|  | /* | 
|  | * Kernel-based Virtual Machine driver for Linux | 
|  | * | 
|  | * This module enables machines with Intel VT-x extensions to run virtual | 
|  | * machines without emulation or binary translation. | 
|  | * | 
|  | * MMU support | 
|  | * | 
|  | * Copyright (C) 2006 Qumranet, Inc. | 
|  | * Copyright 2010 Red Hat, Inc. and/or its affiliates. | 
|  | * | 
|  | * Authors: | 
|  | *   Yaniv Kamay  <yaniv@qumranet.com> | 
|  | *   Avi Kivity   <avi@qumranet.com> | 
|  | * | 
|  | * This work is licensed under the terms of the GNU GPL, version 2.  See | 
|  | * the COPYING file in the top-level directory. | 
|  | * | 
|  | */ | 
|  |  | 
|  | #include "irq.h" | 
|  | #include "mmu.h" | 
|  | #include "x86.h" | 
|  | #include "kvm_cache_regs.h" | 
|  | #include "x86.h" | 
|  |  | 
|  | #include <linux/kvm_host.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/hugetlb.h> | 
|  | #include <linux/compiler.h> | 
|  | #include <linux/srcu.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/uaccess.h> | 
|  |  | 
|  | #include <asm/page.h> | 
|  | #include <asm/cmpxchg.h> | 
|  | #include <asm/io.h> | 
|  | #include <asm/vmx.h> | 
|  |  | 
|  | /* | 
|  | * When setting this variable to true it enables Two-Dimensional-Paging | 
|  | * where the hardware walks 2 page tables: | 
|  | * 1. the guest-virtual to guest-physical | 
|  | * 2. while doing 1. it walks guest-physical to host-physical | 
|  | * If the hardware supports that we don't need to do shadow paging. | 
|  | */ | 
|  | bool tdp_enabled = false; | 
|  |  | 
|  | enum { | 
|  | AUDIT_PRE_PAGE_FAULT, | 
|  | AUDIT_POST_PAGE_FAULT, | 
|  | AUDIT_PRE_PTE_WRITE, | 
|  | AUDIT_POST_PTE_WRITE, | 
|  | AUDIT_PRE_SYNC, | 
|  | AUDIT_POST_SYNC | 
|  | }; | 
|  |  | 
|  | char *audit_point_name[] = { | 
|  | "pre page fault", | 
|  | "post page fault", | 
|  | "pre pte write", | 
|  | "post pte write", | 
|  | "pre sync", | 
|  | "post sync" | 
|  | }; | 
|  |  | 
|  | #undef MMU_DEBUG | 
|  |  | 
|  | #ifdef MMU_DEBUG | 
|  |  | 
|  | #define pgprintk(x...) do { if (dbg) printk(x); } while (0) | 
|  | #define rmap_printk(x...) do { if (dbg) printk(x); } while (0) | 
|  |  | 
|  | #else | 
|  |  | 
|  | #define pgprintk(x...) do { } while (0) | 
|  | #define rmap_printk(x...) do { } while (0) | 
|  |  | 
|  | #endif | 
|  |  | 
|  | #ifdef MMU_DEBUG | 
|  | static int dbg = 0; | 
|  | module_param(dbg, bool, 0644); | 
|  | #endif | 
|  |  | 
|  | static int oos_shadow = 1; | 
|  | module_param(oos_shadow, bool, 0644); | 
|  |  | 
|  | #ifndef MMU_DEBUG | 
|  | #define ASSERT(x) do { } while (0) | 
|  | #else | 
|  | #define ASSERT(x)							\ | 
|  | if (!(x)) {							\ | 
|  | printk(KERN_WARNING "assertion failed %s:%d: %s\n",	\ | 
|  | __FILE__, __LINE__, #x);				\ | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #define PTE_PREFETCH_NUM		8 | 
|  |  | 
|  | #define PT_FIRST_AVAIL_BITS_SHIFT 9 | 
|  | #define PT64_SECOND_AVAIL_BITS_SHIFT 52 | 
|  |  | 
|  | #define PT64_LEVEL_BITS 9 | 
|  |  | 
|  | #define PT64_LEVEL_SHIFT(level) \ | 
|  | (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS) | 
|  |  | 
|  | #define PT64_INDEX(address, level)\ | 
|  | (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1)) | 
|  |  | 
|  |  | 
|  | #define PT32_LEVEL_BITS 10 | 
|  |  | 
|  | #define PT32_LEVEL_SHIFT(level) \ | 
|  | (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS) | 
|  |  | 
|  | #define PT32_LVL_OFFSET_MASK(level) \ | 
|  | (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \ | 
|  | * PT32_LEVEL_BITS))) - 1)) | 
|  |  | 
|  | #define PT32_INDEX(address, level)\ | 
|  | (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1)) | 
|  |  | 
|  |  | 
|  | #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1)) | 
|  | #define PT64_DIR_BASE_ADDR_MASK \ | 
|  | (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1)) | 
|  | #define PT64_LVL_ADDR_MASK(level) \ | 
|  | (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \ | 
|  | * PT64_LEVEL_BITS))) - 1)) | 
|  | #define PT64_LVL_OFFSET_MASK(level) \ | 
|  | (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \ | 
|  | * PT64_LEVEL_BITS))) - 1)) | 
|  |  | 
|  | #define PT32_BASE_ADDR_MASK PAGE_MASK | 
|  | #define PT32_DIR_BASE_ADDR_MASK \ | 
|  | (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1)) | 
|  | #define PT32_LVL_ADDR_MASK(level) \ | 
|  | (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \ | 
|  | * PT32_LEVEL_BITS))) - 1)) | 
|  |  | 
|  | #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \ | 
|  | | PT64_NX_MASK) | 
|  |  | 
|  | #define RMAP_EXT 4 | 
|  |  | 
|  | #define ACC_EXEC_MASK    1 | 
|  | #define ACC_WRITE_MASK   PT_WRITABLE_MASK | 
|  | #define ACC_USER_MASK    PT_USER_MASK | 
|  | #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK) | 
|  |  | 
|  | #include <trace/events/kvm.h> | 
|  |  | 
|  | #define CREATE_TRACE_POINTS | 
|  | #include "mmutrace.h" | 
|  |  | 
|  | #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT) | 
|  |  | 
|  | #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level) | 
|  |  | 
|  | struct kvm_rmap_desc { | 
|  | u64 *sptes[RMAP_EXT]; | 
|  | struct kvm_rmap_desc *more; | 
|  | }; | 
|  |  | 
|  | struct kvm_shadow_walk_iterator { | 
|  | u64 addr; | 
|  | hpa_t shadow_addr; | 
|  | int level; | 
|  | u64 *sptep; | 
|  | unsigned index; | 
|  | }; | 
|  |  | 
|  | #define for_each_shadow_entry(_vcpu, _addr, _walker)    \ | 
|  | for (shadow_walk_init(&(_walker), _vcpu, _addr);	\ | 
|  | shadow_walk_okay(&(_walker));			\ | 
|  | shadow_walk_next(&(_walker))) | 
|  |  | 
|  | typedef void (*mmu_parent_walk_fn) (struct kvm_mmu_page *sp, u64 *spte); | 
|  |  | 
|  | static struct kmem_cache *pte_chain_cache; | 
|  | static struct kmem_cache *rmap_desc_cache; | 
|  | static struct kmem_cache *mmu_page_header_cache; | 
|  | static struct percpu_counter kvm_total_used_mmu_pages; | 
|  |  | 
|  | static u64 __read_mostly shadow_trap_nonpresent_pte; | 
|  | static u64 __read_mostly shadow_notrap_nonpresent_pte; | 
|  | static u64 __read_mostly shadow_nx_mask; | 
|  | static u64 __read_mostly shadow_x_mask;	/* mutual exclusive with nx_mask */ | 
|  | static u64 __read_mostly shadow_user_mask; | 
|  | static u64 __read_mostly shadow_accessed_mask; | 
|  | static u64 __read_mostly shadow_dirty_mask; | 
|  |  | 
|  | static inline u64 rsvd_bits(int s, int e) | 
|  | { | 
|  | return ((1ULL << (e - s + 1)) - 1) << s; | 
|  | } | 
|  |  | 
|  | void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte) | 
|  | { | 
|  | shadow_trap_nonpresent_pte = trap_pte; | 
|  | shadow_notrap_nonpresent_pte = notrap_pte; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes); | 
|  |  | 
|  | void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask, | 
|  | u64 dirty_mask, u64 nx_mask, u64 x_mask) | 
|  | { | 
|  | shadow_user_mask = user_mask; | 
|  | shadow_accessed_mask = accessed_mask; | 
|  | shadow_dirty_mask = dirty_mask; | 
|  | shadow_nx_mask = nx_mask; | 
|  | shadow_x_mask = x_mask; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes); | 
|  |  | 
|  | static bool is_write_protection(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | return kvm_read_cr0_bits(vcpu, X86_CR0_WP); | 
|  | } | 
|  |  | 
|  | static int is_cpuid_PSE36(void) | 
|  | { | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int is_nx(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | return vcpu->arch.efer & EFER_NX; | 
|  | } | 
|  |  | 
|  | static int is_shadow_present_pte(u64 pte) | 
|  | { | 
|  | return pte != shadow_trap_nonpresent_pte | 
|  | && pte != shadow_notrap_nonpresent_pte; | 
|  | } | 
|  |  | 
|  | static int is_large_pte(u64 pte) | 
|  | { | 
|  | return pte & PT_PAGE_SIZE_MASK; | 
|  | } | 
|  |  | 
|  | static int is_writable_pte(unsigned long pte) | 
|  | { | 
|  | return pte & PT_WRITABLE_MASK; | 
|  | } | 
|  |  | 
|  | static int is_dirty_gpte(unsigned long pte) | 
|  | { | 
|  | return pte & PT_DIRTY_MASK; | 
|  | } | 
|  |  | 
|  | static int is_rmap_spte(u64 pte) | 
|  | { | 
|  | return is_shadow_present_pte(pte); | 
|  | } | 
|  |  | 
|  | static int is_last_spte(u64 pte, int level) | 
|  | { | 
|  | if (level == PT_PAGE_TABLE_LEVEL) | 
|  | return 1; | 
|  | if (is_large_pte(pte)) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static pfn_t spte_to_pfn(u64 pte) | 
|  | { | 
|  | return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT; | 
|  | } | 
|  |  | 
|  | static gfn_t pse36_gfn_delta(u32 gpte) | 
|  | { | 
|  | int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT; | 
|  |  | 
|  | return (gpte & PT32_DIR_PSE36_MASK) << shift; | 
|  | } | 
|  |  | 
|  | static void __set_spte(u64 *sptep, u64 spte) | 
|  | { | 
|  | set_64bit(sptep, spte); | 
|  | } | 
|  |  | 
|  | static u64 __xchg_spte(u64 *sptep, u64 new_spte) | 
|  | { | 
|  | #ifdef CONFIG_X86_64 | 
|  | return xchg(sptep, new_spte); | 
|  | #else | 
|  | u64 old_spte; | 
|  |  | 
|  | do { | 
|  | old_spte = *sptep; | 
|  | } while (cmpxchg64(sptep, old_spte, new_spte) != old_spte); | 
|  |  | 
|  | return old_spte; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static bool spte_has_volatile_bits(u64 spte) | 
|  | { | 
|  | if (!shadow_accessed_mask) | 
|  | return false; | 
|  |  | 
|  | if (!is_shadow_present_pte(spte)) | 
|  | return false; | 
|  |  | 
|  | if ((spte & shadow_accessed_mask) && | 
|  | (!is_writable_pte(spte) || (spte & shadow_dirty_mask))) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask) | 
|  | { | 
|  | return (old_spte & bit_mask) && !(new_spte & bit_mask); | 
|  | } | 
|  |  | 
|  | static void update_spte(u64 *sptep, u64 new_spte) | 
|  | { | 
|  | u64 mask, old_spte = *sptep; | 
|  |  | 
|  | WARN_ON(!is_rmap_spte(new_spte)); | 
|  |  | 
|  | new_spte |= old_spte & shadow_dirty_mask; | 
|  |  | 
|  | mask = shadow_accessed_mask; | 
|  | if (is_writable_pte(old_spte)) | 
|  | mask |= shadow_dirty_mask; | 
|  |  | 
|  | if (!spte_has_volatile_bits(old_spte) || (new_spte & mask) == mask) | 
|  | __set_spte(sptep, new_spte); | 
|  | else | 
|  | old_spte = __xchg_spte(sptep, new_spte); | 
|  |  | 
|  | if (!shadow_accessed_mask) | 
|  | return; | 
|  |  | 
|  | if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask)) | 
|  | kvm_set_pfn_accessed(spte_to_pfn(old_spte)); | 
|  | if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask)) | 
|  | kvm_set_pfn_dirty(spte_to_pfn(old_spte)); | 
|  | } | 
|  |  | 
|  | static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache, | 
|  | struct kmem_cache *base_cache, int min) | 
|  | { | 
|  | void *obj; | 
|  |  | 
|  | if (cache->nobjs >= min) | 
|  | return 0; | 
|  | while (cache->nobjs < ARRAY_SIZE(cache->objects)) { | 
|  | obj = kmem_cache_zalloc(base_cache, GFP_KERNEL); | 
|  | if (!obj) | 
|  | return -ENOMEM; | 
|  | cache->objects[cache->nobjs++] = obj; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc, | 
|  | struct kmem_cache *cache) | 
|  | { | 
|  | while (mc->nobjs) | 
|  | kmem_cache_free(cache, mc->objects[--mc->nobjs]); | 
|  | } | 
|  |  | 
|  | static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache, | 
|  | int min) | 
|  | { | 
|  | void *page; | 
|  |  | 
|  | if (cache->nobjs >= min) | 
|  | return 0; | 
|  | while (cache->nobjs < ARRAY_SIZE(cache->objects)) { | 
|  | page = (void *)__get_free_page(GFP_KERNEL); | 
|  | if (!page) | 
|  | return -ENOMEM; | 
|  | cache->objects[cache->nobjs++] = page; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc) | 
|  | { | 
|  | while (mc->nobjs) | 
|  | free_page((unsigned long)mc->objects[--mc->nobjs]); | 
|  | } | 
|  |  | 
|  | static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | int r; | 
|  |  | 
|  | r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_chain_cache, | 
|  | pte_chain_cache, 4); | 
|  | if (r) | 
|  | goto out; | 
|  | r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache, | 
|  | rmap_desc_cache, 4 + PTE_PREFETCH_NUM); | 
|  | if (r) | 
|  | goto out; | 
|  | r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8); | 
|  | if (r) | 
|  | goto out; | 
|  | r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache, | 
|  | mmu_page_header_cache, 4); | 
|  | out: | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static void mmu_free_memory_caches(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | mmu_free_memory_cache(&vcpu->arch.mmu_pte_chain_cache, pte_chain_cache); | 
|  | mmu_free_memory_cache(&vcpu->arch.mmu_rmap_desc_cache, rmap_desc_cache); | 
|  | mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache); | 
|  | mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache, | 
|  | mmu_page_header_cache); | 
|  | } | 
|  |  | 
|  | static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc, | 
|  | size_t size) | 
|  | { | 
|  | void *p; | 
|  |  | 
|  | BUG_ON(!mc->nobjs); | 
|  | p = mc->objects[--mc->nobjs]; | 
|  | return p; | 
|  | } | 
|  |  | 
|  | static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_chain_cache, | 
|  | sizeof(struct kvm_pte_chain)); | 
|  | } | 
|  |  | 
|  | static void mmu_free_pte_chain(struct kvm_pte_chain *pc) | 
|  | { | 
|  | kmem_cache_free(pte_chain_cache, pc); | 
|  | } | 
|  |  | 
|  | static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | return mmu_memory_cache_alloc(&vcpu->arch.mmu_rmap_desc_cache, | 
|  | sizeof(struct kvm_rmap_desc)); | 
|  | } | 
|  |  | 
|  | static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd) | 
|  | { | 
|  | kmem_cache_free(rmap_desc_cache, rd); | 
|  | } | 
|  |  | 
|  | static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index) | 
|  | { | 
|  | if (!sp->role.direct) | 
|  | return sp->gfns[index]; | 
|  |  | 
|  | return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS)); | 
|  | } | 
|  |  | 
|  | static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn) | 
|  | { | 
|  | if (sp->role.direct) | 
|  | BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index)); | 
|  | else | 
|  | sp->gfns[index] = gfn; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return the pointer to the large page information for a given gfn, | 
|  | * handling slots that are not large page aligned. | 
|  | */ | 
|  | static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn, | 
|  | struct kvm_memory_slot *slot, | 
|  | int level) | 
|  | { | 
|  | unsigned long idx; | 
|  |  | 
|  | idx = (gfn >> KVM_HPAGE_GFN_SHIFT(level)) - | 
|  | (slot->base_gfn >> KVM_HPAGE_GFN_SHIFT(level)); | 
|  | return &slot->lpage_info[level - 2][idx]; | 
|  | } | 
|  |  | 
|  | static void account_shadowed(struct kvm *kvm, gfn_t gfn) | 
|  | { | 
|  | struct kvm_memory_slot *slot; | 
|  | struct kvm_lpage_info *linfo; | 
|  | int i; | 
|  |  | 
|  | slot = gfn_to_memslot(kvm, gfn); | 
|  | for (i = PT_DIRECTORY_LEVEL; | 
|  | i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) { | 
|  | linfo = lpage_info_slot(gfn, slot, i); | 
|  | linfo->write_count += 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn) | 
|  | { | 
|  | struct kvm_memory_slot *slot; | 
|  | struct kvm_lpage_info *linfo; | 
|  | int i; | 
|  |  | 
|  | slot = gfn_to_memslot(kvm, gfn); | 
|  | for (i = PT_DIRECTORY_LEVEL; | 
|  | i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) { | 
|  | linfo = lpage_info_slot(gfn, slot, i); | 
|  | linfo->write_count -= 1; | 
|  | WARN_ON(linfo->write_count < 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int has_wrprotected_page(struct kvm *kvm, | 
|  | gfn_t gfn, | 
|  | int level) | 
|  | { | 
|  | struct kvm_memory_slot *slot; | 
|  | struct kvm_lpage_info *linfo; | 
|  |  | 
|  | slot = gfn_to_memslot(kvm, gfn); | 
|  | if (slot) { | 
|  | linfo = lpage_info_slot(gfn, slot, level); | 
|  | return linfo->write_count; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int host_mapping_level(struct kvm *kvm, gfn_t gfn) | 
|  | { | 
|  | unsigned long page_size; | 
|  | int i, ret = 0; | 
|  |  | 
|  | page_size = kvm_host_page_size(kvm, gfn); | 
|  |  | 
|  | for (i = PT_PAGE_TABLE_LEVEL; | 
|  | i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) { | 
|  | if (page_size >= KVM_HPAGE_SIZE(i)) | 
|  | ret = i; | 
|  | else | 
|  | break; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static struct kvm_memory_slot * | 
|  | gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn, | 
|  | bool no_dirty_log) | 
|  | { | 
|  | struct kvm_memory_slot *slot; | 
|  |  | 
|  | slot = gfn_to_memslot(vcpu->kvm, gfn); | 
|  | if (!slot || slot->flags & KVM_MEMSLOT_INVALID || | 
|  | (no_dirty_log && slot->dirty_bitmap)) | 
|  | slot = NULL; | 
|  |  | 
|  | return slot; | 
|  | } | 
|  |  | 
|  | static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn) | 
|  | { | 
|  | return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true); | 
|  | } | 
|  |  | 
|  | static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn) | 
|  | { | 
|  | int host_level, level, max_level; | 
|  |  | 
|  | host_level = host_mapping_level(vcpu->kvm, large_gfn); | 
|  |  | 
|  | if (host_level == PT_PAGE_TABLE_LEVEL) | 
|  | return host_level; | 
|  |  | 
|  | max_level = kvm_x86_ops->get_lpage_level() < host_level ? | 
|  | kvm_x86_ops->get_lpage_level() : host_level; | 
|  |  | 
|  | for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level) | 
|  | if (has_wrprotected_page(vcpu->kvm, large_gfn, level)) | 
|  | break; | 
|  |  | 
|  | return level - 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Take gfn and return the reverse mapping to it. | 
|  | */ | 
|  |  | 
|  | static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level) | 
|  | { | 
|  | struct kvm_memory_slot *slot; | 
|  | struct kvm_lpage_info *linfo; | 
|  |  | 
|  | slot = gfn_to_memslot(kvm, gfn); | 
|  | if (likely(level == PT_PAGE_TABLE_LEVEL)) | 
|  | return &slot->rmap[gfn - slot->base_gfn]; | 
|  |  | 
|  | linfo = lpage_info_slot(gfn, slot, level); | 
|  |  | 
|  | return &linfo->rmap_pde; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Reverse mapping data structures: | 
|  | * | 
|  | * If rmapp bit zero is zero, then rmapp point to the shadw page table entry | 
|  | * that points to page_address(page). | 
|  | * | 
|  | * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc | 
|  | * containing more mappings. | 
|  | * | 
|  | * Returns the number of rmap entries before the spte was added or zero if | 
|  | * the spte was not added. | 
|  | * | 
|  | */ | 
|  | static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn) | 
|  | { | 
|  | struct kvm_mmu_page *sp; | 
|  | struct kvm_rmap_desc *desc; | 
|  | unsigned long *rmapp; | 
|  | int i, count = 0; | 
|  |  | 
|  | if (!is_rmap_spte(*spte)) | 
|  | return count; | 
|  | sp = page_header(__pa(spte)); | 
|  | kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn); | 
|  | rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level); | 
|  | if (!*rmapp) { | 
|  | rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte); | 
|  | *rmapp = (unsigned long)spte; | 
|  | } else if (!(*rmapp & 1)) { | 
|  | rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte); | 
|  | desc = mmu_alloc_rmap_desc(vcpu); | 
|  | desc->sptes[0] = (u64 *)*rmapp; | 
|  | desc->sptes[1] = spte; | 
|  | *rmapp = (unsigned long)desc | 1; | 
|  | ++count; | 
|  | } else { | 
|  | rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte); | 
|  | desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul); | 
|  | while (desc->sptes[RMAP_EXT-1] && desc->more) { | 
|  | desc = desc->more; | 
|  | count += RMAP_EXT; | 
|  | } | 
|  | if (desc->sptes[RMAP_EXT-1]) { | 
|  | desc->more = mmu_alloc_rmap_desc(vcpu); | 
|  | desc = desc->more; | 
|  | } | 
|  | for (i = 0; desc->sptes[i]; ++i) | 
|  | ++count; | 
|  | desc->sptes[i] = spte; | 
|  | } | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static void rmap_desc_remove_entry(unsigned long *rmapp, | 
|  | struct kvm_rmap_desc *desc, | 
|  | int i, | 
|  | struct kvm_rmap_desc *prev_desc) | 
|  | { | 
|  | int j; | 
|  |  | 
|  | for (j = RMAP_EXT - 1; !desc->sptes[j] && j > i; --j) | 
|  | ; | 
|  | desc->sptes[i] = desc->sptes[j]; | 
|  | desc->sptes[j] = NULL; | 
|  | if (j != 0) | 
|  | return; | 
|  | if (!prev_desc && !desc->more) | 
|  | *rmapp = (unsigned long)desc->sptes[0]; | 
|  | else | 
|  | if (prev_desc) | 
|  | prev_desc->more = desc->more; | 
|  | else | 
|  | *rmapp = (unsigned long)desc->more | 1; | 
|  | mmu_free_rmap_desc(desc); | 
|  | } | 
|  |  | 
|  | static void rmap_remove(struct kvm *kvm, u64 *spte) | 
|  | { | 
|  | struct kvm_rmap_desc *desc; | 
|  | struct kvm_rmap_desc *prev_desc; | 
|  | struct kvm_mmu_page *sp; | 
|  | gfn_t gfn; | 
|  | unsigned long *rmapp; | 
|  | int i; | 
|  |  | 
|  | sp = page_header(__pa(spte)); | 
|  | gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt); | 
|  | rmapp = gfn_to_rmap(kvm, gfn, sp->role.level); | 
|  | if (!*rmapp) { | 
|  | printk(KERN_ERR "rmap_remove: %p 0->BUG\n", spte); | 
|  | BUG(); | 
|  | } else if (!(*rmapp & 1)) { | 
|  | rmap_printk("rmap_remove:  %p 1->0\n", spte); | 
|  | if ((u64 *)*rmapp != spte) { | 
|  | printk(KERN_ERR "rmap_remove:  %p 1->BUG\n", spte); | 
|  | BUG(); | 
|  | } | 
|  | *rmapp = 0; | 
|  | } else { | 
|  | rmap_printk("rmap_remove:  %p many->many\n", spte); | 
|  | desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul); | 
|  | prev_desc = NULL; | 
|  | while (desc) { | 
|  | for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i) | 
|  | if (desc->sptes[i] == spte) { | 
|  | rmap_desc_remove_entry(rmapp, | 
|  | desc, i, | 
|  | prev_desc); | 
|  | return; | 
|  | } | 
|  | prev_desc = desc; | 
|  | desc = desc->more; | 
|  | } | 
|  | pr_err("rmap_remove: %p many->many\n", spte); | 
|  | BUG(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int set_spte_track_bits(u64 *sptep, u64 new_spte) | 
|  | { | 
|  | pfn_t pfn; | 
|  | u64 old_spte = *sptep; | 
|  |  | 
|  | if (!spte_has_volatile_bits(old_spte)) | 
|  | __set_spte(sptep, new_spte); | 
|  | else | 
|  | old_spte = __xchg_spte(sptep, new_spte); | 
|  |  | 
|  | if (!is_rmap_spte(old_spte)) | 
|  | return 0; | 
|  |  | 
|  | pfn = spte_to_pfn(old_spte); | 
|  | if (!shadow_accessed_mask || old_spte & shadow_accessed_mask) | 
|  | kvm_set_pfn_accessed(pfn); | 
|  | if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask)) | 
|  | kvm_set_pfn_dirty(pfn); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static void drop_spte(struct kvm *kvm, u64 *sptep, u64 new_spte) | 
|  | { | 
|  | if (set_spte_track_bits(sptep, new_spte)) | 
|  | rmap_remove(kvm, sptep); | 
|  | } | 
|  |  | 
|  | static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte) | 
|  | { | 
|  | struct kvm_rmap_desc *desc; | 
|  | u64 *prev_spte; | 
|  | int i; | 
|  |  | 
|  | if (!*rmapp) | 
|  | return NULL; | 
|  | else if (!(*rmapp & 1)) { | 
|  | if (!spte) | 
|  | return (u64 *)*rmapp; | 
|  | return NULL; | 
|  | } | 
|  | desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul); | 
|  | prev_spte = NULL; | 
|  | while (desc) { | 
|  | for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i) { | 
|  | if (prev_spte == spte) | 
|  | return desc->sptes[i]; | 
|  | prev_spte = desc->sptes[i]; | 
|  | } | 
|  | desc = desc->more; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static int rmap_write_protect(struct kvm *kvm, u64 gfn) | 
|  | { | 
|  | unsigned long *rmapp; | 
|  | u64 *spte; | 
|  | int i, write_protected = 0; | 
|  |  | 
|  | rmapp = gfn_to_rmap(kvm, gfn, PT_PAGE_TABLE_LEVEL); | 
|  |  | 
|  | spte = rmap_next(kvm, rmapp, NULL); | 
|  | while (spte) { | 
|  | BUG_ON(!spte); | 
|  | BUG_ON(!(*spte & PT_PRESENT_MASK)); | 
|  | rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte); | 
|  | if (is_writable_pte(*spte)) { | 
|  | update_spte(spte, *spte & ~PT_WRITABLE_MASK); | 
|  | write_protected = 1; | 
|  | } | 
|  | spte = rmap_next(kvm, rmapp, spte); | 
|  | } | 
|  |  | 
|  | /* check for huge page mappings */ | 
|  | for (i = PT_DIRECTORY_LEVEL; | 
|  | i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) { | 
|  | rmapp = gfn_to_rmap(kvm, gfn, i); | 
|  | spte = rmap_next(kvm, rmapp, NULL); | 
|  | while (spte) { | 
|  | BUG_ON(!spte); | 
|  | BUG_ON(!(*spte & PT_PRESENT_MASK)); | 
|  | BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)); | 
|  | pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn); | 
|  | if (is_writable_pte(*spte)) { | 
|  | drop_spte(kvm, spte, | 
|  | shadow_trap_nonpresent_pte); | 
|  | --kvm->stat.lpages; | 
|  | spte = NULL; | 
|  | write_protected = 1; | 
|  | } | 
|  | spte = rmap_next(kvm, rmapp, spte); | 
|  | } | 
|  | } | 
|  |  | 
|  | return write_protected; | 
|  | } | 
|  |  | 
|  | static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp, | 
|  | unsigned long data) | 
|  | { | 
|  | u64 *spte; | 
|  | int need_tlb_flush = 0; | 
|  |  | 
|  | while ((spte = rmap_next(kvm, rmapp, NULL))) { | 
|  | BUG_ON(!(*spte & PT_PRESENT_MASK)); | 
|  | rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte); | 
|  | drop_spte(kvm, spte, shadow_trap_nonpresent_pte); | 
|  | need_tlb_flush = 1; | 
|  | } | 
|  | return need_tlb_flush; | 
|  | } | 
|  |  | 
|  | static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp, | 
|  | unsigned long data) | 
|  | { | 
|  | int need_flush = 0; | 
|  | u64 *spte, new_spte; | 
|  | pte_t *ptep = (pte_t *)data; | 
|  | pfn_t new_pfn; | 
|  |  | 
|  | WARN_ON(pte_huge(*ptep)); | 
|  | new_pfn = pte_pfn(*ptep); | 
|  | spte = rmap_next(kvm, rmapp, NULL); | 
|  | while (spte) { | 
|  | BUG_ON(!is_shadow_present_pte(*spte)); | 
|  | rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", spte, *spte); | 
|  | need_flush = 1; | 
|  | if (pte_write(*ptep)) { | 
|  | drop_spte(kvm, spte, shadow_trap_nonpresent_pte); | 
|  | spte = rmap_next(kvm, rmapp, NULL); | 
|  | } else { | 
|  | new_spte = *spte &~ (PT64_BASE_ADDR_MASK); | 
|  | new_spte |= (u64)new_pfn << PAGE_SHIFT; | 
|  |  | 
|  | new_spte &= ~PT_WRITABLE_MASK; | 
|  | new_spte &= ~SPTE_HOST_WRITEABLE; | 
|  | new_spte &= ~shadow_accessed_mask; | 
|  | set_spte_track_bits(spte, new_spte); | 
|  | spte = rmap_next(kvm, rmapp, spte); | 
|  | } | 
|  | } | 
|  | if (need_flush) | 
|  | kvm_flush_remote_tlbs(kvm); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int kvm_handle_hva(struct kvm *kvm, unsigned long hva, | 
|  | unsigned long data, | 
|  | int (*handler)(struct kvm *kvm, unsigned long *rmapp, | 
|  | unsigned long data)) | 
|  | { | 
|  | int i, j; | 
|  | int ret; | 
|  | int retval = 0; | 
|  | struct kvm_memslots *slots; | 
|  |  | 
|  | slots = kvm_memslots(kvm); | 
|  |  | 
|  | for (i = 0; i < slots->nmemslots; i++) { | 
|  | struct kvm_memory_slot *memslot = &slots->memslots[i]; | 
|  | unsigned long start = memslot->userspace_addr; | 
|  | unsigned long end; | 
|  |  | 
|  | end = start + (memslot->npages << PAGE_SHIFT); | 
|  | if (hva >= start && hva < end) { | 
|  | gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT; | 
|  | gfn_t gfn = memslot->base_gfn + gfn_offset; | 
|  |  | 
|  | ret = handler(kvm, &memslot->rmap[gfn_offset], data); | 
|  |  | 
|  | for (j = 0; j < KVM_NR_PAGE_SIZES - 1; ++j) { | 
|  | struct kvm_lpage_info *linfo; | 
|  |  | 
|  | linfo = lpage_info_slot(gfn, memslot, | 
|  | PT_DIRECTORY_LEVEL + j); | 
|  | ret |= handler(kvm, &linfo->rmap_pde, data); | 
|  | } | 
|  | trace_kvm_age_page(hva, memslot, ret); | 
|  | retval |= ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | int kvm_unmap_hva(struct kvm *kvm, unsigned long hva) | 
|  | { | 
|  | return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp); | 
|  | } | 
|  |  | 
|  | void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte) | 
|  | { | 
|  | kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp); | 
|  | } | 
|  |  | 
|  | static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp, | 
|  | unsigned long data) | 
|  | { | 
|  | u64 *spte; | 
|  | int young = 0; | 
|  |  | 
|  | /* | 
|  | * Emulate the accessed bit for EPT, by checking if this page has | 
|  | * an EPT mapping, and clearing it if it does. On the next access, | 
|  | * a new EPT mapping will be established. | 
|  | * This has some overhead, but not as much as the cost of swapping | 
|  | * out actively used pages or breaking up actively used hugepages. | 
|  | */ | 
|  | if (!shadow_accessed_mask) | 
|  | return kvm_unmap_rmapp(kvm, rmapp, data); | 
|  |  | 
|  | spte = rmap_next(kvm, rmapp, NULL); | 
|  | while (spte) { | 
|  | int _young; | 
|  | u64 _spte = *spte; | 
|  | BUG_ON(!(_spte & PT_PRESENT_MASK)); | 
|  | _young = _spte & PT_ACCESSED_MASK; | 
|  | if (_young) { | 
|  | young = 1; | 
|  | clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte); | 
|  | } | 
|  | spte = rmap_next(kvm, rmapp, spte); | 
|  | } | 
|  | return young; | 
|  | } | 
|  |  | 
|  | static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp, | 
|  | unsigned long data) | 
|  | { | 
|  | u64 *spte; | 
|  | int young = 0; | 
|  |  | 
|  | /* | 
|  | * If there's no access bit in the secondary pte set by the | 
|  | * hardware it's up to gup-fast/gup to set the access bit in | 
|  | * the primary pte or in the page structure. | 
|  | */ | 
|  | if (!shadow_accessed_mask) | 
|  | goto out; | 
|  |  | 
|  | spte = rmap_next(kvm, rmapp, NULL); | 
|  | while (spte) { | 
|  | u64 _spte = *spte; | 
|  | BUG_ON(!(_spte & PT_PRESENT_MASK)); | 
|  | young = _spte & PT_ACCESSED_MASK; | 
|  | if (young) { | 
|  | young = 1; | 
|  | break; | 
|  | } | 
|  | spte = rmap_next(kvm, rmapp, spte); | 
|  | } | 
|  | out: | 
|  | return young; | 
|  | } | 
|  |  | 
|  | #define RMAP_RECYCLE_THRESHOLD 1000 | 
|  |  | 
|  | static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn) | 
|  | { | 
|  | unsigned long *rmapp; | 
|  | struct kvm_mmu_page *sp; | 
|  |  | 
|  | sp = page_header(__pa(spte)); | 
|  |  | 
|  | rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level); | 
|  |  | 
|  | kvm_unmap_rmapp(vcpu->kvm, rmapp, 0); | 
|  | kvm_flush_remote_tlbs(vcpu->kvm); | 
|  | } | 
|  |  | 
|  | int kvm_age_hva(struct kvm *kvm, unsigned long hva) | 
|  | { | 
|  | return kvm_handle_hva(kvm, hva, 0, kvm_age_rmapp); | 
|  | } | 
|  |  | 
|  | int kvm_test_age_hva(struct kvm *kvm, unsigned long hva) | 
|  | { | 
|  | return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp); | 
|  | } | 
|  |  | 
|  | #ifdef MMU_DEBUG | 
|  | static int is_empty_shadow_page(u64 *spt) | 
|  | { | 
|  | u64 *pos; | 
|  | u64 *end; | 
|  |  | 
|  | for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++) | 
|  | if (is_shadow_present_pte(*pos)) { | 
|  | printk(KERN_ERR "%s: %p %llx\n", __func__, | 
|  | pos, *pos); | 
|  | return 0; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * This value is the sum of all of the kvm instances's | 
|  | * kvm->arch.n_used_mmu_pages values.  We need a global, | 
|  | * aggregate version in order to make the slab shrinker | 
|  | * faster | 
|  | */ | 
|  | static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr) | 
|  | { | 
|  | kvm->arch.n_used_mmu_pages += nr; | 
|  | percpu_counter_add(&kvm_total_used_mmu_pages, nr); | 
|  | } | 
|  |  | 
|  | static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp) | 
|  | { | 
|  | ASSERT(is_empty_shadow_page(sp->spt)); | 
|  | hlist_del(&sp->hash_link); | 
|  | list_del(&sp->link); | 
|  | free_page((unsigned long)sp->spt); | 
|  | if (!sp->role.direct) | 
|  | free_page((unsigned long)sp->gfns); | 
|  | kmem_cache_free(mmu_page_header_cache, sp); | 
|  | kvm_mod_used_mmu_pages(kvm, -1); | 
|  | } | 
|  |  | 
|  | static unsigned kvm_page_table_hashfn(gfn_t gfn) | 
|  | { | 
|  | return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1); | 
|  | } | 
|  |  | 
|  | static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, | 
|  | u64 *parent_pte, int direct) | 
|  | { | 
|  | struct kvm_mmu_page *sp; | 
|  |  | 
|  | sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache, sizeof *sp); | 
|  | sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE); | 
|  | if (!direct) | 
|  | sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, | 
|  | PAGE_SIZE); | 
|  | set_page_private(virt_to_page(sp->spt), (unsigned long)sp); | 
|  | list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages); | 
|  | bitmap_zero(sp->slot_bitmap, KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS); | 
|  | sp->multimapped = 0; | 
|  | sp->parent_pte = parent_pte; | 
|  | kvm_mod_used_mmu_pages(vcpu->kvm, +1); | 
|  | return sp; | 
|  | } | 
|  |  | 
|  | static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu, | 
|  | struct kvm_mmu_page *sp, u64 *parent_pte) | 
|  | { | 
|  | struct kvm_pte_chain *pte_chain; | 
|  | struct hlist_node *node; | 
|  | int i; | 
|  |  | 
|  | if (!parent_pte) | 
|  | return; | 
|  | if (!sp->multimapped) { | 
|  | u64 *old = sp->parent_pte; | 
|  |  | 
|  | if (!old) { | 
|  | sp->parent_pte = parent_pte; | 
|  | return; | 
|  | } | 
|  | sp->multimapped = 1; | 
|  | pte_chain = mmu_alloc_pte_chain(vcpu); | 
|  | INIT_HLIST_HEAD(&sp->parent_ptes); | 
|  | hlist_add_head(&pte_chain->link, &sp->parent_ptes); | 
|  | pte_chain->parent_ptes[0] = old; | 
|  | } | 
|  | hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) { | 
|  | if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1]) | 
|  | continue; | 
|  | for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) | 
|  | if (!pte_chain->parent_ptes[i]) { | 
|  | pte_chain->parent_ptes[i] = parent_pte; | 
|  | return; | 
|  | } | 
|  | } | 
|  | pte_chain = mmu_alloc_pte_chain(vcpu); | 
|  | BUG_ON(!pte_chain); | 
|  | hlist_add_head(&pte_chain->link, &sp->parent_ptes); | 
|  | pte_chain->parent_ptes[0] = parent_pte; | 
|  | } | 
|  |  | 
|  | static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp, | 
|  | u64 *parent_pte) | 
|  | { | 
|  | struct kvm_pte_chain *pte_chain; | 
|  | struct hlist_node *node; | 
|  | int i; | 
|  |  | 
|  | if (!sp->multimapped) { | 
|  | BUG_ON(sp->parent_pte != parent_pte); | 
|  | sp->parent_pte = NULL; | 
|  | return; | 
|  | } | 
|  | hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) | 
|  | for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) { | 
|  | if (!pte_chain->parent_ptes[i]) | 
|  | break; | 
|  | if (pte_chain->parent_ptes[i] != parent_pte) | 
|  | continue; | 
|  | while (i + 1 < NR_PTE_CHAIN_ENTRIES | 
|  | && pte_chain->parent_ptes[i + 1]) { | 
|  | pte_chain->parent_ptes[i] | 
|  | = pte_chain->parent_ptes[i + 1]; | 
|  | ++i; | 
|  | } | 
|  | pte_chain->parent_ptes[i] = NULL; | 
|  | if (i == 0) { | 
|  | hlist_del(&pte_chain->link); | 
|  | mmu_free_pte_chain(pte_chain); | 
|  | if (hlist_empty(&sp->parent_ptes)) { | 
|  | sp->multimapped = 0; | 
|  | sp->parent_pte = NULL; | 
|  | } | 
|  | } | 
|  | return; | 
|  | } | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | static void mmu_parent_walk(struct kvm_mmu_page *sp, mmu_parent_walk_fn fn) | 
|  | { | 
|  | struct kvm_pte_chain *pte_chain; | 
|  | struct hlist_node *node; | 
|  | struct kvm_mmu_page *parent_sp; | 
|  | int i; | 
|  |  | 
|  | if (!sp->multimapped && sp->parent_pte) { | 
|  | parent_sp = page_header(__pa(sp->parent_pte)); | 
|  | fn(parent_sp, sp->parent_pte); | 
|  | return; | 
|  | } | 
|  |  | 
|  | hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) | 
|  | for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) { | 
|  | u64 *spte = pte_chain->parent_ptes[i]; | 
|  |  | 
|  | if (!spte) | 
|  | break; | 
|  | parent_sp = page_header(__pa(spte)); | 
|  | fn(parent_sp, spte); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void mark_unsync(struct kvm_mmu_page *sp, u64 *spte); | 
|  | static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp) | 
|  | { | 
|  | mmu_parent_walk(sp, mark_unsync); | 
|  | } | 
|  |  | 
|  | static void mark_unsync(struct kvm_mmu_page *sp, u64 *spte) | 
|  | { | 
|  | unsigned int index; | 
|  |  | 
|  | index = spte - sp->spt; | 
|  | if (__test_and_set_bit(index, sp->unsync_child_bitmap)) | 
|  | return; | 
|  | if (sp->unsync_children++) | 
|  | return; | 
|  | kvm_mmu_mark_parents_unsync(sp); | 
|  | } | 
|  |  | 
|  | static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu, | 
|  | struct kvm_mmu_page *sp) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < PT64_ENT_PER_PAGE; ++i) | 
|  | sp->spt[i] = shadow_trap_nonpresent_pte; | 
|  | } | 
|  |  | 
|  | static int nonpaging_sync_page(struct kvm_vcpu *vcpu, | 
|  | struct kvm_mmu_page *sp) | 
|  | { | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva) | 
|  | { | 
|  | } | 
|  |  | 
|  | static void nonpaging_update_pte(struct kvm_vcpu *vcpu, | 
|  | struct kvm_mmu_page *sp, u64 *spte, | 
|  | const void *pte) | 
|  | { | 
|  | WARN_ON(1); | 
|  | } | 
|  |  | 
|  | #define KVM_PAGE_ARRAY_NR 16 | 
|  |  | 
|  | struct kvm_mmu_pages { | 
|  | struct mmu_page_and_offset { | 
|  | struct kvm_mmu_page *sp; | 
|  | unsigned int idx; | 
|  | } page[KVM_PAGE_ARRAY_NR]; | 
|  | unsigned int nr; | 
|  | }; | 
|  |  | 
|  | #define for_each_unsync_children(bitmap, idx)		\ | 
|  | for (idx = find_first_bit(bitmap, 512);		\ | 
|  | idx < 512;					\ | 
|  | idx = find_next_bit(bitmap, 512, idx+1)) | 
|  |  | 
|  | static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp, | 
|  | int idx) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | if (sp->unsync) | 
|  | for (i=0; i < pvec->nr; i++) | 
|  | if (pvec->page[i].sp == sp) | 
|  | return 0; | 
|  |  | 
|  | pvec->page[pvec->nr].sp = sp; | 
|  | pvec->page[pvec->nr].idx = idx; | 
|  | pvec->nr++; | 
|  | return (pvec->nr == KVM_PAGE_ARRAY_NR); | 
|  | } | 
|  |  | 
|  | static int __mmu_unsync_walk(struct kvm_mmu_page *sp, | 
|  | struct kvm_mmu_pages *pvec) | 
|  | { | 
|  | int i, ret, nr_unsync_leaf = 0; | 
|  |  | 
|  | for_each_unsync_children(sp->unsync_child_bitmap, i) { | 
|  | struct kvm_mmu_page *child; | 
|  | u64 ent = sp->spt[i]; | 
|  |  | 
|  | if (!is_shadow_present_pte(ent) || is_large_pte(ent)) | 
|  | goto clear_child_bitmap; | 
|  |  | 
|  | child = page_header(ent & PT64_BASE_ADDR_MASK); | 
|  |  | 
|  | if (child->unsync_children) { | 
|  | if (mmu_pages_add(pvec, child, i)) | 
|  | return -ENOSPC; | 
|  |  | 
|  | ret = __mmu_unsync_walk(child, pvec); | 
|  | if (!ret) | 
|  | goto clear_child_bitmap; | 
|  | else if (ret > 0) | 
|  | nr_unsync_leaf += ret; | 
|  | else | 
|  | return ret; | 
|  | } else if (child->unsync) { | 
|  | nr_unsync_leaf++; | 
|  | if (mmu_pages_add(pvec, child, i)) | 
|  | return -ENOSPC; | 
|  | } else | 
|  | goto clear_child_bitmap; | 
|  |  | 
|  | continue; | 
|  |  | 
|  | clear_child_bitmap: | 
|  | __clear_bit(i, sp->unsync_child_bitmap); | 
|  | sp->unsync_children--; | 
|  | WARN_ON((int)sp->unsync_children < 0); | 
|  | } | 
|  |  | 
|  |  | 
|  | return nr_unsync_leaf; | 
|  | } | 
|  |  | 
|  | static int mmu_unsync_walk(struct kvm_mmu_page *sp, | 
|  | struct kvm_mmu_pages *pvec) | 
|  | { | 
|  | if (!sp->unsync_children) | 
|  | return 0; | 
|  |  | 
|  | mmu_pages_add(pvec, sp, 0); | 
|  | return __mmu_unsync_walk(sp, pvec); | 
|  | } | 
|  |  | 
|  | static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp) | 
|  | { | 
|  | WARN_ON(!sp->unsync); | 
|  | trace_kvm_mmu_sync_page(sp); | 
|  | sp->unsync = 0; | 
|  | --kvm->stat.mmu_unsync; | 
|  | } | 
|  |  | 
|  | static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, | 
|  | struct list_head *invalid_list); | 
|  | static void kvm_mmu_commit_zap_page(struct kvm *kvm, | 
|  | struct list_head *invalid_list); | 
|  |  | 
|  | #define for_each_gfn_sp(kvm, sp, gfn, pos)				\ | 
|  | hlist_for_each_entry(sp, pos,						\ | 
|  | &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link)	\ | 
|  | if ((sp)->gfn != (gfn)) {} else | 
|  |  | 
|  | #define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos)		\ | 
|  | hlist_for_each_entry(sp, pos,						\ | 
|  | &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link)	\ | 
|  | if ((sp)->gfn != (gfn) || (sp)->role.direct ||		\ | 
|  | (sp)->role.invalid) {} else | 
|  |  | 
|  | /* @sp->gfn should be write-protected at the call site */ | 
|  | static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, | 
|  | struct list_head *invalid_list, bool clear_unsync) | 
|  | { | 
|  | if (sp->role.cr4_pae != !!is_pae(vcpu)) { | 
|  | kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (clear_unsync) | 
|  | kvm_unlink_unsync_page(vcpu->kvm, sp); | 
|  |  | 
|  | if (vcpu->arch.mmu.sync_page(vcpu, sp)) { | 
|  | kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | kvm_mmu_flush_tlb(vcpu); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int kvm_sync_page_transient(struct kvm_vcpu *vcpu, | 
|  | struct kvm_mmu_page *sp) | 
|  | { | 
|  | LIST_HEAD(invalid_list); | 
|  | int ret; | 
|  |  | 
|  | ret = __kvm_sync_page(vcpu, sp, &invalid_list, false); | 
|  | if (ret) | 
|  | kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, | 
|  | struct list_head *invalid_list) | 
|  | { | 
|  | return __kvm_sync_page(vcpu, sp, invalid_list, true); | 
|  | } | 
|  |  | 
|  | /* @gfn should be write-protected at the call site */ | 
|  | static void kvm_sync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn) | 
|  | { | 
|  | struct kvm_mmu_page *s; | 
|  | struct hlist_node *node; | 
|  | LIST_HEAD(invalid_list); | 
|  | bool flush = false; | 
|  |  | 
|  | for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) { | 
|  | if (!s->unsync) | 
|  | continue; | 
|  |  | 
|  | WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL); | 
|  | kvm_unlink_unsync_page(vcpu->kvm, s); | 
|  | if ((s->role.cr4_pae != !!is_pae(vcpu)) || | 
|  | (vcpu->arch.mmu.sync_page(vcpu, s))) { | 
|  | kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list); | 
|  | continue; | 
|  | } | 
|  | flush = true; | 
|  | } | 
|  |  | 
|  | kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list); | 
|  | if (flush) | 
|  | kvm_mmu_flush_tlb(vcpu); | 
|  | } | 
|  |  | 
|  | struct mmu_page_path { | 
|  | struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1]; | 
|  | unsigned int idx[PT64_ROOT_LEVEL-1]; | 
|  | }; | 
|  |  | 
|  | #define for_each_sp(pvec, sp, parents, i)			\ | 
|  | for (i = mmu_pages_next(&pvec, &parents, -1),	\ | 
|  | sp = pvec.page[i].sp;			\ | 
|  | i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\ | 
|  | i = mmu_pages_next(&pvec, &parents, i)) | 
|  |  | 
|  | static int mmu_pages_next(struct kvm_mmu_pages *pvec, | 
|  | struct mmu_page_path *parents, | 
|  | int i) | 
|  | { | 
|  | int n; | 
|  |  | 
|  | for (n = i+1; n < pvec->nr; n++) { | 
|  | struct kvm_mmu_page *sp = pvec->page[n].sp; | 
|  |  | 
|  | if (sp->role.level == PT_PAGE_TABLE_LEVEL) { | 
|  | parents->idx[0] = pvec->page[n].idx; | 
|  | return n; | 
|  | } | 
|  |  | 
|  | parents->parent[sp->role.level-2] = sp; | 
|  | parents->idx[sp->role.level-1] = pvec->page[n].idx; | 
|  | } | 
|  |  | 
|  | return n; | 
|  | } | 
|  |  | 
|  | static void mmu_pages_clear_parents(struct mmu_page_path *parents) | 
|  | { | 
|  | struct kvm_mmu_page *sp; | 
|  | unsigned int level = 0; | 
|  |  | 
|  | do { | 
|  | unsigned int idx = parents->idx[level]; | 
|  |  | 
|  | sp = parents->parent[level]; | 
|  | if (!sp) | 
|  | return; | 
|  |  | 
|  | --sp->unsync_children; | 
|  | WARN_ON((int)sp->unsync_children < 0); | 
|  | __clear_bit(idx, sp->unsync_child_bitmap); | 
|  | level++; | 
|  | } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children); | 
|  | } | 
|  |  | 
|  | static void kvm_mmu_pages_init(struct kvm_mmu_page *parent, | 
|  | struct mmu_page_path *parents, | 
|  | struct kvm_mmu_pages *pvec) | 
|  | { | 
|  | parents->parent[parent->role.level-1] = NULL; | 
|  | pvec->nr = 0; | 
|  | } | 
|  |  | 
|  | static void mmu_sync_children(struct kvm_vcpu *vcpu, | 
|  | struct kvm_mmu_page *parent) | 
|  | { | 
|  | int i; | 
|  | struct kvm_mmu_page *sp; | 
|  | struct mmu_page_path parents; | 
|  | struct kvm_mmu_pages pages; | 
|  | LIST_HEAD(invalid_list); | 
|  |  | 
|  | kvm_mmu_pages_init(parent, &parents, &pages); | 
|  | while (mmu_unsync_walk(parent, &pages)) { | 
|  | int protected = 0; | 
|  |  | 
|  | for_each_sp(pages, sp, parents, i) | 
|  | protected |= rmap_write_protect(vcpu->kvm, sp->gfn); | 
|  |  | 
|  | if (protected) | 
|  | kvm_flush_remote_tlbs(vcpu->kvm); | 
|  |  | 
|  | for_each_sp(pages, sp, parents, i) { | 
|  | kvm_sync_page(vcpu, sp, &invalid_list); | 
|  | mmu_pages_clear_parents(&parents); | 
|  | } | 
|  | kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list); | 
|  | cond_resched_lock(&vcpu->kvm->mmu_lock); | 
|  | kvm_mmu_pages_init(parent, &parents, &pages); | 
|  | } | 
|  | } | 
|  |  | 
|  | static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu, | 
|  | gfn_t gfn, | 
|  | gva_t gaddr, | 
|  | unsigned level, | 
|  | int direct, | 
|  | unsigned access, | 
|  | u64 *parent_pte) | 
|  | { | 
|  | union kvm_mmu_page_role role; | 
|  | unsigned quadrant; | 
|  | struct kvm_mmu_page *sp; | 
|  | struct hlist_node *node; | 
|  | bool need_sync = false; | 
|  |  | 
|  | role = vcpu->arch.mmu.base_role; | 
|  | role.level = level; | 
|  | role.direct = direct; | 
|  | if (role.direct) | 
|  | role.cr4_pae = 0; | 
|  | role.access = access; | 
|  | if (!vcpu->arch.mmu.direct_map | 
|  | && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) { | 
|  | quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level)); | 
|  | quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1; | 
|  | role.quadrant = quadrant; | 
|  | } | 
|  | for_each_gfn_sp(vcpu->kvm, sp, gfn, node) { | 
|  | if (!need_sync && sp->unsync) | 
|  | need_sync = true; | 
|  |  | 
|  | if (sp->role.word != role.word) | 
|  | continue; | 
|  |  | 
|  | if (sp->unsync && kvm_sync_page_transient(vcpu, sp)) | 
|  | break; | 
|  |  | 
|  | mmu_page_add_parent_pte(vcpu, sp, parent_pte); | 
|  | if (sp->unsync_children) { | 
|  | kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); | 
|  | kvm_mmu_mark_parents_unsync(sp); | 
|  | } else if (sp->unsync) | 
|  | kvm_mmu_mark_parents_unsync(sp); | 
|  |  | 
|  | trace_kvm_mmu_get_page(sp, false); | 
|  | return sp; | 
|  | } | 
|  | ++vcpu->kvm->stat.mmu_cache_miss; | 
|  | sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct); | 
|  | if (!sp) | 
|  | return sp; | 
|  | sp->gfn = gfn; | 
|  | sp->role = role; | 
|  | hlist_add_head(&sp->hash_link, | 
|  | &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]); | 
|  | if (!direct) { | 
|  | if (rmap_write_protect(vcpu->kvm, gfn)) | 
|  | kvm_flush_remote_tlbs(vcpu->kvm); | 
|  | if (level > PT_PAGE_TABLE_LEVEL && need_sync) | 
|  | kvm_sync_pages(vcpu, gfn); | 
|  |  | 
|  | account_shadowed(vcpu->kvm, gfn); | 
|  | } | 
|  | if (shadow_trap_nonpresent_pte != shadow_notrap_nonpresent_pte) | 
|  | vcpu->arch.mmu.prefetch_page(vcpu, sp); | 
|  | else | 
|  | nonpaging_prefetch_page(vcpu, sp); | 
|  | trace_kvm_mmu_get_page(sp, true); | 
|  | return sp; | 
|  | } | 
|  |  | 
|  | static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator, | 
|  | struct kvm_vcpu *vcpu, u64 addr) | 
|  | { | 
|  | iterator->addr = addr; | 
|  | iterator->shadow_addr = vcpu->arch.mmu.root_hpa; | 
|  | iterator->level = vcpu->arch.mmu.shadow_root_level; | 
|  |  | 
|  | if (iterator->level == PT64_ROOT_LEVEL && | 
|  | vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL && | 
|  | !vcpu->arch.mmu.direct_map) | 
|  | --iterator->level; | 
|  |  | 
|  | if (iterator->level == PT32E_ROOT_LEVEL) { | 
|  | iterator->shadow_addr | 
|  | = vcpu->arch.mmu.pae_root[(addr >> 30) & 3]; | 
|  | iterator->shadow_addr &= PT64_BASE_ADDR_MASK; | 
|  | --iterator->level; | 
|  | if (!iterator->shadow_addr) | 
|  | iterator->level = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator) | 
|  | { | 
|  | if (iterator->level < PT_PAGE_TABLE_LEVEL) | 
|  | return false; | 
|  |  | 
|  | if (iterator->level == PT_PAGE_TABLE_LEVEL) | 
|  | if (is_large_pte(*iterator->sptep)) | 
|  | return false; | 
|  |  | 
|  | iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level); | 
|  | iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator) | 
|  | { | 
|  | iterator->shadow_addr = *iterator->sptep & PT64_BASE_ADDR_MASK; | 
|  | --iterator->level; | 
|  | } | 
|  |  | 
|  | static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp) | 
|  | { | 
|  | u64 spte; | 
|  |  | 
|  | spte = __pa(sp->spt) | 
|  | | PT_PRESENT_MASK | PT_ACCESSED_MASK | 
|  | | PT_WRITABLE_MASK | PT_USER_MASK; | 
|  | __set_spte(sptep, spte); | 
|  | } | 
|  |  | 
|  | static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep) | 
|  | { | 
|  | if (is_large_pte(*sptep)) { | 
|  | drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte); | 
|  | kvm_flush_remote_tlbs(vcpu->kvm); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, | 
|  | unsigned direct_access) | 
|  | { | 
|  | if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) { | 
|  | struct kvm_mmu_page *child; | 
|  |  | 
|  | /* | 
|  | * For the direct sp, if the guest pte's dirty bit | 
|  | * changed form clean to dirty, it will corrupt the | 
|  | * sp's access: allow writable in the read-only sp, | 
|  | * so we should update the spte at this point to get | 
|  | * a new sp with the correct access. | 
|  | */ | 
|  | child = page_header(*sptep & PT64_BASE_ADDR_MASK); | 
|  | if (child->role.access == direct_access) | 
|  | return; | 
|  |  | 
|  | mmu_page_remove_parent_pte(child, sptep); | 
|  | __set_spte(sptep, shadow_trap_nonpresent_pte); | 
|  | kvm_flush_remote_tlbs(vcpu->kvm); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void kvm_mmu_page_unlink_children(struct kvm *kvm, | 
|  | struct kvm_mmu_page *sp) | 
|  | { | 
|  | unsigned i; | 
|  | u64 *pt; | 
|  | u64 ent; | 
|  |  | 
|  | pt = sp->spt; | 
|  |  | 
|  | for (i = 0; i < PT64_ENT_PER_PAGE; ++i) { | 
|  | ent = pt[i]; | 
|  |  | 
|  | if (is_shadow_present_pte(ent)) { | 
|  | if (!is_last_spte(ent, sp->role.level)) { | 
|  | ent &= PT64_BASE_ADDR_MASK; | 
|  | mmu_page_remove_parent_pte(page_header(ent), | 
|  | &pt[i]); | 
|  | } else { | 
|  | if (is_large_pte(ent)) | 
|  | --kvm->stat.lpages; | 
|  | drop_spte(kvm, &pt[i], | 
|  | shadow_trap_nonpresent_pte); | 
|  | } | 
|  | } | 
|  | pt[i] = shadow_trap_nonpresent_pte; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte) | 
|  | { | 
|  | mmu_page_remove_parent_pte(sp, parent_pte); | 
|  | } | 
|  |  | 
|  | static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm) | 
|  | { | 
|  | int i; | 
|  | struct kvm_vcpu *vcpu; | 
|  |  | 
|  | kvm_for_each_vcpu(i, vcpu, kvm) | 
|  | vcpu->arch.last_pte_updated = NULL; | 
|  | } | 
|  |  | 
|  | static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp) | 
|  | { | 
|  | u64 *parent_pte; | 
|  |  | 
|  | while (sp->multimapped || sp->parent_pte) { | 
|  | if (!sp->multimapped) | 
|  | parent_pte = sp->parent_pte; | 
|  | else { | 
|  | struct kvm_pte_chain *chain; | 
|  |  | 
|  | chain = container_of(sp->parent_ptes.first, | 
|  | struct kvm_pte_chain, link); | 
|  | parent_pte = chain->parent_ptes[0]; | 
|  | } | 
|  | BUG_ON(!parent_pte); | 
|  | kvm_mmu_put_page(sp, parent_pte); | 
|  | __set_spte(parent_pte, shadow_trap_nonpresent_pte); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int mmu_zap_unsync_children(struct kvm *kvm, | 
|  | struct kvm_mmu_page *parent, | 
|  | struct list_head *invalid_list) | 
|  | { | 
|  | int i, zapped = 0; | 
|  | struct mmu_page_path parents; | 
|  | struct kvm_mmu_pages pages; | 
|  |  | 
|  | if (parent->role.level == PT_PAGE_TABLE_LEVEL) | 
|  | return 0; | 
|  |  | 
|  | kvm_mmu_pages_init(parent, &parents, &pages); | 
|  | while (mmu_unsync_walk(parent, &pages)) { | 
|  | struct kvm_mmu_page *sp; | 
|  |  | 
|  | for_each_sp(pages, sp, parents, i) { | 
|  | kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); | 
|  | mmu_pages_clear_parents(&parents); | 
|  | zapped++; | 
|  | } | 
|  | kvm_mmu_pages_init(parent, &parents, &pages); | 
|  | } | 
|  |  | 
|  | return zapped; | 
|  | } | 
|  |  | 
|  | static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, | 
|  | struct list_head *invalid_list) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | trace_kvm_mmu_prepare_zap_page(sp); | 
|  | ++kvm->stat.mmu_shadow_zapped; | 
|  | ret = mmu_zap_unsync_children(kvm, sp, invalid_list); | 
|  | kvm_mmu_page_unlink_children(kvm, sp); | 
|  | kvm_mmu_unlink_parents(kvm, sp); | 
|  | if (!sp->role.invalid && !sp->role.direct) | 
|  | unaccount_shadowed(kvm, sp->gfn); | 
|  | if (sp->unsync) | 
|  | kvm_unlink_unsync_page(kvm, sp); | 
|  | if (!sp->root_count) { | 
|  | /* Count self */ | 
|  | ret++; | 
|  | list_move(&sp->link, invalid_list); | 
|  | } else { | 
|  | list_move(&sp->link, &kvm->arch.active_mmu_pages); | 
|  | kvm_reload_remote_mmus(kvm); | 
|  | } | 
|  |  | 
|  | sp->role.invalid = 1; | 
|  | kvm_mmu_reset_last_pte_updated(kvm); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void kvm_mmu_commit_zap_page(struct kvm *kvm, | 
|  | struct list_head *invalid_list) | 
|  | { | 
|  | struct kvm_mmu_page *sp; | 
|  |  | 
|  | if (list_empty(invalid_list)) | 
|  | return; | 
|  |  | 
|  | kvm_flush_remote_tlbs(kvm); | 
|  |  | 
|  | do { | 
|  | sp = list_first_entry(invalid_list, struct kvm_mmu_page, link); | 
|  | WARN_ON(!sp->role.invalid || sp->root_count); | 
|  | kvm_mmu_free_page(kvm, sp); | 
|  | } while (!list_empty(invalid_list)); | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Changing the number of mmu pages allocated to the vm | 
|  | * Note: if goal_nr_mmu_pages is too small, you will get dead lock | 
|  | */ | 
|  | void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages) | 
|  | { | 
|  | LIST_HEAD(invalid_list); | 
|  | /* | 
|  | * If we set the number of mmu pages to be smaller be than the | 
|  | * number of actived pages , we must to free some mmu pages before we | 
|  | * change the value | 
|  | */ | 
|  |  | 
|  | if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) { | 
|  | while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages && | 
|  | !list_empty(&kvm->arch.active_mmu_pages)) { | 
|  | struct kvm_mmu_page *page; | 
|  |  | 
|  | page = container_of(kvm->arch.active_mmu_pages.prev, | 
|  | struct kvm_mmu_page, link); | 
|  | kvm_mmu_prepare_zap_page(kvm, page, &invalid_list); | 
|  | kvm_mmu_commit_zap_page(kvm, &invalid_list); | 
|  | } | 
|  | goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages; | 
|  | } | 
|  |  | 
|  | kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages; | 
|  | } | 
|  |  | 
|  | static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn) | 
|  | { | 
|  | struct kvm_mmu_page *sp; | 
|  | struct hlist_node *node; | 
|  | LIST_HEAD(invalid_list); | 
|  | int r; | 
|  |  | 
|  | pgprintk("%s: looking for gfn %llx\n", __func__, gfn); | 
|  | r = 0; | 
|  |  | 
|  | for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) { | 
|  | pgprintk("%s: gfn %llx role %x\n", __func__, gfn, | 
|  | sp->role.word); | 
|  | r = 1; | 
|  | kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); | 
|  | } | 
|  | kvm_mmu_commit_zap_page(kvm, &invalid_list); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static void mmu_unshadow(struct kvm *kvm, gfn_t gfn) | 
|  | { | 
|  | struct kvm_mmu_page *sp; | 
|  | struct hlist_node *node; | 
|  | LIST_HEAD(invalid_list); | 
|  |  | 
|  | for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) { | 
|  | pgprintk("%s: zap %llx %x\n", | 
|  | __func__, gfn, sp->role.word); | 
|  | kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); | 
|  | } | 
|  | kvm_mmu_commit_zap_page(kvm, &invalid_list); | 
|  | } | 
|  |  | 
|  | static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn) | 
|  | { | 
|  | int slot = memslot_id(kvm, gfn); | 
|  | struct kvm_mmu_page *sp = page_header(__pa(pte)); | 
|  |  | 
|  | __set_bit(slot, sp->slot_bitmap); | 
|  | } | 
|  |  | 
|  | static void mmu_convert_notrap(struct kvm_mmu_page *sp) | 
|  | { | 
|  | int i; | 
|  | u64 *pt = sp->spt; | 
|  |  | 
|  | if (shadow_trap_nonpresent_pte == shadow_notrap_nonpresent_pte) | 
|  | return; | 
|  |  | 
|  | for (i = 0; i < PT64_ENT_PER_PAGE; ++i) { | 
|  | if (pt[i] == shadow_notrap_nonpresent_pte) | 
|  | __set_spte(&pt[i], shadow_trap_nonpresent_pte); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The function is based on mtrr_type_lookup() in | 
|  | * arch/x86/kernel/cpu/mtrr/generic.c | 
|  | */ | 
|  | static int get_mtrr_type(struct mtrr_state_type *mtrr_state, | 
|  | u64 start, u64 end) | 
|  | { | 
|  | int i; | 
|  | u64 base, mask; | 
|  | u8 prev_match, curr_match; | 
|  | int num_var_ranges = KVM_NR_VAR_MTRR; | 
|  |  | 
|  | if (!mtrr_state->enabled) | 
|  | return 0xFF; | 
|  |  | 
|  | /* Make end inclusive end, instead of exclusive */ | 
|  | end--; | 
|  |  | 
|  | /* Look in fixed ranges. Just return the type as per start */ | 
|  | if (mtrr_state->have_fixed && (start < 0x100000)) { | 
|  | int idx; | 
|  |  | 
|  | if (start < 0x80000) { | 
|  | idx = 0; | 
|  | idx += (start >> 16); | 
|  | return mtrr_state->fixed_ranges[idx]; | 
|  | } else if (start < 0xC0000) { | 
|  | idx = 1 * 8; | 
|  | idx += ((start - 0x80000) >> 14); | 
|  | return mtrr_state->fixed_ranges[idx]; | 
|  | } else if (start < 0x1000000) { | 
|  | idx = 3 * 8; | 
|  | idx += ((start - 0xC0000) >> 12); | 
|  | return mtrr_state->fixed_ranges[idx]; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Look in variable ranges | 
|  | * Look of multiple ranges matching this address and pick type | 
|  | * as per MTRR precedence | 
|  | */ | 
|  | if (!(mtrr_state->enabled & 2)) | 
|  | return mtrr_state->def_type; | 
|  |  | 
|  | prev_match = 0xFF; | 
|  | for (i = 0; i < num_var_ranges; ++i) { | 
|  | unsigned short start_state, end_state; | 
|  |  | 
|  | if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11))) | 
|  | continue; | 
|  |  | 
|  | base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) + | 
|  | (mtrr_state->var_ranges[i].base_lo & PAGE_MASK); | 
|  | mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) + | 
|  | (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK); | 
|  |  | 
|  | start_state = ((start & mask) == (base & mask)); | 
|  | end_state = ((end & mask) == (base & mask)); | 
|  | if (start_state != end_state) | 
|  | return 0xFE; | 
|  |  | 
|  | if ((start & mask) != (base & mask)) | 
|  | continue; | 
|  |  | 
|  | curr_match = mtrr_state->var_ranges[i].base_lo & 0xff; | 
|  | if (prev_match == 0xFF) { | 
|  | prev_match = curr_match; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (prev_match == MTRR_TYPE_UNCACHABLE || | 
|  | curr_match == MTRR_TYPE_UNCACHABLE) | 
|  | return MTRR_TYPE_UNCACHABLE; | 
|  |  | 
|  | if ((prev_match == MTRR_TYPE_WRBACK && | 
|  | curr_match == MTRR_TYPE_WRTHROUGH) || | 
|  | (prev_match == MTRR_TYPE_WRTHROUGH && | 
|  | curr_match == MTRR_TYPE_WRBACK)) { | 
|  | prev_match = MTRR_TYPE_WRTHROUGH; | 
|  | curr_match = MTRR_TYPE_WRTHROUGH; | 
|  | } | 
|  |  | 
|  | if (prev_match != curr_match) | 
|  | return MTRR_TYPE_UNCACHABLE; | 
|  | } | 
|  |  | 
|  | if (prev_match != 0xFF) | 
|  | return prev_match; | 
|  |  | 
|  | return mtrr_state->def_type; | 
|  | } | 
|  |  | 
|  | u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn) | 
|  | { | 
|  | u8 mtrr; | 
|  |  | 
|  | mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT, | 
|  | (gfn << PAGE_SHIFT) + PAGE_SIZE); | 
|  | if (mtrr == 0xfe || mtrr == 0xff) | 
|  | mtrr = MTRR_TYPE_WRBACK; | 
|  | return mtrr; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type); | 
|  |  | 
|  | static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp) | 
|  | { | 
|  | trace_kvm_mmu_unsync_page(sp); | 
|  | ++vcpu->kvm->stat.mmu_unsync; | 
|  | sp->unsync = 1; | 
|  |  | 
|  | kvm_mmu_mark_parents_unsync(sp); | 
|  | mmu_convert_notrap(sp); | 
|  | } | 
|  |  | 
|  | static void kvm_unsync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn) | 
|  | { | 
|  | struct kvm_mmu_page *s; | 
|  | struct hlist_node *node; | 
|  |  | 
|  | for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) { | 
|  | if (s->unsync) | 
|  | continue; | 
|  | WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL); | 
|  | __kvm_unsync_page(vcpu, s); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn, | 
|  | bool can_unsync) | 
|  | { | 
|  | struct kvm_mmu_page *s; | 
|  | struct hlist_node *node; | 
|  | bool need_unsync = false; | 
|  |  | 
|  | for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) { | 
|  | if (!can_unsync) | 
|  | return 1; | 
|  |  | 
|  | if (s->role.level != PT_PAGE_TABLE_LEVEL) | 
|  | return 1; | 
|  |  | 
|  | if (!need_unsync && !s->unsync) { | 
|  | if (!oos_shadow) | 
|  | return 1; | 
|  | need_unsync = true; | 
|  | } | 
|  | } | 
|  | if (need_unsync) | 
|  | kvm_unsync_pages(vcpu, gfn); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep, | 
|  | unsigned pte_access, int user_fault, | 
|  | int write_fault, int dirty, int level, | 
|  | gfn_t gfn, pfn_t pfn, bool speculative, | 
|  | bool can_unsync, bool host_writable) | 
|  | { | 
|  | u64 spte, entry = *sptep; | 
|  | int ret = 0; | 
|  |  | 
|  | /* | 
|  | * We don't set the accessed bit, since we sometimes want to see | 
|  | * whether the guest actually used the pte (in order to detect | 
|  | * demand paging). | 
|  | */ | 
|  | spte = PT_PRESENT_MASK; | 
|  | if (!speculative) | 
|  | spte |= shadow_accessed_mask; | 
|  | if (!dirty) | 
|  | pte_access &= ~ACC_WRITE_MASK; | 
|  | if (pte_access & ACC_EXEC_MASK) | 
|  | spte |= shadow_x_mask; | 
|  | else | 
|  | spte |= shadow_nx_mask; | 
|  | if (pte_access & ACC_USER_MASK) | 
|  | spte |= shadow_user_mask; | 
|  | if (level > PT_PAGE_TABLE_LEVEL) | 
|  | spte |= PT_PAGE_SIZE_MASK; | 
|  | if (tdp_enabled) | 
|  | spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn, | 
|  | kvm_is_mmio_pfn(pfn)); | 
|  |  | 
|  | if (host_writable) | 
|  | spte |= SPTE_HOST_WRITEABLE; | 
|  | else | 
|  | pte_access &= ~ACC_WRITE_MASK; | 
|  |  | 
|  | spte |= (u64)pfn << PAGE_SHIFT; | 
|  |  | 
|  | if ((pte_access & ACC_WRITE_MASK) | 
|  | || (!vcpu->arch.mmu.direct_map && write_fault | 
|  | && !is_write_protection(vcpu) && !user_fault)) { | 
|  |  | 
|  | if (level > PT_PAGE_TABLE_LEVEL && | 
|  | has_wrprotected_page(vcpu->kvm, gfn, level)) { | 
|  | ret = 1; | 
|  | drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte); | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | spte |= PT_WRITABLE_MASK; | 
|  |  | 
|  | if (!vcpu->arch.mmu.direct_map | 
|  | && !(pte_access & ACC_WRITE_MASK)) | 
|  | spte &= ~PT_USER_MASK; | 
|  |  | 
|  | /* | 
|  | * Optimization: for pte sync, if spte was writable the hash | 
|  | * lookup is unnecessary (and expensive). Write protection | 
|  | * is responsibility of mmu_get_page / kvm_sync_page. | 
|  | * Same reasoning can be applied to dirty page accounting. | 
|  | */ | 
|  | if (!can_unsync && is_writable_pte(*sptep)) | 
|  | goto set_pte; | 
|  |  | 
|  | if (mmu_need_write_protect(vcpu, gfn, can_unsync)) { | 
|  | pgprintk("%s: found shadow page for %llx, marking ro\n", | 
|  | __func__, gfn); | 
|  | ret = 1; | 
|  | pte_access &= ~ACC_WRITE_MASK; | 
|  | if (is_writable_pte(spte)) | 
|  | spte &= ~PT_WRITABLE_MASK; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (pte_access & ACC_WRITE_MASK) | 
|  | mark_page_dirty(vcpu->kvm, gfn); | 
|  |  | 
|  | set_pte: | 
|  | update_spte(sptep, spte); | 
|  | /* | 
|  | * If we overwrite a writable spte with a read-only one we | 
|  | * should flush remote TLBs. Otherwise rmap_write_protect | 
|  | * will find a read-only spte, even though the writable spte | 
|  | * might be cached on a CPU's TLB. | 
|  | */ | 
|  | if (is_writable_pte(entry) && !is_writable_pte(*sptep)) | 
|  | kvm_flush_remote_tlbs(vcpu->kvm); | 
|  | done: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, | 
|  | unsigned pt_access, unsigned pte_access, | 
|  | int user_fault, int write_fault, int dirty, | 
|  | int *ptwrite, int level, gfn_t gfn, | 
|  | pfn_t pfn, bool speculative, | 
|  | bool host_writable) | 
|  | { | 
|  | int was_rmapped = 0; | 
|  | int rmap_count; | 
|  |  | 
|  | pgprintk("%s: spte %llx access %x write_fault %d" | 
|  | " user_fault %d gfn %llx\n", | 
|  | __func__, *sptep, pt_access, | 
|  | write_fault, user_fault, gfn); | 
|  |  | 
|  | if (is_rmap_spte(*sptep)) { | 
|  | /* | 
|  | * If we overwrite a PTE page pointer with a 2MB PMD, unlink | 
|  | * the parent of the now unreachable PTE. | 
|  | */ | 
|  | if (level > PT_PAGE_TABLE_LEVEL && | 
|  | !is_large_pte(*sptep)) { | 
|  | struct kvm_mmu_page *child; | 
|  | u64 pte = *sptep; | 
|  |  | 
|  | child = page_header(pte & PT64_BASE_ADDR_MASK); | 
|  | mmu_page_remove_parent_pte(child, sptep); | 
|  | __set_spte(sptep, shadow_trap_nonpresent_pte); | 
|  | kvm_flush_remote_tlbs(vcpu->kvm); | 
|  | } else if (pfn != spte_to_pfn(*sptep)) { | 
|  | pgprintk("hfn old %llx new %llx\n", | 
|  | spte_to_pfn(*sptep), pfn); | 
|  | drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte); | 
|  | kvm_flush_remote_tlbs(vcpu->kvm); | 
|  | } else | 
|  | was_rmapped = 1; | 
|  | } | 
|  |  | 
|  | if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault, | 
|  | dirty, level, gfn, pfn, speculative, true, | 
|  | host_writable)) { | 
|  | if (write_fault) | 
|  | *ptwrite = 1; | 
|  | kvm_mmu_flush_tlb(vcpu); | 
|  | } | 
|  |  | 
|  | pgprintk("%s: setting spte %llx\n", __func__, *sptep); | 
|  | pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n", | 
|  | is_large_pte(*sptep)? "2MB" : "4kB", | 
|  | *sptep & PT_PRESENT_MASK ?"RW":"R", gfn, | 
|  | *sptep, sptep); | 
|  | if (!was_rmapped && is_large_pte(*sptep)) | 
|  | ++vcpu->kvm->stat.lpages; | 
|  |  | 
|  | page_header_update_slot(vcpu->kvm, sptep, gfn); | 
|  | if (!was_rmapped) { | 
|  | rmap_count = rmap_add(vcpu, sptep, gfn); | 
|  | if (rmap_count > RMAP_RECYCLE_THRESHOLD) | 
|  | rmap_recycle(vcpu, sptep, gfn); | 
|  | } | 
|  | kvm_release_pfn_clean(pfn); | 
|  | if (speculative) { | 
|  | vcpu->arch.last_pte_updated = sptep; | 
|  | vcpu->arch.last_pte_gfn = gfn; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void nonpaging_new_cr3(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | } | 
|  |  | 
|  | static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn, | 
|  | bool no_dirty_log) | 
|  | { | 
|  | struct kvm_memory_slot *slot; | 
|  | unsigned long hva; | 
|  |  | 
|  | slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log); | 
|  | if (!slot) { | 
|  | get_page(bad_page); | 
|  | return page_to_pfn(bad_page); | 
|  | } | 
|  |  | 
|  | hva = gfn_to_hva_memslot(slot, gfn); | 
|  |  | 
|  | return hva_to_pfn_atomic(vcpu->kvm, hva); | 
|  | } | 
|  |  | 
|  | static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu, | 
|  | struct kvm_mmu_page *sp, | 
|  | u64 *start, u64 *end) | 
|  | { | 
|  | struct page *pages[PTE_PREFETCH_NUM]; | 
|  | unsigned access = sp->role.access; | 
|  | int i, ret; | 
|  | gfn_t gfn; | 
|  |  | 
|  | gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt); | 
|  | if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK)) | 
|  | return -1; | 
|  |  | 
|  | ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start); | 
|  | if (ret <= 0) | 
|  | return -1; | 
|  |  | 
|  | for (i = 0; i < ret; i++, gfn++, start++) | 
|  | mmu_set_spte(vcpu, start, ACC_ALL, | 
|  | access, 0, 0, 1, NULL, | 
|  | sp->role.level, gfn, | 
|  | page_to_pfn(pages[i]), true, true); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void __direct_pte_prefetch(struct kvm_vcpu *vcpu, | 
|  | struct kvm_mmu_page *sp, u64 *sptep) | 
|  | { | 
|  | u64 *spte, *start = NULL; | 
|  | int i; | 
|  |  | 
|  | WARN_ON(!sp->role.direct); | 
|  |  | 
|  | i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1); | 
|  | spte = sp->spt + i; | 
|  |  | 
|  | for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) { | 
|  | if (*spte != shadow_trap_nonpresent_pte || spte == sptep) { | 
|  | if (!start) | 
|  | continue; | 
|  | if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0) | 
|  | break; | 
|  | start = NULL; | 
|  | } else if (!start) | 
|  | start = spte; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep) | 
|  | { | 
|  | struct kvm_mmu_page *sp; | 
|  |  | 
|  | /* | 
|  | * Since it's no accessed bit on EPT, it's no way to | 
|  | * distinguish between actually accessed translations | 
|  | * and prefetched, so disable pte prefetch if EPT is | 
|  | * enabled. | 
|  | */ | 
|  | if (!shadow_accessed_mask) | 
|  | return; | 
|  |  | 
|  | sp = page_header(__pa(sptep)); | 
|  | if (sp->role.level > PT_PAGE_TABLE_LEVEL) | 
|  | return; | 
|  |  | 
|  | __direct_pte_prefetch(vcpu, sp, sptep); | 
|  | } | 
|  |  | 
|  | static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write, | 
|  | int map_writable, int level, gfn_t gfn, pfn_t pfn, | 
|  | bool prefault) | 
|  | { | 
|  | struct kvm_shadow_walk_iterator iterator; | 
|  | struct kvm_mmu_page *sp; | 
|  | int pt_write = 0; | 
|  | gfn_t pseudo_gfn; | 
|  |  | 
|  | for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) { | 
|  | if (iterator.level == level) { | 
|  | unsigned pte_access = ACC_ALL; | 
|  |  | 
|  | mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, pte_access, | 
|  | 0, write, 1, &pt_write, | 
|  | level, gfn, pfn, prefault, map_writable); | 
|  | direct_pte_prefetch(vcpu, iterator.sptep); | 
|  | ++vcpu->stat.pf_fixed; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (*iterator.sptep == shadow_trap_nonpresent_pte) { | 
|  | u64 base_addr = iterator.addr; | 
|  |  | 
|  | base_addr &= PT64_LVL_ADDR_MASK(iterator.level); | 
|  | pseudo_gfn = base_addr >> PAGE_SHIFT; | 
|  | sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr, | 
|  | iterator.level - 1, | 
|  | 1, ACC_ALL, iterator.sptep); | 
|  | if (!sp) { | 
|  | pgprintk("nonpaging_map: ENOMEM\n"); | 
|  | kvm_release_pfn_clean(pfn); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | __set_spte(iterator.sptep, | 
|  | __pa(sp->spt) | 
|  | | PT_PRESENT_MASK | PT_WRITABLE_MASK | 
|  | | shadow_user_mask | shadow_x_mask | 
|  | | shadow_accessed_mask); | 
|  | } | 
|  | } | 
|  | return pt_write; | 
|  | } | 
|  |  | 
|  | static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk) | 
|  | { | 
|  | siginfo_t info; | 
|  |  | 
|  | info.si_signo	= SIGBUS; | 
|  | info.si_errno	= 0; | 
|  | info.si_code	= BUS_MCEERR_AR; | 
|  | info.si_addr	= (void __user *)address; | 
|  | info.si_addr_lsb = PAGE_SHIFT; | 
|  |  | 
|  | send_sig_info(SIGBUS, &info, tsk); | 
|  | } | 
|  |  | 
|  | static int kvm_handle_bad_page(struct kvm *kvm, gfn_t gfn, pfn_t pfn) | 
|  | { | 
|  | kvm_release_pfn_clean(pfn); | 
|  | if (is_hwpoison_pfn(pfn)) { | 
|  | kvm_send_hwpoison_signal(gfn_to_hva(kvm, gfn), current); | 
|  | return 0; | 
|  | } else if (is_fault_pfn(pfn)) | 
|  | return -EFAULT; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu, | 
|  | gfn_t *gfnp, pfn_t *pfnp, int *levelp) | 
|  | { | 
|  | pfn_t pfn = *pfnp; | 
|  | gfn_t gfn = *gfnp; | 
|  | int level = *levelp; | 
|  |  | 
|  | /* | 
|  | * Check if it's a transparent hugepage. If this would be an | 
|  | * hugetlbfs page, level wouldn't be set to | 
|  | * PT_PAGE_TABLE_LEVEL and there would be no adjustment done | 
|  | * here. | 
|  | */ | 
|  | if (!is_error_pfn(pfn) && !kvm_is_mmio_pfn(pfn) && | 
|  | level == PT_PAGE_TABLE_LEVEL && | 
|  | PageTransCompound(pfn_to_page(pfn)) && | 
|  | !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) { | 
|  | unsigned long mask; | 
|  | /* | 
|  | * mmu_notifier_retry was successful and we hold the | 
|  | * mmu_lock here, so the pmd can't become splitting | 
|  | * from under us, and in turn | 
|  | * __split_huge_page_refcount() can't run from under | 
|  | * us and we can safely transfer the refcount from | 
|  | * PG_tail to PG_head as we switch the pfn to tail to | 
|  | * head. | 
|  | */ | 
|  | *levelp = level = PT_DIRECTORY_LEVEL; | 
|  | mask = KVM_PAGES_PER_HPAGE(level) - 1; | 
|  | VM_BUG_ON((gfn & mask) != (pfn & mask)); | 
|  | if (pfn & mask) { | 
|  | gfn &= ~mask; | 
|  | *gfnp = gfn; | 
|  | kvm_release_pfn_clean(pfn); | 
|  | pfn &= ~mask; | 
|  | if (!get_page_unless_zero(pfn_to_page(pfn))) | 
|  | BUG(); | 
|  | *pfnp = pfn; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn, | 
|  | gva_t gva, pfn_t *pfn, bool write, bool *writable); | 
|  |  | 
|  | static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn, | 
|  | bool prefault) | 
|  | { | 
|  | int r; | 
|  | int level; | 
|  | int force_pt_level; | 
|  | pfn_t pfn; | 
|  | unsigned long mmu_seq; | 
|  | bool map_writable; | 
|  |  | 
|  | force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn); | 
|  | if (likely(!force_pt_level)) { | 
|  | level = mapping_level(vcpu, gfn); | 
|  | /* | 
|  | * This path builds a PAE pagetable - so we can map | 
|  | * 2mb pages at maximum. Therefore check if the level | 
|  | * is larger than that. | 
|  | */ | 
|  | if (level > PT_DIRECTORY_LEVEL) | 
|  | level = PT_DIRECTORY_LEVEL; | 
|  |  | 
|  | gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1); | 
|  | } else | 
|  | level = PT_PAGE_TABLE_LEVEL; | 
|  |  | 
|  | mmu_seq = vcpu->kvm->mmu_notifier_seq; | 
|  | smp_rmb(); | 
|  |  | 
|  | if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable)) | 
|  | return 0; | 
|  |  | 
|  | /* mmio */ | 
|  | if (is_error_pfn(pfn)) | 
|  | return kvm_handle_bad_page(vcpu->kvm, gfn, pfn); | 
|  |  | 
|  | spin_lock(&vcpu->kvm->mmu_lock); | 
|  | if (mmu_notifier_retry(vcpu, mmu_seq)) | 
|  | goto out_unlock; | 
|  | kvm_mmu_free_some_pages(vcpu); | 
|  | if (likely(!force_pt_level)) | 
|  | transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level); | 
|  | r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn, | 
|  | prefault); | 
|  | spin_unlock(&vcpu->kvm->mmu_lock); | 
|  |  | 
|  |  | 
|  | return r; | 
|  |  | 
|  | out_unlock: | 
|  | spin_unlock(&vcpu->kvm->mmu_lock); | 
|  | kvm_release_pfn_clean(pfn); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | static void mmu_free_roots(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | int i; | 
|  | struct kvm_mmu_page *sp; | 
|  | LIST_HEAD(invalid_list); | 
|  |  | 
|  | if (!VALID_PAGE(vcpu->arch.mmu.root_hpa)) | 
|  | return; | 
|  | spin_lock(&vcpu->kvm->mmu_lock); | 
|  | if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL && | 
|  | (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL || | 
|  | vcpu->arch.mmu.direct_map)) { | 
|  | hpa_t root = vcpu->arch.mmu.root_hpa; | 
|  |  | 
|  | sp = page_header(root); | 
|  | --sp->root_count; | 
|  | if (!sp->root_count && sp->role.invalid) { | 
|  | kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list); | 
|  | kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list); | 
|  | } | 
|  | vcpu->arch.mmu.root_hpa = INVALID_PAGE; | 
|  | spin_unlock(&vcpu->kvm->mmu_lock); | 
|  | return; | 
|  | } | 
|  | for (i = 0; i < 4; ++i) { | 
|  | hpa_t root = vcpu->arch.mmu.pae_root[i]; | 
|  |  | 
|  | if (root) { | 
|  | root &= PT64_BASE_ADDR_MASK; | 
|  | sp = page_header(root); | 
|  | --sp->root_count; | 
|  | if (!sp->root_count && sp->role.invalid) | 
|  | kvm_mmu_prepare_zap_page(vcpu->kvm, sp, | 
|  | &invalid_list); | 
|  | } | 
|  | vcpu->arch.mmu.pae_root[i] = INVALID_PAGE; | 
|  | } | 
|  | kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list); | 
|  | spin_unlock(&vcpu->kvm->mmu_lock); | 
|  | vcpu->arch.mmu.root_hpa = INVALID_PAGE; | 
|  | } | 
|  |  | 
|  | static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) { | 
|  | kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); | 
|  | ret = 1; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct kvm_mmu_page *sp; | 
|  | unsigned i; | 
|  |  | 
|  | if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) { | 
|  | spin_lock(&vcpu->kvm->mmu_lock); | 
|  | kvm_mmu_free_some_pages(vcpu); | 
|  | sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL, | 
|  | 1, ACC_ALL, NULL); | 
|  | ++sp->root_count; | 
|  | spin_unlock(&vcpu->kvm->mmu_lock); | 
|  | vcpu->arch.mmu.root_hpa = __pa(sp->spt); | 
|  | } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) { | 
|  | for (i = 0; i < 4; ++i) { | 
|  | hpa_t root = vcpu->arch.mmu.pae_root[i]; | 
|  |  | 
|  | ASSERT(!VALID_PAGE(root)); | 
|  | spin_lock(&vcpu->kvm->mmu_lock); | 
|  | kvm_mmu_free_some_pages(vcpu); | 
|  | sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT), | 
|  | i << 30, | 
|  | PT32_ROOT_LEVEL, 1, ACC_ALL, | 
|  | NULL); | 
|  | root = __pa(sp->spt); | 
|  | ++sp->root_count; | 
|  | spin_unlock(&vcpu->kvm->mmu_lock); | 
|  | vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK; | 
|  | } | 
|  | vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root); | 
|  | } else | 
|  | BUG(); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct kvm_mmu_page *sp; | 
|  | u64 pdptr, pm_mask; | 
|  | gfn_t root_gfn; | 
|  | int i; | 
|  |  | 
|  | root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT; | 
|  |  | 
|  | if (mmu_check_root(vcpu, root_gfn)) | 
|  | return 1; | 
|  |  | 
|  | /* | 
|  | * Do we shadow a long mode page table? If so we need to | 
|  | * write-protect the guests page table root. | 
|  | */ | 
|  | if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) { | 
|  | hpa_t root = vcpu->arch.mmu.root_hpa; | 
|  |  | 
|  | ASSERT(!VALID_PAGE(root)); | 
|  |  | 
|  | spin_lock(&vcpu->kvm->mmu_lock); | 
|  | kvm_mmu_free_some_pages(vcpu); | 
|  | sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL, | 
|  | 0, ACC_ALL, NULL); | 
|  | root = __pa(sp->spt); | 
|  | ++sp->root_count; | 
|  | spin_unlock(&vcpu->kvm->mmu_lock); | 
|  | vcpu->arch.mmu.root_hpa = root; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We shadow a 32 bit page table. This may be a legacy 2-level | 
|  | * or a PAE 3-level page table. In either case we need to be aware that | 
|  | * the shadow page table may be a PAE or a long mode page table. | 
|  | */ | 
|  | pm_mask = PT_PRESENT_MASK; | 
|  | if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) | 
|  | pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK; | 
|  |  | 
|  | for (i = 0; i < 4; ++i) { | 
|  | hpa_t root = vcpu->arch.mmu.pae_root[i]; | 
|  |  | 
|  | ASSERT(!VALID_PAGE(root)); | 
|  | if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) { | 
|  | pdptr = kvm_pdptr_read_mmu(vcpu, &vcpu->arch.mmu, i); | 
|  | if (!is_present_gpte(pdptr)) { | 
|  | vcpu->arch.mmu.pae_root[i] = 0; | 
|  | continue; | 
|  | } | 
|  | root_gfn = pdptr >> PAGE_SHIFT; | 
|  | if (mmu_check_root(vcpu, root_gfn)) | 
|  | return 1; | 
|  | } | 
|  | spin_lock(&vcpu->kvm->mmu_lock); | 
|  | kvm_mmu_free_some_pages(vcpu); | 
|  | sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, | 
|  | PT32_ROOT_LEVEL, 0, | 
|  | ACC_ALL, NULL); | 
|  | root = __pa(sp->spt); | 
|  | ++sp->root_count; | 
|  | spin_unlock(&vcpu->kvm->mmu_lock); | 
|  |  | 
|  | vcpu->arch.mmu.pae_root[i] = root | pm_mask; | 
|  | } | 
|  | vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root); | 
|  |  | 
|  | /* | 
|  | * If we shadow a 32 bit page table with a long mode page | 
|  | * table we enter this path. | 
|  | */ | 
|  | if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) { | 
|  | if (vcpu->arch.mmu.lm_root == NULL) { | 
|  | /* | 
|  | * The additional page necessary for this is only | 
|  | * allocated on demand. | 
|  | */ | 
|  |  | 
|  | u64 *lm_root; | 
|  |  | 
|  | lm_root = (void*)get_zeroed_page(GFP_KERNEL); | 
|  | if (lm_root == NULL) | 
|  | return 1; | 
|  |  | 
|  | lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask; | 
|  |  | 
|  | vcpu->arch.mmu.lm_root = lm_root; | 
|  | } | 
|  |  | 
|  | vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int mmu_alloc_roots(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | if (vcpu->arch.mmu.direct_map) | 
|  | return mmu_alloc_direct_roots(vcpu); | 
|  | else | 
|  | return mmu_alloc_shadow_roots(vcpu); | 
|  | } | 
|  |  | 
|  | static void mmu_sync_roots(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | int i; | 
|  | struct kvm_mmu_page *sp; | 
|  |  | 
|  | if (vcpu->arch.mmu.direct_map) | 
|  | return; | 
|  |  | 
|  | if (!VALID_PAGE(vcpu->arch.mmu.root_hpa)) | 
|  | return; | 
|  |  | 
|  | trace_kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC); | 
|  | if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) { | 
|  | hpa_t root = vcpu->arch.mmu.root_hpa; | 
|  | sp = page_header(root); | 
|  | mmu_sync_children(vcpu, sp); | 
|  | trace_kvm_mmu_audit(vcpu, AUDIT_POST_SYNC); | 
|  | return; | 
|  | } | 
|  | for (i = 0; i < 4; ++i) { | 
|  | hpa_t root = vcpu->arch.mmu.pae_root[i]; | 
|  |  | 
|  | if (root && VALID_PAGE(root)) { | 
|  | root &= PT64_BASE_ADDR_MASK; | 
|  | sp = page_header(root); | 
|  | mmu_sync_children(vcpu, sp); | 
|  | } | 
|  | } | 
|  | trace_kvm_mmu_audit(vcpu, AUDIT_POST_SYNC); | 
|  | } | 
|  |  | 
|  | void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | spin_lock(&vcpu->kvm->mmu_lock); | 
|  | mmu_sync_roots(vcpu); | 
|  | spin_unlock(&vcpu->kvm->mmu_lock); | 
|  | } | 
|  |  | 
|  | static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr, | 
|  | u32 access, struct x86_exception *exception) | 
|  | { | 
|  | if (exception) | 
|  | exception->error_code = 0; | 
|  | return vaddr; | 
|  | } | 
|  |  | 
|  | static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr, | 
|  | u32 access, | 
|  | struct x86_exception *exception) | 
|  | { | 
|  | if (exception) | 
|  | exception->error_code = 0; | 
|  | return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access); | 
|  | } | 
|  |  | 
|  | static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva, | 
|  | u32 error_code, bool prefault) | 
|  | { | 
|  | gfn_t gfn; | 
|  | int r; | 
|  |  | 
|  | pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code); | 
|  | r = mmu_topup_memory_caches(vcpu); | 
|  | if (r) | 
|  | return r; | 
|  |  | 
|  | ASSERT(vcpu); | 
|  | ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa)); | 
|  |  | 
|  | gfn = gva >> PAGE_SHIFT; | 
|  |  | 
|  | return nonpaging_map(vcpu, gva & PAGE_MASK, | 
|  | error_code & PFERR_WRITE_MASK, gfn, prefault); | 
|  | } | 
|  |  | 
|  | static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn) | 
|  | { | 
|  | struct kvm_arch_async_pf arch; | 
|  |  | 
|  | arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id; | 
|  | arch.gfn = gfn; | 
|  | arch.direct_map = vcpu->arch.mmu.direct_map; | 
|  | arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu); | 
|  |  | 
|  | return kvm_setup_async_pf(vcpu, gva, gfn, &arch); | 
|  | } | 
|  |  | 
|  | static bool can_do_async_pf(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | if (unlikely(!irqchip_in_kernel(vcpu->kvm) || | 
|  | kvm_event_needs_reinjection(vcpu))) | 
|  | return false; | 
|  |  | 
|  | return kvm_x86_ops->interrupt_allowed(vcpu); | 
|  | } | 
|  |  | 
|  | static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn, | 
|  | gva_t gva, pfn_t *pfn, bool write, bool *writable) | 
|  | { | 
|  | bool async; | 
|  |  | 
|  | *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable); | 
|  |  | 
|  | if (!async) | 
|  | return false; /* *pfn has correct page already */ | 
|  |  | 
|  | put_page(pfn_to_page(*pfn)); | 
|  |  | 
|  | if (!prefault && can_do_async_pf(vcpu)) { | 
|  | trace_kvm_try_async_get_page(gva, gfn); | 
|  | if (kvm_find_async_pf_gfn(vcpu, gfn)) { | 
|  | trace_kvm_async_pf_doublefault(gva, gfn); | 
|  | kvm_make_request(KVM_REQ_APF_HALT, vcpu); | 
|  | return true; | 
|  | } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code, | 
|  | bool prefault) | 
|  | { | 
|  | pfn_t pfn; | 
|  | int r; | 
|  | int level; | 
|  | int force_pt_level; | 
|  | gfn_t gfn = gpa >> PAGE_SHIFT; | 
|  | unsigned long mmu_seq; | 
|  | int write = error_code & PFERR_WRITE_MASK; | 
|  | bool map_writable; | 
|  |  | 
|  | ASSERT(vcpu); | 
|  | ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa)); | 
|  |  | 
|  | r = mmu_topup_memory_caches(vcpu); | 
|  | if (r) | 
|  | return r; | 
|  |  | 
|  | force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn); | 
|  | if (likely(!force_pt_level)) { | 
|  | level = mapping_level(vcpu, gfn); | 
|  | gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1); | 
|  | } else | 
|  | level = PT_PAGE_TABLE_LEVEL; | 
|  |  | 
|  | mmu_seq = vcpu->kvm->mmu_notifier_seq; | 
|  | smp_rmb(); | 
|  |  | 
|  | if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable)) | 
|  | return 0; | 
|  |  | 
|  | /* mmio */ | 
|  | if (is_error_pfn(pfn)) | 
|  | return kvm_handle_bad_page(vcpu->kvm, gfn, pfn); | 
|  | spin_lock(&vcpu->kvm->mmu_lock); | 
|  | if (mmu_notifier_retry(vcpu, mmu_seq)) | 
|  | goto out_unlock; | 
|  | kvm_mmu_free_some_pages(vcpu); | 
|  | if (likely(!force_pt_level)) | 
|  | transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level); | 
|  | r = __direct_map(vcpu, gpa, write, map_writable, | 
|  | level, gfn, pfn, prefault); | 
|  | spin_unlock(&vcpu->kvm->mmu_lock); | 
|  |  | 
|  | return r; | 
|  |  | 
|  | out_unlock: | 
|  | spin_unlock(&vcpu->kvm->mmu_lock); | 
|  | kvm_release_pfn_clean(pfn); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void nonpaging_free(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | mmu_free_roots(vcpu); | 
|  | } | 
|  |  | 
|  | static int nonpaging_init_context(struct kvm_vcpu *vcpu, | 
|  | struct kvm_mmu *context) | 
|  | { | 
|  | context->new_cr3 = nonpaging_new_cr3; | 
|  | context->page_fault = nonpaging_page_fault; | 
|  | context->gva_to_gpa = nonpaging_gva_to_gpa; | 
|  | context->free = nonpaging_free; | 
|  | context->prefetch_page = nonpaging_prefetch_page; | 
|  | context->sync_page = nonpaging_sync_page; | 
|  | context->invlpg = nonpaging_invlpg; | 
|  | context->update_pte = nonpaging_update_pte; | 
|  | context->root_level = 0; | 
|  | context->shadow_root_level = PT32E_ROOT_LEVEL; | 
|  | context->root_hpa = INVALID_PAGE; | 
|  | context->direct_map = true; | 
|  | context->nx = false; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | ++vcpu->stat.tlb_flush; | 
|  | kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); | 
|  | } | 
|  |  | 
|  | static void paging_new_cr3(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu)); | 
|  | mmu_free_roots(vcpu); | 
|  | } | 
|  |  | 
|  | static unsigned long get_cr3(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | return kvm_read_cr3(vcpu); | 
|  | } | 
|  |  | 
|  | static void inject_page_fault(struct kvm_vcpu *vcpu, | 
|  | struct x86_exception *fault) | 
|  | { | 
|  | vcpu->arch.mmu.inject_page_fault(vcpu, fault); | 
|  | } | 
|  |  | 
|  | static void paging_free(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | nonpaging_free(vcpu); | 
|  | } | 
|  |  | 
|  | static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level) | 
|  | { | 
|  | int bit7; | 
|  |  | 
|  | bit7 = (gpte >> 7) & 1; | 
|  | return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0; | 
|  | } | 
|  |  | 
|  | #define PTTYPE 64 | 
|  | #include "paging_tmpl.h" | 
|  | #undef PTTYPE | 
|  |  | 
|  | #define PTTYPE 32 | 
|  | #include "paging_tmpl.h" | 
|  | #undef PTTYPE | 
|  |  | 
|  | static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu, | 
|  | struct kvm_mmu *context, | 
|  | int level) | 
|  | { | 
|  | int maxphyaddr = cpuid_maxphyaddr(vcpu); | 
|  | u64 exb_bit_rsvd = 0; | 
|  |  | 
|  | if (!context->nx) | 
|  | exb_bit_rsvd = rsvd_bits(63, 63); | 
|  | switch (level) { | 
|  | case PT32_ROOT_LEVEL: | 
|  | /* no rsvd bits for 2 level 4K page table entries */ | 
|  | context->rsvd_bits_mask[0][1] = 0; | 
|  | context->rsvd_bits_mask[0][0] = 0; | 
|  | context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0]; | 
|  |  | 
|  | if (!is_pse(vcpu)) { | 
|  | context->rsvd_bits_mask[1][1] = 0; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (is_cpuid_PSE36()) | 
|  | /* 36bits PSE 4MB page */ | 
|  | context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21); | 
|  | else | 
|  | /* 32 bits PSE 4MB page */ | 
|  | context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21); | 
|  | break; | 
|  | case PT32E_ROOT_LEVEL: | 
|  | context->rsvd_bits_mask[0][2] = | 
|  | rsvd_bits(maxphyaddr, 63) | | 
|  | rsvd_bits(7, 8) | rsvd_bits(1, 2);	/* PDPTE */ | 
|  | context->rsvd_bits_mask[0][1] = exb_bit_rsvd | | 
|  | rsvd_bits(maxphyaddr, 62);	/* PDE */ | 
|  | context->rsvd_bits_mask[0][0] = exb_bit_rsvd | | 
|  | rsvd_bits(maxphyaddr, 62); 	/* PTE */ | 
|  | context->rsvd_bits_mask[1][1] = exb_bit_rsvd | | 
|  | rsvd_bits(maxphyaddr, 62) | | 
|  | rsvd_bits(13, 20);		/* large page */ | 
|  | context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0]; | 
|  | break; | 
|  | case PT64_ROOT_LEVEL: | 
|  | context->rsvd_bits_mask[0][3] = exb_bit_rsvd | | 
|  | rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8); | 
|  | context->rsvd_bits_mask[0][2] = exb_bit_rsvd | | 
|  | rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8); | 
|  | context->rsvd_bits_mask[0][1] = exb_bit_rsvd | | 
|  | rsvd_bits(maxphyaddr, 51); | 
|  | context->rsvd_bits_mask[0][0] = exb_bit_rsvd | | 
|  | rsvd_bits(maxphyaddr, 51); | 
|  | context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3]; | 
|  | context->rsvd_bits_mask[1][2] = exb_bit_rsvd | | 
|  | rsvd_bits(maxphyaddr, 51) | | 
|  | rsvd_bits(13, 29); | 
|  | context->rsvd_bits_mask[1][1] = exb_bit_rsvd | | 
|  | rsvd_bits(maxphyaddr, 51) | | 
|  | rsvd_bits(13, 20);		/* large page */ | 
|  | context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0]; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int paging64_init_context_common(struct kvm_vcpu *vcpu, | 
|  | struct kvm_mmu *context, | 
|  | int level) | 
|  | { | 
|  | context->nx = is_nx(vcpu); | 
|  |  | 
|  | reset_rsvds_bits_mask(vcpu, context, level); | 
|  |  | 
|  | ASSERT(is_pae(vcpu)); | 
|  | context->new_cr3 = paging_new_cr3; | 
|  | context->page_fault = paging64_page_fault; | 
|  | context->gva_to_gpa = paging64_gva_to_gpa; | 
|  | context->prefetch_page = paging64_prefetch_page; | 
|  | context->sync_page = paging64_sync_page; | 
|  | context->invlpg = paging64_invlpg; | 
|  | context->update_pte = paging64_update_pte; | 
|  | context->free = paging_free; | 
|  | context->root_level = level; | 
|  | context->shadow_root_level = level; | 
|  | context->root_hpa = INVALID_PAGE; | 
|  | context->direct_map = false; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int paging64_init_context(struct kvm_vcpu *vcpu, | 
|  | struct kvm_mmu *context) | 
|  | { | 
|  | return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL); | 
|  | } | 
|  |  | 
|  | static int paging32_init_context(struct kvm_vcpu *vcpu, | 
|  | struct kvm_mmu *context) | 
|  | { | 
|  | context->nx = false; | 
|  |  | 
|  | reset_rsvds_bits_mask(vcpu, context, PT32_ROOT_LEVEL); | 
|  |  | 
|  | context->new_cr3 = paging_new_cr3; | 
|  | context->page_fault = paging32_page_fault; | 
|  | context->gva_to_gpa = paging32_gva_to_gpa; | 
|  | context->free = paging_free; | 
|  | context->prefetch_page = paging32_prefetch_page; | 
|  | context->sync_page = paging32_sync_page; | 
|  | context->invlpg = paging32_invlpg; | 
|  | context->update_pte = paging32_update_pte; | 
|  | context->root_level = PT32_ROOT_LEVEL; | 
|  | context->shadow_root_level = PT32E_ROOT_LEVEL; | 
|  | context->root_hpa = INVALID_PAGE; | 
|  | context->direct_map = false; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int paging32E_init_context(struct kvm_vcpu *vcpu, | 
|  | struct kvm_mmu *context) | 
|  | { | 
|  | return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL); | 
|  | } | 
|  |  | 
|  | static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct kvm_mmu *context = vcpu->arch.walk_mmu; | 
|  |  | 
|  | context->base_role.word = 0; | 
|  | context->new_cr3 = nonpaging_new_cr3; | 
|  | context->page_fault = tdp_page_fault; | 
|  | context->free = nonpaging_free; | 
|  | context->prefetch_page = nonpaging_prefetch_page; | 
|  | context->sync_page = nonpaging_sync_page; | 
|  | context->invlpg = nonpaging_invlpg; | 
|  | context->update_pte = nonpaging_update_pte; | 
|  | context->shadow_root_level = kvm_x86_ops->get_tdp_level(); | 
|  | context->root_hpa = INVALID_PAGE; | 
|  | context->direct_map = true; | 
|  | context->set_cr3 = kvm_x86_ops->set_tdp_cr3; | 
|  | context->get_cr3 = get_cr3; | 
|  | context->inject_page_fault = kvm_inject_page_fault; | 
|  | context->nx = is_nx(vcpu); | 
|  |  | 
|  | if (!is_paging(vcpu)) { | 
|  | context->nx = false; | 
|  | context->gva_to_gpa = nonpaging_gva_to_gpa; | 
|  | context->root_level = 0; | 
|  | } else if (is_long_mode(vcpu)) { | 
|  | context->nx = is_nx(vcpu); | 
|  | reset_rsvds_bits_mask(vcpu, context, PT64_ROOT_LEVEL); | 
|  | context->gva_to_gpa = paging64_gva_to_gpa; | 
|  | context->root_level = PT64_ROOT_LEVEL; | 
|  | } else if (is_pae(vcpu)) { | 
|  | context->nx = is_nx(vcpu); | 
|  | reset_rsvds_bits_mask(vcpu, context, PT32E_ROOT_LEVEL); | 
|  | context->gva_to_gpa = paging64_gva_to_gpa; | 
|  | context->root_level = PT32E_ROOT_LEVEL; | 
|  | } else { | 
|  | context->nx = false; | 
|  | reset_rsvds_bits_mask(vcpu, context, PT32_ROOT_LEVEL); | 
|  | context->gva_to_gpa = paging32_gva_to_gpa; | 
|  | context->root_level = PT32_ROOT_LEVEL; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context) | 
|  | { | 
|  | int r; | 
|  | ASSERT(vcpu); | 
|  | ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa)); | 
|  |  | 
|  | if (!is_paging(vcpu)) | 
|  | r = nonpaging_init_context(vcpu, context); | 
|  | else if (is_long_mode(vcpu)) | 
|  | r = paging64_init_context(vcpu, context); | 
|  | else if (is_pae(vcpu)) | 
|  | r = paging32E_init_context(vcpu, context); | 
|  | else | 
|  | r = paging32_init_context(vcpu, context); | 
|  |  | 
|  | vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu); | 
|  | vcpu->arch.mmu.base_role.cr0_wp  = is_write_protection(vcpu); | 
|  |  | 
|  | return r; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu); | 
|  |  | 
|  | static int init_kvm_softmmu(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu); | 
|  |  | 
|  | vcpu->arch.walk_mmu->set_cr3           = kvm_x86_ops->set_cr3; | 
|  | vcpu->arch.walk_mmu->get_cr3           = get_cr3; | 
|  | vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault; | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct kvm_mmu *g_context = &vcpu->arch.nested_mmu; | 
|  |  | 
|  | g_context->get_cr3           = get_cr3; | 
|  | g_context->inject_page_fault = kvm_inject_page_fault; | 
|  |  | 
|  | /* | 
|  | * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The | 
|  | * translation of l2_gpa to l1_gpa addresses is done using the | 
|  | * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa | 
|  | * functions between mmu and nested_mmu are swapped. | 
|  | */ | 
|  | if (!is_paging(vcpu)) { | 
|  | g_context->nx = false; | 
|  | g_context->root_level = 0; | 
|  | g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested; | 
|  | } else if (is_long_mode(vcpu)) { | 
|  | g_context->nx = is_nx(vcpu); | 
|  | reset_rsvds_bits_mask(vcpu, g_context, PT64_ROOT_LEVEL); | 
|  | g_context->root_level = PT64_ROOT_LEVEL; | 
|  | g_context->gva_to_gpa = paging64_gva_to_gpa_nested; | 
|  | } else if (is_pae(vcpu)) { | 
|  | g_context->nx = is_nx(vcpu); | 
|  | reset_rsvds_bits_mask(vcpu, g_context, PT32E_ROOT_LEVEL); | 
|  | g_context->root_level = PT32E_ROOT_LEVEL; | 
|  | g_context->gva_to_gpa = paging64_gva_to_gpa_nested; | 
|  | } else { | 
|  | g_context->nx = false; | 
|  | reset_rsvds_bits_mask(vcpu, g_context, PT32_ROOT_LEVEL); | 
|  | g_context->root_level = PT32_ROOT_LEVEL; | 
|  | g_context->gva_to_gpa = paging32_gva_to_gpa_nested; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int init_kvm_mmu(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | if (mmu_is_nested(vcpu)) | 
|  | return init_kvm_nested_mmu(vcpu); | 
|  | else if (tdp_enabled) | 
|  | return init_kvm_tdp_mmu(vcpu); | 
|  | else | 
|  | return init_kvm_softmmu(vcpu); | 
|  | } | 
|  |  | 
|  | static void destroy_kvm_mmu(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | ASSERT(vcpu); | 
|  | if (VALID_PAGE(vcpu->arch.mmu.root_hpa)) | 
|  | /* mmu.free() should set root_hpa = INVALID_PAGE */ | 
|  | vcpu->arch.mmu.free(vcpu); | 
|  | } | 
|  |  | 
|  | int kvm_mmu_reset_context(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | destroy_kvm_mmu(vcpu); | 
|  | return init_kvm_mmu(vcpu); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_mmu_reset_context); | 
|  |  | 
|  | int kvm_mmu_load(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | int r; | 
|  |  | 
|  | r = mmu_topup_memory_caches(vcpu); | 
|  | if (r) | 
|  | goto out; | 
|  | r = mmu_alloc_roots(vcpu); | 
|  | spin_lock(&vcpu->kvm->mmu_lock); | 
|  | mmu_sync_roots(vcpu); | 
|  | spin_unlock(&vcpu->kvm->mmu_lock); | 
|  | if (r) | 
|  | goto out; | 
|  | /* set_cr3() should ensure TLB has been flushed */ | 
|  | vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa); | 
|  | out: | 
|  | return r; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_mmu_load); | 
|  |  | 
|  | void kvm_mmu_unload(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | mmu_free_roots(vcpu); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_mmu_unload); | 
|  |  | 
|  | static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu, | 
|  | struct kvm_mmu_page *sp, | 
|  | u64 *spte) | 
|  | { | 
|  | u64 pte; | 
|  | struct kvm_mmu_page *child; | 
|  |  | 
|  | pte = *spte; | 
|  | if (is_shadow_present_pte(pte)) { | 
|  | if (is_last_spte(pte, sp->role.level)) | 
|  | drop_spte(vcpu->kvm, spte, shadow_trap_nonpresent_pte); | 
|  | else { | 
|  | child = page_header(pte & PT64_BASE_ADDR_MASK); | 
|  | mmu_page_remove_parent_pte(child, spte); | 
|  | } | 
|  | } | 
|  | __set_spte(spte, shadow_trap_nonpresent_pte); | 
|  | if (is_large_pte(pte)) | 
|  | --vcpu->kvm->stat.lpages; | 
|  | } | 
|  |  | 
|  | static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu, | 
|  | struct kvm_mmu_page *sp, u64 *spte, | 
|  | const void *new) | 
|  | { | 
|  | if (sp->role.level != PT_PAGE_TABLE_LEVEL) { | 
|  | ++vcpu->kvm->stat.mmu_pde_zapped; | 
|  | return; | 
|  | } | 
|  |  | 
|  | ++vcpu->kvm->stat.mmu_pte_updated; | 
|  | vcpu->arch.mmu.update_pte(vcpu, sp, spte, new); | 
|  | } | 
|  |  | 
|  | static bool need_remote_flush(u64 old, u64 new) | 
|  | { | 
|  | if (!is_shadow_present_pte(old)) | 
|  | return false; | 
|  | if (!is_shadow_present_pte(new)) | 
|  | return true; | 
|  | if ((old ^ new) & PT64_BASE_ADDR_MASK) | 
|  | return true; | 
|  | old ^= PT64_NX_MASK; | 
|  | new ^= PT64_NX_MASK; | 
|  | return (old & ~new & PT64_PERM_MASK) != 0; | 
|  | } | 
|  |  | 
|  | static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page, | 
|  | bool remote_flush, bool local_flush) | 
|  | { | 
|  | if (zap_page) | 
|  | return; | 
|  |  | 
|  | if (remote_flush) | 
|  | kvm_flush_remote_tlbs(vcpu->kvm); | 
|  | else if (local_flush) | 
|  | kvm_mmu_flush_tlb(vcpu); | 
|  | } | 
|  |  | 
|  | static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | u64 *spte = vcpu->arch.last_pte_updated; | 
|  |  | 
|  | return !!(spte && (*spte & shadow_accessed_mask)); | 
|  | } | 
|  |  | 
|  | static void kvm_mmu_access_page(struct kvm_vcpu *vcpu, gfn_t gfn) | 
|  | { | 
|  | u64 *spte = vcpu->arch.last_pte_updated; | 
|  |  | 
|  | if (spte | 
|  | && vcpu->arch.last_pte_gfn == gfn | 
|  | && shadow_accessed_mask | 
|  | && !(*spte & shadow_accessed_mask) | 
|  | && is_shadow_present_pte(*spte)) | 
|  | set_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte); | 
|  | } | 
|  |  | 
|  | void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa, | 
|  | const u8 *new, int bytes, | 
|  | bool guest_initiated) | 
|  | { | 
|  | gfn_t gfn = gpa >> PAGE_SHIFT; | 
|  | union kvm_mmu_page_role mask = { .word = 0 }; | 
|  | struct kvm_mmu_page *sp; | 
|  | struct hlist_node *node; | 
|  | LIST_HEAD(invalid_list); | 
|  | u64 entry, gentry, *spte; | 
|  | unsigned pte_size, page_offset, misaligned, quadrant, offset; | 
|  | int level, npte, invlpg_counter, r, flooded = 0; | 
|  | bool remote_flush, local_flush, zap_page; | 
|  |  | 
|  | zap_page = remote_flush = local_flush = false; | 
|  | offset = offset_in_page(gpa); | 
|  |  | 
|  | pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes); | 
|  |  | 
|  | invlpg_counter = atomic_read(&vcpu->kvm->arch.invlpg_counter); | 
|  |  | 
|  | /* | 
|  | * Assume that the pte write on a page table of the same type | 
|  | * as the current vcpu paging mode since we update the sptes only | 
|  | * when they have the same mode. | 
|  | */ | 
|  | if ((is_pae(vcpu) && bytes == 4) || !new) { | 
|  | /* Handle a 32-bit guest writing two halves of a 64-bit gpte */ | 
|  | if (is_pae(vcpu)) { | 
|  | gpa &= ~(gpa_t)7; | 
|  | bytes = 8; | 
|  | } | 
|  | r = kvm_read_guest(vcpu->kvm, gpa, &gentry, min(bytes, 8)); | 
|  | if (r) | 
|  | gentry = 0; | 
|  | new = (const u8 *)&gentry; | 
|  | } | 
|  |  | 
|  | switch (bytes) { | 
|  | case 4: | 
|  | gentry = *(const u32 *)new; | 
|  | break; | 
|  | case 8: | 
|  | gentry = *(const u64 *)new; | 
|  | break; | 
|  | default: | 
|  | gentry = 0; | 
|  | break; | 
|  | } | 
|  |  | 
|  | spin_lock(&vcpu->kvm->mmu_lock); | 
|  | if (atomic_read(&vcpu->kvm->arch.invlpg_counter) != invlpg_counter) | 
|  | gentry = 0; | 
|  | kvm_mmu_free_some_pages(vcpu); | 
|  | ++vcpu->kvm->stat.mmu_pte_write; | 
|  | trace_kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE); | 
|  | if (guest_initiated) { | 
|  | kvm_mmu_access_page(vcpu, gfn); | 
|  | if (gfn == vcpu->arch.last_pt_write_gfn | 
|  | && !last_updated_pte_accessed(vcpu)) { | 
|  | ++vcpu->arch.last_pt_write_count; | 
|  | if (vcpu->arch.last_pt_write_count >= 3) | 
|  | flooded = 1; | 
|  | } else { | 
|  | vcpu->arch.last_pt_write_gfn = gfn; | 
|  | vcpu->arch.last_pt_write_count = 1; | 
|  | vcpu->arch.last_pte_updated = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | mask.cr0_wp = mask.cr4_pae = mask.nxe = 1; | 
|  | for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) { | 
|  | pte_size = sp->role.cr4_pae ? 8 : 4; | 
|  | misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1); | 
|  | misaligned |= bytes < 4; | 
|  | if (misaligned || flooded) { | 
|  | /* | 
|  | * Misaligned accesses are too much trouble to fix | 
|  | * up; also, they usually indicate a page is not used | 
|  | * as a page table. | 
|  | * | 
|  | * If we're seeing too many writes to a page, | 
|  | * it may no longer be a page table, or we may be | 
|  | * forking, in which case it is better to unmap the | 
|  | * page. | 
|  | */ | 
|  | pgprintk("misaligned: gpa %llx bytes %d role %x\n", | 
|  | gpa, bytes, sp->role.word); | 
|  | zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp, | 
|  | &invalid_list); | 
|  | ++vcpu->kvm->stat.mmu_flooded; | 
|  | continue; | 
|  | } | 
|  | page_offset = offset; | 
|  | level = sp->role.level; | 
|  | npte = 1; | 
|  | if (!sp->role.cr4_pae) { | 
|  | page_offset <<= 1;	/* 32->64 */ | 
|  | /* | 
|  | * A 32-bit pde maps 4MB while the shadow pdes map | 
|  | * only 2MB.  So we need to double the offset again | 
|  | * and zap two pdes instead of one. | 
|  | */ | 
|  | if (level == PT32_ROOT_LEVEL) { | 
|  | page_offset &= ~7; /* kill rounding error */ | 
|  | page_offset <<= 1; | 
|  | npte = 2; | 
|  | } | 
|  | quadrant = page_offset >> PAGE_SHIFT; | 
|  | page_offset &= ~PAGE_MASK; | 
|  | if (quadrant != sp->role.quadrant) | 
|  | continue; | 
|  | } | 
|  | local_flush = true; | 
|  | spte = &sp->spt[page_offset / sizeof(*spte)]; | 
|  | while (npte--) { | 
|  | entry = *spte; | 
|  | mmu_pte_write_zap_pte(vcpu, sp, spte); | 
|  | if (gentry && | 
|  | !((sp->role.word ^ vcpu->arch.mmu.base_role.word) | 
|  | & mask.word)) | 
|  | mmu_pte_write_new_pte(vcpu, sp, spte, &gentry); | 
|  | if (!remote_flush && need_remote_flush(entry, *spte)) | 
|  | remote_flush = true; | 
|  | ++spte; | 
|  | } | 
|  | } | 
|  | mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush); | 
|  | kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list); | 
|  | trace_kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE); | 
|  | spin_unlock(&vcpu->kvm->mmu_lock); | 
|  | } | 
|  |  | 
|  | int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva) | 
|  | { | 
|  | gpa_t gpa; | 
|  | int r; | 
|  |  | 
|  | if (vcpu->arch.mmu.direct_map) | 
|  | return 0; | 
|  |  | 
|  | gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL); | 
|  |  | 
|  | spin_lock(&vcpu->kvm->mmu_lock); | 
|  | r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT); | 
|  | spin_unlock(&vcpu->kvm->mmu_lock); | 
|  | return r; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt); | 
|  |  | 
|  | void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | LIST_HEAD(invalid_list); | 
|  |  | 
|  | while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES && | 
|  | !list_empty(&vcpu->kvm->arch.active_mmu_pages)) { | 
|  | struct kvm_mmu_page *sp; | 
|  |  | 
|  | sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev, | 
|  | struct kvm_mmu_page, link); | 
|  | kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list); | 
|  | kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list); | 
|  | ++vcpu->kvm->stat.mmu_recycled; | 
|  | } | 
|  | } | 
|  |  | 
|  | int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code, | 
|  | void *insn, int insn_len) | 
|  | { | 
|  | int r; | 
|  | enum emulation_result er; | 
|  |  | 
|  | r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false); | 
|  | if (r < 0) | 
|  | goto out; | 
|  |  | 
|  | if (!r) { | 
|  | r = 1; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | r = mmu_topup_memory_caches(vcpu); | 
|  | if (r) | 
|  | goto out; | 
|  |  | 
|  | er = x86_emulate_instruction(vcpu, cr2, 0, insn, insn_len); | 
|  |  | 
|  | switch (er) { | 
|  | case EMULATE_DONE: | 
|  | return 1; | 
|  | case EMULATE_DO_MMIO: | 
|  | ++vcpu->stat.mmio_exits; | 
|  | /* fall through */ | 
|  | case EMULATE_FAIL: | 
|  | return 0; | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  | out: | 
|  | return r; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_mmu_page_fault); | 
|  |  | 
|  | void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva) | 
|  | { | 
|  | vcpu->arch.mmu.invlpg(vcpu, gva); | 
|  | kvm_mmu_flush_tlb(vcpu); | 
|  | ++vcpu->stat.invlpg; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_mmu_invlpg); | 
|  |  | 
|  | void kvm_enable_tdp(void) | 
|  | { | 
|  | tdp_enabled = true; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_enable_tdp); | 
|  |  | 
|  | void kvm_disable_tdp(void) | 
|  | { | 
|  | tdp_enabled = false; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_disable_tdp); | 
|  |  | 
|  | static void free_mmu_pages(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | free_page((unsigned long)vcpu->arch.mmu.pae_root); | 
|  | if (vcpu->arch.mmu.lm_root != NULL) | 
|  | free_page((unsigned long)vcpu->arch.mmu.lm_root); | 
|  | } | 
|  |  | 
|  | static int alloc_mmu_pages(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct page *page; | 
|  | int i; | 
|  |  | 
|  | ASSERT(vcpu); | 
|  |  | 
|  | /* | 
|  | * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64. | 
|  | * Therefore we need to allocate shadow page tables in the first | 
|  | * 4GB of memory, which happens to fit the DMA32 zone. | 
|  | */ | 
|  | page = alloc_page(GFP_KERNEL | __GFP_DMA32); | 
|  | if (!page) | 
|  | return -ENOMEM; | 
|  |  | 
|  | vcpu->arch.mmu.pae_root = page_address(page); | 
|  | for (i = 0; i < 4; ++i) | 
|  | vcpu->arch.mmu.pae_root[i] = INVALID_PAGE; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int kvm_mmu_create(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | ASSERT(vcpu); | 
|  | ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa)); | 
|  |  | 
|  | return alloc_mmu_pages(vcpu); | 
|  | } | 
|  |  | 
|  | int kvm_mmu_setup(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | ASSERT(vcpu); | 
|  | ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa)); | 
|  |  | 
|  | return init_kvm_mmu(vcpu); | 
|  | } | 
|  |  | 
|  | void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot) | 
|  | { | 
|  | struct kvm_mmu_page *sp; | 
|  |  | 
|  | list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) { | 
|  | int i; | 
|  | u64 *pt; | 
|  |  | 
|  | if (!test_bit(slot, sp->slot_bitmap)) | 
|  | continue; | 
|  |  | 
|  | pt = sp->spt; | 
|  | for (i = 0; i < PT64_ENT_PER_PAGE; ++i) { | 
|  | if (!is_shadow_present_pte(pt[i]) || | 
|  | !is_last_spte(pt[i], sp->role.level)) | 
|  | continue; | 
|  |  | 
|  | if (is_large_pte(pt[i])) { | 
|  | drop_spte(kvm, &pt[i], | 
|  | shadow_trap_nonpresent_pte); | 
|  | --kvm->stat.lpages; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* avoid RMW */ | 
|  | if (is_writable_pte(pt[i])) | 
|  | update_spte(&pt[i], pt[i] & ~PT_WRITABLE_MASK); | 
|  | } | 
|  | } | 
|  | kvm_flush_remote_tlbs(kvm); | 
|  | } | 
|  |  | 
|  | void kvm_mmu_zap_all(struct kvm *kvm) | 
|  | { | 
|  | struct kvm_mmu_page *sp, *node; | 
|  | LIST_HEAD(invalid_list); | 
|  |  | 
|  | spin_lock(&kvm->mmu_lock); | 
|  | restart: | 
|  | list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) | 
|  | if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list)) | 
|  | goto restart; | 
|  |  | 
|  | kvm_mmu_commit_zap_page(kvm, &invalid_list); | 
|  | spin_unlock(&kvm->mmu_lock); | 
|  | } | 
|  |  | 
|  | static int kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm, | 
|  | struct list_head *invalid_list) | 
|  | { | 
|  | struct kvm_mmu_page *page; | 
|  |  | 
|  | page = container_of(kvm->arch.active_mmu_pages.prev, | 
|  | struct kvm_mmu_page, link); | 
|  | return kvm_mmu_prepare_zap_page(kvm, page, invalid_list); | 
|  | } | 
|  |  | 
|  | static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc) | 
|  | { | 
|  | struct kvm *kvm; | 
|  | struct kvm *kvm_freed = NULL; | 
|  | int nr_to_scan = sc->nr_to_scan; | 
|  |  | 
|  | if (nr_to_scan == 0) | 
|  | goto out; | 
|  |  | 
|  | raw_spin_lock(&kvm_lock); | 
|  |  | 
|  | list_for_each_entry(kvm, &vm_list, vm_list) { | 
|  | int idx, freed_pages; | 
|  | LIST_HEAD(invalid_list); | 
|  |  | 
|  | idx = srcu_read_lock(&kvm->srcu); | 
|  | spin_lock(&kvm->mmu_lock); | 
|  | if (!kvm_freed && nr_to_scan > 0 && | 
|  | kvm->arch.n_used_mmu_pages > 0) { | 
|  | freed_pages = kvm_mmu_remove_some_alloc_mmu_pages(kvm, | 
|  | &invalid_list); | 
|  | kvm_freed = kvm; | 
|  | } | 
|  | nr_to_scan--; | 
|  |  | 
|  | kvm_mmu_commit_zap_page(kvm, &invalid_list); | 
|  | spin_unlock(&kvm->mmu_lock); | 
|  | srcu_read_unlock(&kvm->srcu, idx); | 
|  | } | 
|  | if (kvm_freed) | 
|  | list_move_tail(&kvm_freed->vm_list, &vm_list); | 
|  |  | 
|  | raw_spin_unlock(&kvm_lock); | 
|  |  | 
|  | out: | 
|  | return percpu_counter_read_positive(&kvm_total_used_mmu_pages); | 
|  | } | 
|  |  | 
|  | static struct shrinker mmu_shrinker = { | 
|  | .shrink = mmu_shrink, | 
|  | .seeks = DEFAULT_SEEKS * 10, | 
|  | }; | 
|  |  | 
|  | static void mmu_destroy_caches(void) | 
|  | { | 
|  | if (pte_chain_cache) | 
|  | kmem_cache_destroy(pte_chain_cache); | 
|  | if (rmap_desc_cache) | 
|  | kmem_cache_destroy(rmap_desc_cache); | 
|  | if (mmu_page_header_cache) | 
|  | kmem_cache_destroy(mmu_page_header_cache); | 
|  | } | 
|  |  | 
|  | int kvm_mmu_module_init(void) | 
|  | { | 
|  | pte_chain_cache = kmem_cache_create("kvm_pte_chain", | 
|  | sizeof(struct kvm_pte_chain), | 
|  | 0, 0, NULL); | 
|  | if (!pte_chain_cache) | 
|  | goto nomem; | 
|  | rmap_desc_cache = kmem_cache_create("kvm_rmap_desc", | 
|  | sizeof(struct kvm_rmap_desc), | 
|  | 0, 0, NULL); | 
|  | if (!rmap_desc_cache) | 
|  | goto nomem; | 
|  |  | 
|  | mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header", | 
|  | sizeof(struct kvm_mmu_page), | 
|  | 0, 0, NULL); | 
|  | if (!mmu_page_header_cache) | 
|  | goto nomem; | 
|  |  | 
|  | if (percpu_counter_init(&kvm_total_used_mmu_pages, 0)) | 
|  | goto nomem; | 
|  |  | 
|  | register_shrinker(&mmu_shrinker); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | nomem: | 
|  | mmu_destroy_caches(); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Caculate mmu pages needed for kvm. | 
|  | */ | 
|  | unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm) | 
|  | { | 
|  | int i; | 
|  | unsigned int nr_mmu_pages; | 
|  | unsigned int  nr_pages = 0; | 
|  | struct kvm_memslots *slots; | 
|  |  | 
|  | slots = kvm_memslots(kvm); | 
|  |  | 
|  | for (i = 0; i < slots->nmemslots; i++) | 
|  | nr_pages += slots->memslots[i].npages; | 
|  |  | 
|  | nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000; | 
|  | nr_mmu_pages = max(nr_mmu_pages, | 
|  | (unsigned int) KVM_MIN_ALLOC_MMU_PAGES); | 
|  |  | 
|  | return nr_mmu_pages; | 
|  | } | 
|  |  | 
|  | static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer, | 
|  | unsigned len) | 
|  | { | 
|  | if (len > buffer->len) | 
|  | return NULL; | 
|  | return buffer->ptr; | 
|  | } | 
|  |  | 
|  | static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer, | 
|  | unsigned len) | 
|  | { | 
|  | void *ret; | 
|  |  | 
|  | ret = pv_mmu_peek_buffer(buffer, len); | 
|  | if (!ret) | 
|  | return ret; | 
|  | buffer->ptr += len; | 
|  | buffer->len -= len; | 
|  | buffer->processed += len; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu, | 
|  | gpa_t addr, gpa_t value) | 
|  | { | 
|  | int bytes = 8; | 
|  | int r; | 
|  |  | 
|  | if (!is_long_mode(vcpu) && !is_pae(vcpu)) | 
|  | bytes = 4; | 
|  |  | 
|  | r = mmu_topup_memory_caches(vcpu); | 
|  | if (r) | 
|  | return r; | 
|  |  | 
|  | if (!emulator_write_phys(vcpu, addr, &value, bytes)) | 
|  | return -EFAULT; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | (void)kvm_set_cr3(vcpu, kvm_read_cr3(vcpu)); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr) | 
|  | { | 
|  | spin_lock(&vcpu->kvm->mmu_lock); | 
|  | mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT); | 
|  | spin_unlock(&vcpu->kvm->mmu_lock); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu, | 
|  | struct kvm_pv_mmu_op_buffer *buffer) | 
|  | { | 
|  | struct kvm_mmu_op_header *header; | 
|  |  | 
|  | header = pv_mmu_peek_buffer(buffer, sizeof *header); | 
|  | if (!header) | 
|  | return 0; | 
|  | switch (header->op) { | 
|  | case KVM_MMU_OP_WRITE_PTE: { | 
|  | struct kvm_mmu_op_write_pte *wpte; | 
|  |  | 
|  | wpte = pv_mmu_read_buffer(buffer, sizeof *wpte); | 
|  | if (!wpte) | 
|  | return 0; | 
|  | return kvm_pv_mmu_write(vcpu, wpte->pte_phys, | 
|  | wpte->pte_val); | 
|  | } | 
|  | case KVM_MMU_OP_FLUSH_TLB: { | 
|  | struct kvm_mmu_op_flush_tlb *ftlb; | 
|  |  | 
|  | ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb); | 
|  | if (!ftlb) | 
|  | return 0; | 
|  | return kvm_pv_mmu_flush_tlb(vcpu); | 
|  | } | 
|  | case KVM_MMU_OP_RELEASE_PT: { | 
|  | struct kvm_mmu_op_release_pt *rpt; | 
|  |  | 
|  | rpt = pv_mmu_read_buffer(buffer, sizeof *rpt); | 
|  | if (!rpt) | 
|  | return 0; | 
|  | return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys); | 
|  | } | 
|  | default: return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes, | 
|  | gpa_t addr, unsigned long *ret) | 
|  | { | 
|  | int r; | 
|  | struct kvm_pv_mmu_op_buffer *buffer = &vcpu->arch.mmu_op_buffer; | 
|  |  | 
|  | buffer->ptr = buffer->buf; | 
|  | buffer->len = min_t(unsigned long, bytes, sizeof buffer->buf); | 
|  | buffer->processed = 0; | 
|  |  | 
|  | r = kvm_read_guest(vcpu->kvm, addr, buffer->buf, buffer->len); | 
|  | if (r) | 
|  | goto out; | 
|  |  | 
|  | while (buffer->len) { | 
|  | r = kvm_pv_mmu_op_one(vcpu, buffer); | 
|  | if (r < 0) | 
|  | goto out; | 
|  | if (r == 0) | 
|  | break; | 
|  | } | 
|  |  | 
|  | r = 1; | 
|  | out: | 
|  | *ret = buffer->processed; | 
|  | return r; | 
|  | } | 
|  |  | 
|  | int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4]) | 
|  | { | 
|  | struct kvm_shadow_walk_iterator iterator; | 
|  | int nr_sptes = 0; | 
|  |  | 
|  | spin_lock(&vcpu->kvm->mmu_lock); | 
|  | for_each_shadow_entry(vcpu, addr, iterator) { | 
|  | sptes[iterator.level-1] = *iterator.sptep; | 
|  | nr_sptes++; | 
|  | if (!is_shadow_present_pte(*iterator.sptep)) | 
|  | break; | 
|  | } | 
|  | spin_unlock(&vcpu->kvm->mmu_lock); | 
|  |  | 
|  | return nr_sptes; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy); | 
|  |  | 
|  | void kvm_mmu_destroy(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | ASSERT(vcpu); | 
|  |  | 
|  | destroy_kvm_mmu(vcpu); | 
|  | free_mmu_pages(vcpu); | 
|  | mmu_free_memory_caches(vcpu); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_KVM_MMU_AUDIT | 
|  | #include "mmu_audit.c" | 
|  | #else | 
|  | static void mmu_audit_disable(void) { } | 
|  | #endif | 
|  |  | 
|  | void kvm_mmu_module_exit(void) | 
|  | { | 
|  | mmu_destroy_caches(); | 
|  | percpu_counter_destroy(&kvm_total_used_mmu_pages); | 
|  | unregister_shrinker(&mmu_shrinker); | 
|  | mmu_audit_disable(); | 
|  | } |