|  |  | 
|  | /* | 
|  | * MTD driver for the 28F160F3 Flash Memory (non-CFI) on LART. | 
|  | * | 
|  | * Author: Abraham vd Merwe <abraham@2d3d.co.za> | 
|  | * | 
|  | * Copyright (c) 2001, 2d3D, Inc. | 
|  | * | 
|  | * This code is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License version 2 as | 
|  | * published by the Free Software Foundation. | 
|  | * | 
|  | * References: | 
|  | * | 
|  | *    [1] 3 Volt Fast Boot Block Flash Memory" Intel Datasheet | 
|  | *           - Order Number: 290644-005 | 
|  | *           - January 2000 | 
|  | * | 
|  | *    [2] MTD internal API documentation | 
|  | *           - http://www.linux-mtd.infradead.org/ | 
|  | * | 
|  | * Limitations: | 
|  | * | 
|  | *    Even though this driver is written for 3 Volt Fast Boot | 
|  | *    Block Flash Memory, it is rather specific to LART. With | 
|  | *    Minor modifications, notably the without data/address line | 
|  | *    mangling and different bus settings, etc. it should be | 
|  | *    trivial to adapt to other platforms. | 
|  | * | 
|  | *    If somebody would sponsor me a different board, I'll | 
|  | *    adapt the driver (: | 
|  | */ | 
|  |  | 
|  | /* debugging */ | 
|  | //#define LART_DEBUG | 
|  |  | 
|  | /* partition support */ | 
|  | #define HAVE_PARTITIONS | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/mtd/mtd.h> | 
|  | #ifdef HAVE_PARTITIONS | 
|  | #include <linux/mtd/partitions.h> | 
|  | #endif | 
|  |  | 
|  | #ifndef CONFIG_SA1100_LART | 
|  | #error This is for LART architecture only | 
|  | #endif | 
|  |  | 
|  | static char module_name[] = "lart"; | 
|  |  | 
|  | /* | 
|  | * These values is specific to 28Fxxxx3 flash memory. | 
|  | * See section 2.3.1 in "3 Volt Fast Boot Block Flash Memory" Intel Datasheet | 
|  | */ | 
|  | #define FLASH_BLOCKSIZE_PARAM		(4096 * BUSWIDTH) | 
|  | #define FLASH_NUMBLOCKS_16m_PARAM	8 | 
|  | #define FLASH_NUMBLOCKS_8m_PARAM	8 | 
|  |  | 
|  | /* | 
|  | * These values is specific to 28Fxxxx3 flash memory. | 
|  | * See section 2.3.2 in "3 Volt Fast Boot Block Flash Memory" Intel Datasheet | 
|  | */ | 
|  | #define FLASH_BLOCKSIZE_MAIN		(32768 * BUSWIDTH) | 
|  | #define FLASH_NUMBLOCKS_16m_MAIN	31 | 
|  | #define FLASH_NUMBLOCKS_8m_MAIN		15 | 
|  |  | 
|  | /* | 
|  | * These values are specific to LART | 
|  | */ | 
|  |  | 
|  | /* general */ | 
|  | #define BUSWIDTH			4				/* don't change this - a lot of the code _will_ break if you change this */ | 
|  | #define FLASH_OFFSET		0xe8000000		/* see linux/arch/arm/mach-sa1100/lart.c */ | 
|  |  | 
|  | /* blob */ | 
|  | #define NUM_BLOB_BLOCKS		FLASH_NUMBLOCKS_16m_PARAM | 
|  | #define BLOB_START			0x00000000 | 
|  | #define BLOB_LEN			(NUM_BLOB_BLOCKS * FLASH_BLOCKSIZE_PARAM) | 
|  |  | 
|  | /* kernel */ | 
|  | #define NUM_KERNEL_BLOCKS	7 | 
|  | #define KERNEL_START		(BLOB_START + BLOB_LEN) | 
|  | #define KERNEL_LEN			(NUM_KERNEL_BLOCKS * FLASH_BLOCKSIZE_MAIN) | 
|  |  | 
|  | /* initial ramdisk */ | 
|  | #define NUM_INITRD_BLOCKS	24 | 
|  | #define INITRD_START		(KERNEL_START + KERNEL_LEN) | 
|  | #define INITRD_LEN			(NUM_INITRD_BLOCKS * FLASH_BLOCKSIZE_MAIN) | 
|  |  | 
|  | /* | 
|  | * See section 4.0 in "3 Volt Fast Boot Block Flash Memory" Intel Datasheet | 
|  | */ | 
|  | #define READ_ARRAY			0x00FF00FF		/* Read Array/Reset */ | 
|  | #define READ_ID_CODES		0x00900090		/* Read Identifier Codes */ | 
|  | #define ERASE_SETUP			0x00200020		/* Block Erase */ | 
|  | #define ERASE_CONFIRM		0x00D000D0		/* Block Erase and Program Resume */ | 
|  | #define PGM_SETUP			0x00400040		/* Program */ | 
|  | #define STATUS_READ			0x00700070		/* Read Status Register */ | 
|  | #define STATUS_CLEAR		0x00500050		/* Clear Status Register */ | 
|  | #define STATUS_BUSY			0x00800080		/* Write State Machine Status (WSMS) */ | 
|  | #define STATUS_ERASE_ERR	0x00200020		/* Erase Status (ES) */ | 
|  | #define STATUS_PGM_ERR		0x00100010		/* Program Status (PS) */ | 
|  |  | 
|  | /* | 
|  | * See section 4.2 in "3 Volt Fast Boot Block Flash Memory" Intel Datasheet | 
|  | */ | 
|  | #define FLASH_MANUFACTURER			0x00890089 | 
|  | #define FLASH_DEVICE_8mbit_TOP		0x88f188f1 | 
|  | #define FLASH_DEVICE_8mbit_BOTTOM	0x88f288f2 | 
|  | #define FLASH_DEVICE_16mbit_TOP		0x88f388f3 | 
|  | #define FLASH_DEVICE_16mbit_BOTTOM	0x88f488f4 | 
|  |  | 
|  | /***************************************************************************************************/ | 
|  |  | 
|  | /* | 
|  | * The data line mapping on LART is as follows: | 
|  | * | 
|  | *   	 U2  CPU |   U3  CPU | 
|  | *   	 ------------------- | 
|  | *   	  0  20  |   0   12 | 
|  | *   	  1  22  |   1   14 | 
|  | *   	  2  19  |   2   11 | 
|  | *   	  3  17  |   3   9 | 
|  | *   	  4  24  |   4   0 | 
|  | *   	  5  26  |   5   2 | 
|  | *   	  6  31  |   6   7 | 
|  | *   	  7  29  |   7   5 | 
|  | *   	  8  21  |   8   13 | 
|  | *   	  9  23  |   9   15 | 
|  | *   	  10 18  |   10  10 | 
|  | *   	  11 16  |   11  8 | 
|  | *   	  12 25  |   12  1 | 
|  | *   	  13 27  |   13  3 | 
|  | *   	  14 30  |   14  6 | 
|  | *   	  15 28  |   15  4 | 
|  | */ | 
|  |  | 
|  | /* Mangle data (x) */ | 
|  | #define DATA_TO_FLASH(x)				\ | 
|  | (									\ | 
|  | (((x) & 0x08009000) >> 11)	+	\ | 
|  | (((x) & 0x00002000) >> 10)	+	\ | 
|  | (((x) & 0x04004000) >> 8)	+	\ | 
|  | (((x) & 0x00000010) >> 4)	+	\ | 
|  | (((x) & 0x91000820) >> 3)	+	\ | 
|  | (((x) & 0x22080080) >> 2)	+	\ | 
|  | ((x) & 0x40000400)			+	\ | 
|  | (((x) & 0x00040040) << 1)	+	\ | 
|  | (((x) & 0x00110000) << 4)	+	\ | 
|  | (((x) & 0x00220100) << 5)	+	\ | 
|  | (((x) & 0x00800208) << 6)	+	\ | 
|  | (((x) & 0x00400004) << 9)	+	\ | 
|  | (((x) & 0x00000001) << 12)	+	\ | 
|  | (((x) & 0x00000002) << 13)		\ | 
|  | ) | 
|  |  | 
|  | /* Unmangle data (x) */ | 
|  | #define FLASH_TO_DATA(x)				\ | 
|  | (									\ | 
|  | (((x) & 0x00010012) << 11)	+	\ | 
|  | (((x) & 0x00000008) << 10)	+	\ | 
|  | (((x) & 0x00040040) << 8)	+	\ | 
|  | (((x) & 0x00000001) << 4)	+	\ | 
|  | (((x) & 0x12200104) << 3)	+	\ | 
|  | (((x) & 0x08820020) << 2)	+	\ | 
|  | ((x) & 0x40000400)			+	\ | 
|  | (((x) & 0x00080080) >> 1)	+	\ | 
|  | (((x) & 0x01100000) >> 4)	+	\ | 
|  | (((x) & 0x04402000) >> 5)	+	\ | 
|  | (((x) & 0x20008200) >> 6)	+	\ | 
|  | (((x) & 0x80000800) >> 9)	+	\ | 
|  | (((x) & 0x00001000) >> 12)	+	\ | 
|  | (((x) & 0x00004000) >> 13)		\ | 
|  | ) | 
|  |  | 
|  | /* | 
|  | * The address line mapping on LART is as follows: | 
|  | * | 
|  | *   	 U3  CPU |   U2  CPU | 
|  | *   	 ------------------- | 
|  | *   	  0  2   |   0   2 | 
|  | *   	  1  3   |   1   3 | 
|  | *   	  2  9   |   2   9 | 
|  | *   	  3  13  |   3   8 | 
|  | *   	  4  8   |   4   7 | 
|  | *   	  5  12  |   5   6 | 
|  | *   	  6  11  |   6   5 | 
|  | *   	  7  10  |   7   4 | 
|  | *   	  8  4   |   8   10 | 
|  | *   	  9  5   |   9   11 | 
|  | *   	 10  6   |   10  12 | 
|  | *   	 11  7   |   11  13 | 
|  | * | 
|  | *   	 BOOT BLOCK BOUNDARY | 
|  | * | 
|  | *   	 12  15  |   12  15 | 
|  | *   	 13  14  |   13  14 | 
|  | *   	 14  16  |   14  16 | 
|  | * | 
|  | *   	 MAIN BLOCK BOUNDARY | 
|  | * | 
|  | *   	 15  17  |   15  18 | 
|  | *   	 16  18  |   16  17 | 
|  | *   	 17  20  |   17  20 | 
|  | *   	 18  19  |   18  19 | 
|  | *   	 19  21  |   19  21 | 
|  | * | 
|  | * As we can see from above, the addresses aren't mangled across | 
|  | * block boundaries, so we don't need to worry about address | 
|  | * translations except for sending/reading commands during | 
|  | * initialization | 
|  | */ | 
|  |  | 
|  | /* Mangle address (x) on chip U2 */ | 
|  | #define ADDR_TO_FLASH_U2(x)				\ | 
|  | (									\ | 
|  | (((x) & 0x00000f00) >> 4)	+	\ | 
|  | (((x) & 0x00042000) << 1)	+	\ | 
|  | (((x) & 0x0009c003) << 2)	+	\ | 
|  | (((x) & 0x00021080) << 3)	+	\ | 
|  | (((x) & 0x00000010) << 4)	+	\ | 
|  | (((x) & 0x00000040) << 5)	+	\ | 
|  | (((x) & 0x00000024) << 7)	+	\ | 
|  | (((x) & 0x00000008) << 10)		\ | 
|  | ) | 
|  |  | 
|  | /* Unmangle address (x) on chip U2 */ | 
|  | #define FLASH_U2_TO_ADDR(x)				\ | 
|  | (									\ | 
|  | (((x) << 4) & 0x00000f00)	+	\ | 
|  | (((x) >> 1) & 0x00042000)	+	\ | 
|  | (((x) >> 2) & 0x0009c003)	+	\ | 
|  | (((x) >> 3) & 0x00021080)	+	\ | 
|  | (((x) >> 4) & 0x00000010)	+	\ | 
|  | (((x) >> 5) & 0x00000040)	+	\ | 
|  | (((x) >> 7) & 0x00000024)	+	\ | 
|  | (((x) >> 10) & 0x00000008)		\ | 
|  | ) | 
|  |  | 
|  | /* Mangle address (x) on chip U3 */ | 
|  | #define ADDR_TO_FLASH_U3(x)				\ | 
|  | (									\ | 
|  | (((x) & 0x00000080) >> 3)	+	\ | 
|  | (((x) & 0x00000040) >> 1)	+	\ | 
|  | (((x) & 0x00052020) << 1)	+	\ | 
|  | (((x) & 0x00084f03) << 2)	+	\ | 
|  | (((x) & 0x00029010) << 3)	+	\ | 
|  | (((x) & 0x00000008) << 5)	+	\ | 
|  | (((x) & 0x00000004) << 7)		\ | 
|  | ) | 
|  |  | 
|  | /* Unmangle address (x) on chip U3 */ | 
|  | #define FLASH_U3_TO_ADDR(x)				\ | 
|  | (									\ | 
|  | (((x) << 3) & 0x00000080)	+	\ | 
|  | (((x) << 1) & 0x00000040)	+	\ | 
|  | (((x) >> 1) & 0x00052020)	+	\ | 
|  | (((x) >> 2) & 0x00084f03)	+	\ | 
|  | (((x) >> 3) & 0x00029010)	+	\ | 
|  | (((x) >> 5) & 0x00000008)	+	\ | 
|  | (((x) >> 7) & 0x00000004)		\ | 
|  | ) | 
|  |  | 
|  | /***************************************************************************************************/ | 
|  |  | 
|  | static __u8 read8 (__u32 offset) | 
|  | { | 
|  | volatile __u8 *data = (__u8 *) (FLASH_OFFSET + offset); | 
|  | #ifdef LART_DEBUG | 
|  | printk (KERN_DEBUG "%s(): 0x%.8x -> 0x%.2x\n", __func__, offset, *data); | 
|  | #endif | 
|  | return (*data); | 
|  | } | 
|  |  | 
|  | static __u32 read32 (__u32 offset) | 
|  | { | 
|  | volatile __u32 *data = (__u32 *) (FLASH_OFFSET + offset); | 
|  | #ifdef LART_DEBUG | 
|  | printk (KERN_DEBUG "%s(): 0x%.8x -> 0x%.8x\n", __func__, offset, *data); | 
|  | #endif | 
|  | return (*data); | 
|  | } | 
|  |  | 
|  | static void write32 (__u32 x,__u32 offset) | 
|  | { | 
|  | volatile __u32 *data = (__u32 *) (FLASH_OFFSET + offset); | 
|  | *data = x; | 
|  | #ifdef LART_DEBUG | 
|  | printk (KERN_DEBUG "%s(): 0x%.8x <- 0x%.8x\n", __func__, offset, *data); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /***************************************************************************************************/ | 
|  |  | 
|  | /* | 
|  | * Probe for 16mbit flash memory on a LART board without doing | 
|  | * too much damage. Since we need to write 1 dword to memory, | 
|  | * we're f**cked if this happens to be DRAM since we can't | 
|  | * restore the memory (otherwise we might exit Read Array mode). | 
|  | * | 
|  | * Returns 1 if we found 16mbit flash memory on LART, 0 otherwise. | 
|  | */ | 
|  | static int flash_probe (void) | 
|  | { | 
|  | __u32 manufacturer,devtype; | 
|  |  | 
|  | /* setup "Read Identifier Codes" mode */ | 
|  | write32 (DATA_TO_FLASH (READ_ID_CODES),0x00000000); | 
|  |  | 
|  | /* probe U2. U2/U3 returns the same data since the first 3 | 
|  | * address lines is mangled in the same way */ | 
|  | manufacturer = FLASH_TO_DATA (read32 (ADDR_TO_FLASH_U2 (0x00000000))); | 
|  | devtype = FLASH_TO_DATA (read32 (ADDR_TO_FLASH_U2 (0x00000001))); | 
|  |  | 
|  | /* put the flash back into command mode */ | 
|  | write32 (DATA_TO_FLASH (READ_ARRAY),0x00000000); | 
|  |  | 
|  | return (manufacturer == FLASH_MANUFACTURER && (devtype == FLASH_DEVICE_16mbit_TOP || devtype == FLASH_DEVICE_16mbit_BOTTOM)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Erase one block of flash memory at offset ``offset'' which is any | 
|  | * address within the block which should be erased. | 
|  | * | 
|  | * Returns 1 if successful, 0 otherwise. | 
|  | */ | 
|  | static inline int erase_block (__u32 offset) | 
|  | { | 
|  | __u32 status; | 
|  |  | 
|  | #ifdef LART_DEBUG | 
|  | printk (KERN_DEBUG "%s(): 0x%.8x\n", __func__, offset); | 
|  | #endif | 
|  |  | 
|  | /* erase and confirm */ | 
|  | write32 (DATA_TO_FLASH (ERASE_SETUP),offset); | 
|  | write32 (DATA_TO_FLASH (ERASE_CONFIRM),offset); | 
|  |  | 
|  | /* wait for block erase to finish */ | 
|  | do | 
|  | { | 
|  | write32 (DATA_TO_FLASH (STATUS_READ),offset); | 
|  | status = FLASH_TO_DATA (read32 (offset)); | 
|  | } | 
|  | while ((~status & STATUS_BUSY) != 0); | 
|  |  | 
|  | /* put the flash back into command mode */ | 
|  | write32 (DATA_TO_FLASH (READ_ARRAY),offset); | 
|  |  | 
|  | /* was the erase successful? */ | 
|  | if ((status & STATUS_ERASE_ERR)) | 
|  | { | 
|  | printk (KERN_WARNING "%s: erase error at address 0x%.8x.\n",module_name,offset); | 
|  | return (0); | 
|  | } | 
|  |  | 
|  | return (1); | 
|  | } | 
|  |  | 
|  | static int flash_erase (struct mtd_info *mtd,struct erase_info *instr) | 
|  | { | 
|  | __u32 addr,len; | 
|  | int i,first; | 
|  |  | 
|  | #ifdef LART_DEBUG | 
|  | printk (KERN_DEBUG "%s(addr = 0x%.8x, len = %d)\n", __func__, instr->addr, instr->len); | 
|  | #endif | 
|  |  | 
|  | /* sanity checks */ | 
|  | if (instr->addr + instr->len > mtd->size) return (-EINVAL); | 
|  |  | 
|  | /* | 
|  | * check that both start and end of the requested erase are | 
|  | * aligned with the erasesize at the appropriate addresses. | 
|  | * | 
|  | * skip all erase regions which are ended before the start of | 
|  | * the requested erase. Actually, to save on the calculations, | 
|  | * we skip to the first erase region which starts after the | 
|  | * start of the requested erase, and then go back one. | 
|  | */ | 
|  | for (i = 0; i < mtd->numeraseregions && instr->addr >= mtd->eraseregions[i].offset; i++) ; | 
|  | i--; | 
|  |  | 
|  | /* | 
|  | * ok, now i is pointing at the erase region in which this | 
|  | * erase request starts. Check the start of the requested | 
|  | * erase range is aligned with the erase size which is in | 
|  | * effect here. | 
|  | */ | 
|  | if (i < 0 || (instr->addr & (mtd->eraseregions[i].erasesize - 1))) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* Remember the erase region we start on */ | 
|  | first = i; | 
|  |  | 
|  | /* | 
|  | * next, check that the end of the requested erase is aligned | 
|  | * with the erase region at that address. | 
|  | * | 
|  | * as before, drop back one to point at the region in which | 
|  | * the address actually falls | 
|  | */ | 
|  | for (; i < mtd->numeraseregions && instr->addr + instr->len >= mtd->eraseregions[i].offset; i++) ; | 
|  | i--; | 
|  |  | 
|  | /* is the end aligned on a block boundary? */ | 
|  | if (i < 0 || ((instr->addr + instr->len) & (mtd->eraseregions[i].erasesize - 1))) | 
|  | return -EINVAL; | 
|  |  | 
|  | addr = instr->addr; | 
|  | len = instr->len; | 
|  |  | 
|  | i = first; | 
|  |  | 
|  | /* now erase those blocks */ | 
|  | while (len) | 
|  | { | 
|  | if (!erase_block (addr)) | 
|  | { | 
|  | instr->state = MTD_ERASE_FAILED; | 
|  | return (-EIO); | 
|  | } | 
|  |  | 
|  | addr += mtd->eraseregions[i].erasesize; | 
|  | len -= mtd->eraseregions[i].erasesize; | 
|  |  | 
|  | if (addr == mtd->eraseregions[i].offset + (mtd->eraseregions[i].erasesize * mtd->eraseregions[i].numblocks)) i++; | 
|  | } | 
|  |  | 
|  | instr->state = MTD_ERASE_DONE; | 
|  | mtd_erase_callback(instr); | 
|  |  | 
|  | return (0); | 
|  | } | 
|  |  | 
|  | static int flash_read (struct mtd_info *mtd,loff_t from,size_t len,size_t *retlen,u_char *buf) | 
|  | { | 
|  | #ifdef LART_DEBUG | 
|  | printk (KERN_DEBUG "%s(from = 0x%.8x, len = %d)\n", __func__, (__u32)from, len); | 
|  | #endif | 
|  |  | 
|  | /* sanity checks */ | 
|  | if (!len) return (0); | 
|  | if (from + len > mtd->size) return (-EINVAL); | 
|  |  | 
|  | /* we always read len bytes */ | 
|  | *retlen = len; | 
|  |  | 
|  | /* first, we read bytes until we reach a dword boundary */ | 
|  | if (from & (BUSWIDTH - 1)) | 
|  | { | 
|  | int gap = BUSWIDTH - (from & (BUSWIDTH - 1)); | 
|  |  | 
|  | while (len && gap--) *buf++ = read8 (from++), len--; | 
|  | } | 
|  |  | 
|  | /* now we read dwords until we reach a non-dword boundary */ | 
|  | while (len >= BUSWIDTH) | 
|  | { | 
|  | *((__u32 *) buf) = read32 (from); | 
|  |  | 
|  | buf += BUSWIDTH; | 
|  | from += BUSWIDTH; | 
|  | len -= BUSWIDTH; | 
|  | } | 
|  |  | 
|  | /* top up the last unaligned bytes */ | 
|  | if (len & (BUSWIDTH - 1)) | 
|  | while (len--) *buf++ = read8 (from++); | 
|  |  | 
|  | return (0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Write one dword ``x'' to flash memory at offset ``offset''. ``offset'' | 
|  | * must be 32 bits, i.e. it must be on a dword boundary. | 
|  | * | 
|  | * Returns 1 if successful, 0 otherwise. | 
|  | */ | 
|  | static inline int write_dword (__u32 offset,__u32 x) | 
|  | { | 
|  | __u32 status; | 
|  |  | 
|  | #ifdef LART_DEBUG | 
|  | printk (KERN_DEBUG "%s(): 0x%.8x <- 0x%.8x\n", __func__, offset, x); | 
|  | #endif | 
|  |  | 
|  | /* setup writing */ | 
|  | write32 (DATA_TO_FLASH (PGM_SETUP),offset); | 
|  |  | 
|  | /* write the data */ | 
|  | write32 (x,offset); | 
|  |  | 
|  | /* wait for the write to finish */ | 
|  | do | 
|  | { | 
|  | write32 (DATA_TO_FLASH (STATUS_READ),offset); | 
|  | status = FLASH_TO_DATA (read32 (offset)); | 
|  | } | 
|  | while ((~status & STATUS_BUSY) != 0); | 
|  |  | 
|  | /* put the flash back into command mode */ | 
|  | write32 (DATA_TO_FLASH (READ_ARRAY),offset); | 
|  |  | 
|  | /* was the write successful? */ | 
|  | if ((status & STATUS_PGM_ERR) || read32 (offset) != x) | 
|  | { | 
|  | printk (KERN_WARNING "%s: write error at address 0x%.8x.\n",module_name,offset); | 
|  | return (0); | 
|  | } | 
|  |  | 
|  | return (1); | 
|  | } | 
|  |  | 
|  | static int flash_write (struct mtd_info *mtd,loff_t to,size_t len,size_t *retlen,const u_char *buf) | 
|  | { | 
|  | __u8 tmp[4]; | 
|  | int i,n; | 
|  |  | 
|  | #ifdef LART_DEBUG | 
|  | printk (KERN_DEBUG "%s(to = 0x%.8x, len = %d)\n", __func__, (__u32)to, len); | 
|  | #endif | 
|  |  | 
|  | *retlen = 0; | 
|  |  | 
|  | /* sanity checks */ | 
|  | if (!len) return (0); | 
|  | if (to + len > mtd->size) return (-EINVAL); | 
|  |  | 
|  | /* first, we write a 0xFF.... padded byte until we reach a dword boundary */ | 
|  | if (to & (BUSWIDTH - 1)) | 
|  | { | 
|  | __u32 aligned = to & ~(BUSWIDTH - 1); | 
|  | int gap = to - aligned; | 
|  |  | 
|  | i = n = 0; | 
|  |  | 
|  | while (gap--) tmp[i++] = 0xFF; | 
|  | while (len && i < BUSWIDTH) tmp[i++] = buf[n++], len--; | 
|  | while (i < BUSWIDTH) tmp[i++] = 0xFF; | 
|  |  | 
|  | if (!write_dword (aligned,*((__u32 *) tmp))) return (-EIO); | 
|  |  | 
|  | to += n; | 
|  | buf += n; | 
|  | *retlen += n; | 
|  | } | 
|  |  | 
|  | /* now we write dwords until we reach a non-dword boundary */ | 
|  | while (len >= BUSWIDTH) | 
|  | { | 
|  | if (!write_dword (to,*((__u32 *) buf))) return (-EIO); | 
|  |  | 
|  | to += BUSWIDTH; | 
|  | buf += BUSWIDTH; | 
|  | *retlen += BUSWIDTH; | 
|  | len -= BUSWIDTH; | 
|  | } | 
|  |  | 
|  | /* top up the last unaligned bytes, padded with 0xFF.... */ | 
|  | if (len & (BUSWIDTH - 1)) | 
|  | { | 
|  | i = n = 0; | 
|  |  | 
|  | while (len--) tmp[i++] = buf[n++]; | 
|  | while (i < BUSWIDTH) tmp[i++] = 0xFF; | 
|  |  | 
|  | if (!write_dword (to,*((__u32 *) tmp))) return (-EIO); | 
|  |  | 
|  | *retlen += n; | 
|  | } | 
|  |  | 
|  | return (0); | 
|  | } | 
|  |  | 
|  | /***************************************************************************************************/ | 
|  |  | 
|  | static struct mtd_info mtd; | 
|  |  | 
|  | static struct mtd_erase_region_info erase_regions[] = { | 
|  | /* parameter blocks */ | 
|  | { | 
|  | .offset		= 0x00000000, | 
|  | .erasesize	= FLASH_BLOCKSIZE_PARAM, | 
|  | .numblocks	= FLASH_NUMBLOCKS_16m_PARAM, | 
|  | }, | 
|  | /* main blocks */ | 
|  | { | 
|  | .offset	 = FLASH_BLOCKSIZE_PARAM * FLASH_NUMBLOCKS_16m_PARAM, | 
|  | .erasesize	= FLASH_BLOCKSIZE_MAIN, | 
|  | .numblocks	= FLASH_NUMBLOCKS_16m_MAIN, | 
|  | } | 
|  | }; | 
|  |  | 
|  | #ifdef HAVE_PARTITIONS | 
|  | static struct mtd_partition lart_partitions[] = { | 
|  | /* blob */ | 
|  | { | 
|  | .name	= "blob", | 
|  | .offset	= BLOB_START, | 
|  | .size	= BLOB_LEN, | 
|  | }, | 
|  | /* kernel */ | 
|  | { | 
|  | .name	= "kernel", | 
|  | .offset	= KERNEL_START,		/* MTDPART_OFS_APPEND */ | 
|  | .size	= KERNEL_LEN, | 
|  | }, | 
|  | /* initial ramdisk / file system */ | 
|  | { | 
|  | .name	= "file system", | 
|  | .offset	= INITRD_START,		/* MTDPART_OFS_APPEND */ | 
|  | .size	= INITRD_LEN,		/* MTDPART_SIZ_FULL */ | 
|  | } | 
|  | }; | 
|  | #endif | 
|  |  | 
|  | static int __init lart_flash_init (void) | 
|  | { | 
|  | int result; | 
|  | memset (&mtd,0,sizeof (mtd)); | 
|  | printk ("MTD driver for LART. Written by Abraham vd Merwe <abraham@2d3d.co.za>\n"); | 
|  | printk ("%s: Probing for 28F160x3 flash on LART...\n",module_name); | 
|  | if (!flash_probe ()) | 
|  | { | 
|  | printk (KERN_WARNING "%s: Found no LART compatible flash device\n",module_name); | 
|  | return (-ENXIO); | 
|  | } | 
|  | printk ("%s: This looks like a LART board to me.\n",module_name); | 
|  | mtd.name = module_name; | 
|  | mtd.type = MTD_NORFLASH; | 
|  | mtd.writesize = 1; | 
|  | mtd.flags = MTD_CAP_NORFLASH; | 
|  | mtd.size = FLASH_BLOCKSIZE_PARAM * FLASH_NUMBLOCKS_16m_PARAM + FLASH_BLOCKSIZE_MAIN * FLASH_NUMBLOCKS_16m_MAIN; | 
|  | mtd.erasesize = FLASH_BLOCKSIZE_MAIN; | 
|  | mtd.numeraseregions = ARRAY_SIZE(erase_regions); | 
|  | mtd.eraseregions = erase_regions; | 
|  | mtd.erase = flash_erase; | 
|  | mtd.read = flash_read; | 
|  | mtd.write = flash_write; | 
|  | mtd.owner = THIS_MODULE; | 
|  |  | 
|  | #ifdef LART_DEBUG | 
|  | printk (KERN_DEBUG | 
|  | "mtd.name = %s\n" | 
|  | "mtd.size = 0x%.8x (%uM)\n" | 
|  | "mtd.erasesize = 0x%.8x (%uK)\n" | 
|  | "mtd.numeraseregions = %d\n", | 
|  | mtd.name, | 
|  | mtd.size,mtd.size / (1024*1024), | 
|  | mtd.erasesize,mtd.erasesize / 1024, | 
|  | mtd.numeraseregions); | 
|  |  | 
|  | if (mtd.numeraseregions) | 
|  | for (result = 0; result < mtd.numeraseregions; result++) | 
|  | printk (KERN_DEBUG | 
|  | "\n\n" | 
|  | "mtd.eraseregions[%d].offset = 0x%.8x\n" | 
|  | "mtd.eraseregions[%d].erasesize = 0x%.8x (%uK)\n" | 
|  | "mtd.eraseregions[%d].numblocks = %d\n", | 
|  | result,mtd.eraseregions[result].offset, | 
|  | result,mtd.eraseregions[result].erasesize,mtd.eraseregions[result].erasesize / 1024, | 
|  | result,mtd.eraseregions[result].numblocks); | 
|  |  | 
|  | #ifdef HAVE_PARTITIONS | 
|  | printk ("\npartitions = %d\n", ARRAY_SIZE(lart_partitions)); | 
|  |  | 
|  | for (result = 0; result < ARRAY_SIZE(lart_partitions); result++) | 
|  | printk (KERN_DEBUG | 
|  | "\n\n" | 
|  | "lart_partitions[%d].name = %s\n" | 
|  | "lart_partitions[%d].offset = 0x%.8x\n" | 
|  | "lart_partitions[%d].size = 0x%.8x (%uK)\n", | 
|  | result,lart_partitions[result].name, | 
|  | result,lart_partitions[result].offset, | 
|  | result,lart_partitions[result].size,lart_partitions[result].size / 1024); | 
|  | #endif | 
|  | #endif | 
|  |  | 
|  | #ifndef HAVE_PARTITIONS | 
|  | result = mtd_device_register(&mtd, NULL, 0); | 
|  | #else | 
|  | result = mtd_device_register(&mtd, lart_partitions, | 
|  | ARRAY_SIZE(lart_partitions)); | 
|  | #endif | 
|  |  | 
|  | return (result); | 
|  | } | 
|  |  | 
|  | static void __exit lart_flash_exit (void) | 
|  | { | 
|  | #ifndef HAVE_PARTITIONS | 
|  | mtd_device_unregister(&mtd); | 
|  | #else | 
|  | mtd_device_unregister(&mtd); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | module_init (lart_flash_init); | 
|  | module_exit (lart_flash_exit); | 
|  |  | 
|  | MODULE_LICENSE("GPL"); | 
|  | MODULE_AUTHOR("Abraham vd Merwe <abraham@2d3d.co.za>"); | 
|  | MODULE_DESCRIPTION("MTD driver for Intel 28F160F3 on LART board"); |