|  | /* | 
|  | * For documentation on the i460 AGP interface, see Chapter 7 (AGP Subsystem) of | 
|  | * the "Intel 460GTX Chipset Software Developer's Manual": | 
|  | * http://www.intel.com/design/archives/itanium/downloads/248704.htm | 
|  | */ | 
|  | /* | 
|  | * 460GX support by Chris Ahna <christopher.j.ahna@intel.com> | 
|  | * Clean up & simplification by David Mosberger-Tang <davidm@hpl.hp.com> | 
|  | */ | 
|  | #include <linux/module.h> | 
|  | #include <linux/pci.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/agp_backend.h> | 
|  | #include <linux/log2.h> | 
|  |  | 
|  | #include "agp.h" | 
|  |  | 
|  | #define INTEL_I460_BAPBASE		0x98 | 
|  | #define INTEL_I460_GXBCTL		0xa0 | 
|  | #define INTEL_I460_AGPSIZ		0xa2 | 
|  | #define INTEL_I460_ATTBASE		0xfe200000 | 
|  | #define INTEL_I460_GATT_VALID		(1UL << 24) | 
|  | #define INTEL_I460_GATT_COHERENT	(1UL << 25) | 
|  |  | 
|  | /* | 
|  | * The i460 can operate with large (4MB) pages, but there is no sane way to support this | 
|  | * within the current kernel/DRM environment, so we disable the relevant code for now. | 
|  | * See also comments in ia64_alloc_page()... | 
|  | */ | 
|  | #define I460_LARGE_IO_PAGES		0 | 
|  |  | 
|  | #if I460_LARGE_IO_PAGES | 
|  | # define I460_IO_PAGE_SHIFT		i460.io_page_shift | 
|  | #else | 
|  | # define I460_IO_PAGE_SHIFT		12 | 
|  | #endif | 
|  |  | 
|  | #define I460_IOPAGES_PER_KPAGE		(PAGE_SIZE >> I460_IO_PAGE_SHIFT) | 
|  | #define I460_KPAGES_PER_IOPAGE		(1 << (I460_IO_PAGE_SHIFT - PAGE_SHIFT)) | 
|  | #define I460_SRAM_IO_DISABLE		(1 << 4) | 
|  | #define I460_BAPBASE_ENABLE		(1 << 3) | 
|  | #define I460_AGPSIZ_MASK		0x7 | 
|  | #define I460_4M_PS			(1 << 1) | 
|  |  | 
|  | /* Control bits for Out-Of-GART coherency and Burst Write Combining */ | 
|  | #define I460_GXBCTL_OOG		(1UL << 0) | 
|  | #define I460_GXBCTL_BWC		(1UL << 2) | 
|  |  | 
|  | /* | 
|  | * gatt_table entries are 32-bits wide on the i460; the generic code ought to declare the | 
|  | * gatt_table and gatt_table_real pointers a "void *"... | 
|  | */ | 
|  | #define RD_GATT(index)		readl((u32 *) i460.gatt + (index)) | 
|  | #define WR_GATT(index, val)	writel((val), (u32 *) i460.gatt + (index)) | 
|  | /* | 
|  | * The 460 spec says we have to read the last location written to make sure that all | 
|  | * writes have taken effect | 
|  | */ | 
|  | #define WR_FLUSH_GATT(index)	RD_GATT(index) | 
|  |  | 
|  | static unsigned long i460_mask_memory (struct agp_bridge_data *bridge, | 
|  | dma_addr_t addr, int type); | 
|  |  | 
|  | static struct { | 
|  | void *gatt;				/* ioremap'd GATT area */ | 
|  |  | 
|  | /* i460 supports multiple GART page sizes, so GART pageshift is dynamic: */ | 
|  | u8 io_page_shift; | 
|  |  | 
|  | /* BIOS configures chipset to one of 2 possible apbase values: */ | 
|  | u8 dynamic_apbase; | 
|  |  | 
|  | /* structure for tracking partial use of 4MB GART pages: */ | 
|  | struct lp_desc { | 
|  | unsigned long *alloced_map;	/* bitmap of kernel-pages in use */ | 
|  | int refcount;			/* number of kernel pages using the large page */ | 
|  | u64 paddr;			/* physical address of large page */ | 
|  | struct page *page; 		/* page pointer */ | 
|  | } *lp_desc; | 
|  | } i460; | 
|  |  | 
|  | static const struct aper_size_info_8 i460_sizes[3] = | 
|  | { | 
|  | /* | 
|  | * The 32GB aperture is only available with a 4M GART page size.  Due to the | 
|  | * dynamic GART page size, we can't figure out page_order or num_entries until | 
|  | * runtime. | 
|  | */ | 
|  | {32768, 0, 0, 4}, | 
|  | {1024, 0, 0, 2}, | 
|  | {256, 0, 0, 1} | 
|  | }; | 
|  |  | 
|  | static struct gatt_mask i460_masks[] = | 
|  | { | 
|  | { | 
|  | .mask = INTEL_I460_GATT_VALID | INTEL_I460_GATT_COHERENT, | 
|  | .type = 0 | 
|  | } | 
|  | }; | 
|  |  | 
|  | static int i460_fetch_size (void) | 
|  | { | 
|  | int i; | 
|  | u8 temp; | 
|  | struct aper_size_info_8 *values; | 
|  |  | 
|  | /* Determine the GART page size */ | 
|  | pci_read_config_byte(agp_bridge->dev, INTEL_I460_GXBCTL, &temp); | 
|  | i460.io_page_shift = (temp & I460_4M_PS) ? 22 : 12; | 
|  | pr_debug("i460_fetch_size: io_page_shift=%d\n", i460.io_page_shift); | 
|  |  | 
|  | if (i460.io_page_shift != I460_IO_PAGE_SHIFT) { | 
|  | printk(KERN_ERR PFX | 
|  | "I/O (GART) page-size %luKB doesn't match expected " | 
|  | "size %luKB\n", | 
|  | 1UL << (i460.io_page_shift - 10), | 
|  | 1UL << (I460_IO_PAGE_SHIFT)); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | values = A_SIZE_8(agp_bridge->driver->aperture_sizes); | 
|  |  | 
|  | pci_read_config_byte(agp_bridge->dev, INTEL_I460_AGPSIZ, &temp); | 
|  |  | 
|  | /* Exit now if the IO drivers for the GART SRAMS are turned off */ | 
|  | if (temp & I460_SRAM_IO_DISABLE) { | 
|  | printk(KERN_ERR PFX "GART SRAMS disabled on 460GX chipset\n"); | 
|  | printk(KERN_ERR PFX "AGPGART operation not possible\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Make sure we don't try to create an 2 ^ 23 entry GATT */ | 
|  | if ((i460.io_page_shift == 0) && ((temp & I460_AGPSIZ_MASK) == 4)) { | 
|  | printk(KERN_ERR PFX "We can't have a 32GB aperture with 4KB GART pages\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Determine the proper APBASE register */ | 
|  | if (temp & I460_BAPBASE_ENABLE) | 
|  | i460.dynamic_apbase = INTEL_I460_BAPBASE; | 
|  | else | 
|  | i460.dynamic_apbase = AGP_APBASE; | 
|  |  | 
|  | for (i = 0; i < agp_bridge->driver->num_aperture_sizes; i++) { | 
|  | /* | 
|  | * Dynamically calculate the proper num_entries and page_order values for | 
|  | * the define aperture sizes. Take care not to shift off the end of | 
|  | * values[i].size. | 
|  | */ | 
|  | values[i].num_entries = (values[i].size << 8) >> (I460_IO_PAGE_SHIFT - 12); | 
|  | values[i].page_order = ilog2((sizeof(u32)*values[i].num_entries) >> PAGE_SHIFT); | 
|  | } | 
|  |  | 
|  | for (i = 0; i < agp_bridge->driver->num_aperture_sizes; i++) { | 
|  | /* Neglect control bits when matching up size_value */ | 
|  | if ((temp & I460_AGPSIZ_MASK) == values[i].size_value) { | 
|  | agp_bridge->previous_size = agp_bridge->current_size = (void *) (values + i); | 
|  | agp_bridge->aperture_size_idx = i; | 
|  | return values[i].size; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* There isn't anything to do here since 460 has no GART TLB. */ | 
|  | static void i460_tlb_flush (struct agp_memory *mem) | 
|  | { | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This utility function is needed to prevent corruption of the control bits | 
|  | * which are stored along with the aperture size in 460's AGPSIZ register | 
|  | */ | 
|  | static void i460_write_agpsiz (u8 size_value) | 
|  | { | 
|  | u8 temp; | 
|  |  | 
|  | pci_read_config_byte(agp_bridge->dev, INTEL_I460_AGPSIZ, &temp); | 
|  | pci_write_config_byte(agp_bridge->dev, INTEL_I460_AGPSIZ, | 
|  | ((temp & ~I460_AGPSIZ_MASK) | size_value)); | 
|  | } | 
|  |  | 
|  | static void i460_cleanup (void) | 
|  | { | 
|  | struct aper_size_info_8 *previous_size; | 
|  |  | 
|  | previous_size = A_SIZE_8(agp_bridge->previous_size); | 
|  | i460_write_agpsiz(previous_size->size_value); | 
|  |  | 
|  | if (I460_IO_PAGE_SHIFT > PAGE_SHIFT) | 
|  | kfree(i460.lp_desc); | 
|  | } | 
|  |  | 
|  | static int i460_configure (void) | 
|  | { | 
|  | union { | 
|  | u32 small[2]; | 
|  | u64 large; | 
|  | } temp; | 
|  | size_t size; | 
|  | u8 scratch; | 
|  | struct aper_size_info_8 *current_size; | 
|  |  | 
|  | temp.large = 0; | 
|  |  | 
|  | current_size = A_SIZE_8(agp_bridge->current_size); | 
|  | i460_write_agpsiz(current_size->size_value); | 
|  |  | 
|  | /* | 
|  | * Do the necessary rigmarole to read all eight bytes of APBASE. | 
|  | * This has to be done since the AGP aperture can be above 4GB on | 
|  | * 460 based systems. | 
|  | */ | 
|  | pci_read_config_dword(agp_bridge->dev, i460.dynamic_apbase, &(temp.small[0])); | 
|  | pci_read_config_dword(agp_bridge->dev, i460.dynamic_apbase + 4, &(temp.small[1])); | 
|  |  | 
|  | /* Clear BAR control bits */ | 
|  | agp_bridge->gart_bus_addr = temp.large & ~((1UL << 3) - 1); | 
|  |  | 
|  | pci_read_config_byte(agp_bridge->dev, INTEL_I460_GXBCTL, &scratch); | 
|  | pci_write_config_byte(agp_bridge->dev, INTEL_I460_GXBCTL, | 
|  | (scratch & 0x02) | I460_GXBCTL_OOG | I460_GXBCTL_BWC); | 
|  |  | 
|  | /* | 
|  | * Initialize partial allocation trackers if a GART page is bigger than a kernel | 
|  | * page. | 
|  | */ | 
|  | if (I460_IO_PAGE_SHIFT > PAGE_SHIFT) { | 
|  | size = current_size->num_entries * sizeof(i460.lp_desc[0]); | 
|  | i460.lp_desc = kzalloc(size, GFP_KERNEL); | 
|  | if (!i460.lp_desc) | 
|  | return -ENOMEM; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int i460_create_gatt_table (struct agp_bridge_data *bridge) | 
|  | { | 
|  | int page_order, num_entries, i; | 
|  | void *temp; | 
|  |  | 
|  | /* | 
|  | * Load up the fixed address of the GART SRAMS which hold our GATT table. | 
|  | */ | 
|  | temp = agp_bridge->current_size; | 
|  | page_order = A_SIZE_8(temp)->page_order; | 
|  | num_entries = A_SIZE_8(temp)->num_entries; | 
|  |  | 
|  | i460.gatt = ioremap(INTEL_I460_ATTBASE, PAGE_SIZE << page_order); | 
|  | if (!i460.gatt) { | 
|  | printk(KERN_ERR PFX "ioremap failed\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /* These are no good, the should be removed from the agp_bridge strucure... */ | 
|  | agp_bridge->gatt_table_real = NULL; | 
|  | agp_bridge->gatt_table = NULL; | 
|  | agp_bridge->gatt_bus_addr = 0; | 
|  |  | 
|  | for (i = 0; i < num_entries; ++i) | 
|  | WR_GATT(i, 0); | 
|  | WR_FLUSH_GATT(i - 1); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int i460_free_gatt_table (struct agp_bridge_data *bridge) | 
|  | { | 
|  | int num_entries, i; | 
|  | void *temp; | 
|  |  | 
|  | temp = agp_bridge->current_size; | 
|  |  | 
|  | num_entries = A_SIZE_8(temp)->num_entries; | 
|  |  | 
|  | for (i = 0; i < num_entries; ++i) | 
|  | WR_GATT(i, 0); | 
|  | WR_FLUSH_GATT(num_entries - 1); | 
|  |  | 
|  | iounmap(i460.gatt); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The following functions are called when the I/O (GART) page size is smaller than | 
|  | * PAGE_SIZE. | 
|  | */ | 
|  |  | 
|  | static int i460_insert_memory_small_io_page (struct agp_memory *mem, | 
|  | off_t pg_start, int type) | 
|  | { | 
|  | unsigned long paddr, io_pg_start, io_page_size; | 
|  | int i, j, k, num_entries; | 
|  | void *temp; | 
|  |  | 
|  | pr_debug("i460_insert_memory_small_io_page(mem=%p, pg_start=%ld, type=%d, paddr0=0x%lx)\n", | 
|  | mem, pg_start, type, page_to_phys(mem->pages[0])); | 
|  |  | 
|  | if (type >= AGP_USER_TYPES || mem->type >= AGP_USER_TYPES) | 
|  | return -EINVAL; | 
|  |  | 
|  | io_pg_start = I460_IOPAGES_PER_KPAGE * pg_start; | 
|  |  | 
|  | temp = agp_bridge->current_size; | 
|  | num_entries = A_SIZE_8(temp)->num_entries; | 
|  |  | 
|  | if ((io_pg_start + I460_IOPAGES_PER_KPAGE * mem->page_count) > num_entries) { | 
|  | printk(KERN_ERR PFX "Looks like we're out of AGP memory\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | j = io_pg_start; | 
|  | while (j < (io_pg_start + I460_IOPAGES_PER_KPAGE * mem->page_count)) { | 
|  | if (!PGE_EMPTY(agp_bridge, RD_GATT(j))) { | 
|  | pr_debug("i460_insert_memory_small_io_page: GATT[%d]=0x%x is busy\n", | 
|  | j, RD_GATT(j)); | 
|  | return -EBUSY; | 
|  | } | 
|  | j++; | 
|  | } | 
|  |  | 
|  | io_page_size = 1UL << I460_IO_PAGE_SHIFT; | 
|  | for (i = 0, j = io_pg_start; i < mem->page_count; i++) { | 
|  | paddr = page_to_phys(mem->pages[i]); | 
|  | for (k = 0; k < I460_IOPAGES_PER_KPAGE; k++, j++, paddr += io_page_size) | 
|  | WR_GATT(j, i460_mask_memory(agp_bridge, paddr, mem->type)); | 
|  | } | 
|  | WR_FLUSH_GATT(j - 1); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int i460_remove_memory_small_io_page(struct agp_memory *mem, | 
|  | off_t pg_start, int type) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | pr_debug("i460_remove_memory_small_io_page(mem=%p, pg_start=%ld, type=%d)\n", | 
|  | mem, pg_start, type); | 
|  |  | 
|  | pg_start = I460_IOPAGES_PER_KPAGE * pg_start; | 
|  |  | 
|  | for (i = pg_start; i < (pg_start + I460_IOPAGES_PER_KPAGE * mem->page_count); i++) | 
|  | WR_GATT(i, 0); | 
|  | WR_FLUSH_GATT(i - 1); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #if I460_LARGE_IO_PAGES | 
|  |  | 
|  | /* | 
|  | * These functions are called when the I/O (GART) page size exceeds PAGE_SIZE. | 
|  | * | 
|  | * This situation is interesting since AGP memory allocations that are smaller than a | 
|  | * single GART page are possible.  The i460.lp_desc array tracks partial allocation of the | 
|  | * large GART pages to work around this issue. | 
|  | * | 
|  | * i460.lp_desc[pg_num].refcount tracks the number of kernel pages in use within GART page | 
|  | * pg_num.  i460.lp_desc[pg_num].paddr is the physical address of the large page and | 
|  | * i460.lp_desc[pg_num].alloced_map is a bitmap of kernel pages that are in use (allocated). | 
|  | */ | 
|  |  | 
|  | static int i460_alloc_large_page (struct lp_desc *lp) | 
|  | { | 
|  | unsigned long order = I460_IO_PAGE_SHIFT - PAGE_SHIFT; | 
|  | size_t map_size; | 
|  |  | 
|  | lp->page = alloc_pages(GFP_KERNEL, order); | 
|  | if (!lp->page) { | 
|  | printk(KERN_ERR PFX "Couldn't alloc 4M GART page...\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | map_size = ((I460_KPAGES_PER_IOPAGE + BITS_PER_LONG - 1) & -BITS_PER_LONG)/8; | 
|  | lp->alloced_map = kzalloc(map_size, GFP_KERNEL); | 
|  | if (!lp->alloced_map) { | 
|  | __free_pages(lp->page, order); | 
|  | printk(KERN_ERR PFX "Out of memory, we're in trouble...\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | lp->paddr = page_to_phys(lp->page); | 
|  | lp->refcount = 0; | 
|  | atomic_add(I460_KPAGES_PER_IOPAGE, &agp_bridge->current_memory_agp); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void i460_free_large_page (struct lp_desc *lp) | 
|  | { | 
|  | kfree(lp->alloced_map); | 
|  | lp->alloced_map = NULL; | 
|  |  | 
|  | __free_pages(lp->page, I460_IO_PAGE_SHIFT - PAGE_SHIFT); | 
|  | atomic_sub(I460_KPAGES_PER_IOPAGE, &agp_bridge->current_memory_agp); | 
|  | } | 
|  |  | 
|  | static int i460_insert_memory_large_io_page (struct agp_memory *mem, | 
|  | off_t pg_start, int type) | 
|  | { | 
|  | int i, start_offset, end_offset, idx, pg, num_entries; | 
|  | struct lp_desc *start, *end, *lp; | 
|  | void *temp; | 
|  |  | 
|  | if (type >= AGP_USER_TYPES || mem->type >= AGP_USER_TYPES) | 
|  | return -EINVAL; | 
|  |  | 
|  | temp = agp_bridge->current_size; | 
|  | num_entries = A_SIZE_8(temp)->num_entries; | 
|  |  | 
|  | /* Figure out what pg_start means in terms of our large GART pages */ | 
|  | start = &i460.lp_desc[pg_start / I460_KPAGES_PER_IOPAGE]; | 
|  | end = &i460.lp_desc[(pg_start + mem->page_count - 1) / I460_KPAGES_PER_IOPAGE]; | 
|  | start_offset = pg_start % I460_KPAGES_PER_IOPAGE; | 
|  | end_offset = (pg_start + mem->page_count - 1) % I460_KPAGES_PER_IOPAGE; | 
|  |  | 
|  | if (end > i460.lp_desc + num_entries) { | 
|  | printk(KERN_ERR PFX "Looks like we're out of AGP memory\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* Check if the requested region of the aperture is free */ | 
|  | for (lp = start; lp <= end; ++lp) { | 
|  | if (!lp->alloced_map) | 
|  | continue;	/* OK, the entire large page is available... */ | 
|  |  | 
|  | for (idx = ((lp == start) ? start_offset : 0); | 
|  | idx < ((lp == end) ? (end_offset + 1) : I460_KPAGES_PER_IOPAGE); | 
|  | idx++) | 
|  | { | 
|  | if (test_bit(idx, lp->alloced_map)) | 
|  | return -EBUSY; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (lp = start, i = 0; lp <= end; ++lp) { | 
|  | if (!lp->alloced_map) { | 
|  | /* Allocate new GART pages... */ | 
|  | if (i460_alloc_large_page(lp) < 0) | 
|  | return -ENOMEM; | 
|  | pg = lp - i460.lp_desc; | 
|  | WR_GATT(pg, i460_mask_memory(agp_bridge, | 
|  | lp->paddr, 0)); | 
|  | WR_FLUSH_GATT(pg); | 
|  | } | 
|  |  | 
|  | for (idx = ((lp == start) ? start_offset : 0); | 
|  | idx < ((lp == end) ? (end_offset + 1) : I460_KPAGES_PER_IOPAGE); | 
|  | idx++, i++) | 
|  | { | 
|  | mem->pages[i] = lp->page; | 
|  | __set_bit(idx, lp->alloced_map); | 
|  | ++lp->refcount; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int i460_remove_memory_large_io_page (struct agp_memory *mem, | 
|  | off_t pg_start, int type) | 
|  | { | 
|  | int i, pg, start_offset, end_offset, idx, num_entries; | 
|  | struct lp_desc *start, *end, *lp; | 
|  | void *temp; | 
|  |  | 
|  | temp = agp_bridge->current_size; | 
|  | num_entries = A_SIZE_8(temp)->num_entries; | 
|  |  | 
|  | /* Figure out what pg_start means in terms of our large GART pages */ | 
|  | start = &i460.lp_desc[pg_start / I460_KPAGES_PER_IOPAGE]; | 
|  | end = &i460.lp_desc[(pg_start + mem->page_count - 1) / I460_KPAGES_PER_IOPAGE]; | 
|  | start_offset = pg_start % I460_KPAGES_PER_IOPAGE; | 
|  | end_offset = (pg_start + mem->page_count - 1) % I460_KPAGES_PER_IOPAGE; | 
|  |  | 
|  | for (i = 0, lp = start; lp <= end; ++lp) { | 
|  | for (idx = ((lp == start) ? start_offset : 0); | 
|  | idx < ((lp == end) ? (end_offset + 1) : I460_KPAGES_PER_IOPAGE); | 
|  | idx++, i++) | 
|  | { | 
|  | mem->pages[i] = NULL; | 
|  | __clear_bit(idx, lp->alloced_map); | 
|  | --lp->refcount; | 
|  | } | 
|  |  | 
|  | /* Free GART pages if they are unused */ | 
|  | if (lp->refcount == 0) { | 
|  | pg = lp - i460.lp_desc; | 
|  | WR_GATT(pg, 0); | 
|  | WR_FLUSH_GATT(pg); | 
|  | i460_free_large_page(lp); | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Wrapper routines to call the approriate {small_io_page,large_io_page} function */ | 
|  |  | 
|  | static int i460_insert_memory (struct agp_memory *mem, | 
|  | off_t pg_start, int type) | 
|  | { | 
|  | if (I460_IO_PAGE_SHIFT <= PAGE_SHIFT) | 
|  | return i460_insert_memory_small_io_page(mem, pg_start, type); | 
|  | else | 
|  | return i460_insert_memory_large_io_page(mem, pg_start, type); | 
|  | } | 
|  |  | 
|  | static int i460_remove_memory (struct agp_memory *mem, | 
|  | off_t pg_start, int type) | 
|  | { | 
|  | if (I460_IO_PAGE_SHIFT <= PAGE_SHIFT) | 
|  | return i460_remove_memory_small_io_page(mem, pg_start, type); | 
|  | else | 
|  | return i460_remove_memory_large_io_page(mem, pg_start, type); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the I/O (GART) page size is bigger than the kernel page size, we don't want to | 
|  | * allocate memory until we know where it is to be bound in the aperture (a | 
|  | * multi-kernel-page alloc might fit inside of an already allocated GART page). | 
|  | * | 
|  | * Let's just hope nobody counts on the allocated AGP memory being there before bind time | 
|  | * (I don't think current drivers do)... | 
|  | */ | 
|  | static struct page *i460_alloc_page (struct agp_bridge_data *bridge) | 
|  | { | 
|  | void *page; | 
|  |  | 
|  | if (I460_IO_PAGE_SHIFT <= PAGE_SHIFT) { | 
|  | page = agp_generic_alloc_page(agp_bridge); | 
|  | } else | 
|  | /* Returning NULL would cause problems */ | 
|  | /* AK: really dubious code. */ | 
|  | page = (void *)~0UL; | 
|  | return page; | 
|  | } | 
|  |  | 
|  | static void i460_destroy_page (struct page *page, int flags) | 
|  | { | 
|  | if (I460_IO_PAGE_SHIFT <= PAGE_SHIFT) { | 
|  | agp_generic_destroy_page(page, flags); | 
|  | } | 
|  | } | 
|  |  | 
|  | #endif /* I460_LARGE_IO_PAGES */ | 
|  |  | 
|  | static unsigned long i460_mask_memory (struct agp_bridge_data *bridge, | 
|  | dma_addr_t addr, int type) | 
|  | { | 
|  | /* Make sure the returned address is a valid GATT entry */ | 
|  | return bridge->driver->masks[0].mask | 
|  | | (((addr & ~((1 << I460_IO_PAGE_SHIFT) - 1)) & 0xfffff000) >> 12); | 
|  | } | 
|  |  | 
|  | const struct agp_bridge_driver intel_i460_driver = { | 
|  | .owner			= THIS_MODULE, | 
|  | .aperture_sizes		= i460_sizes, | 
|  | .size_type		= U8_APER_SIZE, | 
|  | .num_aperture_sizes	= 3, | 
|  | .configure		= i460_configure, | 
|  | .fetch_size		= i460_fetch_size, | 
|  | .cleanup		= i460_cleanup, | 
|  | .tlb_flush		= i460_tlb_flush, | 
|  | .mask_memory		= i460_mask_memory, | 
|  | .masks			= i460_masks, | 
|  | .agp_enable		= agp_generic_enable, | 
|  | .cache_flush		= global_cache_flush, | 
|  | .create_gatt_table	= i460_create_gatt_table, | 
|  | .free_gatt_table	= i460_free_gatt_table, | 
|  | #if I460_LARGE_IO_PAGES | 
|  | .insert_memory		= i460_insert_memory, | 
|  | .remove_memory		= i460_remove_memory, | 
|  | .agp_alloc_page		= i460_alloc_page, | 
|  | .agp_destroy_page	= i460_destroy_page, | 
|  | #else | 
|  | .insert_memory		= i460_insert_memory_small_io_page, | 
|  | .remove_memory		= i460_remove_memory_small_io_page, | 
|  | .agp_alloc_page		= agp_generic_alloc_page, | 
|  | .agp_alloc_pages	= agp_generic_alloc_pages, | 
|  | .agp_destroy_page	= agp_generic_destroy_page, | 
|  | .agp_destroy_pages	= agp_generic_destroy_pages, | 
|  | #endif | 
|  | .alloc_by_type		= agp_generic_alloc_by_type, | 
|  | .free_by_type		= agp_generic_free_by_type, | 
|  | .agp_type_to_mask_type  = agp_generic_type_to_mask_type, | 
|  | .cant_use_aperture	= true, | 
|  | }; | 
|  |  | 
|  | static int __devinit agp_intel_i460_probe(struct pci_dev *pdev, | 
|  | const struct pci_device_id *ent) | 
|  | { | 
|  | struct agp_bridge_data *bridge; | 
|  | u8 cap_ptr; | 
|  |  | 
|  | cap_ptr = pci_find_capability(pdev, PCI_CAP_ID_AGP); | 
|  | if (!cap_ptr) | 
|  | return -ENODEV; | 
|  |  | 
|  | bridge = agp_alloc_bridge(); | 
|  | if (!bridge) | 
|  | return -ENOMEM; | 
|  |  | 
|  | bridge->driver = &intel_i460_driver; | 
|  | bridge->dev = pdev; | 
|  | bridge->capndx = cap_ptr; | 
|  |  | 
|  | printk(KERN_INFO PFX "Detected Intel 460GX chipset\n"); | 
|  |  | 
|  | pci_set_drvdata(pdev, bridge); | 
|  | return agp_add_bridge(bridge); | 
|  | } | 
|  |  | 
|  | static void __devexit agp_intel_i460_remove(struct pci_dev *pdev) | 
|  | { | 
|  | struct agp_bridge_data *bridge = pci_get_drvdata(pdev); | 
|  |  | 
|  | agp_remove_bridge(bridge); | 
|  | agp_put_bridge(bridge); | 
|  | } | 
|  |  | 
|  | static struct pci_device_id agp_intel_i460_pci_table[] = { | 
|  | { | 
|  | .class		= (PCI_CLASS_BRIDGE_HOST << 8), | 
|  | .class_mask	= ~0, | 
|  | .vendor		= PCI_VENDOR_ID_INTEL, | 
|  | .device		= PCI_DEVICE_ID_INTEL_84460GX, | 
|  | .subvendor	= PCI_ANY_ID, | 
|  | .subdevice	= PCI_ANY_ID, | 
|  | }, | 
|  | { } | 
|  | }; | 
|  |  | 
|  | MODULE_DEVICE_TABLE(pci, agp_intel_i460_pci_table); | 
|  |  | 
|  | static struct pci_driver agp_intel_i460_pci_driver = { | 
|  | .name		= "agpgart-intel-i460", | 
|  | .id_table	= agp_intel_i460_pci_table, | 
|  | .probe		= agp_intel_i460_probe, | 
|  | .remove		= __devexit_p(agp_intel_i460_remove), | 
|  | }; | 
|  |  | 
|  | static int __init agp_intel_i460_init(void) | 
|  | { | 
|  | if (agp_off) | 
|  | return -EINVAL; | 
|  | return pci_register_driver(&agp_intel_i460_pci_driver); | 
|  | } | 
|  |  | 
|  | static void __exit agp_intel_i460_cleanup(void) | 
|  | { | 
|  | pci_unregister_driver(&agp_intel_i460_pci_driver); | 
|  | } | 
|  |  | 
|  | module_init(agp_intel_i460_init); | 
|  | module_exit(agp_intel_i460_cleanup); | 
|  |  | 
|  | MODULE_AUTHOR("Chris Ahna <Christopher.J.Ahna@intel.com>"); | 
|  | MODULE_LICENSE("GPL and additional rights"); |