|  | /* | 
|  | * Copyright (c) International Business Machines Corp., 2006 | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License as published by | 
|  | * the Free Software Foundation; either version 2 of the License, or | 
|  | * (at your option) any later version. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See | 
|  | * the GNU General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * along with this program; if not, write to the Free Software | 
|  | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA | 
|  | * | 
|  | * Author: Artem Bityutskiy (Битюцкий Артём) | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * UBI scanning sub-system. | 
|  | * | 
|  | * This sub-system is responsible for scanning the flash media, checking UBI | 
|  | * headers and providing complete information about the UBI flash image. | 
|  | * | 
|  | * The scanning information is represented by a &struct ubi_scan_info' object. | 
|  | * Information about found volumes is represented by &struct ubi_scan_volume | 
|  | * objects which are kept in volume RB-tree with root at the @volumes field. | 
|  | * The RB-tree is indexed by the volume ID. | 
|  | * | 
|  | * Scanned logical eraseblocks are represented by &struct ubi_scan_leb objects. | 
|  | * These objects are kept in per-volume RB-trees with the root at the | 
|  | * corresponding &struct ubi_scan_volume object. To put it differently, we keep | 
|  | * an RB-tree of per-volume objects and each of these objects is the root of | 
|  | * RB-tree of per-eraseblock objects. | 
|  | * | 
|  | * Corrupted physical eraseblocks are put to the @corr list, free physical | 
|  | * eraseblocks are put to the @free list and the physical eraseblock to be | 
|  | * erased are put to the @erase list. | 
|  | * | 
|  | * About corruptions | 
|  | * ~~~~~~~~~~~~~~~~~ | 
|  | * | 
|  | * UBI protects EC and VID headers with CRC-32 checksums, so it can detect | 
|  | * whether the headers are corrupted or not. Sometimes UBI also protects the | 
|  | * data with CRC-32, e.g., when it executes the atomic LEB change operation, or | 
|  | * when it moves the contents of a PEB for wear-leveling purposes. | 
|  | * | 
|  | * UBI tries to distinguish between 2 types of corruptions. | 
|  | * | 
|  | * 1. Corruptions caused by power cuts. These are expected corruptions and UBI | 
|  | * tries to handle them gracefully, without printing too many warnings and | 
|  | * error messages. The idea is that we do not lose important data in these case | 
|  | * - we may lose only the data which was being written to the media just before | 
|  | * the power cut happened, and the upper layers (e.g., UBIFS) are supposed to | 
|  | * handle such data losses (e.g., by using the FS journal). | 
|  | * | 
|  | * When UBI detects a corruption (CRC-32 mismatch) in a PEB, and it looks like | 
|  | * the reason is a power cut, UBI puts this PEB to the @erase list, and all | 
|  | * PEBs in the @erase list are scheduled for erasure later. | 
|  | * | 
|  | * 2. Unexpected corruptions which are not caused by power cuts. During | 
|  | * scanning, such PEBs are put to the @corr list and UBI preserves them. | 
|  | * Obviously, this lessens the amount of available PEBs, and if at some  point | 
|  | * UBI runs out of free PEBs, it switches to R/O mode. UBI also loudly informs | 
|  | * about such PEBs every time the MTD device is attached. | 
|  | * | 
|  | * However, it is difficult to reliably distinguish between these types of | 
|  | * corruptions and UBI's strategy is as follows. UBI assumes corruption type 2 | 
|  | * if the VID header is corrupted and the data area does not contain all 0xFFs, | 
|  | * and there were no bit-flips or integrity errors while reading the data area. | 
|  | * Otherwise UBI assumes corruption type 1. So the decision criteria are as | 
|  | * follows. | 
|  | *   o If the data area contains only 0xFFs, there is no data, and it is safe | 
|  | *     to just erase this PEB - this is corruption type 1. | 
|  | *   o If the data area has bit-flips or data integrity errors (ECC errors on | 
|  | *     NAND), it is probably a PEB which was being erased when power cut | 
|  | *     happened, so this is corruption type 1. However, this is just a guess, | 
|  | *     which might be wrong. | 
|  | *   o Otherwise this it corruption type 2. | 
|  | */ | 
|  |  | 
|  | #include <linux/err.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/crc32.h> | 
|  | #include <linux/math64.h> | 
|  | #include <linux/random.h> | 
|  | #include "ubi.h" | 
|  |  | 
|  | #ifdef CONFIG_MTD_UBI_DEBUG | 
|  | static int paranoid_check_si(struct ubi_device *ubi, struct ubi_scan_info *si); | 
|  | #else | 
|  | #define paranoid_check_si(ubi, si) 0 | 
|  | #endif | 
|  |  | 
|  | /* Temporary variables used during scanning */ | 
|  | static struct ubi_ec_hdr *ech; | 
|  | static struct ubi_vid_hdr *vidh; | 
|  |  | 
|  | /** | 
|  | * add_to_list - add physical eraseblock to a list. | 
|  | * @si: scanning information | 
|  | * @pnum: physical eraseblock number to add | 
|  | * @ec: erase counter of the physical eraseblock | 
|  | * @to_head: if not zero, add to the head of the list | 
|  | * @list: the list to add to | 
|  | * | 
|  | * This function adds physical eraseblock @pnum to free, erase, or alien lists. | 
|  | * If @to_head is not zero, PEB will be added to the head of the list, which | 
|  | * basically means it will be processed first later. E.g., we add corrupted | 
|  | * PEBs (corrupted due to power cuts) to the head of the erase list to make | 
|  | * sure we erase them first and get rid of corruptions ASAP. This function | 
|  | * returns zero in case of success and a negative error code in case of | 
|  | * failure. | 
|  | */ | 
|  | static int add_to_list(struct ubi_scan_info *si, int pnum, int ec, int to_head, | 
|  | struct list_head *list) | 
|  | { | 
|  | struct ubi_scan_leb *seb; | 
|  |  | 
|  | if (list == &si->free) { | 
|  | dbg_bld("add to free: PEB %d, EC %d", pnum, ec); | 
|  | } else if (list == &si->erase) { | 
|  | dbg_bld("add to erase: PEB %d, EC %d", pnum, ec); | 
|  | } else if (list == &si->alien) { | 
|  | dbg_bld("add to alien: PEB %d, EC %d", pnum, ec); | 
|  | si->alien_peb_count += 1; | 
|  | } else | 
|  | BUG(); | 
|  |  | 
|  | seb = kmem_cache_alloc(si->scan_leb_slab, GFP_KERNEL); | 
|  | if (!seb) | 
|  | return -ENOMEM; | 
|  |  | 
|  | seb->pnum = pnum; | 
|  | seb->ec = ec; | 
|  | if (to_head) | 
|  | list_add(&seb->u.list, list); | 
|  | else | 
|  | list_add_tail(&seb->u.list, list); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * add_corrupted - add a corrupted physical eraseblock. | 
|  | * @si: scanning information | 
|  | * @pnum: physical eraseblock number to add | 
|  | * @ec: erase counter of the physical eraseblock | 
|  | * | 
|  | * This function adds corrupted physical eraseblock @pnum to the 'corr' list. | 
|  | * The corruption was presumably not caused by a power cut. Returns zero in | 
|  | * case of success and a negative error code in case of failure. | 
|  | */ | 
|  | static int add_corrupted(struct ubi_scan_info *si, int pnum, int ec) | 
|  | { | 
|  | struct ubi_scan_leb *seb; | 
|  |  | 
|  | dbg_bld("add to corrupted: PEB %d, EC %d", pnum, ec); | 
|  |  | 
|  | seb = kmem_cache_alloc(si->scan_leb_slab, GFP_KERNEL); | 
|  | if (!seb) | 
|  | return -ENOMEM; | 
|  |  | 
|  | si->corr_peb_count += 1; | 
|  | seb->pnum = pnum; | 
|  | seb->ec = ec; | 
|  | list_add(&seb->u.list, &si->corr); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * validate_vid_hdr - check volume identifier header. | 
|  | * @vid_hdr: the volume identifier header to check | 
|  | * @sv: information about the volume this logical eraseblock belongs to | 
|  | * @pnum: physical eraseblock number the VID header came from | 
|  | * | 
|  | * This function checks that data stored in @vid_hdr is consistent. Returns | 
|  | * non-zero if an inconsistency was found and zero if not. | 
|  | * | 
|  | * Note, UBI does sanity check of everything it reads from the flash media. | 
|  | * Most of the checks are done in the I/O sub-system. Here we check that the | 
|  | * information in the VID header is consistent to the information in other VID | 
|  | * headers of the same volume. | 
|  | */ | 
|  | static int validate_vid_hdr(const struct ubi_vid_hdr *vid_hdr, | 
|  | const struct ubi_scan_volume *sv, int pnum) | 
|  | { | 
|  | int vol_type = vid_hdr->vol_type; | 
|  | int vol_id = be32_to_cpu(vid_hdr->vol_id); | 
|  | int used_ebs = be32_to_cpu(vid_hdr->used_ebs); | 
|  | int data_pad = be32_to_cpu(vid_hdr->data_pad); | 
|  |  | 
|  | if (sv->leb_count != 0) { | 
|  | int sv_vol_type; | 
|  |  | 
|  | /* | 
|  | * This is not the first logical eraseblock belonging to this | 
|  | * volume. Ensure that the data in its VID header is consistent | 
|  | * to the data in previous logical eraseblock headers. | 
|  | */ | 
|  |  | 
|  | if (vol_id != sv->vol_id) { | 
|  | dbg_err("inconsistent vol_id"); | 
|  | goto bad; | 
|  | } | 
|  |  | 
|  | if (sv->vol_type == UBI_STATIC_VOLUME) | 
|  | sv_vol_type = UBI_VID_STATIC; | 
|  | else | 
|  | sv_vol_type = UBI_VID_DYNAMIC; | 
|  |  | 
|  | if (vol_type != sv_vol_type) { | 
|  | dbg_err("inconsistent vol_type"); | 
|  | goto bad; | 
|  | } | 
|  |  | 
|  | if (used_ebs != sv->used_ebs) { | 
|  | dbg_err("inconsistent used_ebs"); | 
|  | goto bad; | 
|  | } | 
|  |  | 
|  | if (data_pad != sv->data_pad) { | 
|  | dbg_err("inconsistent data_pad"); | 
|  | goto bad; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | bad: | 
|  | ubi_err("inconsistent VID header at PEB %d", pnum); | 
|  | ubi_dbg_dump_vid_hdr(vid_hdr); | 
|  | ubi_dbg_dump_sv(sv); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * add_volume - add volume to the scanning information. | 
|  | * @si: scanning information | 
|  | * @vol_id: ID of the volume to add | 
|  | * @pnum: physical eraseblock number | 
|  | * @vid_hdr: volume identifier header | 
|  | * | 
|  | * If the volume corresponding to the @vid_hdr logical eraseblock is already | 
|  | * present in the scanning information, this function does nothing. Otherwise | 
|  | * it adds corresponding volume to the scanning information. Returns a pointer | 
|  | * to the scanning volume object in case of success and a negative error code | 
|  | * in case of failure. | 
|  | */ | 
|  | static struct ubi_scan_volume *add_volume(struct ubi_scan_info *si, int vol_id, | 
|  | int pnum, | 
|  | const struct ubi_vid_hdr *vid_hdr) | 
|  | { | 
|  | struct ubi_scan_volume *sv; | 
|  | struct rb_node **p = &si->volumes.rb_node, *parent = NULL; | 
|  |  | 
|  | ubi_assert(vol_id == be32_to_cpu(vid_hdr->vol_id)); | 
|  |  | 
|  | /* Walk the volume RB-tree to look if this volume is already present */ | 
|  | while (*p) { | 
|  | parent = *p; | 
|  | sv = rb_entry(parent, struct ubi_scan_volume, rb); | 
|  |  | 
|  | if (vol_id == sv->vol_id) | 
|  | return sv; | 
|  |  | 
|  | if (vol_id > sv->vol_id) | 
|  | p = &(*p)->rb_left; | 
|  | else | 
|  | p = &(*p)->rb_right; | 
|  | } | 
|  |  | 
|  | /* The volume is absent - add it */ | 
|  | sv = kmalloc(sizeof(struct ubi_scan_volume), GFP_KERNEL); | 
|  | if (!sv) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | sv->highest_lnum = sv->leb_count = 0; | 
|  | sv->vol_id = vol_id; | 
|  | sv->root = RB_ROOT; | 
|  | sv->used_ebs = be32_to_cpu(vid_hdr->used_ebs); | 
|  | sv->data_pad = be32_to_cpu(vid_hdr->data_pad); | 
|  | sv->compat = vid_hdr->compat; | 
|  | sv->vol_type = vid_hdr->vol_type == UBI_VID_DYNAMIC ? UBI_DYNAMIC_VOLUME | 
|  | : UBI_STATIC_VOLUME; | 
|  | if (vol_id > si->highest_vol_id) | 
|  | si->highest_vol_id = vol_id; | 
|  |  | 
|  | rb_link_node(&sv->rb, parent, p); | 
|  | rb_insert_color(&sv->rb, &si->volumes); | 
|  | si->vols_found += 1; | 
|  | dbg_bld("added volume %d", vol_id); | 
|  | return sv; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * compare_lebs - find out which logical eraseblock is newer. | 
|  | * @ubi: UBI device description object | 
|  | * @seb: first logical eraseblock to compare | 
|  | * @pnum: physical eraseblock number of the second logical eraseblock to | 
|  | * compare | 
|  | * @vid_hdr: volume identifier header of the second logical eraseblock | 
|  | * | 
|  | * This function compares 2 copies of a LEB and informs which one is newer. In | 
|  | * case of success this function returns a positive value, in case of failure, a | 
|  | * negative error code is returned. The success return codes use the following | 
|  | * bits: | 
|  | *     o bit 0 is cleared: the first PEB (described by @seb) is newer than the | 
|  | *       second PEB (described by @pnum and @vid_hdr); | 
|  | *     o bit 0 is set: the second PEB is newer; | 
|  | *     o bit 1 is cleared: no bit-flips were detected in the newer LEB; | 
|  | *     o bit 1 is set: bit-flips were detected in the newer LEB; | 
|  | *     o bit 2 is cleared: the older LEB is not corrupted; | 
|  | *     o bit 2 is set: the older LEB is corrupted. | 
|  | */ | 
|  | static int compare_lebs(struct ubi_device *ubi, const struct ubi_scan_leb *seb, | 
|  | int pnum, const struct ubi_vid_hdr *vid_hdr) | 
|  | { | 
|  | void *buf; | 
|  | int len, err, second_is_newer, bitflips = 0, corrupted = 0; | 
|  | uint32_t data_crc, crc; | 
|  | struct ubi_vid_hdr *vh = NULL; | 
|  | unsigned long long sqnum2 = be64_to_cpu(vid_hdr->sqnum); | 
|  |  | 
|  | if (sqnum2 == seb->sqnum) { | 
|  | /* | 
|  | * This must be a really ancient UBI image which has been | 
|  | * created before sequence numbers support has been added. At | 
|  | * that times we used 32-bit LEB versions stored in logical | 
|  | * eraseblocks. That was before UBI got into mainline. We do not | 
|  | * support these images anymore. Well, those images still work, | 
|  | * but only if no unclean reboots happened. | 
|  | */ | 
|  | ubi_err("unsupported on-flash UBI format\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* Obviously the LEB with lower sequence counter is older */ | 
|  | second_is_newer = !!(sqnum2 > seb->sqnum); | 
|  |  | 
|  | /* | 
|  | * Now we know which copy is newer. If the copy flag of the PEB with | 
|  | * newer version is not set, then we just return, otherwise we have to | 
|  | * check data CRC. For the second PEB we already have the VID header, | 
|  | * for the first one - we'll need to re-read it from flash. | 
|  | * | 
|  | * Note: this may be optimized so that we wouldn't read twice. | 
|  | */ | 
|  |  | 
|  | if (second_is_newer) { | 
|  | if (!vid_hdr->copy_flag) { | 
|  | /* It is not a copy, so it is newer */ | 
|  | dbg_bld("second PEB %d is newer, copy_flag is unset", | 
|  | pnum); | 
|  | return 1; | 
|  | } | 
|  | } else { | 
|  | if (!seb->copy_flag) { | 
|  | /* It is not a copy, so it is newer */ | 
|  | dbg_bld("first PEB %d is newer, copy_flag is unset", | 
|  | pnum); | 
|  | return bitflips << 1; | 
|  | } | 
|  |  | 
|  | vh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL); | 
|  | if (!vh) | 
|  | return -ENOMEM; | 
|  |  | 
|  | pnum = seb->pnum; | 
|  | err = ubi_io_read_vid_hdr(ubi, pnum, vh, 0); | 
|  | if (err) { | 
|  | if (err == UBI_IO_BITFLIPS) | 
|  | bitflips = 1; | 
|  | else { | 
|  | dbg_err("VID of PEB %d header is bad, but it " | 
|  | "was OK earlier, err %d", pnum, err); | 
|  | if (err > 0) | 
|  | err = -EIO; | 
|  |  | 
|  | goto out_free_vidh; | 
|  | } | 
|  | } | 
|  |  | 
|  | vid_hdr = vh; | 
|  | } | 
|  |  | 
|  | /* Read the data of the copy and check the CRC */ | 
|  |  | 
|  | len = be32_to_cpu(vid_hdr->data_size); | 
|  | buf = vmalloc(len); | 
|  | if (!buf) { | 
|  | err = -ENOMEM; | 
|  | goto out_free_vidh; | 
|  | } | 
|  |  | 
|  | err = ubi_io_read_data(ubi, buf, pnum, 0, len); | 
|  | if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG) | 
|  | goto out_free_buf; | 
|  |  | 
|  | data_crc = be32_to_cpu(vid_hdr->data_crc); | 
|  | crc = crc32(UBI_CRC32_INIT, buf, len); | 
|  | if (crc != data_crc) { | 
|  | dbg_bld("PEB %d CRC error: calculated %#08x, must be %#08x", | 
|  | pnum, crc, data_crc); | 
|  | corrupted = 1; | 
|  | bitflips = 0; | 
|  | second_is_newer = !second_is_newer; | 
|  | } else { | 
|  | dbg_bld("PEB %d CRC is OK", pnum); | 
|  | bitflips = !!err; | 
|  | } | 
|  |  | 
|  | vfree(buf); | 
|  | ubi_free_vid_hdr(ubi, vh); | 
|  |  | 
|  | if (second_is_newer) | 
|  | dbg_bld("second PEB %d is newer, copy_flag is set", pnum); | 
|  | else | 
|  | dbg_bld("first PEB %d is newer, copy_flag is set", pnum); | 
|  |  | 
|  | return second_is_newer | (bitflips << 1) | (corrupted << 2); | 
|  |  | 
|  | out_free_buf: | 
|  | vfree(buf); | 
|  | out_free_vidh: | 
|  | ubi_free_vid_hdr(ubi, vh); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ubi_scan_add_used - add physical eraseblock to the scanning information. | 
|  | * @ubi: UBI device description object | 
|  | * @si: scanning information | 
|  | * @pnum: the physical eraseblock number | 
|  | * @ec: erase counter | 
|  | * @vid_hdr: the volume identifier header | 
|  | * @bitflips: if bit-flips were detected when this physical eraseblock was read | 
|  | * | 
|  | * This function adds information about a used physical eraseblock to the | 
|  | * 'used' tree of the corresponding volume. The function is rather complex | 
|  | * because it has to handle cases when this is not the first physical | 
|  | * eraseblock belonging to the same logical eraseblock, and the newer one has | 
|  | * to be picked, while the older one has to be dropped. This function returns | 
|  | * zero in case of success and a negative error code in case of failure. | 
|  | */ | 
|  | int ubi_scan_add_used(struct ubi_device *ubi, struct ubi_scan_info *si, | 
|  | int pnum, int ec, const struct ubi_vid_hdr *vid_hdr, | 
|  | int bitflips) | 
|  | { | 
|  | int err, vol_id, lnum; | 
|  | unsigned long long sqnum; | 
|  | struct ubi_scan_volume *sv; | 
|  | struct ubi_scan_leb *seb; | 
|  | struct rb_node **p, *parent = NULL; | 
|  |  | 
|  | vol_id = be32_to_cpu(vid_hdr->vol_id); | 
|  | lnum = be32_to_cpu(vid_hdr->lnum); | 
|  | sqnum = be64_to_cpu(vid_hdr->sqnum); | 
|  |  | 
|  | dbg_bld("PEB %d, LEB %d:%d, EC %d, sqnum %llu, bitflips %d", | 
|  | pnum, vol_id, lnum, ec, sqnum, bitflips); | 
|  |  | 
|  | sv = add_volume(si, vol_id, pnum, vid_hdr); | 
|  | if (IS_ERR(sv)) | 
|  | return PTR_ERR(sv); | 
|  |  | 
|  | if (si->max_sqnum < sqnum) | 
|  | si->max_sqnum = sqnum; | 
|  |  | 
|  | /* | 
|  | * Walk the RB-tree of logical eraseblocks of volume @vol_id to look | 
|  | * if this is the first instance of this logical eraseblock or not. | 
|  | */ | 
|  | p = &sv->root.rb_node; | 
|  | while (*p) { | 
|  | int cmp_res; | 
|  |  | 
|  | parent = *p; | 
|  | seb = rb_entry(parent, struct ubi_scan_leb, u.rb); | 
|  | if (lnum != seb->lnum) { | 
|  | if (lnum < seb->lnum) | 
|  | p = &(*p)->rb_left; | 
|  | else | 
|  | p = &(*p)->rb_right; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * There is already a physical eraseblock describing the same | 
|  | * logical eraseblock present. | 
|  | */ | 
|  |  | 
|  | dbg_bld("this LEB already exists: PEB %d, sqnum %llu, " | 
|  | "EC %d", seb->pnum, seb->sqnum, seb->ec); | 
|  |  | 
|  | /* | 
|  | * Make sure that the logical eraseblocks have different | 
|  | * sequence numbers. Otherwise the image is bad. | 
|  | * | 
|  | * However, if the sequence number is zero, we assume it must | 
|  | * be an ancient UBI image from the era when UBI did not have | 
|  | * sequence numbers. We still can attach these images, unless | 
|  | * there is a need to distinguish between old and new | 
|  | * eraseblocks, in which case we'll refuse the image in | 
|  | * 'compare_lebs()'. In other words, we attach old clean | 
|  | * images, but refuse attaching old images with duplicated | 
|  | * logical eraseblocks because there was an unclean reboot. | 
|  | */ | 
|  | if (seb->sqnum == sqnum && sqnum != 0) { | 
|  | ubi_err("two LEBs with same sequence number %llu", | 
|  | sqnum); | 
|  | ubi_dbg_dump_seb(seb, 0); | 
|  | ubi_dbg_dump_vid_hdr(vid_hdr); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Now we have to drop the older one and preserve the newer | 
|  | * one. | 
|  | */ | 
|  | cmp_res = compare_lebs(ubi, seb, pnum, vid_hdr); | 
|  | if (cmp_res < 0) | 
|  | return cmp_res; | 
|  |  | 
|  | if (cmp_res & 1) { | 
|  | /* | 
|  | * This logical eraseblock is newer than the one | 
|  | * found earlier. | 
|  | */ | 
|  | err = validate_vid_hdr(vid_hdr, sv, pnum); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | err = add_to_list(si, seb->pnum, seb->ec, cmp_res & 4, | 
|  | &si->erase); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | seb->ec = ec; | 
|  | seb->pnum = pnum; | 
|  | seb->scrub = ((cmp_res & 2) || bitflips); | 
|  | seb->copy_flag = vid_hdr->copy_flag; | 
|  | seb->sqnum = sqnum; | 
|  |  | 
|  | if (sv->highest_lnum == lnum) | 
|  | sv->last_data_size = | 
|  | be32_to_cpu(vid_hdr->data_size); | 
|  |  | 
|  | return 0; | 
|  | } else { | 
|  | /* | 
|  | * This logical eraseblock is older than the one found | 
|  | * previously. | 
|  | */ | 
|  | return add_to_list(si, pnum, ec, cmp_res & 4, | 
|  | &si->erase); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We've met this logical eraseblock for the first time, add it to the | 
|  | * scanning information. | 
|  | */ | 
|  |  | 
|  | err = validate_vid_hdr(vid_hdr, sv, pnum); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | seb = kmem_cache_alloc(si->scan_leb_slab, GFP_KERNEL); | 
|  | if (!seb) | 
|  | return -ENOMEM; | 
|  |  | 
|  | seb->ec = ec; | 
|  | seb->pnum = pnum; | 
|  | seb->lnum = lnum; | 
|  | seb->scrub = bitflips; | 
|  | seb->copy_flag = vid_hdr->copy_flag; | 
|  | seb->sqnum = sqnum; | 
|  |  | 
|  | if (sv->highest_lnum <= lnum) { | 
|  | sv->highest_lnum = lnum; | 
|  | sv->last_data_size = be32_to_cpu(vid_hdr->data_size); | 
|  | } | 
|  |  | 
|  | sv->leb_count += 1; | 
|  | rb_link_node(&seb->u.rb, parent, p); | 
|  | rb_insert_color(&seb->u.rb, &sv->root); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ubi_scan_find_sv - find volume in the scanning information. | 
|  | * @si: scanning information | 
|  | * @vol_id: the requested volume ID | 
|  | * | 
|  | * This function returns a pointer to the volume description or %NULL if there | 
|  | * are no data about this volume in the scanning information. | 
|  | */ | 
|  | struct ubi_scan_volume *ubi_scan_find_sv(const struct ubi_scan_info *si, | 
|  | int vol_id) | 
|  | { | 
|  | struct ubi_scan_volume *sv; | 
|  | struct rb_node *p = si->volumes.rb_node; | 
|  |  | 
|  | while (p) { | 
|  | sv = rb_entry(p, struct ubi_scan_volume, rb); | 
|  |  | 
|  | if (vol_id == sv->vol_id) | 
|  | return sv; | 
|  |  | 
|  | if (vol_id > sv->vol_id) | 
|  | p = p->rb_left; | 
|  | else | 
|  | p = p->rb_right; | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ubi_scan_find_seb - find LEB in the volume scanning information. | 
|  | * @sv: a pointer to the volume scanning information | 
|  | * @lnum: the requested logical eraseblock | 
|  | * | 
|  | * This function returns a pointer to the scanning logical eraseblock or %NULL | 
|  | * if there are no data about it in the scanning volume information. | 
|  | */ | 
|  | struct ubi_scan_leb *ubi_scan_find_seb(const struct ubi_scan_volume *sv, | 
|  | int lnum) | 
|  | { | 
|  | struct ubi_scan_leb *seb; | 
|  | struct rb_node *p = sv->root.rb_node; | 
|  |  | 
|  | while (p) { | 
|  | seb = rb_entry(p, struct ubi_scan_leb, u.rb); | 
|  |  | 
|  | if (lnum == seb->lnum) | 
|  | return seb; | 
|  |  | 
|  | if (lnum > seb->lnum) | 
|  | p = p->rb_left; | 
|  | else | 
|  | p = p->rb_right; | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ubi_scan_rm_volume - delete scanning information about a volume. | 
|  | * @si: scanning information | 
|  | * @sv: the volume scanning information to delete | 
|  | */ | 
|  | void ubi_scan_rm_volume(struct ubi_scan_info *si, struct ubi_scan_volume *sv) | 
|  | { | 
|  | struct rb_node *rb; | 
|  | struct ubi_scan_leb *seb; | 
|  |  | 
|  | dbg_bld("remove scanning information about volume %d", sv->vol_id); | 
|  |  | 
|  | while ((rb = rb_first(&sv->root))) { | 
|  | seb = rb_entry(rb, struct ubi_scan_leb, u.rb); | 
|  | rb_erase(&seb->u.rb, &sv->root); | 
|  | list_add_tail(&seb->u.list, &si->erase); | 
|  | } | 
|  |  | 
|  | rb_erase(&sv->rb, &si->volumes); | 
|  | kfree(sv); | 
|  | si->vols_found -= 1; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ubi_scan_erase_peb - erase a physical eraseblock. | 
|  | * @ubi: UBI device description object | 
|  | * @si: scanning information | 
|  | * @pnum: physical eraseblock number to erase; | 
|  | * @ec: erase counter value to write (%UBI_SCAN_UNKNOWN_EC if it is unknown) | 
|  | * | 
|  | * This function erases physical eraseblock 'pnum', and writes the erase | 
|  | * counter header to it. This function should only be used on UBI device | 
|  | * initialization stages, when the EBA sub-system had not been yet initialized. | 
|  | * This function returns zero in case of success and a negative error code in | 
|  | * case of failure. | 
|  | */ | 
|  | int ubi_scan_erase_peb(struct ubi_device *ubi, const struct ubi_scan_info *si, | 
|  | int pnum, int ec) | 
|  | { | 
|  | int err; | 
|  | struct ubi_ec_hdr *ec_hdr; | 
|  |  | 
|  | if ((long long)ec >= UBI_MAX_ERASECOUNTER) { | 
|  | /* | 
|  | * Erase counter overflow. Upgrade UBI and use 64-bit | 
|  | * erase counters internally. | 
|  | */ | 
|  | ubi_err("erase counter overflow at PEB %d, EC %d", pnum, ec); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL); | 
|  | if (!ec_hdr) | 
|  | return -ENOMEM; | 
|  |  | 
|  | ec_hdr->ec = cpu_to_be64(ec); | 
|  |  | 
|  | err = ubi_io_sync_erase(ubi, pnum, 0); | 
|  | if (err < 0) | 
|  | goto out_free; | 
|  |  | 
|  | err = ubi_io_write_ec_hdr(ubi, pnum, ec_hdr); | 
|  |  | 
|  | out_free: | 
|  | kfree(ec_hdr); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ubi_scan_get_free_peb - get a free physical eraseblock. | 
|  | * @ubi: UBI device description object | 
|  | * @si: scanning information | 
|  | * | 
|  | * This function returns a free physical eraseblock. It is supposed to be | 
|  | * called on the UBI initialization stages when the wear-leveling sub-system is | 
|  | * not initialized yet. This function picks a physical eraseblocks from one of | 
|  | * the lists, writes the EC header if it is needed, and removes it from the | 
|  | * list. | 
|  | * | 
|  | * This function returns scanning physical eraseblock information in case of | 
|  | * success and an error code in case of failure. | 
|  | */ | 
|  | struct ubi_scan_leb *ubi_scan_get_free_peb(struct ubi_device *ubi, | 
|  | struct ubi_scan_info *si) | 
|  | { | 
|  | int err = 0; | 
|  | struct ubi_scan_leb *seb, *tmp_seb; | 
|  |  | 
|  | if (!list_empty(&si->free)) { | 
|  | seb = list_entry(si->free.next, struct ubi_scan_leb, u.list); | 
|  | list_del(&seb->u.list); | 
|  | dbg_bld("return free PEB %d, EC %d", seb->pnum, seb->ec); | 
|  | return seb; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We try to erase the first physical eraseblock from the erase list | 
|  | * and pick it if we succeed, or try to erase the next one if not. And | 
|  | * so forth. We don't want to take care about bad eraseblocks here - | 
|  | * they'll be handled later. | 
|  | */ | 
|  | list_for_each_entry_safe(seb, tmp_seb, &si->erase, u.list) { | 
|  | if (seb->ec == UBI_SCAN_UNKNOWN_EC) | 
|  | seb->ec = si->mean_ec; | 
|  |  | 
|  | err = ubi_scan_erase_peb(ubi, si, seb->pnum, seb->ec+1); | 
|  | if (err) | 
|  | continue; | 
|  |  | 
|  | seb->ec += 1; | 
|  | list_del(&seb->u.list); | 
|  | dbg_bld("return PEB %d, EC %d", seb->pnum, seb->ec); | 
|  | return seb; | 
|  | } | 
|  |  | 
|  | ubi_err("no free eraseblocks"); | 
|  | return ERR_PTR(-ENOSPC); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * check_corruption - check the data area of PEB. | 
|  | * @ubi: UBI device description object | 
|  | * @vid_hrd: the (corrupted) VID header of this PEB | 
|  | * @pnum: the physical eraseblock number to check | 
|  | * | 
|  | * This is a helper function which is used to distinguish between VID header | 
|  | * corruptions caused by power cuts and other reasons. If the PEB contains only | 
|  | * 0xFF bytes in the data area, the VID header is most probably corrupted | 
|  | * because of a power cut (%0 is returned in this case). Otherwise, it was | 
|  | * probably corrupted for some other reasons (%1 is returned in this case). A | 
|  | * negative error code is returned if a read error occurred. | 
|  | * | 
|  | * If the corruption reason was a power cut, UBI can safely erase this PEB. | 
|  | * Otherwise, it should preserve it to avoid possibly destroying important | 
|  | * information. | 
|  | */ | 
|  | static int check_corruption(struct ubi_device *ubi, struct ubi_vid_hdr *vid_hdr, | 
|  | int pnum) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | mutex_lock(&ubi->buf_mutex); | 
|  | memset(ubi->peb_buf1, 0x00, ubi->leb_size); | 
|  |  | 
|  | err = ubi_io_read(ubi, ubi->peb_buf1, pnum, ubi->leb_start, | 
|  | ubi->leb_size); | 
|  | if (err == UBI_IO_BITFLIPS || err == -EBADMSG) { | 
|  | /* | 
|  | * Bit-flips or integrity errors while reading the data area. | 
|  | * It is difficult to say for sure what type of corruption is | 
|  | * this, but presumably a power cut happened while this PEB was | 
|  | * erased, so it became unstable and corrupted, and should be | 
|  | * erased. | 
|  | */ | 
|  | err = 0; | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | if (err) | 
|  | goto out_unlock; | 
|  |  | 
|  | if (ubi_check_pattern(ubi->peb_buf1, 0xFF, ubi->leb_size)) | 
|  | goto out_unlock; | 
|  |  | 
|  | ubi_err("PEB %d contains corrupted VID header, and the data does not " | 
|  | "contain all 0xFF, this may be a non-UBI PEB or a severe VID " | 
|  | "header corruption which requires manual inspection", pnum); | 
|  | ubi_dbg_dump_vid_hdr(vid_hdr); | 
|  | dbg_msg("hexdump of PEB %d offset %d, length %d", | 
|  | pnum, ubi->leb_start, ubi->leb_size); | 
|  | ubi_dbg_print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, | 
|  | ubi->peb_buf1, ubi->leb_size, 1); | 
|  | err = 1; | 
|  |  | 
|  | out_unlock: | 
|  | mutex_unlock(&ubi->buf_mutex); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * process_eb - read, check UBI headers, and add them to scanning information. | 
|  | * @ubi: UBI device description object | 
|  | * @si: scanning information | 
|  | * @pnum: the physical eraseblock number | 
|  | * | 
|  | * This function returns a zero if the physical eraseblock was successfully | 
|  | * handled and a negative error code in case of failure. | 
|  | */ | 
|  | static int process_eb(struct ubi_device *ubi, struct ubi_scan_info *si, | 
|  | int pnum) | 
|  | { | 
|  | long long uninitialized_var(ec); | 
|  | int err, bitflips = 0, vol_id, ec_err = 0; | 
|  |  | 
|  | dbg_bld("scan PEB %d", pnum); | 
|  |  | 
|  | /* Skip bad physical eraseblocks */ | 
|  | err = ubi_io_is_bad(ubi, pnum); | 
|  | if (err < 0) | 
|  | return err; | 
|  | else if (err) { | 
|  | /* | 
|  | * FIXME: this is actually duty of the I/O sub-system to | 
|  | * initialize this, but MTD does not provide enough | 
|  | * information. | 
|  | */ | 
|  | si->bad_peb_count += 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | err = ubi_io_read_ec_hdr(ubi, pnum, ech, 0); | 
|  | if (err < 0) | 
|  | return err; | 
|  | switch (err) { | 
|  | case 0: | 
|  | break; | 
|  | case UBI_IO_BITFLIPS: | 
|  | bitflips = 1; | 
|  | break; | 
|  | case UBI_IO_FF: | 
|  | si->empty_peb_count += 1; | 
|  | return add_to_list(si, pnum, UBI_SCAN_UNKNOWN_EC, 0, | 
|  | &si->erase); | 
|  | case UBI_IO_FF_BITFLIPS: | 
|  | si->empty_peb_count += 1; | 
|  | return add_to_list(si, pnum, UBI_SCAN_UNKNOWN_EC, 1, | 
|  | &si->erase); | 
|  | case UBI_IO_BAD_HDR_EBADMSG: | 
|  | case UBI_IO_BAD_HDR: | 
|  | /* | 
|  | * We have to also look at the VID header, possibly it is not | 
|  | * corrupted. Set %bitflips flag in order to make this PEB be | 
|  | * moved and EC be re-created. | 
|  | */ | 
|  | ec_err = err; | 
|  | ec = UBI_SCAN_UNKNOWN_EC; | 
|  | bitflips = 1; | 
|  | break; | 
|  | default: | 
|  | ubi_err("'ubi_io_read_ec_hdr()' returned unknown code %d", err); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (!ec_err) { | 
|  | int image_seq; | 
|  |  | 
|  | /* Make sure UBI version is OK */ | 
|  | if (ech->version != UBI_VERSION) { | 
|  | ubi_err("this UBI version is %d, image version is %d", | 
|  | UBI_VERSION, (int)ech->version); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | ec = be64_to_cpu(ech->ec); | 
|  | if (ec > UBI_MAX_ERASECOUNTER) { | 
|  | /* | 
|  | * Erase counter overflow. The EC headers have 64 bits | 
|  | * reserved, but we anyway make use of only 31 bit | 
|  | * values, as this seems to be enough for any existing | 
|  | * flash. Upgrade UBI and use 64-bit erase counters | 
|  | * internally. | 
|  | */ | 
|  | ubi_err("erase counter overflow, max is %d", | 
|  | UBI_MAX_ERASECOUNTER); | 
|  | ubi_dbg_dump_ec_hdr(ech); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Make sure that all PEBs have the same image sequence number. | 
|  | * This allows us to detect situations when users flash UBI | 
|  | * images incorrectly, so that the flash has the new UBI image | 
|  | * and leftovers from the old one. This feature was added | 
|  | * relatively recently, and the sequence number was always | 
|  | * zero, because old UBI implementations always set it to zero. | 
|  | * For this reasons, we do not panic if some PEBs have zero | 
|  | * sequence number, while other PEBs have non-zero sequence | 
|  | * number. | 
|  | */ | 
|  | image_seq = be32_to_cpu(ech->image_seq); | 
|  | if (!ubi->image_seq && image_seq) | 
|  | ubi->image_seq = image_seq; | 
|  | if (ubi->image_seq && image_seq && | 
|  | ubi->image_seq != image_seq) { | 
|  | ubi_err("bad image sequence number %d in PEB %d, " | 
|  | "expected %d", image_seq, pnum, ubi->image_seq); | 
|  | ubi_dbg_dump_ec_hdr(ech); | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* OK, we've done with the EC header, let's look at the VID header */ | 
|  |  | 
|  | err = ubi_io_read_vid_hdr(ubi, pnum, vidh, 0); | 
|  | if (err < 0) | 
|  | return err; | 
|  | switch (err) { | 
|  | case 0: | 
|  | break; | 
|  | case UBI_IO_BITFLIPS: | 
|  | bitflips = 1; | 
|  | break; | 
|  | case UBI_IO_BAD_HDR_EBADMSG: | 
|  | if (ec_err == UBI_IO_BAD_HDR_EBADMSG) | 
|  | /* | 
|  | * Both EC and VID headers are corrupted and were read | 
|  | * with data integrity error, probably this is a bad | 
|  | * PEB, bit it is not marked as bad yet. This may also | 
|  | * be a result of power cut during erasure. | 
|  | */ | 
|  | si->maybe_bad_peb_count += 1; | 
|  | case UBI_IO_BAD_HDR: | 
|  | if (ec_err) | 
|  | /* | 
|  | * Both headers are corrupted. There is a possibility | 
|  | * that this a valid UBI PEB which has corresponding | 
|  | * LEB, but the headers are corrupted. However, it is | 
|  | * impossible to distinguish it from a PEB which just | 
|  | * contains garbage because of a power cut during erase | 
|  | * operation. So we just schedule this PEB for erasure. | 
|  | * | 
|  | * Besides, in case of NOR flash, we deliberately | 
|  | * corrupt both headers because NOR flash erasure is | 
|  | * slow and can start from the end. | 
|  | */ | 
|  | err = 0; | 
|  | else | 
|  | /* | 
|  | * The EC was OK, but the VID header is corrupted. We | 
|  | * have to check what is in the data area. | 
|  | */ | 
|  | err = check_corruption(ubi, vidh, pnum); | 
|  |  | 
|  | if (err < 0) | 
|  | return err; | 
|  | else if (!err) | 
|  | /* This corruption is caused by a power cut */ | 
|  | err = add_to_list(si, pnum, ec, 1, &si->erase); | 
|  | else | 
|  | /* This is an unexpected corruption */ | 
|  | err = add_corrupted(si, pnum, ec); | 
|  | if (err) | 
|  | return err; | 
|  | goto adjust_mean_ec; | 
|  | case UBI_IO_FF_BITFLIPS: | 
|  | err = add_to_list(si, pnum, ec, 1, &si->erase); | 
|  | if (err) | 
|  | return err; | 
|  | goto adjust_mean_ec; | 
|  | case UBI_IO_FF: | 
|  | if (ec_err) | 
|  | err = add_to_list(si, pnum, ec, 1, &si->erase); | 
|  | else | 
|  | err = add_to_list(si, pnum, ec, 0, &si->free); | 
|  | if (err) | 
|  | return err; | 
|  | goto adjust_mean_ec; | 
|  | default: | 
|  | ubi_err("'ubi_io_read_vid_hdr()' returned unknown code %d", | 
|  | err); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | vol_id = be32_to_cpu(vidh->vol_id); | 
|  | if (vol_id > UBI_MAX_VOLUMES && vol_id != UBI_LAYOUT_VOLUME_ID) { | 
|  | int lnum = be32_to_cpu(vidh->lnum); | 
|  |  | 
|  | /* Unsupported internal volume */ | 
|  | switch (vidh->compat) { | 
|  | case UBI_COMPAT_DELETE: | 
|  | ubi_msg("\"delete\" compatible internal volume %d:%d" | 
|  | " found, will remove it", vol_id, lnum); | 
|  | err = add_to_list(si, pnum, ec, 1, &si->erase); | 
|  | if (err) | 
|  | return err; | 
|  | return 0; | 
|  |  | 
|  | case UBI_COMPAT_RO: | 
|  | ubi_msg("read-only compatible internal volume %d:%d" | 
|  | " found, switch to read-only mode", | 
|  | vol_id, lnum); | 
|  | ubi->ro_mode = 1; | 
|  | break; | 
|  |  | 
|  | case UBI_COMPAT_PRESERVE: | 
|  | ubi_msg("\"preserve\" compatible internal volume %d:%d" | 
|  | " found", vol_id, lnum); | 
|  | err = add_to_list(si, pnum, ec, 0, &si->alien); | 
|  | if (err) | 
|  | return err; | 
|  | return 0; | 
|  |  | 
|  | case UBI_COMPAT_REJECT: | 
|  | ubi_err("incompatible internal volume %d:%d found", | 
|  | vol_id, lnum); | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ec_err) | 
|  | ubi_warn("valid VID header but corrupted EC header at PEB %d", | 
|  | pnum); | 
|  | err = ubi_scan_add_used(ubi, si, pnum, ec, vidh, bitflips); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | adjust_mean_ec: | 
|  | if (!ec_err) { | 
|  | si->ec_sum += ec; | 
|  | si->ec_count += 1; | 
|  | if (ec > si->max_ec) | 
|  | si->max_ec = ec; | 
|  | if (ec < si->min_ec) | 
|  | si->min_ec = ec; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * check_what_we_have - check what PEB were found by scanning. | 
|  | * @ubi: UBI device description object | 
|  | * @si: scanning information | 
|  | * | 
|  | * This is a helper function which takes a look what PEBs were found by | 
|  | * scanning, and decides whether the flash is empty and should be formatted and | 
|  | * whether there are too many corrupted PEBs and we should not attach this | 
|  | * MTD device. Returns zero if we should proceed with attaching the MTD device, | 
|  | * and %-EINVAL if we should not. | 
|  | */ | 
|  | static int check_what_we_have(struct ubi_device *ubi, struct ubi_scan_info *si) | 
|  | { | 
|  | struct ubi_scan_leb *seb; | 
|  | int max_corr, peb_count; | 
|  |  | 
|  | peb_count = ubi->peb_count - si->bad_peb_count - si->alien_peb_count; | 
|  | max_corr = peb_count / 20 ?: 8; | 
|  |  | 
|  | /* | 
|  | * Few corrupted PEBs is not a problem and may be just a result of | 
|  | * unclean reboots. However, many of them may indicate some problems | 
|  | * with the flash HW or driver. | 
|  | */ | 
|  | if (si->corr_peb_count) { | 
|  | ubi_err("%d PEBs are corrupted and preserved", | 
|  | si->corr_peb_count); | 
|  | printk(KERN_ERR "Corrupted PEBs are:"); | 
|  | list_for_each_entry(seb, &si->corr, u.list) | 
|  | printk(KERN_CONT " %d", seb->pnum); | 
|  | printk(KERN_CONT "\n"); | 
|  |  | 
|  | /* | 
|  | * If too many PEBs are corrupted, we refuse attaching, | 
|  | * otherwise, only print a warning. | 
|  | */ | 
|  | if (si->corr_peb_count >= max_corr) { | 
|  | ubi_err("too many corrupted PEBs, refusing"); | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (si->empty_peb_count + si->maybe_bad_peb_count == peb_count) { | 
|  | /* | 
|  | * All PEBs are empty, or almost all - a couple PEBs look like | 
|  | * they may be bad PEBs which were not marked as bad yet. | 
|  | * | 
|  | * This piece of code basically tries to distinguish between | 
|  | * the following situations: | 
|  | * | 
|  | * 1. Flash is empty, but there are few bad PEBs, which are not | 
|  | *    marked as bad so far, and which were read with error. We | 
|  | *    want to go ahead and format this flash. While formatting, | 
|  | *    the faulty PEBs will probably be marked as bad. | 
|  | * | 
|  | * 2. Flash contains non-UBI data and we do not want to format | 
|  | *    it and destroy possibly important information. | 
|  | */ | 
|  | if (si->maybe_bad_peb_count <= 2) { | 
|  | si->is_empty = 1; | 
|  | ubi_msg("empty MTD device detected"); | 
|  | get_random_bytes(&ubi->image_seq, | 
|  | sizeof(ubi->image_seq)); | 
|  | } else { | 
|  | ubi_err("MTD device is not UBI-formatted and possibly " | 
|  | "contains non-UBI data - refusing it"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ubi_scan - scan an MTD device. | 
|  | * @ubi: UBI device description object | 
|  | * | 
|  | * This function does full scanning of an MTD device and returns complete | 
|  | * information about it. In case of failure, an error code is returned. | 
|  | */ | 
|  | struct ubi_scan_info *ubi_scan(struct ubi_device *ubi) | 
|  | { | 
|  | int err, pnum; | 
|  | struct rb_node *rb1, *rb2; | 
|  | struct ubi_scan_volume *sv; | 
|  | struct ubi_scan_leb *seb; | 
|  | struct ubi_scan_info *si; | 
|  |  | 
|  | si = kzalloc(sizeof(struct ubi_scan_info), GFP_KERNEL); | 
|  | if (!si) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | INIT_LIST_HEAD(&si->corr); | 
|  | INIT_LIST_HEAD(&si->free); | 
|  | INIT_LIST_HEAD(&si->erase); | 
|  | INIT_LIST_HEAD(&si->alien); | 
|  | si->volumes = RB_ROOT; | 
|  |  | 
|  | err = -ENOMEM; | 
|  | si->scan_leb_slab = kmem_cache_create("ubi_scan_leb_slab", | 
|  | sizeof(struct ubi_scan_leb), | 
|  | 0, 0, NULL); | 
|  | if (!si->scan_leb_slab) | 
|  | goto out_si; | 
|  |  | 
|  | ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL); | 
|  | if (!ech) | 
|  | goto out_slab; | 
|  |  | 
|  | vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL); | 
|  | if (!vidh) | 
|  | goto out_ech; | 
|  |  | 
|  | for (pnum = 0; pnum < ubi->peb_count; pnum++) { | 
|  | cond_resched(); | 
|  |  | 
|  | dbg_gen("process PEB %d", pnum); | 
|  | err = process_eb(ubi, si, pnum); | 
|  | if (err < 0) | 
|  | goto out_vidh; | 
|  | } | 
|  |  | 
|  | dbg_msg("scanning is finished"); | 
|  |  | 
|  | /* Calculate mean erase counter */ | 
|  | if (si->ec_count) | 
|  | si->mean_ec = div_u64(si->ec_sum, si->ec_count); | 
|  |  | 
|  | err = check_what_we_have(ubi, si); | 
|  | if (err) | 
|  | goto out_vidh; | 
|  |  | 
|  | /* | 
|  | * In case of unknown erase counter we use the mean erase counter | 
|  | * value. | 
|  | */ | 
|  | ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) { | 
|  | ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) | 
|  | if (seb->ec == UBI_SCAN_UNKNOWN_EC) | 
|  | seb->ec = si->mean_ec; | 
|  | } | 
|  |  | 
|  | list_for_each_entry(seb, &si->free, u.list) { | 
|  | if (seb->ec == UBI_SCAN_UNKNOWN_EC) | 
|  | seb->ec = si->mean_ec; | 
|  | } | 
|  |  | 
|  | list_for_each_entry(seb, &si->corr, u.list) | 
|  | if (seb->ec == UBI_SCAN_UNKNOWN_EC) | 
|  | seb->ec = si->mean_ec; | 
|  |  | 
|  | list_for_each_entry(seb, &si->erase, u.list) | 
|  | if (seb->ec == UBI_SCAN_UNKNOWN_EC) | 
|  | seb->ec = si->mean_ec; | 
|  |  | 
|  | err = paranoid_check_si(ubi, si); | 
|  | if (err) | 
|  | goto out_vidh; | 
|  |  | 
|  | ubi_free_vid_hdr(ubi, vidh); | 
|  | kfree(ech); | 
|  |  | 
|  | return si; | 
|  |  | 
|  | out_vidh: | 
|  | ubi_free_vid_hdr(ubi, vidh); | 
|  | out_ech: | 
|  | kfree(ech); | 
|  | out_slab: | 
|  | kmem_cache_destroy(si->scan_leb_slab); | 
|  | out_si: | 
|  | ubi_scan_destroy_si(si); | 
|  | return ERR_PTR(err); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * destroy_sv - free the scanning volume information | 
|  | * @sv: scanning volume information | 
|  | * @si: scanning information | 
|  | * | 
|  | * This function destroys the volume RB-tree (@sv->root) and the scanning | 
|  | * volume information. | 
|  | */ | 
|  | static void destroy_sv(struct ubi_scan_info *si, struct ubi_scan_volume *sv) | 
|  | { | 
|  | struct ubi_scan_leb *seb; | 
|  | struct rb_node *this = sv->root.rb_node; | 
|  |  | 
|  | while (this) { | 
|  | if (this->rb_left) | 
|  | this = this->rb_left; | 
|  | else if (this->rb_right) | 
|  | this = this->rb_right; | 
|  | else { | 
|  | seb = rb_entry(this, struct ubi_scan_leb, u.rb); | 
|  | this = rb_parent(this); | 
|  | if (this) { | 
|  | if (this->rb_left == &seb->u.rb) | 
|  | this->rb_left = NULL; | 
|  | else | 
|  | this->rb_right = NULL; | 
|  | } | 
|  |  | 
|  | kmem_cache_free(si->scan_leb_slab, seb); | 
|  | } | 
|  | } | 
|  | kfree(sv); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ubi_scan_destroy_si - destroy scanning information. | 
|  | * @si: scanning information | 
|  | */ | 
|  | void ubi_scan_destroy_si(struct ubi_scan_info *si) | 
|  | { | 
|  | struct ubi_scan_leb *seb, *seb_tmp; | 
|  | struct ubi_scan_volume *sv; | 
|  | struct rb_node *rb; | 
|  |  | 
|  | list_for_each_entry_safe(seb, seb_tmp, &si->alien, u.list) { | 
|  | list_del(&seb->u.list); | 
|  | kmem_cache_free(si->scan_leb_slab, seb); | 
|  | } | 
|  | list_for_each_entry_safe(seb, seb_tmp, &si->erase, u.list) { | 
|  | list_del(&seb->u.list); | 
|  | kmem_cache_free(si->scan_leb_slab, seb); | 
|  | } | 
|  | list_for_each_entry_safe(seb, seb_tmp, &si->corr, u.list) { | 
|  | list_del(&seb->u.list); | 
|  | kmem_cache_free(si->scan_leb_slab, seb); | 
|  | } | 
|  | list_for_each_entry_safe(seb, seb_tmp, &si->free, u.list) { | 
|  | list_del(&seb->u.list); | 
|  | kmem_cache_free(si->scan_leb_slab, seb); | 
|  | } | 
|  |  | 
|  | /* Destroy the volume RB-tree */ | 
|  | rb = si->volumes.rb_node; | 
|  | while (rb) { | 
|  | if (rb->rb_left) | 
|  | rb = rb->rb_left; | 
|  | else if (rb->rb_right) | 
|  | rb = rb->rb_right; | 
|  | else { | 
|  | sv = rb_entry(rb, struct ubi_scan_volume, rb); | 
|  |  | 
|  | rb = rb_parent(rb); | 
|  | if (rb) { | 
|  | if (rb->rb_left == &sv->rb) | 
|  | rb->rb_left = NULL; | 
|  | else | 
|  | rb->rb_right = NULL; | 
|  | } | 
|  |  | 
|  | destroy_sv(si, sv); | 
|  | } | 
|  | } | 
|  |  | 
|  | kmem_cache_destroy(si->scan_leb_slab); | 
|  | kfree(si); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_MTD_UBI_DEBUG | 
|  |  | 
|  | /** | 
|  | * paranoid_check_si - check the scanning information. | 
|  | * @ubi: UBI device description object | 
|  | * @si: scanning information | 
|  | * | 
|  | * This function returns zero if the scanning information is all right, and a | 
|  | * negative error code if not or if an error occurred. | 
|  | */ | 
|  | static int paranoid_check_si(struct ubi_device *ubi, struct ubi_scan_info *si) | 
|  | { | 
|  | int pnum, err, vols_found = 0; | 
|  | struct rb_node *rb1, *rb2; | 
|  | struct ubi_scan_volume *sv; | 
|  | struct ubi_scan_leb *seb, *last_seb; | 
|  | uint8_t *buf; | 
|  |  | 
|  | if (!(ubi_chk_flags & UBI_CHK_GEN)) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * At first, check that scanning information is OK. | 
|  | */ | 
|  | ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) { | 
|  | int leb_count = 0; | 
|  |  | 
|  | cond_resched(); | 
|  |  | 
|  | vols_found += 1; | 
|  |  | 
|  | if (si->is_empty) { | 
|  | ubi_err("bad is_empty flag"); | 
|  | goto bad_sv; | 
|  | } | 
|  |  | 
|  | if (sv->vol_id < 0 || sv->highest_lnum < 0 || | 
|  | sv->leb_count < 0 || sv->vol_type < 0 || sv->used_ebs < 0 || | 
|  | sv->data_pad < 0 || sv->last_data_size < 0) { | 
|  | ubi_err("negative values"); | 
|  | goto bad_sv; | 
|  | } | 
|  |  | 
|  | if (sv->vol_id >= UBI_MAX_VOLUMES && | 
|  | sv->vol_id < UBI_INTERNAL_VOL_START) { | 
|  | ubi_err("bad vol_id"); | 
|  | goto bad_sv; | 
|  | } | 
|  |  | 
|  | if (sv->vol_id > si->highest_vol_id) { | 
|  | ubi_err("highest_vol_id is %d, but vol_id %d is there", | 
|  | si->highest_vol_id, sv->vol_id); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (sv->vol_type != UBI_DYNAMIC_VOLUME && | 
|  | sv->vol_type != UBI_STATIC_VOLUME) { | 
|  | ubi_err("bad vol_type"); | 
|  | goto bad_sv; | 
|  | } | 
|  |  | 
|  | if (sv->data_pad > ubi->leb_size / 2) { | 
|  | ubi_err("bad data_pad"); | 
|  | goto bad_sv; | 
|  | } | 
|  |  | 
|  | last_seb = NULL; | 
|  | ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) { | 
|  | cond_resched(); | 
|  |  | 
|  | last_seb = seb; | 
|  | leb_count += 1; | 
|  |  | 
|  | if (seb->pnum < 0 || seb->ec < 0) { | 
|  | ubi_err("negative values"); | 
|  | goto bad_seb; | 
|  | } | 
|  |  | 
|  | if (seb->ec < si->min_ec) { | 
|  | ubi_err("bad si->min_ec (%d), %d found", | 
|  | si->min_ec, seb->ec); | 
|  | goto bad_seb; | 
|  | } | 
|  |  | 
|  | if (seb->ec > si->max_ec) { | 
|  | ubi_err("bad si->max_ec (%d), %d found", | 
|  | si->max_ec, seb->ec); | 
|  | goto bad_seb; | 
|  | } | 
|  |  | 
|  | if (seb->pnum >= ubi->peb_count) { | 
|  | ubi_err("too high PEB number %d, total PEBs %d", | 
|  | seb->pnum, ubi->peb_count); | 
|  | goto bad_seb; | 
|  | } | 
|  |  | 
|  | if (sv->vol_type == UBI_STATIC_VOLUME) { | 
|  | if (seb->lnum >= sv->used_ebs) { | 
|  | ubi_err("bad lnum or used_ebs"); | 
|  | goto bad_seb; | 
|  | } | 
|  | } else { | 
|  | if (sv->used_ebs != 0) { | 
|  | ubi_err("non-zero used_ebs"); | 
|  | goto bad_seb; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (seb->lnum > sv->highest_lnum) { | 
|  | ubi_err("incorrect highest_lnum or lnum"); | 
|  | goto bad_seb; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (sv->leb_count != leb_count) { | 
|  | ubi_err("bad leb_count, %d objects in the tree", | 
|  | leb_count); | 
|  | goto bad_sv; | 
|  | } | 
|  |  | 
|  | if (!last_seb) | 
|  | continue; | 
|  |  | 
|  | seb = last_seb; | 
|  |  | 
|  | if (seb->lnum != sv->highest_lnum) { | 
|  | ubi_err("bad highest_lnum"); | 
|  | goto bad_seb; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (vols_found != si->vols_found) { | 
|  | ubi_err("bad si->vols_found %d, should be %d", | 
|  | si->vols_found, vols_found); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* Check that scanning information is correct */ | 
|  | ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) { | 
|  | last_seb = NULL; | 
|  | ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) { | 
|  | int vol_type; | 
|  |  | 
|  | cond_resched(); | 
|  |  | 
|  | last_seb = seb; | 
|  |  | 
|  | err = ubi_io_read_vid_hdr(ubi, seb->pnum, vidh, 1); | 
|  | if (err && err != UBI_IO_BITFLIPS) { | 
|  | ubi_err("VID header is not OK (%d)", err); | 
|  | if (err > 0) | 
|  | err = -EIO; | 
|  | return err; | 
|  | } | 
|  |  | 
|  | vol_type = vidh->vol_type == UBI_VID_DYNAMIC ? | 
|  | UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME; | 
|  | if (sv->vol_type != vol_type) { | 
|  | ubi_err("bad vol_type"); | 
|  | goto bad_vid_hdr; | 
|  | } | 
|  |  | 
|  | if (seb->sqnum != be64_to_cpu(vidh->sqnum)) { | 
|  | ubi_err("bad sqnum %llu", seb->sqnum); | 
|  | goto bad_vid_hdr; | 
|  | } | 
|  |  | 
|  | if (sv->vol_id != be32_to_cpu(vidh->vol_id)) { | 
|  | ubi_err("bad vol_id %d", sv->vol_id); | 
|  | goto bad_vid_hdr; | 
|  | } | 
|  |  | 
|  | if (sv->compat != vidh->compat) { | 
|  | ubi_err("bad compat %d", vidh->compat); | 
|  | goto bad_vid_hdr; | 
|  | } | 
|  |  | 
|  | if (seb->lnum != be32_to_cpu(vidh->lnum)) { | 
|  | ubi_err("bad lnum %d", seb->lnum); | 
|  | goto bad_vid_hdr; | 
|  | } | 
|  |  | 
|  | if (sv->used_ebs != be32_to_cpu(vidh->used_ebs)) { | 
|  | ubi_err("bad used_ebs %d", sv->used_ebs); | 
|  | goto bad_vid_hdr; | 
|  | } | 
|  |  | 
|  | if (sv->data_pad != be32_to_cpu(vidh->data_pad)) { | 
|  | ubi_err("bad data_pad %d", sv->data_pad); | 
|  | goto bad_vid_hdr; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!last_seb) | 
|  | continue; | 
|  |  | 
|  | if (sv->highest_lnum != be32_to_cpu(vidh->lnum)) { | 
|  | ubi_err("bad highest_lnum %d", sv->highest_lnum); | 
|  | goto bad_vid_hdr; | 
|  | } | 
|  |  | 
|  | if (sv->last_data_size != be32_to_cpu(vidh->data_size)) { | 
|  | ubi_err("bad last_data_size %d", sv->last_data_size); | 
|  | goto bad_vid_hdr; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Make sure that all the physical eraseblocks are in one of the lists | 
|  | * or trees. | 
|  | */ | 
|  | buf = kzalloc(ubi->peb_count, GFP_KERNEL); | 
|  | if (!buf) | 
|  | return -ENOMEM; | 
|  |  | 
|  | for (pnum = 0; pnum < ubi->peb_count; pnum++) { | 
|  | err = ubi_io_is_bad(ubi, pnum); | 
|  | if (err < 0) { | 
|  | kfree(buf); | 
|  | return err; | 
|  | } else if (err) | 
|  | buf[pnum] = 1; | 
|  | } | 
|  |  | 
|  | ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) | 
|  | ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) | 
|  | buf[seb->pnum] = 1; | 
|  |  | 
|  | list_for_each_entry(seb, &si->free, u.list) | 
|  | buf[seb->pnum] = 1; | 
|  |  | 
|  | list_for_each_entry(seb, &si->corr, u.list) | 
|  | buf[seb->pnum] = 1; | 
|  |  | 
|  | list_for_each_entry(seb, &si->erase, u.list) | 
|  | buf[seb->pnum] = 1; | 
|  |  | 
|  | list_for_each_entry(seb, &si->alien, u.list) | 
|  | buf[seb->pnum] = 1; | 
|  |  | 
|  | err = 0; | 
|  | for (pnum = 0; pnum < ubi->peb_count; pnum++) | 
|  | if (!buf[pnum]) { | 
|  | ubi_err("PEB %d is not referred", pnum); | 
|  | err = 1; | 
|  | } | 
|  |  | 
|  | kfree(buf); | 
|  | if (err) | 
|  | goto out; | 
|  | return 0; | 
|  |  | 
|  | bad_seb: | 
|  | ubi_err("bad scanning information about LEB %d", seb->lnum); | 
|  | ubi_dbg_dump_seb(seb, 0); | 
|  | ubi_dbg_dump_sv(sv); | 
|  | goto out; | 
|  |  | 
|  | bad_sv: | 
|  | ubi_err("bad scanning information about volume %d", sv->vol_id); | 
|  | ubi_dbg_dump_sv(sv); | 
|  | goto out; | 
|  |  | 
|  | bad_vid_hdr: | 
|  | ubi_err("bad scanning information about volume %d", sv->vol_id); | 
|  | ubi_dbg_dump_sv(sv); | 
|  | ubi_dbg_dump_vid_hdr(vidh); | 
|  |  | 
|  | out: | 
|  | ubi_dbg_dump_stack(); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_MTD_UBI_DEBUG */ |