|  | /* | 
|  | * Copyright (C) 2010 IBM Corporation | 
|  | * | 
|  | * Author: | 
|  | * Mimi Zohar <zohar@us.ibm.com> | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License as published by | 
|  | * the Free Software Foundation, version 2 of the License. | 
|  | * | 
|  | * See Documentation/security/keys-trusted-encrypted.txt | 
|  | */ | 
|  |  | 
|  | #include <linux/uaccess.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/parser.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/err.h> | 
|  | #include <keys/user-type.h> | 
|  | #include <keys/trusted-type.h> | 
|  | #include <keys/encrypted-type.h> | 
|  | #include <linux/key-type.h> | 
|  | #include <linux/random.h> | 
|  | #include <linux/rcupdate.h> | 
|  | #include <linux/scatterlist.h> | 
|  | #include <linux/crypto.h> | 
|  | #include <crypto/hash.h> | 
|  | #include <crypto/sha.h> | 
|  | #include <crypto/aes.h> | 
|  |  | 
|  | #include "encrypted.h" | 
|  |  | 
|  | static const char KEY_TRUSTED_PREFIX[] = "trusted:"; | 
|  | static const char KEY_USER_PREFIX[] = "user:"; | 
|  | static const char hash_alg[] = "sha256"; | 
|  | static const char hmac_alg[] = "hmac(sha256)"; | 
|  | static const char blkcipher_alg[] = "cbc(aes)"; | 
|  | static unsigned int ivsize; | 
|  | static int blksize; | 
|  |  | 
|  | #define KEY_TRUSTED_PREFIX_LEN (sizeof (KEY_TRUSTED_PREFIX) - 1) | 
|  | #define KEY_USER_PREFIX_LEN (sizeof (KEY_USER_PREFIX) - 1) | 
|  | #define HASH_SIZE SHA256_DIGEST_SIZE | 
|  | #define MAX_DATA_SIZE 4096 | 
|  | #define MIN_DATA_SIZE  20 | 
|  |  | 
|  | struct sdesc { | 
|  | struct shash_desc shash; | 
|  | char ctx[]; | 
|  | }; | 
|  |  | 
|  | static struct crypto_shash *hashalg; | 
|  | static struct crypto_shash *hmacalg; | 
|  |  | 
|  | enum { | 
|  | Opt_err = -1, Opt_new, Opt_load, Opt_update | 
|  | }; | 
|  |  | 
|  | static const match_table_t key_tokens = { | 
|  | {Opt_new, "new"}, | 
|  | {Opt_load, "load"}, | 
|  | {Opt_update, "update"}, | 
|  | {Opt_err, NULL} | 
|  | }; | 
|  |  | 
|  | static int aes_get_sizes(void) | 
|  | { | 
|  | struct crypto_blkcipher *tfm; | 
|  |  | 
|  | tfm = crypto_alloc_blkcipher(blkcipher_alg, 0, CRYPTO_ALG_ASYNC); | 
|  | if (IS_ERR(tfm)) { | 
|  | pr_err("encrypted_key: failed to alloc_cipher (%ld)\n", | 
|  | PTR_ERR(tfm)); | 
|  | return PTR_ERR(tfm); | 
|  | } | 
|  | ivsize = crypto_blkcipher_ivsize(tfm); | 
|  | blksize = crypto_blkcipher_blocksize(tfm); | 
|  | crypto_free_blkcipher(tfm); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * valid_master_desc - verify the 'key-type:desc' of a new/updated master-key | 
|  | * | 
|  | * key-type:= "trusted:" | "encrypted:" | 
|  | * desc:= master-key description | 
|  | * | 
|  | * Verify that 'key-type' is valid and that 'desc' exists. On key update, | 
|  | * only the master key description is permitted to change, not the key-type. | 
|  | * The key-type remains constant. | 
|  | * | 
|  | * On success returns 0, otherwise -EINVAL. | 
|  | */ | 
|  | static int valid_master_desc(const char *new_desc, const char *orig_desc) | 
|  | { | 
|  | if (!memcmp(new_desc, KEY_TRUSTED_PREFIX, KEY_TRUSTED_PREFIX_LEN)) { | 
|  | if (strlen(new_desc) == KEY_TRUSTED_PREFIX_LEN) | 
|  | goto out; | 
|  | if (orig_desc) | 
|  | if (memcmp(new_desc, orig_desc, KEY_TRUSTED_PREFIX_LEN)) | 
|  | goto out; | 
|  | } else if (!memcmp(new_desc, KEY_USER_PREFIX, KEY_USER_PREFIX_LEN)) { | 
|  | if (strlen(new_desc) == KEY_USER_PREFIX_LEN) | 
|  | goto out; | 
|  | if (orig_desc) | 
|  | if (memcmp(new_desc, orig_desc, KEY_USER_PREFIX_LEN)) | 
|  | goto out; | 
|  | } else | 
|  | goto out; | 
|  | return 0; | 
|  | out: | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * datablob_parse - parse the keyctl data | 
|  | * | 
|  | * datablob format: | 
|  | * new <master-key name> <decrypted data length> | 
|  | * load <master-key name> <decrypted data length> <encrypted iv + data> | 
|  | * update <new-master-key name> | 
|  | * | 
|  | * Tokenizes a copy of the keyctl data, returning a pointer to each token, | 
|  | * which is null terminated. | 
|  | * | 
|  | * On success returns 0, otherwise -EINVAL. | 
|  | */ | 
|  | static int datablob_parse(char *datablob, char **master_desc, | 
|  | char **decrypted_datalen, char **hex_encoded_iv) | 
|  | { | 
|  | substring_t args[MAX_OPT_ARGS]; | 
|  | int ret = -EINVAL; | 
|  | int key_cmd; | 
|  | char *p; | 
|  |  | 
|  | p = strsep(&datablob, " \t"); | 
|  | if (!p) | 
|  | return ret; | 
|  | key_cmd = match_token(p, key_tokens, args); | 
|  |  | 
|  | *master_desc = strsep(&datablob, " \t"); | 
|  | if (!*master_desc) | 
|  | goto out; | 
|  |  | 
|  | if (valid_master_desc(*master_desc, NULL) < 0) | 
|  | goto out; | 
|  |  | 
|  | if (decrypted_datalen) { | 
|  | *decrypted_datalen = strsep(&datablob, " \t"); | 
|  | if (!*decrypted_datalen) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | switch (key_cmd) { | 
|  | case Opt_new: | 
|  | if (!decrypted_datalen) | 
|  | break; | 
|  | ret = 0; | 
|  | break; | 
|  | case Opt_load: | 
|  | if (!decrypted_datalen) | 
|  | break; | 
|  | *hex_encoded_iv = strsep(&datablob, " \t"); | 
|  | if (!*hex_encoded_iv) | 
|  | break; | 
|  | ret = 0; | 
|  | break; | 
|  | case Opt_update: | 
|  | if (decrypted_datalen) | 
|  | break; | 
|  | ret = 0; | 
|  | break; | 
|  | case Opt_err: | 
|  | break; | 
|  | } | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * datablob_format - format as an ascii string, before copying to userspace | 
|  | */ | 
|  | static char *datablob_format(struct encrypted_key_payload *epayload, | 
|  | size_t asciiblob_len) | 
|  | { | 
|  | char *ascii_buf, *bufp; | 
|  | u8 *iv = epayload->iv; | 
|  | int len; | 
|  | int i; | 
|  |  | 
|  | ascii_buf = kmalloc(asciiblob_len + 1, GFP_KERNEL); | 
|  | if (!ascii_buf) | 
|  | goto out; | 
|  |  | 
|  | ascii_buf[asciiblob_len] = '\0'; | 
|  |  | 
|  | /* copy datablob master_desc and datalen strings */ | 
|  | len = sprintf(ascii_buf, "%s %s ", epayload->master_desc, | 
|  | epayload->datalen); | 
|  |  | 
|  | /* convert the hex encoded iv, encrypted-data and HMAC to ascii */ | 
|  | bufp = &ascii_buf[len]; | 
|  | for (i = 0; i < (asciiblob_len - len) / 2; i++) | 
|  | bufp = pack_hex_byte(bufp, iv[i]); | 
|  | out: | 
|  | return ascii_buf; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * request_trusted_key - request the trusted key | 
|  | * | 
|  | * Trusted keys are sealed to PCRs and other metadata. Although userspace | 
|  | * manages both trusted/encrypted key-types, like the encrypted key type | 
|  | * data, trusted key type data is not visible decrypted from userspace. | 
|  | */ | 
|  | static struct key *request_trusted_key(const char *trusted_desc, | 
|  | u8 **master_key, size_t *master_keylen) | 
|  | { | 
|  | struct trusted_key_payload *tpayload; | 
|  | struct key *tkey; | 
|  |  | 
|  | tkey = request_key(&key_type_trusted, trusted_desc, NULL); | 
|  | if (IS_ERR(tkey)) | 
|  | goto error; | 
|  |  | 
|  | down_read(&tkey->sem); | 
|  | tpayload = rcu_dereference(tkey->payload.data); | 
|  | *master_key = tpayload->key; | 
|  | *master_keylen = tpayload->key_len; | 
|  | error: | 
|  | return tkey; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * request_user_key - request the user key | 
|  | * | 
|  | * Use a user provided key to encrypt/decrypt an encrypted-key. | 
|  | */ | 
|  | static struct key *request_user_key(const char *master_desc, u8 **master_key, | 
|  | size_t *master_keylen) | 
|  | { | 
|  | struct user_key_payload *upayload; | 
|  | struct key *ukey; | 
|  |  | 
|  | ukey = request_key(&key_type_user, master_desc, NULL); | 
|  | if (IS_ERR(ukey)) | 
|  | goto error; | 
|  |  | 
|  | down_read(&ukey->sem); | 
|  | upayload = rcu_dereference(ukey->payload.data); | 
|  | *master_key = upayload->data; | 
|  | *master_keylen = upayload->datalen; | 
|  | error: | 
|  | return ukey; | 
|  | } | 
|  |  | 
|  | static struct sdesc *alloc_sdesc(struct crypto_shash *alg) | 
|  | { | 
|  | struct sdesc *sdesc; | 
|  | int size; | 
|  |  | 
|  | size = sizeof(struct shash_desc) + crypto_shash_descsize(alg); | 
|  | sdesc = kmalloc(size, GFP_KERNEL); | 
|  | if (!sdesc) | 
|  | return ERR_PTR(-ENOMEM); | 
|  | sdesc->shash.tfm = alg; | 
|  | sdesc->shash.flags = 0x0; | 
|  | return sdesc; | 
|  | } | 
|  |  | 
|  | static int calc_hmac(u8 *digest, const u8 *key, unsigned int keylen, | 
|  | const u8 *buf, unsigned int buflen) | 
|  | { | 
|  | struct sdesc *sdesc; | 
|  | int ret; | 
|  |  | 
|  | sdesc = alloc_sdesc(hmacalg); | 
|  | if (IS_ERR(sdesc)) { | 
|  | pr_info("encrypted_key: can't alloc %s\n", hmac_alg); | 
|  | return PTR_ERR(sdesc); | 
|  | } | 
|  |  | 
|  | ret = crypto_shash_setkey(hmacalg, key, keylen); | 
|  | if (!ret) | 
|  | ret = crypto_shash_digest(&sdesc->shash, buf, buflen, digest); | 
|  | kfree(sdesc); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int calc_hash(u8 *digest, const u8 *buf, unsigned int buflen) | 
|  | { | 
|  | struct sdesc *sdesc; | 
|  | int ret; | 
|  |  | 
|  | sdesc = alloc_sdesc(hashalg); | 
|  | if (IS_ERR(sdesc)) { | 
|  | pr_info("encrypted_key: can't alloc %s\n", hash_alg); | 
|  | return PTR_ERR(sdesc); | 
|  | } | 
|  |  | 
|  | ret = crypto_shash_digest(&sdesc->shash, buf, buflen, digest); | 
|  | kfree(sdesc); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | enum derived_key_type { ENC_KEY, AUTH_KEY }; | 
|  |  | 
|  | /* Derive authentication/encryption key from trusted key */ | 
|  | static int get_derived_key(u8 *derived_key, enum derived_key_type key_type, | 
|  | const u8 *master_key, size_t master_keylen) | 
|  | { | 
|  | u8 *derived_buf; | 
|  | unsigned int derived_buf_len; | 
|  | int ret; | 
|  |  | 
|  | derived_buf_len = strlen("AUTH_KEY") + 1 + master_keylen; | 
|  | if (derived_buf_len < HASH_SIZE) | 
|  | derived_buf_len = HASH_SIZE; | 
|  |  | 
|  | derived_buf = kzalloc(derived_buf_len, GFP_KERNEL); | 
|  | if (!derived_buf) { | 
|  | pr_err("encrypted_key: out of memory\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  | if (key_type) | 
|  | strcpy(derived_buf, "AUTH_KEY"); | 
|  | else | 
|  | strcpy(derived_buf, "ENC_KEY"); | 
|  |  | 
|  | memcpy(derived_buf + strlen(derived_buf) + 1, master_key, | 
|  | master_keylen); | 
|  | ret = calc_hash(derived_key, derived_buf, derived_buf_len); | 
|  | kfree(derived_buf); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int init_blkcipher_desc(struct blkcipher_desc *desc, const u8 *key, | 
|  | unsigned int key_len, const u8 *iv, | 
|  | unsigned int ivsize) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | desc->tfm = crypto_alloc_blkcipher(blkcipher_alg, 0, CRYPTO_ALG_ASYNC); | 
|  | if (IS_ERR(desc->tfm)) { | 
|  | pr_err("encrypted_key: failed to load %s transform (%ld)\n", | 
|  | blkcipher_alg, PTR_ERR(desc->tfm)); | 
|  | return PTR_ERR(desc->tfm); | 
|  | } | 
|  | desc->flags = 0; | 
|  |  | 
|  | ret = crypto_blkcipher_setkey(desc->tfm, key, key_len); | 
|  | if (ret < 0) { | 
|  | pr_err("encrypted_key: failed to setkey (%d)\n", ret); | 
|  | crypto_free_blkcipher(desc->tfm); | 
|  | return ret; | 
|  | } | 
|  | crypto_blkcipher_set_iv(desc->tfm, iv, ivsize); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct key *request_master_key(struct encrypted_key_payload *epayload, | 
|  | u8 **master_key, size_t *master_keylen) | 
|  | { | 
|  | struct key *mkey = NULL; | 
|  |  | 
|  | if (!strncmp(epayload->master_desc, KEY_TRUSTED_PREFIX, | 
|  | KEY_TRUSTED_PREFIX_LEN)) { | 
|  | mkey = request_trusted_key(epayload->master_desc + | 
|  | KEY_TRUSTED_PREFIX_LEN, | 
|  | master_key, master_keylen); | 
|  | } else if (!strncmp(epayload->master_desc, KEY_USER_PREFIX, | 
|  | KEY_USER_PREFIX_LEN)) { | 
|  | mkey = request_user_key(epayload->master_desc + | 
|  | KEY_USER_PREFIX_LEN, | 
|  | master_key, master_keylen); | 
|  | } else | 
|  | goto out; | 
|  |  | 
|  | if (IS_ERR(mkey)) | 
|  | pr_info("encrypted_key: key %s not found", | 
|  | epayload->master_desc); | 
|  | if (mkey) | 
|  | dump_master_key(*master_key, *master_keylen); | 
|  | out: | 
|  | return mkey; | 
|  | } | 
|  |  | 
|  | /* Before returning data to userspace, encrypt decrypted data. */ | 
|  | static int derived_key_encrypt(struct encrypted_key_payload *epayload, | 
|  | const u8 *derived_key, | 
|  | unsigned int derived_keylen) | 
|  | { | 
|  | struct scatterlist sg_in[2]; | 
|  | struct scatterlist sg_out[1]; | 
|  | struct blkcipher_desc desc; | 
|  | unsigned int encrypted_datalen; | 
|  | unsigned int padlen; | 
|  | char pad[16]; | 
|  | int ret; | 
|  |  | 
|  | encrypted_datalen = roundup(epayload->decrypted_datalen, blksize); | 
|  | padlen = encrypted_datalen - epayload->decrypted_datalen; | 
|  |  | 
|  | ret = init_blkcipher_desc(&desc, derived_key, derived_keylen, | 
|  | epayload->iv, ivsize); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | dump_decrypted_data(epayload); | 
|  |  | 
|  | memset(pad, 0, sizeof pad); | 
|  | sg_init_table(sg_in, 2); | 
|  | sg_set_buf(&sg_in[0], epayload->decrypted_data, | 
|  | epayload->decrypted_datalen); | 
|  | sg_set_buf(&sg_in[1], pad, padlen); | 
|  |  | 
|  | sg_init_table(sg_out, 1); | 
|  | sg_set_buf(sg_out, epayload->encrypted_data, encrypted_datalen); | 
|  |  | 
|  | ret = crypto_blkcipher_encrypt(&desc, sg_out, sg_in, encrypted_datalen); | 
|  | crypto_free_blkcipher(desc.tfm); | 
|  | if (ret < 0) | 
|  | pr_err("encrypted_key: failed to encrypt (%d)\n", ret); | 
|  | else | 
|  | dump_encrypted_data(epayload, encrypted_datalen); | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int datablob_hmac_append(struct encrypted_key_payload *epayload, | 
|  | const u8 *master_key, size_t master_keylen) | 
|  | { | 
|  | u8 derived_key[HASH_SIZE]; | 
|  | u8 *digest; | 
|  | int ret; | 
|  |  | 
|  | ret = get_derived_key(derived_key, AUTH_KEY, master_key, master_keylen); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | digest = epayload->master_desc + epayload->datablob_len; | 
|  | ret = calc_hmac(digest, derived_key, sizeof derived_key, | 
|  | epayload->master_desc, epayload->datablob_len); | 
|  | if (!ret) | 
|  | dump_hmac(NULL, digest, HASH_SIZE); | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* verify HMAC before decrypting encrypted key */ | 
|  | static int datablob_hmac_verify(struct encrypted_key_payload *epayload, | 
|  | const u8 *master_key, size_t master_keylen) | 
|  | { | 
|  | u8 derived_key[HASH_SIZE]; | 
|  | u8 digest[HASH_SIZE]; | 
|  | int ret; | 
|  |  | 
|  | ret = get_derived_key(derived_key, AUTH_KEY, master_key, master_keylen); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | ret = calc_hmac(digest, derived_key, sizeof derived_key, | 
|  | epayload->master_desc, epayload->datablob_len); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | ret = memcmp(digest, epayload->master_desc + epayload->datablob_len, | 
|  | sizeof digest); | 
|  | if (ret) { | 
|  | ret = -EINVAL; | 
|  | dump_hmac("datablob", | 
|  | epayload->master_desc + epayload->datablob_len, | 
|  | HASH_SIZE); | 
|  | dump_hmac("calc", digest, HASH_SIZE); | 
|  | } | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int derived_key_decrypt(struct encrypted_key_payload *epayload, | 
|  | const u8 *derived_key, | 
|  | unsigned int derived_keylen) | 
|  | { | 
|  | struct scatterlist sg_in[1]; | 
|  | struct scatterlist sg_out[2]; | 
|  | struct blkcipher_desc desc; | 
|  | unsigned int encrypted_datalen; | 
|  | char pad[16]; | 
|  | int ret; | 
|  |  | 
|  | encrypted_datalen = roundup(epayload->decrypted_datalen, blksize); | 
|  | ret = init_blkcipher_desc(&desc, derived_key, derived_keylen, | 
|  | epayload->iv, ivsize); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | dump_encrypted_data(epayload, encrypted_datalen); | 
|  |  | 
|  | memset(pad, 0, sizeof pad); | 
|  | sg_init_table(sg_in, 1); | 
|  | sg_init_table(sg_out, 2); | 
|  | sg_set_buf(sg_in, epayload->encrypted_data, encrypted_datalen); | 
|  | sg_set_buf(&sg_out[0], epayload->decrypted_data, | 
|  | epayload->decrypted_datalen); | 
|  | sg_set_buf(&sg_out[1], pad, sizeof pad); | 
|  |  | 
|  | ret = crypto_blkcipher_decrypt(&desc, sg_out, sg_in, encrypted_datalen); | 
|  | crypto_free_blkcipher(desc.tfm); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | dump_decrypted_data(epayload); | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Allocate memory for decrypted key and datablob. */ | 
|  | static struct encrypted_key_payload *encrypted_key_alloc(struct key *key, | 
|  | const char *master_desc, | 
|  | const char *datalen) | 
|  | { | 
|  | struct encrypted_key_payload *epayload = NULL; | 
|  | unsigned short datablob_len; | 
|  | unsigned short decrypted_datalen; | 
|  | unsigned int encrypted_datalen; | 
|  | long dlen; | 
|  | int ret; | 
|  |  | 
|  | ret = strict_strtol(datalen, 10, &dlen); | 
|  | if (ret < 0 || dlen < MIN_DATA_SIZE || dlen > MAX_DATA_SIZE) | 
|  | return ERR_PTR(-EINVAL); | 
|  |  | 
|  | decrypted_datalen = dlen; | 
|  | encrypted_datalen = roundup(decrypted_datalen, blksize); | 
|  |  | 
|  | datablob_len = strlen(master_desc) + 1 + strlen(datalen) + 1 | 
|  | + ivsize + 1 + encrypted_datalen; | 
|  |  | 
|  | ret = key_payload_reserve(key, decrypted_datalen + datablob_len | 
|  | + HASH_SIZE + 1); | 
|  | if (ret < 0) | 
|  | return ERR_PTR(ret); | 
|  |  | 
|  | epayload = kzalloc(sizeof(*epayload) + decrypted_datalen + | 
|  | datablob_len + HASH_SIZE + 1, GFP_KERNEL); | 
|  | if (!epayload) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | epayload->decrypted_datalen = decrypted_datalen; | 
|  | epayload->datablob_len = datablob_len; | 
|  | return epayload; | 
|  | } | 
|  |  | 
|  | static int encrypted_key_decrypt(struct encrypted_key_payload *epayload, | 
|  | const char *hex_encoded_iv) | 
|  | { | 
|  | struct key *mkey; | 
|  | u8 derived_key[HASH_SIZE]; | 
|  | u8 *master_key; | 
|  | u8 *hmac; | 
|  | const char *hex_encoded_data; | 
|  | unsigned int encrypted_datalen; | 
|  | size_t master_keylen; | 
|  | size_t asciilen; | 
|  | int ret; | 
|  |  | 
|  | encrypted_datalen = roundup(epayload->decrypted_datalen, blksize); | 
|  | asciilen = (ivsize + 1 + encrypted_datalen + HASH_SIZE) * 2; | 
|  | if (strlen(hex_encoded_iv) != asciilen) | 
|  | return -EINVAL; | 
|  |  | 
|  | hex_encoded_data = hex_encoded_iv + (2 * ivsize) + 2; | 
|  | hex2bin(epayload->iv, hex_encoded_iv, ivsize); | 
|  | hex2bin(epayload->encrypted_data, hex_encoded_data, encrypted_datalen); | 
|  |  | 
|  | hmac = epayload->master_desc + epayload->datablob_len; | 
|  | hex2bin(hmac, hex_encoded_data + (encrypted_datalen * 2), HASH_SIZE); | 
|  |  | 
|  | mkey = request_master_key(epayload, &master_key, &master_keylen); | 
|  | if (IS_ERR(mkey)) | 
|  | return PTR_ERR(mkey); | 
|  |  | 
|  | ret = datablob_hmac_verify(epayload, master_key, master_keylen); | 
|  | if (ret < 0) { | 
|  | pr_err("encrypted_key: bad hmac (%d)\n", ret); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret = get_derived_key(derived_key, ENC_KEY, master_key, master_keylen); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | ret = derived_key_decrypt(epayload, derived_key, sizeof derived_key); | 
|  | if (ret < 0) | 
|  | pr_err("encrypted_key: failed to decrypt key (%d)\n", ret); | 
|  | out: | 
|  | up_read(&mkey->sem); | 
|  | key_put(mkey); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void __ekey_init(struct encrypted_key_payload *epayload, | 
|  | const char *master_desc, const char *datalen) | 
|  | { | 
|  | epayload->master_desc = epayload->decrypted_data | 
|  | + epayload->decrypted_datalen; | 
|  | epayload->datalen = epayload->master_desc + strlen(master_desc) + 1; | 
|  | epayload->iv = epayload->datalen + strlen(datalen) + 1; | 
|  | epayload->encrypted_data = epayload->iv + ivsize + 1; | 
|  |  | 
|  | memcpy(epayload->master_desc, master_desc, strlen(master_desc)); | 
|  | memcpy(epayload->datalen, datalen, strlen(datalen)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * encrypted_init - initialize an encrypted key | 
|  | * | 
|  | * For a new key, use a random number for both the iv and data | 
|  | * itself.  For an old key, decrypt the hex encoded data. | 
|  | */ | 
|  | static int encrypted_init(struct encrypted_key_payload *epayload, | 
|  | const char *master_desc, const char *datalen, | 
|  | const char *hex_encoded_iv) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | __ekey_init(epayload, master_desc, datalen); | 
|  | if (!hex_encoded_iv) { | 
|  | get_random_bytes(epayload->iv, ivsize); | 
|  |  | 
|  | get_random_bytes(epayload->decrypted_data, | 
|  | epayload->decrypted_datalen); | 
|  | } else | 
|  | ret = encrypted_key_decrypt(epayload, hex_encoded_iv); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * encrypted_instantiate - instantiate an encrypted key | 
|  | * | 
|  | * Decrypt an existing encrypted datablob or create a new encrypted key | 
|  | * based on a kernel random number. | 
|  | * | 
|  | * On success, return 0. Otherwise return errno. | 
|  | */ | 
|  | static int encrypted_instantiate(struct key *key, const void *data, | 
|  | size_t datalen) | 
|  | { | 
|  | struct encrypted_key_payload *epayload = NULL; | 
|  | char *datablob = NULL; | 
|  | char *master_desc = NULL; | 
|  | char *decrypted_datalen = NULL; | 
|  | char *hex_encoded_iv = NULL; | 
|  | int ret; | 
|  |  | 
|  | if (datalen <= 0 || datalen > 32767 || !data) | 
|  | return -EINVAL; | 
|  |  | 
|  | datablob = kmalloc(datalen + 1, GFP_KERNEL); | 
|  | if (!datablob) | 
|  | return -ENOMEM; | 
|  | datablob[datalen] = 0; | 
|  | memcpy(datablob, data, datalen); | 
|  | ret = datablob_parse(datablob, &master_desc, &decrypted_datalen, | 
|  | &hex_encoded_iv); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | epayload = encrypted_key_alloc(key, master_desc, decrypted_datalen); | 
|  | if (IS_ERR(epayload)) { | 
|  | ret = PTR_ERR(epayload); | 
|  | goto out; | 
|  | } | 
|  | ret = encrypted_init(epayload, master_desc, decrypted_datalen, | 
|  | hex_encoded_iv); | 
|  | if (ret < 0) { | 
|  | kfree(epayload); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | rcu_assign_pointer(key->payload.data, epayload); | 
|  | out: | 
|  | kfree(datablob); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void encrypted_rcu_free(struct rcu_head *rcu) | 
|  | { | 
|  | struct encrypted_key_payload *epayload; | 
|  |  | 
|  | epayload = container_of(rcu, struct encrypted_key_payload, rcu); | 
|  | memset(epayload->decrypted_data, 0, epayload->decrypted_datalen); | 
|  | kfree(epayload); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * encrypted_update - update the master key description | 
|  | * | 
|  | * Change the master key description for an existing encrypted key. | 
|  | * The next read will return an encrypted datablob using the new | 
|  | * master key description. | 
|  | * | 
|  | * On success, return 0. Otherwise return errno. | 
|  | */ | 
|  | static int encrypted_update(struct key *key, const void *data, size_t datalen) | 
|  | { | 
|  | struct encrypted_key_payload *epayload = key->payload.data; | 
|  | struct encrypted_key_payload *new_epayload; | 
|  | char *buf; | 
|  | char *new_master_desc = NULL; | 
|  | int ret = 0; | 
|  |  | 
|  | if (datalen <= 0 || datalen > 32767 || !data) | 
|  | return -EINVAL; | 
|  |  | 
|  | buf = kmalloc(datalen + 1, GFP_KERNEL); | 
|  | if (!buf) | 
|  | return -ENOMEM; | 
|  |  | 
|  | buf[datalen] = 0; | 
|  | memcpy(buf, data, datalen); | 
|  | ret = datablob_parse(buf, &new_master_desc, NULL, NULL); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | ret = valid_master_desc(new_master_desc, epayload->master_desc); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | new_epayload = encrypted_key_alloc(key, new_master_desc, | 
|  | epayload->datalen); | 
|  | if (IS_ERR(new_epayload)) { | 
|  | ret = PTR_ERR(new_epayload); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | __ekey_init(new_epayload, new_master_desc, epayload->datalen); | 
|  |  | 
|  | memcpy(new_epayload->iv, epayload->iv, ivsize); | 
|  | memcpy(new_epayload->decrypted_data, epayload->decrypted_data, | 
|  | epayload->decrypted_datalen); | 
|  |  | 
|  | rcu_assign_pointer(key->payload.data, new_epayload); | 
|  | call_rcu(&epayload->rcu, encrypted_rcu_free); | 
|  | out: | 
|  | kfree(buf); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * encrypted_read - format and copy the encrypted data to userspace | 
|  | * | 
|  | * The resulting datablob format is: | 
|  | * <master-key name> <decrypted data length> <encrypted iv> <encrypted data> | 
|  | * | 
|  | * On success, return to userspace the encrypted key datablob size. | 
|  | */ | 
|  | static long encrypted_read(const struct key *key, char __user *buffer, | 
|  | size_t buflen) | 
|  | { | 
|  | struct encrypted_key_payload *epayload; | 
|  | struct key *mkey; | 
|  | u8 *master_key; | 
|  | size_t master_keylen; | 
|  | char derived_key[HASH_SIZE]; | 
|  | char *ascii_buf; | 
|  | size_t asciiblob_len; | 
|  | int ret; | 
|  |  | 
|  | epayload = rcu_dereference_key(key); | 
|  |  | 
|  | /* returns the hex encoded iv, encrypted-data, and hmac as ascii */ | 
|  | asciiblob_len = epayload->datablob_len + ivsize + 1 | 
|  | + roundup(epayload->decrypted_datalen, blksize) | 
|  | + (HASH_SIZE * 2); | 
|  |  | 
|  | if (!buffer || buflen < asciiblob_len) | 
|  | return asciiblob_len; | 
|  |  | 
|  | mkey = request_master_key(epayload, &master_key, &master_keylen); | 
|  | if (IS_ERR(mkey)) | 
|  | return PTR_ERR(mkey); | 
|  |  | 
|  | ret = get_derived_key(derived_key, ENC_KEY, master_key, master_keylen); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | ret = derived_key_encrypt(epayload, derived_key, sizeof derived_key); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | ret = datablob_hmac_append(epayload, master_key, master_keylen); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | ascii_buf = datablob_format(epayload, asciiblob_len); | 
|  | if (!ascii_buf) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | up_read(&mkey->sem); | 
|  | key_put(mkey); | 
|  |  | 
|  | if (copy_to_user(buffer, ascii_buf, asciiblob_len) != 0) | 
|  | ret = -EFAULT; | 
|  | kfree(ascii_buf); | 
|  |  | 
|  | return asciiblob_len; | 
|  | out: | 
|  | up_read(&mkey->sem); | 
|  | key_put(mkey); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * encrypted_destroy - before freeing the key, clear the decrypted data | 
|  | * | 
|  | * Before freeing the key, clear the memory containing the decrypted | 
|  | * key data. | 
|  | */ | 
|  | static void encrypted_destroy(struct key *key) | 
|  | { | 
|  | struct encrypted_key_payload *epayload = key->payload.data; | 
|  |  | 
|  | if (!epayload) | 
|  | return; | 
|  |  | 
|  | memset(epayload->decrypted_data, 0, epayload->decrypted_datalen); | 
|  | kfree(key->payload.data); | 
|  | } | 
|  |  | 
|  | struct key_type key_type_encrypted = { | 
|  | .name = "encrypted", | 
|  | .instantiate = encrypted_instantiate, | 
|  | .update = encrypted_update, | 
|  | .match = user_match, | 
|  | .destroy = encrypted_destroy, | 
|  | .describe = user_describe, | 
|  | .read = encrypted_read, | 
|  | }; | 
|  | EXPORT_SYMBOL_GPL(key_type_encrypted); | 
|  |  | 
|  | static void encrypted_shash_release(void) | 
|  | { | 
|  | if (hashalg) | 
|  | crypto_free_shash(hashalg); | 
|  | if (hmacalg) | 
|  | crypto_free_shash(hmacalg); | 
|  | } | 
|  |  | 
|  | static int __init encrypted_shash_alloc(void) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | hmacalg = crypto_alloc_shash(hmac_alg, 0, CRYPTO_ALG_ASYNC); | 
|  | if (IS_ERR(hmacalg)) { | 
|  | pr_info("encrypted_key: could not allocate crypto %s\n", | 
|  | hmac_alg); | 
|  | return PTR_ERR(hmacalg); | 
|  | } | 
|  |  | 
|  | hashalg = crypto_alloc_shash(hash_alg, 0, CRYPTO_ALG_ASYNC); | 
|  | if (IS_ERR(hashalg)) { | 
|  | pr_info("encrypted_key: could not allocate crypto %s\n", | 
|  | hash_alg); | 
|  | ret = PTR_ERR(hashalg); | 
|  | goto hashalg_fail; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | hashalg_fail: | 
|  | crypto_free_shash(hmacalg); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int __init init_encrypted(void) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = encrypted_shash_alloc(); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | ret = register_key_type(&key_type_encrypted); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | return aes_get_sizes(); | 
|  | out: | 
|  | encrypted_shash_release(); | 
|  | return ret; | 
|  |  | 
|  | } | 
|  |  | 
|  | static void __exit cleanup_encrypted(void) | 
|  | { | 
|  | encrypted_shash_release(); | 
|  | unregister_key_type(&key_type_encrypted); | 
|  | } | 
|  |  | 
|  | late_initcall(init_encrypted); | 
|  | module_exit(cleanup_encrypted); | 
|  |  | 
|  | MODULE_LICENSE("GPL"); |