|  | /* | 
|  | *  linux/mm/oom_kill.c | 
|  | * | 
|  | *  Copyright (C)  1998,2000  Rik van Riel | 
|  | *	Thanks go out to Claus Fischer for some serious inspiration and | 
|  | *	for goading me into coding this file... | 
|  | *  Copyright (C)  2010  Google, Inc. | 
|  | *	Rewritten by David Rientjes | 
|  | * | 
|  | *  The routines in this file are used to kill a process when | 
|  | *  we're seriously out of memory. This gets called from __alloc_pages() | 
|  | *  in mm/page_alloc.c when we really run out of memory. | 
|  | * | 
|  | *  Since we won't call these routines often (on a well-configured | 
|  | *  machine) this file will double as a 'coding guide' and a signpost | 
|  | *  for newbie kernel hackers. It features several pointers to major | 
|  | *  kernel subsystems and hints as to where to find out what things do. | 
|  | */ | 
|  |  | 
|  | #include <linux/oom.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/err.h> | 
|  | #include <linux/gfp.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/timex.h> | 
|  | #include <linux/jiffies.h> | 
|  | #include <linux/cpuset.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/notifier.h> | 
|  | #include <linux/memcontrol.h> | 
|  | #include <linux/mempolicy.h> | 
|  | #include <linux/security.h> | 
|  | #include <linux/ptrace.h> | 
|  |  | 
|  | int sysctl_panic_on_oom; | 
|  | int sysctl_oom_kill_allocating_task; | 
|  | int sysctl_oom_dump_tasks = 1; | 
|  | static DEFINE_SPINLOCK(zone_scan_lock); | 
|  |  | 
|  | /** | 
|  | * test_set_oom_score_adj() - set current's oom_score_adj and return old value | 
|  | * @new_val: new oom_score_adj value | 
|  | * | 
|  | * Sets the oom_score_adj value for current to @new_val with proper | 
|  | * synchronization and returns the old value.  Usually used to temporarily | 
|  | * set a value, save the old value in the caller, and then reinstate it later. | 
|  | */ | 
|  | int test_set_oom_score_adj(int new_val) | 
|  | { | 
|  | struct sighand_struct *sighand = current->sighand; | 
|  | int old_val; | 
|  |  | 
|  | spin_lock_irq(&sighand->siglock); | 
|  | old_val = current->signal->oom_score_adj; | 
|  | if (new_val != old_val) { | 
|  | if (new_val == OOM_SCORE_ADJ_MIN) | 
|  | atomic_inc(¤t->mm->oom_disable_count); | 
|  | else if (old_val == OOM_SCORE_ADJ_MIN) | 
|  | atomic_dec(¤t->mm->oom_disable_count); | 
|  | current->signal->oom_score_adj = new_val; | 
|  | } | 
|  | spin_unlock_irq(&sighand->siglock); | 
|  |  | 
|  | return old_val; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | /** | 
|  | * has_intersects_mems_allowed() - check task eligiblity for kill | 
|  | * @tsk: task struct of which task to consider | 
|  | * @mask: nodemask passed to page allocator for mempolicy ooms | 
|  | * | 
|  | * Task eligibility is determined by whether or not a candidate task, @tsk, | 
|  | * shares the same mempolicy nodes as current if it is bound by such a policy | 
|  | * and whether or not it has the same set of allowed cpuset nodes. | 
|  | */ | 
|  | static bool has_intersects_mems_allowed(struct task_struct *tsk, | 
|  | const nodemask_t *mask) | 
|  | { | 
|  | struct task_struct *start = tsk; | 
|  |  | 
|  | do { | 
|  | if (mask) { | 
|  | /* | 
|  | * If this is a mempolicy constrained oom, tsk's | 
|  | * cpuset is irrelevant.  Only return true if its | 
|  | * mempolicy intersects current, otherwise it may be | 
|  | * needlessly killed. | 
|  | */ | 
|  | if (mempolicy_nodemask_intersects(tsk, mask)) | 
|  | return true; | 
|  | } else { | 
|  | /* | 
|  | * This is not a mempolicy constrained oom, so only | 
|  | * check the mems of tsk's cpuset. | 
|  | */ | 
|  | if (cpuset_mems_allowed_intersects(current, tsk)) | 
|  | return true; | 
|  | } | 
|  | } while_each_thread(start, tsk); | 
|  |  | 
|  | return false; | 
|  | } | 
|  | #else | 
|  | static bool has_intersects_mems_allowed(struct task_struct *tsk, | 
|  | const nodemask_t *mask) | 
|  | { | 
|  | return true; | 
|  | } | 
|  | #endif /* CONFIG_NUMA */ | 
|  |  | 
|  | /* | 
|  | * The process p may have detached its own ->mm while exiting or through | 
|  | * use_mm(), but one or more of its subthreads may still have a valid | 
|  | * pointer.  Return p, or any of its subthreads with a valid ->mm, with | 
|  | * task_lock() held. | 
|  | */ | 
|  | struct task_struct *find_lock_task_mm(struct task_struct *p) | 
|  | { | 
|  | struct task_struct *t = p; | 
|  |  | 
|  | do { | 
|  | task_lock(t); | 
|  | if (likely(t->mm)) | 
|  | return t; | 
|  | task_unlock(t); | 
|  | } while_each_thread(p, t); | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* return true if the task is not adequate as candidate victim task. */ | 
|  | static bool oom_unkillable_task(struct task_struct *p, | 
|  | const struct mem_cgroup *mem, const nodemask_t *nodemask) | 
|  | { | 
|  | if (is_global_init(p)) | 
|  | return true; | 
|  | if (p->flags & PF_KTHREAD) | 
|  | return true; | 
|  |  | 
|  | /* When mem_cgroup_out_of_memory() and p is not member of the group */ | 
|  | if (mem && !task_in_mem_cgroup(p, mem)) | 
|  | return true; | 
|  |  | 
|  | /* p may not have freeable memory in nodemask */ | 
|  | if (!has_intersects_mems_allowed(p, nodemask)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * oom_badness - heuristic function to determine which candidate task to kill | 
|  | * @p: task struct of which task we should calculate | 
|  | * @totalpages: total present RAM allowed for page allocation | 
|  | * | 
|  | * The heuristic for determining which task to kill is made to be as simple and | 
|  | * predictable as possible.  The goal is to return the highest value for the | 
|  | * task consuming the most memory to avoid subsequent oom failures. | 
|  | */ | 
|  | unsigned int oom_badness(struct task_struct *p, struct mem_cgroup *mem, | 
|  | const nodemask_t *nodemask, unsigned long totalpages) | 
|  | { | 
|  | int points; | 
|  |  | 
|  | if (oom_unkillable_task(p, mem, nodemask)) | 
|  | return 0; | 
|  |  | 
|  | p = find_lock_task_mm(p); | 
|  | if (!p) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Shortcut check for a thread sharing p->mm that is OOM_SCORE_ADJ_MIN | 
|  | * so the entire heuristic doesn't need to be executed for something | 
|  | * that cannot be killed. | 
|  | */ | 
|  | if (atomic_read(&p->mm->oom_disable_count)) { | 
|  | task_unlock(p); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The memory controller may have a limit of 0 bytes, so avoid a divide | 
|  | * by zero, if necessary. | 
|  | */ | 
|  | if (!totalpages) | 
|  | totalpages = 1; | 
|  |  | 
|  | /* | 
|  | * The baseline for the badness score is the proportion of RAM that each | 
|  | * task's rss, pagetable and swap space use. | 
|  | */ | 
|  | points = get_mm_rss(p->mm) + p->mm->nr_ptes; | 
|  | points += get_mm_counter(p->mm, MM_SWAPENTS); | 
|  |  | 
|  | points *= 1000; | 
|  | points /= totalpages; | 
|  | task_unlock(p); | 
|  |  | 
|  | /* | 
|  | * Root processes get 3% bonus, just like the __vm_enough_memory() | 
|  | * implementation used by LSMs. | 
|  | */ | 
|  | if (has_capability_noaudit(p, CAP_SYS_ADMIN)) | 
|  | points -= 30; | 
|  |  | 
|  | /* | 
|  | * /proc/pid/oom_score_adj ranges from -1000 to +1000 such that it may | 
|  | * either completely disable oom killing or always prefer a certain | 
|  | * task. | 
|  | */ | 
|  | points += p->signal->oom_score_adj; | 
|  |  | 
|  | /* | 
|  | * Never return 0 for an eligible task that may be killed since it's | 
|  | * possible that no single user task uses more than 0.1% of memory and | 
|  | * no single admin tasks uses more than 3.0%. | 
|  | */ | 
|  | if (points <= 0) | 
|  | return 1; | 
|  | return (points < 1000) ? points : 1000; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Determine the type of allocation constraint. | 
|  | */ | 
|  | #ifdef CONFIG_NUMA | 
|  | static enum oom_constraint constrained_alloc(struct zonelist *zonelist, | 
|  | gfp_t gfp_mask, nodemask_t *nodemask, | 
|  | unsigned long *totalpages) | 
|  | { | 
|  | struct zone *zone; | 
|  | struct zoneref *z; | 
|  | enum zone_type high_zoneidx = gfp_zone(gfp_mask); | 
|  | bool cpuset_limited = false; | 
|  | int nid; | 
|  |  | 
|  | /* Default to all available memory */ | 
|  | *totalpages = totalram_pages + total_swap_pages; | 
|  |  | 
|  | if (!zonelist) | 
|  | return CONSTRAINT_NONE; | 
|  | /* | 
|  | * Reach here only when __GFP_NOFAIL is used. So, we should avoid | 
|  | * to kill current.We have to random task kill in this case. | 
|  | * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now. | 
|  | */ | 
|  | if (gfp_mask & __GFP_THISNODE) | 
|  | return CONSTRAINT_NONE; | 
|  |  | 
|  | /* | 
|  | * This is not a __GFP_THISNODE allocation, so a truncated nodemask in | 
|  | * the page allocator means a mempolicy is in effect.  Cpuset policy | 
|  | * is enforced in get_page_from_freelist(). | 
|  | */ | 
|  | if (nodemask && !nodes_subset(node_states[N_HIGH_MEMORY], *nodemask)) { | 
|  | *totalpages = total_swap_pages; | 
|  | for_each_node_mask(nid, *nodemask) | 
|  | *totalpages += node_spanned_pages(nid); | 
|  | return CONSTRAINT_MEMORY_POLICY; | 
|  | } | 
|  |  | 
|  | /* Check this allocation failure is caused by cpuset's wall function */ | 
|  | for_each_zone_zonelist_nodemask(zone, z, zonelist, | 
|  | high_zoneidx, nodemask) | 
|  | if (!cpuset_zone_allowed_softwall(zone, gfp_mask)) | 
|  | cpuset_limited = true; | 
|  |  | 
|  | if (cpuset_limited) { | 
|  | *totalpages = total_swap_pages; | 
|  | for_each_node_mask(nid, cpuset_current_mems_allowed) | 
|  | *totalpages += node_spanned_pages(nid); | 
|  | return CONSTRAINT_CPUSET; | 
|  | } | 
|  | return CONSTRAINT_NONE; | 
|  | } | 
|  | #else | 
|  | static enum oom_constraint constrained_alloc(struct zonelist *zonelist, | 
|  | gfp_t gfp_mask, nodemask_t *nodemask, | 
|  | unsigned long *totalpages) | 
|  | { | 
|  | *totalpages = totalram_pages + total_swap_pages; | 
|  | return CONSTRAINT_NONE; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Simple selection loop. We chose the process with the highest | 
|  | * number of 'points'. We expect the caller will lock the tasklist. | 
|  | * | 
|  | * (not docbooked, we don't want this one cluttering up the manual) | 
|  | */ | 
|  | static struct task_struct *select_bad_process(unsigned int *ppoints, | 
|  | unsigned long totalpages, struct mem_cgroup *mem, | 
|  | const nodemask_t *nodemask) | 
|  | { | 
|  | struct task_struct *g, *p; | 
|  | struct task_struct *chosen = NULL; | 
|  | *ppoints = 0; | 
|  |  | 
|  | do_each_thread(g, p) { | 
|  | unsigned int points; | 
|  |  | 
|  | if (!p->mm) | 
|  | continue; | 
|  | if (oom_unkillable_task(p, mem, nodemask)) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * This task already has access to memory reserves and is | 
|  | * being killed. Don't allow any other task access to the | 
|  | * memory reserve. | 
|  | * | 
|  | * Note: this may have a chance of deadlock if it gets | 
|  | * blocked waiting for another task which itself is waiting | 
|  | * for memory. Is there a better alternative? | 
|  | */ | 
|  | if (test_tsk_thread_flag(p, TIF_MEMDIE)) | 
|  | return ERR_PTR(-1UL); | 
|  |  | 
|  | if (p->flags & PF_EXITING) { | 
|  | /* | 
|  | * If p is the current task and is in the process of | 
|  | * releasing memory, we allow the "kill" to set | 
|  | * TIF_MEMDIE, which will allow it to gain access to | 
|  | * memory reserves.  Otherwise, it may stall forever. | 
|  | * | 
|  | * The loop isn't broken here, however, in case other | 
|  | * threads are found to have already been oom killed. | 
|  | */ | 
|  | if (p == current) { | 
|  | chosen = p; | 
|  | *ppoints = 1000; | 
|  | } else { | 
|  | /* | 
|  | * If this task is not being ptraced on exit, | 
|  | * then wait for it to finish before killing | 
|  | * some other task unnecessarily. | 
|  | */ | 
|  | if (!(task_ptrace(p->group_leader) & | 
|  | PT_TRACE_EXIT)) | 
|  | return ERR_PTR(-1UL); | 
|  | } | 
|  | } | 
|  |  | 
|  | points = oom_badness(p, mem, nodemask, totalpages); | 
|  | if (points > *ppoints) { | 
|  | chosen = p; | 
|  | *ppoints = points; | 
|  | } | 
|  | } while_each_thread(g, p); | 
|  |  | 
|  | return chosen; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * dump_tasks - dump current memory state of all system tasks | 
|  | * @mem: current's memory controller, if constrained | 
|  | * @nodemask: nodemask passed to page allocator for mempolicy ooms | 
|  | * | 
|  | * Dumps the current memory state of all eligible tasks.  Tasks not in the same | 
|  | * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes | 
|  | * are not shown. | 
|  | * State information includes task's pid, uid, tgid, vm size, rss, cpu, oom_adj | 
|  | * value, oom_score_adj value, and name. | 
|  | * | 
|  | * Call with tasklist_lock read-locked. | 
|  | */ | 
|  | static void dump_tasks(const struct mem_cgroup *mem, const nodemask_t *nodemask) | 
|  | { | 
|  | struct task_struct *p; | 
|  | struct task_struct *task; | 
|  |  | 
|  | pr_info("[ pid ]   uid  tgid total_vm      rss cpu oom_adj oom_score_adj name\n"); | 
|  | for_each_process(p) { | 
|  | if (oom_unkillable_task(p, mem, nodemask)) | 
|  | continue; | 
|  |  | 
|  | task = find_lock_task_mm(p); | 
|  | if (!task) { | 
|  | /* | 
|  | * This is a kthread or all of p's threads have already | 
|  | * detached their mm's.  There's no need to report | 
|  | * them; they can't be oom killed anyway. | 
|  | */ | 
|  | continue; | 
|  | } | 
|  |  | 
|  | pr_info("[%5d] %5d %5d %8lu %8lu %3u     %3d         %5d %s\n", | 
|  | task->pid, task_uid(task), task->tgid, | 
|  | task->mm->total_vm, get_mm_rss(task->mm), | 
|  | task_cpu(task), task->signal->oom_adj, | 
|  | task->signal->oom_score_adj, task->comm); | 
|  | task_unlock(task); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void dump_header(struct task_struct *p, gfp_t gfp_mask, int order, | 
|  | struct mem_cgroup *mem, const nodemask_t *nodemask) | 
|  | { | 
|  | task_lock(current); | 
|  | pr_warning("%s invoked oom-killer: gfp_mask=0x%x, order=%d, " | 
|  | "oom_adj=%d, oom_score_adj=%d\n", | 
|  | current->comm, gfp_mask, order, current->signal->oom_adj, | 
|  | current->signal->oom_score_adj); | 
|  | cpuset_print_task_mems_allowed(current); | 
|  | task_unlock(current); | 
|  | dump_stack(); | 
|  | mem_cgroup_print_oom_info(mem, p); | 
|  | show_mem(SHOW_MEM_FILTER_NODES); | 
|  | if (sysctl_oom_dump_tasks) | 
|  | dump_tasks(mem, nodemask); | 
|  | } | 
|  |  | 
|  | #define K(x) ((x) << (PAGE_SHIFT-10)) | 
|  | static int oom_kill_task(struct task_struct *p, struct mem_cgroup *mem) | 
|  | { | 
|  | struct task_struct *q; | 
|  | struct mm_struct *mm; | 
|  |  | 
|  | p = find_lock_task_mm(p); | 
|  | if (!p) | 
|  | return 1; | 
|  |  | 
|  | /* mm cannot be safely dereferenced after task_unlock(p) */ | 
|  | mm = p->mm; | 
|  |  | 
|  | pr_err("Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB\n", | 
|  | task_pid_nr(p), p->comm, K(p->mm->total_vm), | 
|  | K(get_mm_counter(p->mm, MM_ANONPAGES)), | 
|  | K(get_mm_counter(p->mm, MM_FILEPAGES))); | 
|  | task_unlock(p); | 
|  |  | 
|  | /* | 
|  | * Kill all processes sharing p->mm in other thread groups, if any. | 
|  | * They don't get access to memory reserves or a higher scheduler | 
|  | * priority, though, to avoid depletion of all memory or task | 
|  | * starvation.  This prevents mm->mmap_sem livelock when an oom killed | 
|  | * task cannot exit because it requires the semaphore and its contended | 
|  | * by another thread trying to allocate memory itself.  That thread will | 
|  | * now get access to memory reserves since it has a pending fatal | 
|  | * signal. | 
|  | */ | 
|  | for_each_process(q) | 
|  | if (q->mm == mm && !same_thread_group(q, p)) { | 
|  | task_lock(q);	/* Protect ->comm from prctl() */ | 
|  | pr_err("Kill process %d (%s) sharing same memory\n", | 
|  | task_pid_nr(q), q->comm); | 
|  | task_unlock(q); | 
|  | force_sig(SIGKILL, q); | 
|  | } | 
|  |  | 
|  | set_tsk_thread_flag(p, TIF_MEMDIE); | 
|  | force_sig(SIGKILL, p); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | #undef K | 
|  |  | 
|  | static int oom_kill_process(struct task_struct *p, gfp_t gfp_mask, int order, | 
|  | unsigned int points, unsigned long totalpages, | 
|  | struct mem_cgroup *mem, nodemask_t *nodemask, | 
|  | const char *message) | 
|  | { | 
|  | struct task_struct *victim = p; | 
|  | struct task_struct *child; | 
|  | struct task_struct *t = p; | 
|  | unsigned int victim_points = 0; | 
|  |  | 
|  | if (printk_ratelimit()) | 
|  | dump_header(p, gfp_mask, order, mem, nodemask); | 
|  |  | 
|  | /* | 
|  | * If the task is already exiting, don't alarm the sysadmin or kill | 
|  | * its children or threads, just set TIF_MEMDIE so it can die quickly | 
|  | */ | 
|  | if (p->flags & PF_EXITING) { | 
|  | set_tsk_thread_flag(p, TIF_MEMDIE); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | task_lock(p); | 
|  | pr_err("%s: Kill process %d (%s) score %d or sacrifice child\n", | 
|  | message, task_pid_nr(p), p->comm, points); | 
|  | task_unlock(p); | 
|  |  | 
|  | /* | 
|  | * If any of p's children has a different mm and is eligible for kill, | 
|  | * the one with the highest badness() score is sacrificed for its | 
|  | * parent.  This attempts to lose the minimal amount of work done while | 
|  | * still freeing memory. | 
|  | */ | 
|  | do { | 
|  | list_for_each_entry(child, &t->children, sibling) { | 
|  | unsigned int child_points; | 
|  |  | 
|  | if (child->mm == p->mm) | 
|  | continue; | 
|  | /* | 
|  | * oom_badness() returns 0 if the thread is unkillable | 
|  | */ | 
|  | child_points = oom_badness(child, mem, nodemask, | 
|  | totalpages); | 
|  | if (child_points > victim_points) { | 
|  | victim = child; | 
|  | victim_points = child_points; | 
|  | } | 
|  | } | 
|  | } while_each_thread(p, t); | 
|  |  | 
|  | return oom_kill_task(victim, mem); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Determines whether the kernel must panic because of the panic_on_oom sysctl. | 
|  | */ | 
|  | static void check_panic_on_oom(enum oom_constraint constraint, gfp_t gfp_mask, | 
|  | int order, const nodemask_t *nodemask) | 
|  | { | 
|  | if (likely(!sysctl_panic_on_oom)) | 
|  | return; | 
|  | if (sysctl_panic_on_oom != 2) { | 
|  | /* | 
|  | * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel | 
|  | * does not panic for cpuset, mempolicy, or memcg allocation | 
|  | * failures. | 
|  | */ | 
|  | if (constraint != CONSTRAINT_NONE) | 
|  | return; | 
|  | } | 
|  | read_lock(&tasklist_lock); | 
|  | dump_header(NULL, gfp_mask, order, NULL, nodemask); | 
|  | read_unlock(&tasklist_lock); | 
|  | panic("Out of memory: %s panic_on_oom is enabled\n", | 
|  | sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide"); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_CGROUP_MEM_RES_CTLR | 
|  | void mem_cgroup_out_of_memory(struct mem_cgroup *mem, gfp_t gfp_mask) | 
|  | { | 
|  | unsigned long limit; | 
|  | unsigned int points = 0; | 
|  | struct task_struct *p; | 
|  |  | 
|  | /* | 
|  | * If current has a pending SIGKILL, then automatically select it.  The | 
|  | * goal is to allow it to allocate so that it may quickly exit and free | 
|  | * its memory. | 
|  | */ | 
|  | if (fatal_signal_pending(current)) { | 
|  | set_thread_flag(TIF_MEMDIE); | 
|  | return; | 
|  | } | 
|  |  | 
|  | check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, 0, NULL); | 
|  | limit = mem_cgroup_get_limit(mem) >> PAGE_SHIFT; | 
|  | read_lock(&tasklist_lock); | 
|  | retry: | 
|  | p = select_bad_process(&points, limit, mem, NULL); | 
|  | if (!p || PTR_ERR(p) == -1UL) | 
|  | goto out; | 
|  |  | 
|  | if (oom_kill_process(p, gfp_mask, 0, points, limit, mem, NULL, | 
|  | "Memory cgroup out of memory")) | 
|  | goto retry; | 
|  | out: | 
|  | read_unlock(&tasklist_lock); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static BLOCKING_NOTIFIER_HEAD(oom_notify_list); | 
|  |  | 
|  | int register_oom_notifier(struct notifier_block *nb) | 
|  | { | 
|  | return blocking_notifier_chain_register(&oom_notify_list, nb); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(register_oom_notifier); | 
|  |  | 
|  | int unregister_oom_notifier(struct notifier_block *nb) | 
|  | { | 
|  | return blocking_notifier_chain_unregister(&oom_notify_list, nb); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(unregister_oom_notifier); | 
|  |  | 
|  | /* | 
|  | * Try to acquire the OOM killer lock for the zones in zonelist.  Returns zero | 
|  | * if a parallel OOM killing is already taking place that includes a zone in | 
|  | * the zonelist.  Otherwise, locks all zones in the zonelist and returns 1. | 
|  | */ | 
|  | int try_set_zonelist_oom(struct zonelist *zonelist, gfp_t gfp_mask) | 
|  | { | 
|  | struct zoneref *z; | 
|  | struct zone *zone; | 
|  | int ret = 1; | 
|  |  | 
|  | spin_lock(&zone_scan_lock); | 
|  | for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) { | 
|  | if (zone_is_oom_locked(zone)) { | 
|  | ret = 0; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) { | 
|  | /* | 
|  | * Lock each zone in the zonelist under zone_scan_lock so a | 
|  | * parallel invocation of try_set_zonelist_oom() doesn't succeed | 
|  | * when it shouldn't. | 
|  | */ | 
|  | zone_set_flag(zone, ZONE_OOM_LOCKED); | 
|  | } | 
|  |  | 
|  | out: | 
|  | spin_unlock(&zone_scan_lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Clears the ZONE_OOM_LOCKED flag for all zones in the zonelist so that failed | 
|  | * allocation attempts with zonelists containing them may now recall the OOM | 
|  | * killer, if necessary. | 
|  | */ | 
|  | void clear_zonelist_oom(struct zonelist *zonelist, gfp_t gfp_mask) | 
|  | { | 
|  | struct zoneref *z; | 
|  | struct zone *zone; | 
|  |  | 
|  | spin_lock(&zone_scan_lock); | 
|  | for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) { | 
|  | zone_clear_flag(zone, ZONE_OOM_LOCKED); | 
|  | } | 
|  | spin_unlock(&zone_scan_lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Try to acquire the oom killer lock for all system zones.  Returns zero if a | 
|  | * parallel oom killing is taking place, otherwise locks all zones and returns | 
|  | * non-zero. | 
|  | */ | 
|  | static int try_set_system_oom(void) | 
|  | { | 
|  | struct zone *zone; | 
|  | int ret = 1; | 
|  |  | 
|  | spin_lock(&zone_scan_lock); | 
|  | for_each_populated_zone(zone) | 
|  | if (zone_is_oom_locked(zone)) { | 
|  | ret = 0; | 
|  | goto out; | 
|  | } | 
|  | for_each_populated_zone(zone) | 
|  | zone_set_flag(zone, ZONE_OOM_LOCKED); | 
|  | out: | 
|  | spin_unlock(&zone_scan_lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Clears ZONE_OOM_LOCKED for all system zones so that failed allocation | 
|  | * attempts or page faults may now recall the oom killer, if necessary. | 
|  | */ | 
|  | static void clear_system_oom(void) | 
|  | { | 
|  | struct zone *zone; | 
|  |  | 
|  | spin_lock(&zone_scan_lock); | 
|  | for_each_populated_zone(zone) | 
|  | zone_clear_flag(zone, ZONE_OOM_LOCKED); | 
|  | spin_unlock(&zone_scan_lock); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * out_of_memory - kill the "best" process when we run out of memory | 
|  | * @zonelist: zonelist pointer | 
|  | * @gfp_mask: memory allocation flags | 
|  | * @order: amount of memory being requested as a power of 2 | 
|  | * @nodemask: nodemask passed to page allocator | 
|  | * | 
|  | * If we run out of memory, we have the choice between either | 
|  | * killing a random task (bad), letting the system crash (worse) | 
|  | * OR try to be smart about which process to kill. Note that we | 
|  | * don't have to be perfect here, we just have to be good. | 
|  | */ | 
|  | void out_of_memory(struct zonelist *zonelist, gfp_t gfp_mask, | 
|  | int order, nodemask_t *nodemask) | 
|  | { | 
|  | const nodemask_t *mpol_mask; | 
|  | struct task_struct *p; | 
|  | unsigned long totalpages; | 
|  | unsigned long freed = 0; | 
|  | unsigned int points; | 
|  | enum oom_constraint constraint = CONSTRAINT_NONE; | 
|  | int killed = 0; | 
|  |  | 
|  | blocking_notifier_call_chain(&oom_notify_list, 0, &freed); | 
|  | if (freed > 0) | 
|  | /* Got some memory back in the last second. */ | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * If current has a pending SIGKILL, then automatically select it.  The | 
|  | * goal is to allow it to allocate so that it may quickly exit and free | 
|  | * its memory. | 
|  | */ | 
|  | if (fatal_signal_pending(current)) { | 
|  | set_thread_flag(TIF_MEMDIE); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check if there were limitations on the allocation (only relevant for | 
|  | * NUMA) that may require different handling. | 
|  | */ | 
|  | constraint = constrained_alloc(zonelist, gfp_mask, nodemask, | 
|  | &totalpages); | 
|  | mpol_mask = (constraint == CONSTRAINT_MEMORY_POLICY) ? nodemask : NULL; | 
|  | check_panic_on_oom(constraint, gfp_mask, order, mpol_mask); | 
|  |  | 
|  | read_lock(&tasklist_lock); | 
|  | if (sysctl_oom_kill_allocating_task && | 
|  | !oom_unkillable_task(current, NULL, nodemask) && | 
|  | current->mm && !atomic_read(¤t->mm->oom_disable_count)) { | 
|  | /* | 
|  | * oom_kill_process() needs tasklist_lock held.  If it returns | 
|  | * non-zero, current could not be killed so we must fallback to | 
|  | * the tasklist scan. | 
|  | */ | 
|  | if (!oom_kill_process(current, gfp_mask, order, 0, totalpages, | 
|  | NULL, nodemask, | 
|  | "Out of memory (oom_kill_allocating_task)")) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | retry: | 
|  | p = select_bad_process(&points, totalpages, NULL, mpol_mask); | 
|  | if (PTR_ERR(p) == -1UL) | 
|  | goto out; | 
|  |  | 
|  | /* Found nothing?!?! Either we hang forever, or we panic. */ | 
|  | if (!p) { | 
|  | dump_header(NULL, gfp_mask, order, NULL, mpol_mask); | 
|  | read_unlock(&tasklist_lock); | 
|  | panic("Out of memory and no killable processes...\n"); | 
|  | } | 
|  |  | 
|  | if (oom_kill_process(p, gfp_mask, order, points, totalpages, NULL, | 
|  | nodemask, "Out of memory")) | 
|  | goto retry; | 
|  | killed = 1; | 
|  | out: | 
|  | read_unlock(&tasklist_lock); | 
|  |  | 
|  | /* | 
|  | * Give "p" a good chance of killing itself before we | 
|  | * retry to allocate memory unless "p" is current | 
|  | */ | 
|  | if (killed && !test_thread_flag(TIF_MEMDIE)) | 
|  | schedule_timeout_uninterruptible(1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The pagefault handler calls here because it is out of memory, so kill a | 
|  | * memory-hogging task.  If a populated zone has ZONE_OOM_LOCKED set, a parallel | 
|  | * oom killing is already in progress so do nothing.  If a task is found with | 
|  | * TIF_MEMDIE set, it has been killed so do nothing and allow it to exit. | 
|  | */ | 
|  | void pagefault_out_of_memory(void) | 
|  | { | 
|  | if (try_set_system_oom()) { | 
|  | out_of_memory(NULL, 0, 0, NULL); | 
|  | clear_system_oom(); | 
|  | } | 
|  | if (!test_thread_flag(TIF_MEMDIE)) | 
|  | schedule_timeout_uninterruptible(1); | 
|  | } |