|  | /* | 
|  | * MTD SPI driver for ST M25Pxx (and similar) serial flash chips | 
|  | * | 
|  | * Author: Mike Lavender, mike@steroidmicros.com | 
|  | * | 
|  | * Copyright (c) 2005, Intec Automation Inc. | 
|  | * | 
|  | * Some parts are based on lart.c by Abraham Van Der Merwe | 
|  | * | 
|  | * Cleaned up and generalized based on mtd_dataflash.c | 
|  | * | 
|  | * This code is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License version 2 as | 
|  | * published by the Free Software Foundation. | 
|  | * | 
|  | */ | 
|  |  | 
|  | #include <linux/init.h> | 
|  | #include <linux/err.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/device.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/mutex.h> | 
|  | #include <linux/math64.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/mod_devicetable.h> | 
|  |  | 
|  | #include <linux/mtd/cfi.h> | 
|  | #include <linux/mtd/mtd.h> | 
|  | #include <linux/mtd/partitions.h> | 
|  |  | 
|  | #include <linux/spi/spi.h> | 
|  | #include <linux/spi/flash.h> | 
|  |  | 
|  | /* Flash opcodes. */ | 
|  | #define	OPCODE_WREN		0x06	/* Write enable */ | 
|  | #define	OPCODE_RDSR		0x05	/* Read status register */ | 
|  | #define	OPCODE_WRSR		0x01	/* Write status register 1 byte */ | 
|  | #define	OPCODE_NORM_READ	0x03	/* Read data bytes (low frequency) */ | 
|  | #define	OPCODE_FAST_READ	0x0b	/* Read data bytes (high frequency) */ | 
|  | #define	OPCODE_PP		0x02	/* Page program (up to 256 bytes) */ | 
|  | #define	OPCODE_BE_4K		0x20	/* Erase 4KiB block */ | 
|  | #define	OPCODE_BE_32K		0x52	/* Erase 32KiB block */ | 
|  | #define	OPCODE_CHIP_ERASE	0xc7	/* Erase whole flash chip */ | 
|  | #define	OPCODE_SE		0xd8	/* Sector erase (usually 64KiB) */ | 
|  | #define	OPCODE_RDID		0x9f	/* Read JEDEC ID */ | 
|  |  | 
|  | /* Used for SST flashes only. */ | 
|  | #define	OPCODE_BP		0x02	/* Byte program */ | 
|  | #define	OPCODE_WRDI		0x04	/* Write disable */ | 
|  | #define	OPCODE_AAI_WP		0xad	/* Auto address increment word program */ | 
|  |  | 
|  | /* Used for Macronix flashes only. */ | 
|  | #define	OPCODE_EN4B		0xb7	/* Enter 4-byte mode */ | 
|  | #define	OPCODE_EX4B		0xe9	/* Exit 4-byte mode */ | 
|  |  | 
|  | /* Used for Spansion flashes only. */ | 
|  | #define	OPCODE_BRWR		0x17	/* Bank register write */ | 
|  |  | 
|  | /* Status Register bits. */ | 
|  | #define	SR_WIP			1	/* Write in progress */ | 
|  | #define	SR_WEL			2	/* Write enable latch */ | 
|  | /* meaning of other SR_* bits may differ between vendors */ | 
|  | #define	SR_BP0			4	/* Block protect 0 */ | 
|  | #define	SR_BP1			8	/* Block protect 1 */ | 
|  | #define	SR_BP2			0x10	/* Block protect 2 */ | 
|  | #define	SR_SRWD			0x80	/* SR write protect */ | 
|  |  | 
|  | /* Define max times to check status register before we give up. */ | 
|  | #define	MAX_READY_WAIT_JIFFIES	(40 * HZ)	/* M25P16 specs 40s max chip erase */ | 
|  | #define	MAX_CMD_SIZE		5 | 
|  |  | 
|  | #ifdef CONFIG_M25PXX_USE_FAST_READ | 
|  | #define OPCODE_READ 	OPCODE_FAST_READ | 
|  | #define FAST_READ_DUMMY_BYTE 1 | 
|  | #else | 
|  | #define OPCODE_READ 	OPCODE_NORM_READ | 
|  | #define FAST_READ_DUMMY_BYTE 0 | 
|  | #endif | 
|  |  | 
|  | #define JEDEC_MFR(_jedec_id)	((_jedec_id) >> 16) | 
|  |  | 
|  | /****************************************************************************/ | 
|  |  | 
|  | struct m25p { | 
|  | struct spi_device	*spi; | 
|  | struct mutex		lock; | 
|  | struct mtd_info		mtd; | 
|  | unsigned		partitioned:1; | 
|  | u16			page_size; | 
|  | u16			addr_width; | 
|  | u8			erase_opcode; | 
|  | u8			*command; | 
|  | }; | 
|  |  | 
|  | static inline struct m25p *mtd_to_m25p(struct mtd_info *mtd) | 
|  | { | 
|  | return container_of(mtd, struct m25p, mtd); | 
|  | } | 
|  |  | 
|  | /****************************************************************************/ | 
|  |  | 
|  | /* | 
|  | * Internal helper functions | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Read the status register, returning its value in the location | 
|  | * Return the status register value. | 
|  | * Returns negative if error occurred. | 
|  | */ | 
|  | static int read_sr(struct m25p *flash) | 
|  | { | 
|  | ssize_t retval; | 
|  | u8 code = OPCODE_RDSR; | 
|  | u8 val; | 
|  |  | 
|  | retval = spi_write_then_read(flash->spi, &code, 1, &val, 1); | 
|  |  | 
|  | if (retval < 0) { | 
|  | dev_err(&flash->spi->dev, "error %d reading SR\n", | 
|  | (int) retval); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | return val; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Write status register 1 byte | 
|  | * Returns negative if error occurred. | 
|  | */ | 
|  | static int write_sr(struct m25p *flash, u8 val) | 
|  | { | 
|  | flash->command[0] = OPCODE_WRSR; | 
|  | flash->command[1] = val; | 
|  |  | 
|  | return spi_write(flash->spi, flash->command, 2); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set write enable latch with Write Enable command. | 
|  | * Returns negative if error occurred. | 
|  | */ | 
|  | static inline int write_enable(struct m25p *flash) | 
|  | { | 
|  | u8	code = OPCODE_WREN; | 
|  |  | 
|  | return spi_write_then_read(flash->spi, &code, 1, NULL, 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Send write disble instruction to the chip. | 
|  | */ | 
|  | static inline int write_disable(struct m25p *flash) | 
|  | { | 
|  | u8	code = OPCODE_WRDI; | 
|  |  | 
|  | return spi_write_then_read(flash->spi, &code, 1, NULL, 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Enable/disable 4-byte addressing mode. | 
|  | */ | 
|  | static inline int set_4byte(struct m25p *flash, u32 jedec_id, int enable) | 
|  | { | 
|  | switch (JEDEC_MFR(jedec_id)) { | 
|  | case CFI_MFR_MACRONIX: | 
|  | flash->command[0] = enable ? OPCODE_EN4B : OPCODE_EX4B; | 
|  | return spi_write(flash->spi, flash->command, 1); | 
|  | default: | 
|  | /* Spansion style */ | 
|  | flash->command[0] = OPCODE_BRWR; | 
|  | flash->command[1] = enable << 7; | 
|  | return spi_write(flash->spi, flash->command, 2); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Service routine to read status register until ready, or timeout occurs. | 
|  | * Returns non-zero if error. | 
|  | */ | 
|  | static int wait_till_ready(struct m25p *flash) | 
|  | { | 
|  | unsigned long deadline; | 
|  | int sr; | 
|  |  | 
|  | deadline = jiffies + MAX_READY_WAIT_JIFFIES; | 
|  |  | 
|  | do { | 
|  | if ((sr = read_sr(flash)) < 0) | 
|  | break; | 
|  | else if (!(sr & SR_WIP)) | 
|  | return 0; | 
|  |  | 
|  | cond_resched(); | 
|  |  | 
|  | } while (!time_after_eq(jiffies, deadline)); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Erase the whole flash memory | 
|  | * | 
|  | * Returns 0 if successful, non-zero otherwise. | 
|  | */ | 
|  | static int erase_chip(struct m25p *flash) | 
|  | { | 
|  | DEBUG(MTD_DEBUG_LEVEL3, "%s: %s %lldKiB\n", | 
|  | dev_name(&flash->spi->dev), __func__, | 
|  | (long long)(flash->mtd.size >> 10)); | 
|  |  | 
|  | /* Wait until finished previous write command. */ | 
|  | if (wait_till_ready(flash)) | 
|  | return 1; | 
|  |  | 
|  | /* Send write enable, then erase commands. */ | 
|  | write_enable(flash); | 
|  |  | 
|  | /* Set up command buffer. */ | 
|  | flash->command[0] = OPCODE_CHIP_ERASE; | 
|  |  | 
|  | spi_write(flash->spi, flash->command, 1); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void m25p_addr2cmd(struct m25p *flash, unsigned int addr, u8 *cmd) | 
|  | { | 
|  | /* opcode is in cmd[0] */ | 
|  | cmd[1] = addr >> (flash->addr_width * 8 -  8); | 
|  | cmd[2] = addr >> (flash->addr_width * 8 - 16); | 
|  | cmd[3] = addr >> (flash->addr_width * 8 - 24); | 
|  | cmd[4] = addr >> (flash->addr_width * 8 - 32); | 
|  | } | 
|  |  | 
|  | static int m25p_cmdsz(struct m25p *flash) | 
|  | { | 
|  | return 1 + flash->addr_width; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Erase one sector of flash memory at offset ``offset'' which is any | 
|  | * address within the sector which should be erased. | 
|  | * | 
|  | * Returns 0 if successful, non-zero otherwise. | 
|  | */ | 
|  | static int erase_sector(struct m25p *flash, u32 offset) | 
|  | { | 
|  | DEBUG(MTD_DEBUG_LEVEL3, "%s: %s %dKiB at 0x%08x\n", | 
|  | dev_name(&flash->spi->dev), __func__, | 
|  | flash->mtd.erasesize / 1024, offset); | 
|  |  | 
|  | /* Wait until finished previous write command. */ | 
|  | if (wait_till_ready(flash)) | 
|  | return 1; | 
|  |  | 
|  | /* Send write enable, then erase commands. */ | 
|  | write_enable(flash); | 
|  |  | 
|  | /* Set up command buffer. */ | 
|  | flash->command[0] = flash->erase_opcode; | 
|  | m25p_addr2cmd(flash, offset, flash->command); | 
|  |  | 
|  | spi_write(flash->spi, flash->command, m25p_cmdsz(flash)); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /****************************************************************************/ | 
|  |  | 
|  | /* | 
|  | * MTD implementation | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Erase an address range on the flash chip.  The address range may extend | 
|  | * one or more erase sectors.  Return an error is there is a problem erasing. | 
|  | */ | 
|  | static int m25p80_erase(struct mtd_info *mtd, struct erase_info *instr) | 
|  | { | 
|  | struct m25p *flash = mtd_to_m25p(mtd); | 
|  | u32 addr,len; | 
|  | uint32_t rem; | 
|  |  | 
|  | DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%llx, len %lld\n", | 
|  | dev_name(&flash->spi->dev), __func__, "at", | 
|  | (long long)instr->addr, (long long)instr->len); | 
|  |  | 
|  | /* sanity checks */ | 
|  | if (instr->addr + instr->len > flash->mtd.size) | 
|  | return -EINVAL; | 
|  | div_u64_rem(instr->len, mtd->erasesize, &rem); | 
|  | if (rem) | 
|  | return -EINVAL; | 
|  |  | 
|  | addr = instr->addr; | 
|  | len = instr->len; | 
|  |  | 
|  | mutex_lock(&flash->lock); | 
|  |  | 
|  | /* whole-chip erase? */ | 
|  | if (len == flash->mtd.size) { | 
|  | if (erase_chip(flash)) { | 
|  | instr->state = MTD_ERASE_FAILED; | 
|  | mutex_unlock(&flash->lock); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | /* REVISIT in some cases we could speed up erasing large regions | 
|  | * by using OPCODE_SE instead of OPCODE_BE_4K.  We may have set up | 
|  | * to use "small sector erase", but that's not always optimal. | 
|  | */ | 
|  |  | 
|  | /* "sector"-at-a-time erase */ | 
|  | } else { | 
|  | while (len) { | 
|  | if (erase_sector(flash, addr)) { | 
|  | instr->state = MTD_ERASE_FAILED; | 
|  | mutex_unlock(&flash->lock); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | addr += mtd->erasesize; | 
|  | len -= mtd->erasesize; | 
|  | } | 
|  | } | 
|  |  | 
|  | mutex_unlock(&flash->lock); | 
|  |  | 
|  | instr->state = MTD_ERASE_DONE; | 
|  | mtd_erase_callback(instr); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Read an address range from the flash chip.  The address range | 
|  | * may be any size provided it is within the physical boundaries. | 
|  | */ | 
|  | static int m25p80_read(struct mtd_info *mtd, loff_t from, size_t len, | 
|  | size_t *retlen, u_char *buf) | 
|  | { | 
|  | struct m25p *flash = mtd_to_m25p(mtd); | 
|  | struct spi_transfer t[2]; | 
|  | struct spi_message m; | 
|  |  | 
|  | DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%08x, len %zd\n", | 
|  | dev_name(&flash->spi->dev), __func__, "from", | 
|  | (u32)from, len); | 
|  |  | 
|  | /* sanity checks */ | 
|  | if (!len) | 
|  | return 0; | 
|  |  | 
|  | if (from + len > flash->mtd.size) | 
|  | return -EINVAL; | 
|  |  | 
|  | spi_message_init(&m); | 
|  | memset(t, 0, (sizeof t)); | 
|  |  | 
|  | /* NOTE: | 
|  | * OPCODE_FAST_READ (if available) is faster. | 
|  | * Should add 1 byte DUMMY_BYTE. | 
|  | */ | 
|  | t[0].tx_buf = flash->command; | 
|  | t[0].len = m25p_cmdsz(flash) + FAST_READ_DUMMY_BYTE; | 
|  | spi_message_add_tail(&t[0], &m); | 
|  |  | 
|  | t[1].rx_buf = buf; | 
|  | t[1].len = len; | 
|  | spi_message_add_tail(&t[1], &m); | 
|  |  | 
|  | /* Byte count starts at zero. */ | 
|  | *retlen = 0; | 
|  |  | 
|  | mutex_lock(&flash->lock); | 
|  |  | 
|  | /* Wait till previous write/erase is done. */ | 
|  | if (wait_till_ready(flash)) { | 
|  | /* REVISIT status return?? */ | 
|  | mutex_unlock(&flash->lock); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* FIXME switch to OPCODE_FAST_READ.  It's required for higher | 
|  | * clocks; and at this writing, every chip this driver handles | 
|  | * supports that opcode. | 
|  | */ | 
|  |  | 
|  | /* Set up the write data buffer. */ | 
|  | flash->command[0] = OPCODE_READ; | 
|  | m25p_addr2cmd(flash, from, flash->command); | 
|  |  | 
|  | spi_sync(flash->spi, &m); | 
|  |  | 
|  | *retlen = m.actual_length - m25p_cmdsz(flash) - FAST_READ_DUMMY_BYTE; | 
|  |  | 
|  | mutex_unlock(&flash->lock); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Write an address range to the flash chip.  Data must be written in | 
|  | * FLASH_PAGESIZE chunks.  The address range may be any size provided | 
|  | * it is within the physical boundaries. | 
|  | */ | 
|  | static int m25p80_write(struct mtd_info *mtd, loff_t to, size_t len, | 
|  | size_t *retlen, const u_char *buf) | 
|  | { | 
|  | struct m25p *flash = mtd_to_m25p(mtd); | 
|  | u32 page_offset, page_size; | 
|  | struct spi_transfer t[2]; | 
|  | struct spi_message m; | 
|  |  | 
|  | DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%08x, len %zd\n", | 
|  | dev_name(&flash->spi->dev), __func__, "to", | 
|  | (u32)to, len); | 
|  |  | 
|  | *retlen = 0; | 
|  |  | 
|  | /* sanity checks */ | 
|  | if (!len) | 
|  | return(0); | 
|  |  | 
|  | if (to + len > flash->mtd.size) | 
|  | return -EINVAL; | 
|  |  | 
|  | spi_message_init(&m); | 
|  | memset(t, 0, (sizeof t)); | 
|  |  | 
|  | t[0].tx_buf = flash->command; | 
|  | t[0].len = m25p_cmdsz(flash); | 
|  | spi_message_add_tail(&t[0], &m); | 
|  |  | 
|  | t[1].tx_buf = buf; | 
|  | spi_message_add_tail(&t[1], &m); | 
|  |  | 
|  | mutex_lock(&flash->lock); | 
|  |  | 
|  | /* Wait until finished previous write command. */ | 
|  | if (wait_till_ready(flash)) { | 
|  | mutex_unlock(&flash->lock); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | write_enable(flash); | 
|  |  | 
|  | /* Set up the opcode in the write buffer. */ | 
|  | flash->command[0] = OPCODE_PP; | 
|  | m25p_addr2cmd(flash, to, flash->command); | 
|  |  | 
|  | page_offset = to & (flash->page_size - 1); | 
|  |  | 
|  | /* do all the bytes fit onto one page? */ | 
|  | if (page_offset + len <= flash->page_size) { | 
|  | t[1].len = len; | 
|  |  | 
|  | spi_sync(flash->spi, &m); | 
|  |  | 
|  | *retlen = m.actual_length - m25p_cmdsz(flash); | 
|  | } else { | 
|  | u32 i; | 
|  |  | 
|  | /* the size of data remaining on the first page */ | 
|  | page_size = flash->page_size - page_offset; | 
|  |  | 
|  | t[1].len = page_size; | 
|  | spi_sync(flash->spi, &m); | 
|  |  | 
|  | *retlen = m.actual_length - m25p_cmdsz(flash); | 
|  |  | 
|  | /* write everything in flash->page_size chunks */ | 
|  | for (i = page_size; i < len; i += page_size) { | 
|  | page_size = len - i; | 
|  | if (page_size > flash->page_size) | 
|  | page_size = flash->page_size; | 
|  |  | 
|  | /* write the next page to flash */ | 
|  | m25p_addr2cmd(flash, to + i, flash->command); | 
|  |  | 
|  | t[1].tx_buf = buf + i; | 
|  | t[1].len = page_size; | 
|  |  | 
|  | wait_till_ready(flash); | 
|  |  | 
|  | write_enable(flash); | 
|  |  | 
|  | spi_sync(flash->spi, &m); | 
|  |  | 
|  | *retlen += m.actual_length - m25p_cmdsz(flash); | 
|  | } | 
|  | } | 
|  |  | 
|  | mutex_unlock(&flash->lock); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int sst_write(struct mtd_info *mtd, loff_t to, size_t len, | 
|  | size_t *retlen, const u_char *buf) | 
|  | { | 
|  | struct m25p *flash = mtd_to_m25p(mtd); | 
|  | struct spi_transfer t[2]; | 
|  | struct spi_message m; | 
|  | size_t actual; | 
|  | int cmd_sz, ret; | 
|  |  | 
|  | DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%08x, len %zd\n", | 
|  | dev_name(&flash->spi->dev), __func__, "to", | 
|  | (u32)to, len); | 
|  |  | 
|  | *retlen = 0; | 
|  |  | 
|  | /* sanity checks */ | 
|  | if (!len) | 
|  | return 0; | 
|  |  | 
|  | if (to + len > flash->mtd.size) | 
|  | return -EINVAL; | 
|  |  | 
|  | spi_message_init(&m); | 
|  | memset(t, 0, (sizeof t)); | 
|  |  | 
|  | t[0].tx_buf = flash->command; | 
|  | t[0].len = m25p_cmdsz(flash); | 
|  | spi_message_add_tail(&t[0], &m); | 
|  |  | 
|  | t[1].tx_buf = buf; | 
|  | spi_message_add_tail(&t[1], &m); | 
|  |  | 
|  | mutex_lock(&flash->lock); | 
|  |  | 
|  | /* Wait until finished previous write command. */ | 
|  | ret = wait_till_ready(flash); | 
|  | if (ret) | 
|  | goto time_out; | 
|  |  | 
|  | write_enable(flash); | 
|  |  | 
|  | actual = to % 2; | 
|  | /* Start write from odd address. */ | 
|  | if (actual) { | 
|  | flash->command[0] = OPCODE_BP; | 
|  | m25p_addr2cmd(flash, to, flash->command); | 
|  |  | 
|  | /* write one byte. */ | 
|  | t[1].len = 1; | 
|  | spi_sync(flash->spi, &m); | 
|  | ret = wait_till_ready(flash); | 
|  | if (ret) | 
|  | goto time_out; | 
|  | *retlen += m.actual_length - m25p_cmdsz(flash); | 
|  | } | 
|  | to += actual; | 
|  |  | 
|  | flash->command[0] = OPCODE_AAI_WP; | 
|  | m25p_addr2cmd(flash, to, flash->command); | 
|  |  | 
|  | /* Write out most of the data here. */ | 
|  | cmd_sz = m25p_cmdsz(flash); | 
|  | for (; actual < len - 1; actual += 2) { | 
|  | t[0].len = cmd_sz; | 
|  | /* write two bytes. */ | 
|  | t[1].len = 2; | 
|  | t[1].tx_buf = buf + actual; | 
|  |  | 
|  | spi_sync(flash->spi, &m); | 
|  | ret = wait_till_ready(flash); | 
|  | if (ret) | 
|  | goto time_out; | 
|  | *retlen += m.actual_length - cmd_sz; | 
|  | cmd_sz = 1; | 
|  | to += 2; | 
|  | } | 
|  | write_disable(flash); | 
|  | ret = wait_till_ready(flash); | 
|  | if (ret) | 
|  | goto time_out; | 
|  |  | 
|  | /* Write out trailing byte if it exists. */ | 
|  | if (actual != len) { | 
|  | write_enable(flash); | 
|  | flash->command[0] = OPCODE_BP; | 
|  | m25p_addr2cmd(flash, to, flash->command); | 
|  | t[0].len = m25p_cmdsz(flash); | 
|  | t[1].len = 1; | 
|  | t[1].tx_buf = buf + actual; | 
|  |  | 
|  | spi_sync(flash->spi, &m); | 
|  | ret = wait_till_ready(flash); | 
|  | if (ret) | 
|  | goto time_out; | 
|  | *retlen += m.actual_length - m25p_cmdsz(flash); | 
|  | write_disable(flash); | 
|  | } | 
|  |  | 
|  | time_out: | 
|  | mutex_unlock(&flash->lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /****************************************************************************/ | 
|  |  | 
|  | /* | 
|  | * SPI device driver setup and teardown | 
|  | */ | 
|  |  | 
|  | struct flash_info { | 
|  | /* JEDEC id zero means "no ID" (most older chips); otherwise it has | 
|  | * a high byte of zero plus three data bytes: the manufacturer id, | 
|  | * then a two byte device id. | 
|  | */ | 
|  | u32		jedec_id; | 
|  | u16             ext_id; | 
|  |  | 
|  | /* The size listed here is what works with OPCODE_SE, which isn't | 
|  | * necessarily called a "sector" by the vendor. | 
|  | */ | 
|  | unsigned	sector_size; | 
|  | u16		n_sectors; | 
|  |  | 
|  | u16		page_size; | 
|  | u16		addr_width; | 
|  |  | 
|  | u16		flags; | 
|  | #define	SECT_4K		0x01		/* OPCODE_BE_4K works uniformly */ | 
|  | #define	M25P_NO_ERASE	0x02		/* No erase command needed */ | 
|  | }; | 
|  |  | 
|  | #define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags)	\ | 
|  | ((kernel_ulong_t)&(struct flash_info) {				\ | 
|  | .jedec_id = (_jedec_id),				\ | 
|  | .ext_id = (_ext_id),					\ | 
|  | .sector_size = (_sector_size),				\ | 
|  | .n_sectors = (_n_sectors),				\ | 
|  | .page_size = 256,					\ | 
|  | .flags = (_flags),					\ | 
|  | }) | 
|  |  | 
|  | #define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width)	\ | 
|  | ((kernel_ulong_t)&(struct flash_info) {				\ | 
|  | .sector_size = (_sector_size),				\ | 
|  | .n_sectors = (_n_sectors),				\ | 
|  | .page_size = (_page_size),				\ | 
|  | .addr_width = (_addr_width),				\ | 
|  | .flags = M25P_NO_ERASE,					\ | 
|  | }) | 
|  |  | 
|  | /* NOTE: double check command sets and memory organization when you add | 
|  | * more flash chips.  This current list focusses on newer chips, which | 
|  | * have been converging on command sets which including JEDEC ID. | 
|  | */ | 
|  | static const struct spi_device_id m25p_ids[] = { | 
|  | /* Atmel -- some are (confusingly) marketed as "DataFlash" */ | 
|  | { "at25fs010",  INFO(0x1f6601, 0, 32 * 1024,   4, SECT_4K) }, | 
|  | { "at25fs040",  INFO(0x1f6604, 0, 64 * 1024,   8, SECT_4K) }, | 
|  |  | 
|  | { "at25df041a", INFO(0x1f4401, 0, 64 * 1024,   8, SECT_4K) }, | 
|  | { "at25df641",  INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K) }, | 
|  |  | 
|  | { "at26f004",   INFO(0x1f0400, 0, 64 * 1024,  8, SECT_4K) }, | 
|  | { "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K) }, | 
|  | { "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K) }, | 
|  | { "at26df321",  INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) }, | 
|  |  | 
|  | /* EON -- en25xxx */ | 
|  | { "en25f32", INFO(0x1c3116, 0, 64 * 1024,  64, SECT_4K) }, | 
|  | { "en25p32", INFO(0x1c2016, 0, 64 * 1024,  64, 0) }, | 
|  | { "en25p64", INFO(0x1c2017, 0, 64 * 1024, 128, 0) }, | 
|  |  | 
|  | /* Intel/Numonyx -- xxxs33b */ | 
|  | { "160s33b",  INFO(0x898911, 0, 64 * 1024,  32, 0) }, | 
|  | { "320s33b",  INFO(0x898912, 0, 64 * 1024,  64, 0) }, | 
|  | { "640s33b",  INFO(0x898913, 0, 64 * 1024, 128, 0) }, | 
|  |  | 
|  | /* Macronix */ | 
|  | { "mx25l4005a",  INFO(0xc22013, 0, 64 * 1024,   8, SECT_4K) }, | 
|  | { "mx25l8005",   INFO(0xc22014, 0, 64 * 1024,  16, 0) }, | 
|  | { "mx25l1606e",  INFO(0xc22015, 0, 64 * 1024,  32, SECT_4K) }, | 
|  | { "mx25l3205d",  INFO(0xc22016, 0, 64 * 1024,  64, 0) }, | 
|  | { "mx25l6405d",  INFO(0xc22017, 0, 64 * 1024, 128, 0) }, | 
|  | { "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) }, | 
|  | { "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) }, | 
|  | { "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512, 0) }, | 
|  | { "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) }, | 
|  |  | 
|  | /* Spansion -- single (large) sector size only, at least | 
|  | * for the chips listed here (without boot sectors). | 
|  | */ | 
|  | { "s25sl004a",  INFO(0x010212,      0,  64 * 1024,   8, 0) }, | 
|  | { "s25sl008a",  INFO(0x010213,      0,  64 * 1024,  16, 0) }, | 
|  | { "s25sl016a",  INFO(0x010214,      0,  64 * 1024,  32, 0) }, | 
|  | { "s25sl032a",  INFO(0x010215,      0,  64 * 1024,  64, 0) }, | 
|  | { "s25sl032p",  INFO(0x010215, 0x4d00,  64 * 1024,  64, SECT_4K) }, | 
|  | { "s25sl064a",  INFO(0x010216,      0,  64 * 1024, 128, 0) }, | 
|  | { "s25fl256s0", INFO(0x010219, 0x4d00, 256 * 1024, 128, 0) }, | 
|  | { "s25fl256s1", INFO(0x010219, 0x4d01,  64 * 1024, 512, 0) }, | 
|  | { "s25fl512s",  INFO(0x010220, 0x4d00, 256 * 1024, 256, 0) }, | 
|  | { "s70fl01gs",  INFO(0x010221, 0x4d00, 256 * 1024, 256, 0) }, | 
|  | { "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024,  64, 0) }, | 
|  | { "s25sl12801", INFO(0x012018, 0x0301,  64 * 1024, 256, 0) }, | 
|  | { "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024,  64, 0) }, | 
|  | { "s25fl129p1", INFO(0x012018, 0x4d01,  64 * 1024, 256, 0) }, | 
|  | { "s25fl016k",  INFO(0xef4015,      0,  64 * 1024,  32, SECT_4K) }, | 
|  | { "s25fl064k",  INFO(0xef4017,      0,  64 * 1024, 128, SECT_4K) }, | 
|  |  | 
|  | /* SST -- large erase sizes are "overlays", "sectors" are 4K */ | 
|  | { "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024,  8, SECT_4K) }, | 
|  | { "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K) }, | 
|  | { "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K) }, | 
|  | { "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K) }, | 
|  | { "sst25wf512",  INFO(0xbf2501, 0, 64 * 1024,  1, SECT_4K) }, | 
|  | { "sst25wf010",  INFO(0xbf2502, 0, 64 * 1024,  2, SECT_4K) }, | 
|  | { "sst25wf020",  INFO(0xbf2503, 0, 64 * 1024,  4, SECT_4K) }, | 
|  | { "sst25wf040",  INFO(0xbf2504, 0, 64 * 1024,  8, SECT_4K) }, | 
|  |  | 
|  | /* ST Microelectronics -- newer production may have feature updates */ | 
|  | { "m25p05",  INFO(0x202010,  0,  32 * 1024,   2, 0) }, | 
|  | { "m25p10",  INFO(0x202011,  0,  32 * 1024,   4, 0) }, | 
|  | { "m25p20",  INFO(0x202012,  0,  64 * 1024,   4, 0) }, | 
|  | { "m25p40",  INFO(0x202013,  0,  64 * 1024,   8, 0) }, | 
|  | { "m25p80",  INFO(0x202014,  0,  64 * 1024,  16, 0) }, | 
|  | { "m25p16",  INFO(0x202015,  0,  64 * 1024,  32, 0) }, | 
|  | { "m25p32",  INFO(0x202016,  0,  64 * 1024,  64, 0) }, | 
|  | { "m25p64",  INFO(0x202017,  0,  64 * 1024, 128, 0) }, | 
|  | { "m25p128", INFO(0x202018,  0, 256 * 1024,  64, 0) }, | 
|  |  | 
|  | { "m25p05-nonjedec",  INFO(0, 0,  32 * 1024,   2, 0) }, | 
|  | { "m25p10-nonjedec",  INFO(0, 0,  32 * 1024,   4, 0) }, | 
|  | { "m25p20-nonjedec",  INFO(0, 0,  64 * 1024,   4, 0) }, | 
|  | { "m25p40-nonjedec",  INFO(0, 0,  64 * 1024,   8, 0) }, | 
|  | { "m25p80-nonjedec",  INFO(0, 0,  64 * 1024,  16, 0) }, | 
|  | { "m25p16-nonjedec",  INFO(0, 0,  64 * 1024,  32, 0) }, | 
|  | { "m25p32-nonjedec",  INFO(0, 0,  64 * 1024,  64, 0) }, | 
|  | { "m25p64-nonjedec",  INFO(0, 0,  64 * 1024, 128, 0) }, | 
|  | { "m25p128-nonjedec", INFO(0, 0, 256 * 1024,  64, 0) }, | 
|  |  | 
|  | { "m45pe10", INFO(0x204011,  0, 64 * 1024,    2, 0) }, | 
|  | { "m45pe80", INFO(0x204014,  0, 64 * 1024,   16, 0) }, | 
|  | { "m45pe16", INFO(0x204015,  0, 64 * 1024,   32, 0) }, | 
|  |  | 
|  | { "m25pe80", INFO(0x208014,  0, 64 * 1024, 16,       0) }, | 
|  | { "m25pe16", INFO(0x208015,  0, 64 * 1024, 32, SECT_4K) }, | 
|  |  | 
|  | { "m25px32",    INFO(0x207116,  0, 64 * 1024, 64, SECT_4K) }, | 
|  | { "m25px32-s0", INFO(0x207316,  0, 64 * 1024, 64, SECT_4K) }, | 
|  | { "m25px32-s1", INFO(0x206316,  0, 64 * 1024, 64, SECT_4K) }, | 
|  | { "m25px64",    INFO(0x207117,  0, 64 * 1024, 128, 0) }, | 
|  |  | 
|  | /* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */ | 
|  | { "w25x10", INFO(0xef3011, 0, 64 * 1024,  2,  SECT_4K) }, | 
|  | { "w25x20", INFO(0xef3012, 0, 64 * 1024,  4,  SECT_4K) }, | 
|  | { "w25x40", INFO(0xef3013, 0, 64 * 1024,  8,  SECT_4K) }, | 
|  | { "w25x80", INFO(0xef3014, 0, 64 * 1024,  16, SECT_4K) }, | 
|  | { "w25x16", INFO(0xef3015, 0, 64 * 1024,  32, SECT_4K) }, | 
|  | { "w25x32", INFO(0xef3016, 0, 64 * 1024,  64, SECT_4K) }, | 
|  | { "w25q32", INFO(0xef4016, 0, 64 * 1024,  64, SECT_4K) }, | 
|  | { "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) }, | 
|  | { "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) }, | 
|  |  | 
|  | /* Catalyst / On Semiconductor -- non-JEDEC */ | 
|  | { "cat25c11", CAT25_INFO(  16, 8, 16, 1) }, | 
|  | { "cat25c03", CAT25_INFO(  32, 8, 16, 2) }, | 
|  | { "cat25c09", CAT25_INFO( 128, 8, 32, 2) }, | 
|  | { "cat25c17", CAT25_INFO( 256, 8, 32, 2) }, | 
|  | { "cat25128", CAT25_INFO(2048, 8, 64, 2) }, | 
|  | { }, | 
|  | }; | 
|  | MODULE_DEVICE_TABLE(spi, m25p_ids); | 
|  |  | 
|  | static const struct spi_device_id *__devinit jedec_probe(struct spi_device *spi) | 
|  | { | 
|  | int			tmp; | 
|  | u8			code = OPCODE_RDID; | 
|  | u8			id[5]; | 
|  | u32			jedec; | 
|  | u16                     ext_jedec; | 
|  | struct flash_info	*info; | 
|  |  | 
|  | /* JEDEC also defines an optional "extended device information" | 
|  | * string for after vendor-specific data, after the three bytes | 
|  | * we use here.  Supporting some chips might require using it. | 
|  | */ | 
|  | tmp = spi_write_then_read(spi, &code, 1, id, 5); | 
|  | if (tmp < 0) { | 
|  | DEBUG(MTD_DEBUG_LEVEL0, "%s: error %d reading JEDEC ID\n", | 
|  | dev_name(&spi->dev), tmp); | 
|  | return ERR_PTR(tmp); | 
|  | } | 
|  | jedec = id[0]; | 
|  | jedec = jedec << 8; | 
|  | jedec |= id[1]; | 
|  | jedec = jedec << 8; | 
|  | jedec |= id[2]; | 
|  |  | 
|  | ext_jedec = id[3] << 8 | id[4]; | 
|  |  | 
|  | for (tmp = 0; tmp < ARRAY_SIZE(m25p_ids) - 1; tmp++) { | 
|  | info = (void *)m25p_ids[tmp].driver_data; | 
|  | if (info->jedec_id == jedec) { | 
|  | if (info->ext_id != 0 && info->ext_id != ext_jedec) | 
|  | continue; | 
|  | return &m25p_ids[tmp]; | 
|  | } | 
|  | } | 
|  | dev_err(&spi->dev, "unrecognized JEDEC id %06x\n", jedec); | 
|  | return ERR_PTR(-ENODEV); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * board specific setup should have ensured the SPI clock used here | 
|  | * matches what the READ command supports, at least until this driver | 
|  | * understands FAST_READ (for clocks over 25 MHz). | 
|  | */ | 
|  | static int __devinit m25p_probe(struct spi_device *spi) | 
|  | { | 
|  | const struct spi_device_id	*id = spi_get_device_id(spi); | 
|  | struct flash_platform_data	*data; | 
|  | struct m25p			*flash; | 
|  | struct flash_info		*info; | 
|  | unsigned			i; | 
|  | struct mtd_partition		*parts = NULL; | 
|  | int				nr_parts = 0; | 
|  |  | 
|  | /* Platform data helps sort out which chip type we have, as | 
|  | * well as how this board partitions it.  If we don't have | 
|  | * a chip ID, try the JEDEC id commands; they'll work for most | 
|  | * newer chips, even if we don't recognize the particular chip. | 
|  | */ | 
|  | data = spi->dev.platform_data; | 
|  | if (data && data->type) { | 
|  | const struct spi_device_id *plat_id; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(m25p_ids) - 1; i++) { | 
|  | plat_id = &m25p_ids[i]; | 
|  | if (strcmp(data->type, plat_id->name)) | 
|  | continue; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (i < ARRAY_SIZE(m25p_ids) - 1) | 
|  | id = plat_id; | 
|  | else | 
|  | dev_warn(&spi->dev, "unrecognized id %s\n", data->type); | 
|  | } | 
|  |  | 
|  | info = (void *)id->driver_data; | 
|  |  | 
|  | if (info->jedec_id) { | 
|  | const struct spi_device_id *jid; | 
|  |  | 
|  | jid = jedec_probe(spi); | 
|  | if (IS_ERR(jid)) { | 
|  | return PTR_ERR(jid); | 
|  | } else if (jid != id) { | 
|  | /* | 
|  | * JEDEC knows better, so overwrite platform ID. We | 
|  | * can't trust partitions any longer, but we'll let | 
|  | * mtd apply them anyway, since some partitions may be | 
|  | * marked read-only, and we don't want to lose that | 
|  | * information, even if it's not 100% accurate. | 
|  | */ | 
|  | dev_warn(&spi->dev, "found %s, expected %s\n", | 
|  | jid->name, id->name); | 
|  | id = jid; | 
|  | info = (void *)jid->driver_data; | 
|  | } | 
|  | } | 
|  |  | 
|  | flash = kzalloc(sizeof *flash, GFP_KERNEL); | 
|  | if (!flash) | 
|  | return -ENOMEM; | 
|  | flash->command = kmalloc(MAX_CMD_SIZE + FAST_READ_DUMMY_BYTE, GFP_KERNEL); | 
|  | if (!flash->command) { | 
|  | kfree(flash); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | flash->spi = spi; | 
|  | mutex_init(&flash->lock); | 
|  | dev_set_drvdata(&spi->dev, flash); | 
|  |  | 
|  | /* | 
|  | * Atmel, SST and Intel/Numonyx serial flash tend to power | 
|  | * up with the software protection bits set | 
|  | */ | 
|  |  | 
|  | if (JEDEC_MFR(info->jedec_id) == CFI_MFR_ATMEL || | 
|  | JEDEC_MFR(info->jedec_id) == CFI_MFR_INTEL || | 
|  | JEDEC_MFR(info->jedec_id) == CFI_MFR_SST) { | 
|  | write_enable(flash); | 
|  | write_sr(flash, 0); | 
|  | } | 
|  |  | 
|  | if (data && data->name) | 
|  | flash->mtd.name = data->name; | 
|  | else | 
|  | flash->mtd.name = dev_name(&spi->dev); | 
|  |  | 
|  | flash->mtd.type = MTD_NORFLASH; | 
|  | flash->mtd.writesize = 1; | 
|  | flash->mtd.flags = MTD_CAP_NORFLASH; | 
|  | flash->mtd.size = info->sector_size * info->n_sectors; | 
|  | flash->mtd.erase = m25p80_erase; | 
|  | flash->mtd.read = m25p80_read; | 
|  |  | 
|  | /* sst flash chips use AAI word program */ | 
|  | if (JEDEC_MFR(info->jedec_id) == CFI_MFR_SST) | 
|  | flash->mtd.write = sst_write; | 
|  | else | 
|  | flash->mtd.write = m25p80_write; | 
|  |  | 
|  | /* prefer "small sector" erase if possible */ | 
|  | if (info->flags & SECT_4K) { | 
|  | flash->erase_opcode = OPCODE_BE_4K; | 
|  | flash->mtd.erasesize = 4096; | 
|  | } else { | 
|  | flash->erase_opcode = OPCODE_SE; | 
|  | flash->mtd.erasesize = info->sector_size; | 
|  | } | 
|  |  | 
|  | if (info->flags & M25P_NO_ERASE) | 
|  | flash->mtd.flags |= MTD_NO_ERASE; | 
|  |  | 
|  | flash->mtd.dev.parent = &spi->dev; | 
|  | flash->page_size = info->page_size; | 
|  |  | 
|  | if (info->addr_width) | 
|  | flash->addr_width = info->addr_width; | 
|  | else { | 
|  | /* enable 4-byte addressing if the device exceeds 16MiB */ | 
|  | if (flash->mtd.size > 0x1000000) { | 
|  | flash->addr_width = 4; | 
|  | set_4byte(flash, info->jedec_id, 1); | 
|  | } else | 
|  | flash->addr_width = 3; | 
|  | } | 
|  |  | 
|  | dev_info(&spi->dev, "%s (%lld Kbytes)\n", id->name, | 
|  | (long long)flash->mtd.size >> 10); | 
|  |  | 
|  | DEBUG(MTD_DEBUG_LEVEL2, | 
|  | "mtd .name = %s, .size = 0x%llx (%lldMiB) " | 
|  | ".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n", | 
|  | flash->mtd.name, | 
|  | (long long)flash->mtd.size, (long long)(flash->mtd.size >> 20), | 
|  | flash->mtd.erasesize, flash->mtd.erasesize / 1024, | 
|  | flash->mtd.numeraseregions); | 
|  |  | 
|  | if (flash->mtd.numeraseregions) | 
|  | for (i = 0; i < flash->mtd.numeraseregions; i++) | 
|  | DEBUG(MTD_DEBUG_LEVEL2, | 
|  | "mtd.eraseregions[%d] = { .offset = 0x%llx, " | 
|  | ".erasesize = 0x%.8x (%uKiB), " | 
|  | ".numblocks = %d }\n", | 
|  | i, (long long)flash->mtd.eraseregions[i].offset, | 
|  | flash->mtd.eraseregions[i].erasesize, | 
|  | flash->mtd.eraseregions[i].erasesize / 1024, | 
|  | flash->mtd.eraseregions[i].numblocks); | 
|  |  | 
|  |  | 
|  | /* partitions should match sector boundaries; and it may be good to | 
|  | * use readonly partitions for writeprotected sectors (BP2..BP0). | 
|  | */ | 
|  | if (mtd_has_cmdlinepart()) { | 
|  | static const char *part_probes[] | 
|  | = { "cmdlinepart", NULL, }; | 
|  |  | 
|  | nr_parts = parse_mtd_partitions(&flash->mtd, | 
|  | part_probes, &parts, 0); | 
|  | } | 
|  |  | 
|  | if (nr_parts <= 0 && data && data->parts) { | 
|  | parts = data->parts; | 
|  | nr_parts = data->nr_parts; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_MTD_OF_PARTS | 
|  | if (nr_parts <= 0 && spi->dev.of_node) { | 
|  | nr_parts = of_mtd_parse_partitions(&spi->dev, | 
|  | spi->dev.of_node, &parts); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | if (nr_parts > 0) { | 
|  | for (i = 0; i < nr_parts; i++) { | 
|  | DEBUG(MTD_DEBUG_LEVEL2, "partitions[%d] = " | 
|  | "{.name = %s, .offset = 0x%llx, " | 
|  | ".size = 0x%llx (%lldKiB) }\n", | 
|  | i, parts[i].name, | 
|  | (long long)parts[i].offset, | 
|  | (long long)parts[i].size, | 
|  | (long long)(parts[i].size >> 10)); | 
|  | } | 
|  | flash->partitioned = 1; | 
|  | } | 
|  |  | 
|  | return mtd_device_register(&flash->mtd, parts, nr_parts) == 1 ? | 
|  | -ENODEV : 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | static int __devexit m25p_remove(struct spi_device *spi) | 
|  | { | 
|  | struct m25p	*flash = dev_get_drvdata(&spi->dev); | 
|  | int		status; | 
|  |  | 
|  | /* Clean up MTD stuff. */ | 
|  | status = mtd_device_unregister(&flash->mtd); | 
|  | if (status == 0) { | 
|  | kfree(flash->command); | 
|  | kfree(flash); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | static struct spi_driver m25p80_driver = { | 
|  | .driver = { | 
|  | .name	= "m25p80", | 
|  | .bus	= &spi_bus_type, | 
|  | .owner	= THIS_MODULE, | 
|  | }, | 
|  | .id_table	= m25p_ids, | 
|  | .probe	= m25p_probe, | 
|  | .remove	= __devexit_p(m25p_remove), | 
|  |  | 
|  | /* REVISIT: many of these chips have deep power-down modes, which | 
|  | * should clearly be entered on suspend() to minimize power use. | 
|  | * And also when they're otherwise idle... | 
|  | */ | 
|  | }; | 
|  |  | 
|  |  | 
|  | static int __init m25p80_init(void) | 
|  | { | 
|  | return spi_register_driver(&m25p80_driver); | 
|  | } | 
|  |  | 
|  |  | 
|  | static void __exit m25p80_exit(void) | 
|  | { | 
|  | spi_unregister_driver(&m25p80_driver); | 
|  | } | 
|  |  | 
|  |  | 
|  | module_init(m25p80_init); | 
|  | module_exit(m25p80_exit); | 
|  |  | 
|  | MODULE_LICENSE("GPL"); | 
|  | MODULE_AUTHOR("Mike Lavender"); | 
|  | MODULE_DESCRIPTION("MTD SPI driver for ST M25Pxx flash chips"); |