|  |  | 
|  | /* | 
|  | * Linux driver for Disk-On-Chip Millennium | 
|  | * (c) 1999 Machine Vision Holdings, Inc. | 
|  | * (c) 1999, 2000 David Woodhouse <dwmw2@infradead.org> | 
|  | */ | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/module.h> | 
|  | #include <asm/errno.h> | 
|  | #include <asm/io.h> | 
|  | #include <asm/uaccess.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/bitops.h> | 
|  |  | 
|  | #include <linux/mtd/mtd.h> | 
|  | #include <linux/mtd/nand.h> | 
|  | #include <linux/mtd/doc2000.h> | 
|  |  | 
|  | /* #define ECC_DEBUG */ | 
|  |  | 
|  | /* I have no idea why some DoC chips can not use memcop_form|to_io(). | 
|  | * This may be due to the different revisions of the ASIC controller built-in or | 
|  | * simplily a QA/Bug issue. Who knows ?? If you have trouble, please uncomment | 
|  | * this:*/ | 
|  | #undef USE_MEMCPY | 
|  |  | 
|  | static int doc_read(struct mtd_info *mtd, loff_t from, size_t len, | 
|  | size_t *retlen, u_char *buf); | 
|  | static int doc_write(struct mtd_info *mtd, loff_t to, size_t len, | 
|  | size_t *retlen, const u_char *buf); | 
|  | static int doc_read_oob(struct mtd_info *mtd, loff_t ofs, | 
|  | struct mtd_oob_ops *ops); | 
|  | static int doc_write_oob(struct mtd_info *mtd, loff_t ofs, | 
|  | struct mtd_oob_ops *ops); | 
|  | static int doc_erase (struct mtd_info *mtd, struct erase_info *instr); | 
|  |  | 
|  | static struct mtd_info *docmillist = NULL; | 
|  |  | 
|  | /* Perform the required delay cycles by reading from the NOP register */ | 
|  | static void DoC_Delay(void __iomem * docptr, unsigned short cycles) | 
|  | { | 
|  | volatile char dummy; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < cycles; i++) | 
|  | dummy = ReadDOC(docptr, NOP); | 
|  | } | 
|  |  | 
|  | /* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */ | 
|  | static int _DoC_WaitReady(void __iomem * docptr) | 
|  | { | 
|  | unsigned short c = 0xffff; | 
|  |  | 
|  | DEBUG(MTD_DEBUG_LEVEL3, | 
|  | "_DoC_WaitReady called for out-of-line wait\n"); | 
|  |  | 
|  | /* Out-of-line routine to wait for chip response */ | 
|  | while (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B) && --c) | 
|  | ; | 
|  |  | 
|  | if (c == 0) | 
|  | DEBUG(MTD_DEBUG_LEVEL2, "_DoC_WaitReady timed out.\n"); | 
|  |  | 
|  | return (c == 0); | 
|  | } | 
|  |  | 
|  | static inline int DoC_WaitReady(void __iomem * docptr) | 
|  | { | 
|  | /* This is inline, to optimise the common case, where it's ready instantly */ | 
|  | int ret = 0; | 
|  |  | 
|  | /* 4 read form NOP register should be issued in prior to the read from CDSNControl | 
|  | see Software Requirement 11.4 item 2. */ | 
|  | DoC_Delay(docptr, 4); | 
|  |  | 
|  | if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) | 
|  | /* Call the out-of-line routine to wait */ | 
|  | ret = _DoC_WaitReady(docptr); | 
|  |  | 
|  | /* issue 2 read from NOP register after reading from CDSNControl register | 
|  | see Software Requirement 11.4 item 2. */ | 
|  | DoC_Delay(docptr, 2); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* DoC_Command: Send a flash command to the flash chip through the CDSN IO register | 
|  | with the internal pipeline. Each of 4 delay cycles (read from the NOP register) is | 
|  | required after writing to CDSN Control register, see Software Requirement 11.4 item 3. */ | 
|  |  | 
|  | static void DoC_Command(void __iomem * docptr, unsigned char command, | 
|  | unsigned char xtraflags) | 
|  | { | 
|  | /* Assert the CLE (Command Latch Enable) line to the flash chip */ | 
|  | WriteDOC(xtraflags | CDSN_CTRL_CLE | CDSN_CTRL_CE, docptr, CDSNControl); | 
|  | DoC_Delay(docptr, 4); | 
|  |  | 
|  | /* Send the command */ | 
|  | WriteDOC(command, docptr, Mil_CDSN_IO); | 
|  | WriteDOC(0x00, docptr, WritePipeTerm); | 
|  |  | 
|  | /* Lower the CLE line */ | 
|  | WriteDOC(xtraflags | CDSN_CTRL_CE, docptr, CDSNControl); | 
|  | DoC_Delay(docptr, 4); | 
|  | } | 
|  |  | 
|  | /* DoC_Address: Set the current address for the flash chip through the CDSN IO register | 
|  | with the internal pipeline. Each of 4 delay cycles (read from the NOP register) is | 
|  | required after writing to CDSN Control register, see Software Requirement 11.4 item 3. */ | 
|  |  | 
|  | static inline void DoC_Address(void __iomem * docptr, int numbytes, unsigned long ofs, | 
|  | unsigned char xtraflags1, unsigned char xtraflags2) | 
|  | { | 
|  | /* Assert the ALE (Address Latch Enable) line to the flash chip */ | 
|  | WriteDOC(xtraflags1 | CDSN_CTRL_ALE | CDSN_CTRL_CE, docptr, CDSNControl); | 
|  | DoC_Delay(docptr, 4); | 
|  |  | 
|  | /* Send the address */ | 
|  | switch (numbytes) | 
|  | { | 
|  | case 1: | 
|  | /* Send single byte, bits 0-7. */ | 
|  | WriteDOC(ofs & 0xff, docptr, Mil_CDSN_IO); | 
|  | WriteDOC(0x00, docptr, WritePipeTerm); | 
|  | break; | 
|  | case 2: | 
|  | /* Send bits 9-16 followed by 17-23 */ | 
|  | WriteDOC((ofs >> 9)  & 0xff, docptr, Mil_CDSN_IO); | 
|  | WriteDOC((ofs >> 17) & 0xff, docptr, Mil_CDSN_IO); | 
|  | WriteDOC(0x00, docptr, WritePipeTerm); | 
|  | break; | 
|  | case 3: | 
|  | /* Send 0-7, 9-16, then 17-23 */ | 
|  | WriteDOC(ofs & 0xff, docptr, Mil_CDSN_IO); | 
|  | WriteDOC((ofs >> 9)  & 0xff, docptr, Mil_CDSN_IO); | 
|  | WriteDOC((ofs >> 17) & 0xff, docptr, Mil_CDSN_IO); | 
|  | WriteDOC(0x00, docptr, WritePipeTerm); | 
|  | break; | 
|  | default: | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Lower the ALE line */ | 
|  | WriteDOC(xtraflags1 | xtraflags2 | CDSN_CTRL_CE, docptr, CDSNControl); | 
|  | DoC_Delay(docptr, 4); | 
|  | } | 
|  |  | 
|  | /* DoC_SelectChip: Select a given flash chip within the current floor */ | 
|  | static int DoC_SelectChip(void __iomem * docptr, int chip) | 
|  | { | 
|  | /* Select the individual flash chip requested */ | 
|  | WriteDOC(chip, docptr, CDSNDeviceSelect); | 
|  | DoC_Delay(docptr, 4); | 
|  |  | 
|  | /* Wait for it to be ready */ | 
|  | return DoC_WaitReady(docptr); | 
|  | } | 
|  |  | 
|  | /* DoC_SelectFloor: Select a given floor (bank of flash chips) */ | 
|  | static int DoC_SelectFloor(void __iomem * docptr, int floor) | 
|  | { | 
|  | /* Select the floor (bank) of chips required */ | 
|  | WriteDOC(floor, docptr, FloorSelect); | 
|  |  | 
|  | /* Wait for the chip to be ready */ | 
|  | return DoC_WaitReady(docptr); | 
|  | } | 
|  |  | 
|  | /* DoC_IdentChip: Identify a given NAND chip given {floor,chip} */ | 
|  | static int DoC_IdentChip(struct DiskOnChip *doc, int floor, int chip) | 
|  | { | 
|  | int mfr, id, i, j; | 
|  | volatile char dummy; | 
|  |  | 
|  | /* Page in the required floor/chip | 
|  | FIXME: is this supported by Millennium ?? */ | 
|  | DoC_SelectFloor(doc->virtadr, floor); | 
|  | DoC_SelectChip(doc->virtadr, chip); | 
|  |  | 
|  | /* Reset the chip, see Software Requirement 11.4 item 1. */ | 
|  | DoC_Command(doc->virtadr, NAND_CMD_RESET, CDSN_CTRL_WP); | 
|  | DoC_WaitReady(doc->virtadr); | 
|  |  | 
|  | /* Read the NAND chip ID: 1. Send ReadID command */ | 
|  | DoC_Command(doc->virtadr, NAND_CMD_READID, CDSN_CTRL_WP); | 
|  |  | 
|  | /* Read the NAND chip ID: 2. Send address byte zero */ | 
|  | DoC_Address(doc->virtadr, 1, 0x00, CDSN_CTRL_WP, 0x00); | 
|  |  | 
|  | /* Read the manufacturer and device id codes of the flash device through | 
|  | CDSN IO register see Software Requirement 11.4 item 5.*/ | 
|  | dummy = ReadDOC(doc->virtadr, ReadPipeInit); | 
|  | DoC_Delay(doc->virtadr, 2); | 
|  | mfr = ReadDOC(doc->virtadr, Mil_CDSN_IO); | 
|  |  | 
|  | DoC_Delay(doc->virtadr, 2); | 
|  | id  = ReadDOC(doc->virtadr, Mil_CDSN_IO); | 
|  | dummy = ReadDOC(doc->virtadr, LastDataRead); | 
|  |  | 
|  | /* No response - return failure */ | 
|  | if (mfr == 0xff || mfr == 0) | 
|  | return 0; | 
|  |  | 
|  | /* FIXME: to deal with multi-flash on multi-Millennium case more carefully */ | 
|  | for (i = 0; nand_flash_ids[i].name != NULL; i++) { | 
|  | if ( id == nand_flash_ids[i].id) { | 
|  | /* Try to identify manufacturer */ | 
|  | for (j = 0; nand_manuf_ids[j].id != 0x0; j++) { | 
|  | if (nand_manuf_ids[j].id == mfr) | 
|  | break; | 
|  | } | 
|  | printk(KERN_INFO "Flash chip found: Manufacturer ID: %2.2X, " | 
|  | "Chip ID: %2.2X (%s:%s)\n", | 
|  | mfr, id, nand_manuf_ids[j].name, nand_flash_ids[i].name); | 
|  | doc->mfr = mfr; | 
|  | doc->id = id; | 
|  | doc->chipshift = ffs((nand_flash_ids[i].chipsize << 20)) - 1; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (nand_flash_ids[i].name == NULL) | 
|  | return 0; | 
|  | else | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* DoC_ScanChips: Find all NAND chips present in a DiskOnChip, and identify them */ | 
|  | static void DoC_ScanChips(struct DiskOnChip *this) | 
|  | { | 
|  | int floor, chip; | 
|  | int numchips[MAX_FLOORS_MIL]; | 
|  | int ret; | 
|  |  | 
|  | this->numchips = 0; | 
|  | this->mfr = 0; | 
|  | this->id = 0; | 
|  |  | 
|  | /* For each floor, find the number of valid chips it contains */ | 
|  | for (floor = 0,ret = 1; floor < MAX_FLOORS_MIL; floor++) { | 
|  | numchips[floor] = 0; | 
|  | for (chip = 0; chip < MAX_CHIPS_MIL && ret != 0; chip++) { | 
|  | ret = DoC_IdentChip(this, floor, chip); | 
|  | if (ret) { | 
|  | numchips[floor]++; | 
|  | this->numchips++; | 
|  | } | 
|  | } | 
|  | } | 
|  | /* If there are none at all that we recognise, bail */ | 
|  | if (!this->numchips) { | 
|  | printk("No flash chips recognised.\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Allocate an array to hold the information for each chip */ | 
|  | this->chips = kmalloc(sizeof(struct Nand) * this->numchips, GFP_KERNEL); | 
|  | if (!this->chips){ | 
|  | printk("No memory for allocating chip info structures\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Fill out the chip array with {floor, chipno} for each | 
|  | * detected chip in the device. */ | 
|  | for (floor = 0, ret = 0; floor < MAX_FLOORS_MIL; floor++) { | 
|  | for (chip = 0 ; chip < numchips[floor] ; chip++) { | 
|  | this->chips[ret].floor = floor; | 
|  | this->chips[ret].chip = chip; | 
|  | this->chips[ret].curadr = 0; | 
|  | this->chips[ret].curmode = 0x50; | 
|  | ret++; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Calculate and print the total size of the device */ | 
|  | this->totlen = this->numchips * (1 << this->chipshift); | 
|  | printk(KERN_INFO "%d flash chips found. Total DiskOnChip size: %ld MiB\n", | 
|  | this->numchips ,this->totlen >> 20); | 
|  | } | 
|  |  | 
|  | static int DoCMil_is_alias(struct DiskOnChip *doc1, struct DiskOnChip *doc2) | 
|  | { | 
|  | int tmp1, tmp2, retval; | 
|  |  | 
|  | if (doc1->physadr == doc2->physadr) | 
|  | return 1; | 
|  |  | 
|  | /* Use the alias resolution register which was set aside for this | 
|  | * purpose. If it's value is the same on both chips, they might | 
|  | * be the same chip, and we write to one and check for a change in | 
|  | * the other. It's unclear if this register is usuable in the | 
|  | * DoC 2000 (it's in the Millenium docs), but it seems to work. */ | 
|  | tmp1 = ReadDOC(doc1->virtadr, AliasResolution); | 
|  | tmp2 = ReadDOC(doc2->virtadr, AliasResolution); | 
|  | if (tmp1 != tmp2) | 
|  | return 0; | 
|  |  | 
|  | WriteDOC((tmp1+1) % 0xff, doc1->virtadr, AliasResolution); | 
|  | tmp2 = ReadDOC(doc2->virtadr, AliasResolution); | 
|  | if (tmp2 == (tmp1+1) % 0xff) | 
|  | retval = 1; | 
|  | else | 
|  | retval = 0; | 
|  |  | 
|  | /* Restore register contents.  May not be necessary, but do it just to | 
|  | * be safe. */ | 
|  | WriteDOC(tmp1, doc1->virtadr, AliasResolution); | 
|  |  | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /* This routine is found from the docprobe code by symbol_get(), | 
|  | * which will bump the use count of this module. */ | 
|  | void DoCMil_init(struct mtd_info *mtd) | 
|  | { | 
|  | struct DiskOnChip *this = mtd->priv; | 
|  | struct DiskOnChip *old = NULL; | 
|  |  | 
|  | /* We must avoid being called twice for the same device. */ | 
|  | if (docmillist) | 
|  | old = docmillist->priv; | 
|  |  | 
|  | while (old) { | 
|  | if (DoCMil_is_alias(this, old)) { | 
|  | printk(KERN_NOTICE "Ignoring DiskOnChip Millennium at " | 
|  | "0x%lX - already configured\n", this->physadr); | 
|  | iounmap(this->virtadr); | 
|  | kfree(mtd); | 
|  | return; | 
|  | } | 
|  | if (old->nextdoc) | 
|  | old = old->nextdoc->priv; | 
|  | else | 
|  | old = NULL; | 
|  | } | 
|  |  | 
|  | mtd->name = "DiskOnChip Millennium"; | 
|  | printk(KERN_NOTICE "DiskOnChip Millennium found at address 0x%lX\n", | 
|  | this->physadr); | 
|  |  | 
|  | mtd->type = MTD_NANDFLASH; | 
|  | mtd->flags = MTD_CAP_NANDFLASH; | 
|  | mtd->size = 0; | 
|  |  | 
|  | /* FIXME: erase size is not always 8KiB */ | 
|  | mtd->erasesize = 0x2000; | 
|  |  | 
|  | mtd->writesize = 512; | 
|  | mtd->oobsize = 16; | 
|  | mtd->owner = THIS_MODULE; | 
|  | mtd->erase = doc_erase; | 
|  | mtd->point = NULL; | 
|  | mtd->unpoint = NULL; | 
|  | mtd->read = doc_read; | 
|  | mtd->write = doc_write; | 
|  | mtd->read_oob = doc_read_oob; | 
|  | mtd->write_oob = doc_write_oob; | 
|  | mtd->sync = NULL; | 
|  |  | 
|  | this->totlen = 0; | 
|  | this->numchips = 0; | 
|  | this->curfloor = -1; | 
|  | this->curchip = -1; | 
|  |  | 
|  | /* Ident all the chips present. */ | 
|  | DoC_ScanChips(this); | 
|  |  | 
|  | if (!this->totlen) { | 
|  | kfree(mtd); | 
|  | iounmap(this->virtadr); | 
|  | } else { | 
|  | this->nextdoc = docmillist; | 
|  | docmillist = mtd; | 
|  | mtd->size  = this->totlen; | 
|  | mtd_device_register(mtd, NULL, 0); | 
|  | return; | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(DoCMil_init); | 
|  |  | 
|  | static int doc_read (struct mtd_info *mtd, loff_t from, size_t len, | 
|  | size_t *retlen, u_char *buf) | 
|  | { | 
|  | int i, ret; | 
|  | volatile char dummy; | 
|  | unsigned char syndrome[6], eccbuf[6]; | 
|  | struct DiskOnChip *this = mtd->priv; | 
|  | void __iomem *docptr = this->virtadr; | 
|  | struct Nand *mychip = &this->chips[from >> (this->chipshift)]; | 
|  |  | 
|  | /* Don't allow read past end of device */ | 
|  | if (from >= this->totlen) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* Don't allow a single read to cross a 512-byte block boundary */ | 
|  | if (from + len > ((from | 0x1ff) + 1)) | 
|  | len = ((from | 0x1ff) + 1) - from; | 
|  |  | 
|  | /* Find the chip which is to be used and select it */ | 
|  | if (this->curfloor != mychip->floor) { | 
|  | DoC_SelectFloor(docptr, mychip->floor); | 
|  | DoC_SelectChip(docptr, mychip->chip); | 
|  | } else if (this->curchip != mychip->chip) { | 
|  | DoC_SelectChip(docptr, mychip->chip); | 
|  | } | 
|  | this->curfloor = mychip->floor; | 
|  | this->curchip = mychip->chip; | 
|  |  | 
|  | /* issue the Read0 or Read1 command depend on which half of the page | 
|  | we are accessing. Polling the Flash Ready bit after issue 3 bytes | 
|  | address in Sequence Read Mode, see Software Requirement 11.4 item 1.*/ | 
|  | DoC_Command(docptr, (from >> 8) & 1, CDSN_CTRL_WP); | 
|  | DoC_Address(docptr, 3, from, CDSN_CTRL_WP, 0x00); | 
|  | DoC_WaitReady(docptr); | 
|  |  | 
|  | /* init the ECC engine, see Reed-Solomon EDC/ECC 11.1 .*/ | 
|  | WriteDOC (DOC_ECC_RESET, docptr, ECCConf); | 
|  | WriteDOC (DOC_ECC_EN, docptr, ECCConf); | 
|  |  | 
|  | /* Read the data via the internal pipeline through CDSN IO register, | 
|  | see Pipelined Read Operations 11.3 */ | 
|  | dummy = ReadDOC(docptr, ReadPipeInit); | 
|  | #ifndef USE_MEMCPY | 
|  | for (i = 0; i < len-1; i++) { | 
|  | /* N.B. you have to increase the source address in this way or the | 
|  | ECC logic will not work properly */ | 
|  | buf[i] = ReadDOC(docptr, Mil_CDSN_IO + (i & 0xff)); | 
|  | } | 
|  | #else | 
|  | memcpy_fromio(buf, docptr + DoC_Mil_CDSN_IO, len - 1); | 
|  | #endif | 
|  | buf[len - 1] = ReadDOC(docptr, LastDataRead); | 
|  |  | 
|  | /* Let the caller know we completed it */ | 
|  | *retlen = len; | 
|  | ret = 0; | 
|  |  | 
|  | /* Read the ECC data from Spare Data Area, | 
|  | see Reed-Solomon EDC/ECC 11.1 */ | 
|  | dummy = ReadDOC(docptr, ReadPipeInit); | 
|  | #ifndef USE_MEMCPY | 
|  | for (i = 0; i < 5; i++) { | 
|  | /* N.B. you have to increase the source address in this way or the | 
|  | ECC logic will not work properly */ | 
|  | eccbuf[i] = ReadDOC(docptr, Mil_CDSN_IO + i); | 
|  | } | 
|  | #else | 
|  | memcpy_fromio(eccbuf, docptr + DoC_Mil_CDSN_IO, 5); | 
|  | #endif | 
|  | eccbuf[5] = ReadDOC(docptr, LastDataRead); | 
|  |  | 
|  | /* Flush the pipeline */ | 
|  | dummy = ReadDOC(docptr, ECCConf); | 
|  | dummy = ReadDOC(docptr, ECCConf); | 
|  |  | 
|  | /* Check the ECC Status */ | 
|  | if (ReadDOC(docptr, ECCConf) & 0x80) { | 
|  | int nb_errors; | 
|  | /* There was an ECC error */ | 
|  | #ifdef ECC_DEBUG | 
|  | printk("DiskOnChip ECC Error: Read at %lx\n", (long)from); | 
|  | #endif | 
|  | /* Read the ECC syndrom through the DiskOnChip ECC logic. | 
|  | These syndrome will be all ZERO when there is no error */ | 
|  | for (i = 0; i < 6; i++) { | 
|  | syndrome[i] = ReadDOC(docptr, ECCSyndrome0 + i); | 
|  | } | 
|  | nb_errors = doc_decode_ecc(buf, syndrome); | 
|  | #ifdef ECC_DEBUG | 
|  | printk("ECC Errors corrected: %x\n", nb_errors); | 
|  | #endif | 
|  | if (nb_errors < 0) { | 
|  | /* We return error, but have actually done the read. Not that | 
|  | this can be told to user-space, via sys_read(), but at least | 
|  | MTD-aware stuff can know about it by checking *retlen */ | 
|  | ret = -EIO; | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef PSYCHO_DEBUG | 
|  | printk("ECC DATA at %lx: %2.2X %2.2X %2.2X %2.2X %2.2X %2.2X\n", | 
|  | (long)from, eccbuf[0], eccbuf[1], eccbuf[2], eccbuf[3], | 
|  | eccbuf[4], eccbuf[5]); | 
|  | #endif | 
|  |  | 
|  | /* disable the ECC engine */ | 
|  | WriteDOC(DOC_ECC_DIS, docptr , ECCConf); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int doc_write (struct mtd_info *mtd, loff_t to, size_t len, | 
|  | size_t *retlen, const u_char *buf) | 
|  | { | 
|  | int i,ret = 0; | 
|  | char eccbuf[6]; | 
|  | volatile char dummy; | 
|  | struct DiskOnChip *this = mtd->priv; | 
|  | void __iomem *docptr = this->virtadr; | 
|  | struct Nand *mychip = &this->chips[to >> (this->chipshift)]; | 
|  |  | 
|  | /* Don't allow write past end of device */ | 
|  | if (to >= this->totlen) | 
|  | return -EINVAL; | 
|  |  | 
|  | #if 0 | 
|  | /* Don't allow a single write to cross a 512-byte block boundary */ | 
|  | if (to + len > ( (to | 0x1ff) + 1)) | 
|  | len = ((to | 0x1ff) + 1) - to; | 
|  | #else | 
|  | /* Don't allow writes which aren't exactly one block */ | 
|  | if (to & 0x1ff || len != 0x200) | 
|  | return -EINVAL; | 
|  | #endif | 
|  |  | 
|  | /* Find the chip which is to be used and select it */ | 
|  | if (this->curfloor != mychip->floor) { | 
|  | DoC_SelectFloor(docptr, mychip->floor); | 
|  | DoC_SelectChip(docptr, mychip->chip); | 
|  | } else if (this->curchip != mychip->chip) { | 
|  | DoC_SelectChip(docptr, mychip->chip); | 
|  | } | 
|  | this->curfloor = mychip->floor; | 
|  | this->curchip = mychip->chip; | 
|  |  | 
|  | /* Reset the chip, see Software Requirement 11.4 item 1. */ | 
|  | DoC_Command(docptr, NAND_CMD_RESET, 0x00); | 
|  | DoC_WaitReady(docptr); | 
|  | /* Set device to main plane of flash */ | 
|  | DoC_Command(docptr, NAND_CMD_READ0, 0x00); | 
|  |  | 
|  | /* issue the Serial Data In command to initial the Page Program process */ | 
|  | DoC_Command(docptr, NAND_CMD_SEQIN, 0x00); | 
|  | DoC_Address(docptr, 3, to, 0x00, 0x00); | 
|  | DoC_WaitReady(docptr); | 
|  |  | 
|  | /* init the ECC engine, see Reed-Solomon EDC/ECC 11.1 .*/ | 
|  | WriteDOC (DOC_ECC_RESET, docptr, ECCConf); | 
|  | WriteDOC (DOC_ECC_EN | DOC_ECC_RW, docptr, ECCConf); | 
|  |  | 
|  | /* Write the data via the internal pipeline through CDSN IO register, | 
|  | see Pipelined Write Operations 11.2 */ | 
|  | #ifndef USE_MEMCPY | 
|  | for (i = 0; i < len; i++) { | 
|  | /* N.B. you have to increase the source address in this way or the | 
|  | ECC logic will not work properly */ | 
|  | WriteDOC(buf[i], docptr, Mil_CDSN_IO + i); | 
|  | } | 
|  | #else | 
|  | memcpy_toio(docptr + DoC_Mil_CDSN_IO, buf, len); | 
|  | #endif | 
|  | WriteDOC(0x00, docptr, WritePipeTerm); | 
|  |  | 
|  | /* Write ECC data to flash, the ECC info is generated by the DiskOnChip ECC logic | 
|  | see Reed-Solomon EDC/ECC 11.1 */ | 
|  | WriteDOC(0, docptr, NOP); | 
|  | WriteDOC(0, docptr, NOP); | 
|  | WriteDOC(0, docptr, NOP); | 
|  |  | 
|  | /* Read the ECC data through the DiskOnChip ECC logic */ | 
|  | for (i = 0; i < 6; i++) { | 
|  | eccbuf[i] = ReadDOC(docptr, ECCSyndrome0 + i); | 
|  | } | 
|  |  | 
|  | /* ignore the ECC engine */ | 
|  | WriteDOC(DOC_ECC_DIS, docptr , ECCConf); | 
|  |  | 
|  | #ifndef USE_MEMCPY | 
|  | /* Write the ECC data to flash */ | 
|  | for (i = 0; i < 6; i++) { | 
|  | /* N.B. you have to increase the source address in this way or the | 
|  | ECC logic will not work properly */ | 
|  | WriteDOC(eccbuf[i], docptr, Mil_CDSN_IO + i); | 
|  | } | 
|  | #else | 
|  | memcpy_toio(docptr + DoC_Mil_CDSN_IO, eccbuf, 6); | 
|  | #endif | 
|  |  | 
|  | /* write the block status BLOCK_USED (0x5555) at the end of ECC data | 
|  | FIXME: this is only a hack for programming the IPL area for LinuxBIOS | 
|  | and should be replace with proper codes in user space utilities */ | 
|  | WriteDOC(0x55, docptr, Mil_CDSN_IO); | 
|  | WriteDOC(0x55, docptr, Mil_CDSN_IO + 1); | 
|  |  | 
|  | WriteDOC(0x00, docptr, WritePipeTerm); | 
|  |  | 
|  | #ifdef PSYCHO_DEBUG | 
|  | printk("OOB data at %lx is %2.2X %2.2X %2.2X %2.2X %2.2X %2.2X\n", | 
|  | (long) to, eccbuf[0], eccbuf[1], eccbuf[2], eccbuf[3], | 
|  | eccbuf[4], eccbuf[5]); | 
|  | #endif | 
|  |  | 
|  | /* Commit the Page Program command and wait for ready | 
|  | see Software Requirement 11.4 item 1.*/ | 
|  | DoC_Command(docptr, NAND_CMD_PAGEPROG, 0x00); | 
|  | DoC_WaitReady(docptr); | 
|  |  | 
|  | /* Read the status of the flash device through CDSN IO register | 
|  | see Software Requirement 11.4 item 5.*/ | 
|  | DoC_Command(docptr, NAND_CMD_STATUS, CDSN_CTRL_WP); | 
|  | dummy = ReadDOC(docptr, ReadPipeInit); | 
|  | DoC_Delay(docptr, 2); | 
|  | if (ReadDOC(docptr, Mil_CDSN_IO) & 1) { | 
|  | printk("Error programming flash\n"); | 
|  | /* Error in programming | 
|  | FIXME: implement Bad Block Replacement (in nftl.c ??) */ | 
|  | *retlen = 0; | 
|  | ret = -EIO; | 
|  | } | 
|  | dummy = ReadDOC(docptr, LastDataRead); | 
|  |  | 
|  | /* Let the caller know we completed it */ | 
|  | *retlen = len; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int doc_read_oob(struct mtd_info *mtd, loff_t ofs, | 
|  | struct mtd_oob_ops *ops) | 
|  | { | 
|  | #ifndef USE_MEMCPY | 
|  | int i; | 
|  | #endif | 
|  | volatile char dummy; | 
|  | struct DiskOnChip *this = mtd->priv; | 
|  | void __iomem *docptr = this->virtadr; | 
|  | struct Nand *mychip = &this->chips[ofs >> this->chipshift]; | 
|  | uint8_t *buf = ops->oobbuf; | 
|  | size_t len = ops->len; | 
|  |  | 
|  | BUG_ON(ops->mode != MTD_OOB_PLACE); | 
|  |  | 
|  | ofs += ops->ooboffs; | 
|  |  | 
|  | /* Find the chip which is to be used and select it */ | 
|  | if (this->curfloor != mychip->floor) { | 
|  | DoC_SelectFloor(docptr, mychip->floor); | 
|  | DoC_SelectChip(docptr, mychip->chip); | 
|  | } else if (this->curchip != mychip->chip) { | 
|  | DoC_SelectChip(docptr, mychip->chip); | 
|  | } | 
|  | this->curfloor = mychip->floor; | 
|  | this->curchip = mychip->chip; | 
|  |  | 
|  | /* disable the ECC engine */ | 
|  | WriteDOC (DOC_ECC_RESET, docptr, ECCConf); | 
|  | WriteDOC (DOC_ECC_DIS, docptr, ECCConf); | 
|  |  | 
|  | /* issue the Read2 command to set the pointer to the Spare Data Area. | 
|  | Polling the Flash Ready bit after issue 3 bytes address in | 
|  | Sequence Read Mode, see Software Requirement 11.4 item 1.*/ | 
|  | DoC_Command(docptr, NAND_CMD_READOOB, CDSN_CTRL_WP); | 
|  | DoC_Address(docptr, 3, ofs, CDSN_CTRL_WP, 0x00); | 
|  | DoC_WaitReady(docptr); | 
|  |  | 
|  | /* Read the data out via the internal pipeline through CDSN IO register, | 
|  | see Pipelined Read Operations 11.3 */ | 
|  | dummy = ReadDOC(docptr, ReadPipeInit); | 
|  | #ifndef USE_MEMCPY | 
|  | for (i = 0; i < len-1; i++) { | 
|  | /* N.B. you have to increase the source address in this way or the | 
|  | ECC logic will not work properly */ | 
|  | buf[i] = ReadDOC(docptr, Mil_CDSN_IO + i); | 
|  | } | 
|  | #else | 
|  | memcpy_fromio(buf, docptr + DoC_Mil_CDSN_IO, len - 1); | 
|  | #endif | 
|  | buf[len - 1] = ReadDOC(docptr, LastDataRead); | 
|  |  | 
|  | ops->retlen = len; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int doc_write_oob(struct mtd_info *mtd, loff_t ofs, | 
|  | struct mtd_oob_ops *ops) | 
|  | { | 
|  | #ifndef USE_MEMCPY | 
|  | int i; | 
|  | #endif | 
|  | volatile char dummy; | 
|  | int ret = 0; | 
|  | struct DiskOnChip *this = mtd->priv; | 
|  | void __iomem *docptr = this->virtadr; | 
|  | struct Nand *mychip = &this->chips[ofs >> this->chipshift]; | 
|  | uint8_t *buf = ops->oobbuf; | 
|  | size_t len = ops->len; | 
|  |  | 
|  | BUG_ON(ops->mode != MTD_OOB_PLACE); | 
|  |  | 
|  | ofs += ops->ooboffs; | 
|  |  | 
|  | /* Find the chip which is to be used and select it */ | 
|  | if (this->curfloor != mychip->floor) { | 
|  | DoC_SelectFloor(docptr, mychip->floor); | 
|  | DoC_SelectChip(docptr, mychip->chip); | 
|  | } else if (this->curchip != mychip->chip) { | 
|  | DoC_SelectChip(docptr, mychip->chip); | 
|  | } | 
|  | this->curfloor = mychip->floor; | 
|  | this->curchip = mychip->chip; | 
|  |  | 
|  | /* disable the ECC engine */ | 
|  | WriteDOC (DOC_ECC_RESET, docptr, ECCConf); | 
|  | WriteDOC (DOC_ECC_DIS, docptr, ECCConf); | 
|  |  | 
|  | /* Reset the chip, see Software Requirement 11.4 item 1. */ | 
|  | DoC_Command(docptr, NAND_CMD_RESET, CDSN_CTRL_WP); | 
|  | DoC_WaitReady(docptr); | 
|  | /* issue the Read2 command to set the pointer to the Spare Data Area. */ | 
|  | DoC_Command(docptr, NAND_CMD_READOOB, CDSN_CTRL_WP); | 
|  |  | 
|  | /* issue the Serial Data In command to initial the Page Program process */ | 
|  | DoC_Command(docptr, NAND_CMD_SEQIN, 0x00); | 
|  | DoC_Address(docptr, 3, ofs, 0x00, 0x00); | 
|  |  | 
|  | /* Write the data via the internal pipeline through CDSN IO register, | 
|  | see Pipelined Write Operations 11.2 */ | 
|  | #ifndef USE_MEMCPY | 
|  | for (i = 0; i < len; i++) { | 
|  | /* N.B. you have to increase the source address in this way or the | 
|  | ECC logic will not work properly */ | 
|  | WriteDOC(buf[i], docptr, Mil_CDSN_IO + i); | 
|  | } | 
|  | #else | 
|  | memcpy_toio(docptr + DoC_Mil_CDSN_IO, buf, len); | 
|  | #endif | 
|  | WriteDOC(0x00, docptr, WritePipeTerm); | 
|  |  | 
|  | /* Commit the Page Program command and wait for ready | 
|  | see Software Requirement 11.4 item 1.*/ | 
|  | DoC_Command(docptr, NAND_CMD_PAGEPROG, 0x00); | 
|  | DoC_WaitReady(docptr); | 
|  |  | 
|  | /* Read the status of the flash device through CDSN IO register | 
|  | see Software Requirement 11.4 item 5.*/ | 
|  | DoC_Command(docptr, NAND_CMD_STATUS, 0x00); | 
|  | dummy = ReadDOC(docptr, ReadPipeInit); | 
|  | DoC_Delay(docptr, 2); | 
|  | if (ReadDOC(docptr, Mil_CDSN_IO) & 1) { | 
|  | printk("Error programming oob data\n"); | 
|  | /* FIXME: implement Bad Block Replacement (in nftl.c ??) */ | 
|  | ops->retlen = 0; | 
|  | ret = -EIO; | 
|  | } | 
|  | dummy = ReadDOC(docptr, LastDataRead); | 
|  |  | 
|  | ops->retlen = len; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int doc_erase (struct mtd_info *mtd, struct erase_info *instr) | 
|  | { | 
|  | volatile char dummy; | 
|  | struct DiskOnChip *this = mtd->priv; | 
|  | __u32 ofs = instr->addr; | 
|  | __u32 len = instr->len; | 
|  | void __iomem *docptr = this->virtadr; | 
|  | struct Nand *mychip = &this->chips[ofs >> this->chipshift]; | 
|  |  | 
|  | if (len != mtd->erasesize) | 
|  | printk(KERN_WARNING "Erase not right size (%x != %x)n", | 
|  | len, mtd->erasesize); | 
|  |  | 
|  | /* Find the chip which is to be used and select it */ | 
|  | if (this->curfloor != mychip->floor) { | 
|  | DoC_SelectFloor(docptr, mychip->floor); | 
|  | DoC_SelectChip(docptr, mychip->chip); | 
|  | } else if (this->curchip != mychip->chip) { | 
|  | DoC_SelectChip(docptr, mychip->chip); | 
|  | } | 
|  | this->curfloor = mychip->floor; | 
|  | this->curchip = mychip->chip; | 
|  |  | 
|  | instr->state = MTD_ERASE_PENDING; | 
|  |  | 
|  | /* issue the Erase Setup command */ | 
|  | DoC_Command(docptr, NAND_CMD_ERASE1, 0x00); | 
|  | DoC_Address(docptr, 2, ofs, 0x00, 0x00); | 
|  |  | 
|  | /* Commit the Erase Start command and wait for ready | 
|  | see Software Requirement 11.4 item 1.*/ | 
|  | DoC_Command(docptr, NAND_CMD_ERASE2, 0x00); | 
|  | DoC_WaitReady(docptr); | 
|  |  | 
|  | instr->state = MTD_ERASING; | 
|  |  | 
|  | /* Read the status of the flash device through CDSN IO register | 
|  | see Software Requirement 11.4 item 5. | 
|  | FIXME: it seems that we are not wait long enough, some blocks are not | 
|  | erased fully */ | 
|  | DoC_Command(docptr, NAND_CMD_STATUS, CDSN_CTRL_WP); | 
|  | dummy = ReadDOC(docptr, ReadPipeInit); | 
|  | DoC_Delay(docptr, 2); | 
|  | if (ReadDOC(docptr, Mil_CDSN_IO) & 1) { | 
|  | printk("Error Erasing at 0x%x\n", ofs); | 
|  | /* There was an error | 
|  | FIXME: implement Bad Block Replacement (in nftl.c ??) */ | 
|  | instr->state = MTD_ERASE_FAILED; | 
|  | } else | 
|  | instr->state = MTD_ERASE_DONE; | 
|  | dummy = ReadDOC(docptr, LastDataRead); | 
|  |  | 
|  | mtd_erase_callback(instr); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /**************************************************************************** | 
|  | * | 
|  | * Module stuff | 
|  | * | 
|  | ****************************************************************************/ | 
|  |  | 
|  | static void __exit cleanup_doc2001(void) | 
|  | { | 
|  | struct mtd_info *mtd; | 
|  | struct DiskOnChip *this; | 
|  |  | 
|  | while ((mtd=docmillist)) { | 
|  | this = mtd->priv; | 
|  | docmillist = this->nextdoc; | 
|  |  | 
|  | mtd_device_unregister(mtd); | 
|  |  | 
|  | iounmap(this->virtadr); | 
|  | kfree(this->chips); | 
|  | kfree(mtd); | 
|  | } | 
|  | } | 
|  |  | 
|  | module_exit(cleanup_doc2001); | 
|  |  | 
|  | MODULE_LICENSE("GPL"); | 
|  | MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org> et al."); | 
|  | MODULE_DESCRIPTION("Alternative driver for DiskOnChip Millennium"); |