBA in SMART mode! (cleared)\n"); | 
|  | stat &= ~LBA_SMART_MODE; | 
|  | WRITE_REG32(stat, d->hba.base_addr + LBA_ERROR_CONFIG); | 
|  | } | 
|  |  | 
|  | /* Set HF mode as the default (vs. -1 mode). */ | 
|  | stat = READ_REG32(d->hba.base_addr + LBA_STAT_CTL); | 
|  | WRITE_REG32(stat | HF_ENABLE, d->hba.base_addr + LBA_STAT_CTL); | 
|  |  | 
|  | /* | 
|  | ** Writing a zero to STAT_CTL.rf (bit 0) will clear reset signal | 
|  | ** if it's not already set. If we just cleared the PCI Bus Reset | 
|  | ** signal, wait a bit for the PCI devices to recover and setup. | 
|  | */ | 
|  | if (bus_reset) | 
|  | mdelay(pci_post_reset_delay); | 
|  |  | 
|  | if (0 == READ_REG32(d->hba.base_addr + LBA_ARB_MASK)) { | 
|  | /* | 
|  | ** PDC_PAT_BUG: PDC rev 40.48 on L2000. | 
|  | ** B2000/C3600/J6000 also have this problem? | 
|  | ** | 
|  | ** Elroys with hot pluggable slots don't get configured | 
|  | ** correctly if the slot is empty.  ARB_MASK is set to 0 | 
|  | ** and we can't master transactions on the bus if it's | 
|  | ** not at least one. 0x3 enables elroy and first slot. | 
|  | */ | 
|  | printk(KERN_DEBUG "NOTICE: Enabling PCI Arbitration\n"); | 
|  | WRITE_REG32(0x3, d->hba.base_addr + LBA_ARB_MASK); | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** FIXME: Hint registers are programmed with default hint | 
|  | ** values by firmware. Hints should be sane even if we | 
|  | ** can't reprogram them the way drivers want. | 
|  | */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Unfortunately, when firmware numbers busses, it doesn't take into account | 
|  | * Cardbus bridges.  So we have to renumber the busses to suit ourselves. | 
|  | * Elroy/Mercury don't actually know what bus number they're attached to; | 
|  | * we use bus 0 to indicate the directly attached bus and any other bus | 
|  | * number will be taken care of by the PCI-PCI bridge. | 
|  | */ | 
|  | static unsigned int lba_next_bus = 0; | 
|  |  | 
|  | /* | 
|  | * Determine if lba should claim this chip (return 0) or not (return 1). | 
|  | * If so, initialize the chip and tell other partners in crime they | 
|  | * have work to do. | 
|  | */ | 
|  | static int __init | 
|  | lba_driver_probe(struct parisc_device *dev) | 
|  | { | 
|  | struct lba_device *lba_dev; | 
|  | struct pci_bus *lba_bus; | 
|  | struct pci_ops *cfg_ops; | 
|  | u32 func_class; | 
|  | void *tmp_obj; | 
|  | char *version; | 
|  | void __iomem *addr = ioremap_nocache(dev->hpa.start, 4096); | 
|  |  | 
|  | /* Read HW Rev First */ | 
|  | func_class = READ_REG32(addr + LBA_FCLASS); | 
|  |  | 
|  | if (IS_ELROY(dev)) { | 
|  | func_class &= 0xf; | 
|  | switch (func_class) { | 
|  | case 0:	version = "TR1.0"; break; | 
|  | case 1:	version = "TR2.0"; break; | 
|  | case 2:	version = "TR2.1"; break; | 
|  | case 3:	version = "TR2.2"; break; | 
|  | case 4:	version = "TR3.0"; break; | 
|  | case 5:	version = "TR4.0"; break; | 
|  | default: version = "TR4+"; | 
|  | } | 
|  |  | 
|  | printk(KERN_INFO "Elroy version %s (0x%x) found at 0x%lx\n", | 
|  | version, func_class & 0xf, (long)dev->hpa.start); | 
|  |  | 
|  | if (func_class < 2) { | 
|  | printk(KERN_WARNING "Can't support LBA older than " | 
|  | "TR2.1 - continuing under adversity.\n"); | 
|  | } | 
|  |  | 
|  | #if 0 | 
|  | /* Elroy TR4.0 should work with simple algorithm. | 
|  | But it doesn't.  Still missing something. *sigh* | 
|  | */ | 
|  | if (func_class > 4) { | 
|  | cfg_ops = &mercury_cfg_ops; | 
|  | } else | 
|  | #endif | 
|  | { | 
|  | cfg_ops = &elroy_cfg_ops; | 
|  | } | 
|  |  | 
|  | } else if (IS_MERCURY(dev) || IS_QUICKSILVER(dev)) { | 
|  | int major, minor; | 
|  |  | 
|  | func_class &= 0xff; | 
|  | major = func_class >> 4, minor = func_class & 0xf; | 
|  |  | 
|  | /* We could use one printk for both Elroy and Mercury, | 
|  | * but for the mask for func_class. | 
|  | */ | 
|  | printk(KERN_INFO "%s version TR%d.%d (0x%x) found at 0x%lx\n", | 
|  | IS_MERCURY(dev) ? "Mercury" : "Quicksilver", major, | 
|  | minor, func_class, (long)dev->hpa.start); | 
|  |  | 
|  | cfg_ops = &mercury_cfg_ops; | 
|  | } else { | 
|  | printk(KERN_ERR "Unknown LBA found at 0x%lx\n", | 
|  | (long)dev->hpa.start); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | /* Tell I/O SAPIC driver we have a IRQ handler/region. */ | 
|  | tmp_obj = iosapic_register(dev->hpa.start + LBA_IOSAPIC_BASE); | 
|  |  | 
|  | /* NOTE: PCI devices (e.g. 103c:1005 graphics card) which don't | 
|  | **	have an IRT entry will get NULL back from iosapic code. | 
|  | */ | 
|  |  | 
|  | lba_dev = kzalloc(sizeof(struct lba_device), GFP_KERNEL); | 
|  | if (!lba_dev) { | 
|  | printk(KERN_ERR "lba_init_chip - couldn't alloc lba_device\n"); | 
|  | return(1); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* ---------- First : initialize data we already have --------- */ | 
|  |  | 
|  | lba_dev->hw_rev = func_class; | 
|  | lba_dev->hba.base_addr = addr; | 
|  | lba_dev->hba.dev = dev; | 
|  | lba_dev->iosapic_obj = tmp_obj;  /* save interrupt handle */ | 
|  | lba_dev->hba.iommu = sba_get_iommu(dev);  /* get iommu data */ | 
|  | parisc_set_drvdata(dev, lba_dev); | 
|  |  | 
|  | /* ------------ Second : initialize common stuff ---------- */ | 
|  | pci_bios = &lba_bios_ops; | 
|  | pcibios_register_hba(HBA_DATA(lba_dev)); | 
|  | spin_lock_init(&lba_dev->lba_lock); | 
|  |  | 
|  | if (lba_hw_init(lba_dev)) | 
|  | return(1); | 
|  |  | 
|  | /* ---------- Third : setup I/O Port and MMIO resources  --------- */ | 
|  |  | 
|  | if (is_pdc_pat()) { | 
|  | /* PDC PAT firmware uses PIOP region of GMMIO space. */ | 
|  | pci_port = &lba_pat_port_ops; | 
|  | /* Go ask PDC PAT what resources this LBA has */ | 
|  | lba_pat_resources(dev, lba_dev); | 
|  | } else { | 
|  | if (!astro_iop_base) { | 
|  | /* Sprockets PDC uses NPIOP region */ | 
|  | astro_iop_base = ioremap_nocache(LBA_PORT_BASE, 64 * 1024); | 
|  | pci_port = &lba_astro_port_ops; | 
|  | } | 
|  |  | 
|  | /* Poke the chip a bit for /proc output */ | 
|  | lba_legacy_resources(dev, lba_dev); | 
|  | } | 
|  |  | 
|  | if (lba_dev->hba.bus_num.start < lba_next_bus) | 
|  | lba_dev->hba.bus_num.start = lba_next_bus; | 
|  |  | 
|  | dev->dev.platform_data = lba_dev; | 
|  | lba_bus = lba_dev->hba.hba_bus = | 
|  | pci_scan_bus_parented(&dev->dev, lba_dev->hba.bus_num.start, | 
|  | cfg_ops, NULL); | 
|  |  | 
|  | /* This is in lieu of calling pci_assign_unassigned_resources() */ | 
|  | if (is_pdc_pat()) { | 
|  | /* assign resources to un-initialized devices */ | 
|  |  | 
|  | DBG_PAT("LBA pci_bus_size_bridges()\n"); | 
|  | pci_bus_size_bridges(lba_bus); | 
|  |  | 
|  | DBG_PAT("LBA pci_bus_assign_resources()\n"); | 
|  | pci_bus_assign_resources(lba_bus); | 
|  |  | 
|  | #ifdef DEBUG_LBA_PAT | 
|  | DBG_PAT("\nLBA PIOP resource tree\n"); | 
|  | lba_dump_res(&lba_dev->hba.io_space, 2); | 
|  | DBG_PAT("\nLBA LMMIO resource tree\n"); | 
|  | lba_dump_res(&lba_dev->hba.lmmio_space, 2); | 
|  | #endif | 
|  | } | 
|  | pci_enable_bridges(lba_bus); | 
|  |  | 
|  | /* | 
|  | ** Once PCI register ops has walked the bus, access to config | 
|  | ** space is restricted. Avoids master aborts on config cycles. | 
|  | ** Early LBA revs go fatal on *any* master abort. | 
|  | */ | 
|  | if (cfg_ops == &elroy_cfg_ops) { | 
|  | lba_dev->flags |= LBA_FLAG_SKIP_PROBE; | 
|  | } | 
|  |  | 
|  | if (lba_bus) { | 
|  | lba_next_bus = lba_bus->subordinate + 1; | 
|  | pci_bus_add_devices(lba_bus); | 
|  | } | 
|  |  | 
|  | /* Whew! Finally done! Tell services we got this one covered. */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct parisc_device_id lba_tbl[] = { | 
|  | { HPHW_BRIDGE, HVERSION_REV_ANY_ID, ELROY_HVERS, 0xa }, | 
|  | { HPHW_BRIDGE, HVERSION_REV_ANY_ID, MERCURY_HVERS, 0xa }, | 
|  | { HPHW_BRIDGE, HVERSION_REV_ANY_ID, QUICKSILVER_HVERS, 0xa }, | 
|  | { 0, } | 
|  | }; | 
|  |  | 
|  | static struct parisc_driver lba_driver = { | 
|  | .name =		MODULE_NAME, | 
|  | .id_table =	lba_tbl, | 
|  | .probe =	lba_driver_probe, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | ** One time initialization to let the world know the LBA was found. | 
|  | ** Must be called exactly once before pci_init(). | 
|  | */ | 
|  | void __init lba_init(void) | 
|  | { | 
|  | register_parisc_driver(&lba_driver); | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Initialize the IBASE/IMASK registers for LBA (Elroy). | 
|  | ** Only called from sba_iommu.c in order to route ranges (MMIO vs DMA). | 
|  | ** sba_iommu is responsible for locking (none needed at init time). | 
|  | */ | 
|  | void lba_set_iregs(struct parisc_device *lba, u32 ibase, u32 imask) | 
|  | { | 
|  | void __iomem * base_addr = ioremap_nocache(lba->hpa.start, 4096); | 
|  |  | 
|  | imask <<= 2;	/* adjust for hints - 2 more bits */ | 
|  |  | 
|  | /* Make sure we aren't trying to set bits that aren't writeable. */ | 
|  | WARN_ON((ibase & 0x001fffff) != 0); | 
|  | WARN_ON((imask & 0x001fffff) != 0); | 
|  |  | 
|  | DBG("%s() ibase 0x%x imask 0x%x\n", __func__, ibase, imask); | 
|  | WRITE_REG32( imask, base_addr + LBA_IMASK); | 
|  | WRITE_REG32( ibase, base_addr + LBA_IBASE); | 
|  | iounmap(base_addr); | 
|  | } | 
|  |  |