|  | /* | 
|  | * intelfb | 
|  | * | 
|  | * Linux framebuffer driver for Intel(R) 865G integrated graphics chips. | 
|  | * | 
|  | * Copyright © 2002, 2003 David Dawes <dawes@xfree86.org> | 
|  | *                   2004 Sylvain Meyer | 
|  | * | 
|  | * This driver consists of two parts.  The first part (intelfbdrv.c) provides | 
|  | * the basic fbdev interfaces, is derived in part from the radeonfb and | 
|  | * vesafb drivers, and is covered by the GPL.  The second part (intelfbhw.c) | 
|  | * provides the code to program the hardware.  Most of it is derived from | 
|  | * the i810/i830 XFree86 driver.  The HW-specific code is covered here | 
|  | * under a dual license (GPL and MIT/XFree86 license). | 
|  | * | 
|  | * Author: David Dawes | 
|  | * | 
|  | */ | 
|  |  | 
|  | /* $DHD: intelfb/intelfbhw.c,v 1.9 2003/06/27 15:06:25 dawes Exp $ */ | 
|  |  | 
|  | #include <linux/module.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/fb.h> | 
|  | #include <linux/ioport.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/pci.h> | 
|  | #include <linux/vmalloc.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/interrupt.h> | 
|  |  | 
|  | #include <asm/io.h> | 
|  |  | 
|  | #include "intelfb.h" | 
|  | #include "intelfbhw.h" | 
|  |  | 
|  | struct pll_min_max { | 
|  | int min_m, max_m, min_m1, max_m1; | 
|  | int min_m2, max_m2, min_n, max_n; | 
|  | int min_p, max_p, min_p1, max_p1; | 
|  | int min_vco, max_vco, p_transition_clk, ref_clk; | 
|  | int p_inc_lo, p_inc_hi; | 
|  | }; | 
|  |  | 
|  | #define PLLS_I8xx 0 | 
|  | #define PLLS_I9xx 1 | 
|  | #define PLLS_MAX 2 | 
|  |  | 
|  | static struct pll_min_max plls[PLLS_MAX] = { | 
|  | { 108, 140, 18, 26, | 
|  | 6, 16, 3, 16, | 
|  | 4, 128, 0, 31, | 
|  | 930000, 1400000, 165000, 48000, | 
|  | 4, 2 },		/* I8xx */ | 
|  |  | 
|  | { 75, 120, 10, 20, | 
|  | 5, 9, 4, 7, | 
|  | 5, 80, 1, 8, | 
|  | 1400000, 2800000, 200000, 96000, | 
|  | 10, 5 }		/* I9xx */ | 
|  | }; | 
|  |  | 
|  | int intelfbhw_get_chipset(struct pci_dev *pdev, struct intelfb_info *dinfo) | 
|  | { | 
|  | u32 tmp; | 
|  | if (!pdev || !dinfo) | 
|  | return 1; | 
|  |  | 
|  | switch (pdev->device) { | 
|  | case PCI_DEVICE_ID_INTEL_830M: | 
|  | dinfo->name = "Intel(R) 830M"; | 
|  | dinfo->chipset = INTEL_830M; | 
|  | dinfo->mobile = 1; | 
|  | dinfo->pll_index = PLLS_I8xx; | 
|  | return 0; | 
|  | case PCI_DEVICE_ID_INTEL_845G: | 
|  | dinfo->name = "Intel(R) 845G"; | 
|  | dinfo->chipset = INTEL_845G; | 
|  | dinfo->mobile = 0; | 
|  | dinfo->pll_index = PLLS_I8xx; | 
|  | return 0; | 
|  | case PCI_DEVICE_ID_INTEL_854: | 
|  | dinfo->mobile = 1; | 
|  | dinfo->name = "Intel(R) 854"; | 
|  | dinfo->chipset = INTEL_854; | 
|  | return 0; | 
|  | case PCI_DEVICE_ID_INTEL_85XGM: | 
|  | tmp = 0; | 
|  | dinfo->mobile = 1; | 
|  | dinfo->pll_index = PLLS_I8xx; | 
|  | pci_read_config_dword(pdev, INTEL_85X_CAPID, &tmp); | 
|  | switch ((tmp >> INTEL_85X_VARIANT_SHIFT) & | 
|  | INTEL_85X_VARIANT_MASK) { | 
|  | case INTEL_VAR_855GME: | 
|  | dinfo->name = "Intel(R) 855GME"; | 
|  | dinfo->chipset = INTEL_855GME; | 
|  | return 0; | 
|  | case INTEL_VAR_855GM: | 
|  | dinfo->name = "Intel(R) 855GM"; | 
|  | dinfo->chipset = INTEL_855GM; | 
|  | return 0; | 
|  | case INTEL_VAR_852GME: | 
|  | dinfo->name = "Intel(R) 852GME"; | 
|  | dinfo->chipset = INTEL_852GME; | 
|  | return 0; | 
|  | case INTEL_VAR_852GM: | 
|  | dinfo->name = "Intel(R) 852GM"; | 
|  | dinfo->chipset = INTEL_852GM; | 
|  | return 0; | 
|  | default: | 
|  | dinfo->name = "Intel(R) 852GM/855GM"; | 
|  | dinfo->chipset = INTEL_85XGM; | 
|  | return 0; | 
|  | } | 
|  | break; | 
|  | case PCI_DEVICE_ID_INTEL_865G: | 
|  | dinfo->name = "Intel(R) 865G"; | 
|  | dinfo->chipset = INTEL_865G; | 
|  | dinfo->mobile = 0; | 
|  | dinfo->pll_index = PLLS_I8xx; | 
|  | return 0; | 
|  | case PCI_DEVICE_ID_INTEL_915G: | 
|  | dinfo->name = "Intel(R) 915G"; | 
|  | dinfo->chipset = INTEL_915G; | 
|  | dinfo->mobile = 0; | 
|  | dinfo->pll_index = PLLS_I9xx; | 
|  | return 0; | 
|  | case PCI_DEVICE_ID_INTEL_915GM: | 
|  | dinfo->name = "Intel(R) 915GM"; | 
|  | dinfo->chipset = INTEL_915GM; | 
|  | dinfo->mobile = 1; | 
|  | dinfo->pll_index = PLLS_I9xx; | 
|  | return 0; | 
|  | case PCI_DEVICE_ID_INTEL_945G: | 
|  | dinfo->name = "Intel(R) 945G"; | 
|  | dinfo->chipset = INTEL_945G; | 
|  | dinfo->mobile = 0; | 
|  | dinfo->pll_index = PLLS_I9xx; | 
|  | return 0; | 
|  | case PCI_DEVICE_ID_INTEL_945GM: | 
|  | dinfo->name = "Intel(R) 945GM"; | 
|  | dinfo->chipset = INTEL_945GM; | 
|  | dinfo->mobile = 1; | 
|  | dinfo->pll_index = PLLS_I9xx; | 
|  | return 0; | 
|  | case PCI_DEVICE_ID_INTEL_945GME: | 
|  | dinfo->name = "Intel(R) 945GME"; | 
|  | dinfo->chipset = INTEL_945GME; | 
|  | dinfo->mobile = 1; | 
|  | dinfo->pll_index = PLLS_I9xx; | 
|  | return 0; | 
|  | case PCI_DEVICE_ID_INTEL_965G: | 
|  | dinfo->name = "Intel(R) 965G"; | 
|  | dinfo->chipset = INTEL_965G; | 
|  | dinfo->mobile = 0; | 
|  | dinfo->pll_index = PLLS_I9xx; | 
|  | return 0; | 
|  | case PCI_DEVICE_ID_INTEL_965GM: | 
|  | dinfo->name = "Intel(R) 965GM"; | 
|  | dinfo->chipset = INTEL_965GM; | 
|  | dinfo->mobile = 1; | 
|  | dinfo->pll_index = PLLS_I9xx; | 
|  | return 0; | 
|  | default: | 
|  | return 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | int intelfbhw_get_memory(struct pci_dev *pdev, int *aperture_size, | 
|  | int *stolen_size) | 
|  | { | 
|  | struct pci_dev *bridge_dev; | 
|  | u16 tmp; | 
|  | int stolen_overhead; | 
|  |  | 
|  | if (!pdev || !aperture_size || !stolen_size) | 
|  | return 1; | 
|  |  | 
|  | /* Find the bridge device.  It is always 0:0.0 */ | 
|  | if (!(bridge_dev = pci_get_bus_and_slot(0, PCI_DEVFN(0, 0)))) { | 
|  | ERR_MSG("cannot find bridge device\n"); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* Get the fb aperture size and "stolen" memory amount. */ | 
|  | tmp = 0; | 
|  | pci_read_config_word(bridge_dev, INTEL_GMCH_CTRL, &tmp); | 
|  | pci_dev_put(bridge_dev); | 
|  |  | 
|  | switch (pdev->device) { | 
|  | case PCI_DEVICE_ID_INTEL_915G: | 
|  | case PCI_DEVICE_ID_INTEL_915GM: | 
|  | case PCI_DEVICE_ID_INTEL_945G: | 
|  | case PCI_DEVICE_ID_INTEL_945GM: | 
|  | case PCI_DEVICE_ID_INTEL_945GME: | 
|  | case PCI_DEVICE_ID_INTEL_965G: | 
|  | case PCI_DEVICE_ID_INTEL_965GM: | 
|  | /* 915, 945 and 965 chipsets support a 256MB aperture. | 
|  | Aperture size is determined by inspected the | 
|  | base address of the aperture. */ | 
|  | if (pci_resource_start(pdev, 2) & 0x08000000) | 
|  | *aperture_size = MB(128); | 
|  | else | 
|  | *aperture_size = MB(256); | 
|  | break; | 
|  | default: | 
|  | if ((tmp & INTEL_GMCH_MEM_MASK) == INTEL_GMCH_MEM_64M) | 
|  | *aperture_size = MB(64); | 
|  | else | 
|  | *aperture_size = MB(128); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Stolen memory size is reduced by the GTT and the popup. | 
|  | GTT is 1K per MB of aperture size, and popup is 4K. */ | 
|  | stolen_overhead = (*aperture_size / MB(1)) + 4; | 
|  | switch(pdev->device) { | 
|  | case PCI_DEVICE_ID_INTEL_830M: | 
|  | case PCI_DEVICE_ID_INTEL_845G: | 
|  | switch (tmp & INTEL_830_GMCH_GMS_MASK) { | 
|  | case INTEL_830_GMCH_GMS_STOLEN_512: | 
|  | *stolen_size = KB(512) - KB(stolen_overhead); | 
|  | return 0; | 
|  | case INTEL_830_GMCH_GMS_STOLEN_1024: | 
|  | *stolen_size = MB(1) - KB(stolen_overhead); | 
|  | return 0; | 
|  | case INTEL_830_GMCH_GMS_STOLEN_8192: | 
|  | *stolen_size = MB(8) - KB(stolen_overhead); | 
|  | return 0; | 
|  | case INTEL_830_GMCH_GMS_LOCAL: | 
|  | ERR_MSG("only local memory found\n"); | 
|  | return 1; | 
|  | case INTEL_830_GMCH_GMS_DISABLED: | 
|  | ERR_MSG("video memory is disabled\n"); | 
|  | return 1; | 
|  | default: | 
|  | ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n", | 
|  | tmp & INTEL_830_GMCH_GMS_MASK); | 
|  | return 1; | 
|  | } | 
|  | break; | 
|  | default: | 
|  | switch (tmp & INTEL_855_GMCH_GMS_MASK) { | 
|  | case INTEL_855_GMCH_GMS_STOLEN_1M: | 
|  | *stolen_size = MB(1) - KB(stolen_overhead); | 
|  | return 0; | 
|  | case INTEL_855_GMCH_GMS_STOLEN_4M: | 
|  | *stolen_size = MB(4) - KB(stolen_overhead); | 
|  | return 0; | 
|  | case INTEL_855_GMCH_GMS_STOLEN_8M: | 
|  | *stolen_size = MB(8) - KB(stolen_overhead); | 
|  | return 0; | 
|  | case INTEL_855_GMCH_GMS_STOLEN_16M: | 
|  | *stolen_size = MB(16) - KB(stolen_overhead); | 
|  | return 0; | 
|  | case INTEL_855_GMCH_GMS_STOLEN_32M: | 
|  | *stolen_size = MB(32) - KB(stolen_overhead); | 
|  | return 0; | 
|  | case INTEL_915G_GMCH_GMS_STOLEN_48M: | 
|  | *stolen_size = MB(48) - KB(stolen_overhead); | 
|  | return 0; | 
|  | case INTEL_915G_GMCH_GMS_STOLEN_64M: | 
|  | *stolen_size = MB(64) - KB(stolen_overhead); | 
|  | return 0; | 
|  | case INTEL_855_GMCH_GMS_DISABLED: | 
|  | ERR_MSG("video memory is disabled\n"); | 
|  | return 0; | 
|  | default: | 
|  | ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n", | 
|  | tmp & INTEL_855_GMCH_GMS_MASK); | 
|  | return 1; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | int intelfbhw_check_non_crt(struct intelfb_info *dinfo) | 
|  | { | 
|  | int dvo = 0; | 
|  |  | 
|  | if (INREG(LVDS) & PORT_ENABLE) | 
|  | dvo |= LVDS_PORT; | 
|  | if (INREG(DVOA) & PORT_ENABLE) | 
|  | dvo |= DVOA_PORT; | 
|  | if (INREG(DVOB) & PORT_ENABLE) | 
|  | dvo |= DVOB_PORT; | 
|  | if (INREG(DVOC) & PORT_ENABLE) | 
|  | dvo |= DVOC_PORT; | 
|  |  | 
|  | return dvo; | 
|  | } | 
|  |  | 
|  | const char * intelfbhw_dvo_to_string(int dvo) | 
|  | { | 
|  | if (dvo & DVOA_PORT) | 
|  | return "DVO port A"; | 
|  | else if (dvo & DVOB_PORT) | 
|  | return "DVO port B"; | 
|  | else if (dvo & DVOC_PORT) | 
|  | return "DVO port C"; | 
|  | else if (dvo & LVDS_PORT) | 
|  | return "LVDS port"; | 
|  | else | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  |  | 
|  | int intelfbhw_validate_mode(struct intelfb_info *dinfo, | 
|  | struct fb_var_screeninfo *var) | 
|  | { | 
|  | int bytes_per_pixel; | 
|  | int tmp; | 
|  |  | 
|  | #if VERBOSE > 0 | 
|  | DBG_MSG("intelfbhw_validate_mode\n"); | 
|  | #endif | 
|  |  | 
|  | bytes_per_pixel = var->bits_per_pixel / 8; | 
|  | if (bytes_per_pixel == 3) | 
|  | bytes_per_pixel = 4; | 
|  |  | 
|  | /* Check if enough video memory. */ | 
|  | tmp = var->yres_virtual * var->xres_virtual * bytes_per_pixel; | 
|  | if (tmp > dinfo->fb.size) { | 
|  | WRN_MSG("Not enough video ram for mode " | 
|  | "(%d KByte vs %d KByte).\n", | 
|  | BtoKB(tmp), BtoKB(dinfo->fb.size)); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* Check if x/y limits are OK. */ | 
|  | if (var->xres - 1 > HACTIVE_MASK) { | 
|  | WRN_MSG("X resolution too large (%d vs %d).\n", | 
|  | var->xres, HACTIVE_MASK + 1); | 
|  | return 1; | 
|  | } | 
|  | if (var->yres - 1 > VACTIVE_MASK) { | 
|  | WRN_MSG("Y resolution too large (%d vs %d).\n", | 
|  | var->yres, VACTIVE_MASK + 1); | 
|  | return 1; | 
|  | } | 
|  | if (var->xres < 4) { | 
|  | WRN_MSG("X resolution too small (%d vs 4).\n", var->xres); | 
|  | return 1; | 
|  | } | 
|  | if (var->yres < 4) { | 
|  | WRN_MSG("Y resolution too small (%d vs 4).\n", var->yres); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* Check for doublescan modes. */ | 
|  | if (var->vmode & FB_VMODE_DOUBLE) { | 
|  | WRN_MSG("Mode is double-scan.\n"); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if ((var->vmode & FB_VMODE_INTERLACED) && (var->yres & 1)) { | 
|  | WRN_MSG("Odd number of lines in interlaced mode\n"); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* Check if clock is OK. */ | 
|  | tmp = 1000000000 / var->pixclock; | 
|  | if (tmp < MIN_CLOCK) { | 
|  | WRN_MSG("Pixel clock is too low (%d MHz vs %d MHz).\n", | 
|  | (tmp + 500) / 1000, MIN_CLOCK / 1000); | 
|  | return 1; | 
|  | } | 
|  | if (tmp > MAX_CLOCK) { | 
|  | WRN_MSG("Pixel clock is too high (%d MHz vs %d MHz).\n", | 
|  | (tmp + 500) / 1000, MAX_CLOCK / 1000); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int intelfbhw_pan_display(struct fb_var_screeninfo *var, struct fb_info *info) | 
|  | { | 
|  | struct intelfb_info *dinfo = GET_DINFO(info); | 
|  | u32 offset, xoffset, yoffset; | 
|  |  | 
|  | #if VERBOSE > 0 | 
|  | DBG_MSG("intelfbhw_pan_display\n"); | 
|  | #endif | 
|  |  | 
|  | xoffset = ROUND_DOWN_TO(var->xoffset, 8); | 
|  | yoffset = var->yoffset; | 
|  |  | 
|  | if ((xoffset + var->xres > var->xres_virtual) || | 
|  | (yoffset + var->yres > var->yres_virtual)) | 
|  | return -EINVAL; | 
|  |  | 
|  | offset = (yoffset * dinfo->pitch) + | 
|  | (xoffset * var->bits_per_pixel) / 8; | 
|  |  | 
|  | offset += dinfo->fb.offset << 12; | 
|  |  | 
|  | dinfo->vsync.pan_offset = offset; | 
|  | if ((var->activate & FB_ACTIVATE_VBL) && | 
|  | !intelfbhw_enable_irq(dinfo)) | 
|  | dinfo->vsync.pan_display = 1; | 
|  | else { | 
|  | dinfo->vsync.pan_display = 0; | 
|  | OUTREG(DSPABASE, offset); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Blank the screen. */ | 
|  | void intelfbhw_do_blank(int blank, struct fb_info *info) | 
|  | { | 
|  | struct intelfb_info *dinfo = GET_DINFO(info); | 
|  | u32 tmp; | 
|  |  | 
|  | #if VERBOSE > 0 | 
|  | DBG_MSG("intelfbhw_do_blank: blank is %d\n", blank); | 
|  | #endif | 
|  |  | 
|  | /* Turn plane A on or off */ | 
|  | tmp = INREG(DSPACNTR); | 
|  | if (blank) | 
|  | tmp &= ~DISPPLANE_PLANE_ENABLE; | 
|  | else | 
|  | tmp |= DISPPLANE_PLANE_ENABLE; | 
|  | OUTREG(DSPACNTR, tmp); | 
|  | /* Flush */ | 
|  | tmp = INREG(DSPABASE); | 
|  | OUTREG(DSPABASE, tmp); | 
|  |  | 
|  | /* Turn off/on the HW cursor */ | 
|  | #if VERBOSE > 0 | 
|  | DBG_MSG("cursor_on is %d\n", dinfo->cursor_on); | 
|  | #endif | 
|  | if (dinfo->cursor_on) { | 
|  | if (blank) | 
|  | intelfbhw_cursor_hide(dinfo); | 
|  | else | 
|  | intelfbhw_cursor_show(dinfo); | 
|  | dinfo->cursor_on = 1; | 
|  | } | 
|  | dinfo->cursor_blanked = blank; | 
|  |  | 
|  | /* Set DPMS level */ | 
|  | tmp = INREG(ADPA) & ~ADPA_DPMS_CONTROL_MASK; | 
|  | switch (blank) { | 
|  | case FB_BLANK_UNBLANK: | 
|  | case FB_BLANK_NORMAL: | 
|  | tmp |= ADPA_DPMS_D0; | 
|  | break; | 
|  | case FB_BLANK_VSYNC_SUSPEND: | 
|  | tmp |= ADPA_DPMS_D1; | 
|  | break; | 
|  | case FB_BLANK_HSYNC_SUSPEND: | 
|  | tmp |= ADPA_DPMS_D2; | 
|  | break; | 
|  | case FB_BLANK_POWERDOWN: | 
|  | tmp |= ADPA_DPMS_D3; | 
|  | break; | 
|  | } | 
|  | OUTREG(ADPA, tmp); | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Check which pipe is connected to an active display plane. */ | 
|  | int intelfbhw_active_pipe(const struct intelfb_hwstate *hw) | 
|  | { | 
|  | int pipe = -1; | 
|  |  | 
|  | /* keep old default behaviour - prefer PIPE_A */ | 
|  | if (hw->disp_b_ctrl & DISPPLANE_PLANE_ENABLE) { | 
|  | pipe = (hw->disp_b_ctrl >> DISPPLANE_SEL_PIPE_SHIFT); | 
|  | pipe &= PIPE_MASK; | 
|  | if (unlikely(pipe == PIPE_A)) | 
|  | return PIPE_A; | 
|  | } | 
|  | if (hw->disp_a_ctrl & DISPPLANE_PLANE_ENABLE) { | 
|  | pipe = (hw->disp_a_ctrl >> DISPPLANE_SEL_PIPE_SHIFT); | 
|  | pipe &= PIPE_MASK; | 
|  | if (likely(pipe == PIPE_A)) | 
|  | return PIPE_A; | 
|  | } | 
|  | /* Impossible that no pipe is selected - return PIPE_A */ | 
|  | WARN_ON(pipe == -1); | 
|  | if (unlikely(pipe == -1)) | 
|  | pipe = PIPE_A; | 
|  |  | 
|  | return pipe; | 
|  | } | 
|  |  | 
|  | void intelfbhw_setcolreg(struct intelfb_info *dinfo, unsigned regno, | 
|  | unsigned red, unsigned green, unsigned blue, | 
|  | unsigned transp) | 
|  | { | 
|  | u32 palette_reg = (dinfo->pipe == PIPE_A) ? | 
|  | PALETTE_A : PALETTE_B; | 
|  |  | 
|  | #if VERBOSE > 0 | 
|  | DBG_MSG("intelfbhw_setcolreg: %d: (%d, %d, %d)\n", | 
|  | regno, red, green, blue); | 
|  | #endif | 
|  |  | 
|  | OUTREG(palette_reg + (regno << 2), | 
|  | (red << PALETTE_8_RED_SHIFT) | | 
|  | (green << PALETTE_8_GREEN_SHIFT) | | 
|  | (blue << PALETTE_8_BLUE_SHIFT)); | 
|  | } | 
|  |  | 
|  |  | 
|  | int intelfbhw_read_hw_state(struct intelfb_info *dinfo, | 
|  | struct intelfb_hwstate *hw, int flag) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | #if VERBOSE > 0 | 
|  | DBG_MSG("intelfbhw_read_hw_state\n"); | 
|  | #endif | 
|  |  | 
|  | if (!hw || !dinfo) | 
|  | return -1; | 
|  |  | 
|  | /* Read in as much of the HW state as possible. */ | 
|  | hw->vga0_divisor = INREG(VGA0_DIVISOR); | 
|  | hw->vga1_divisor = INREG(VGA1_DIVISOR); | 
|  | hw->vga_pd = INREG(VGAPD); | 
|  | hw->dpll_a = INREG(DPLL_A); | 
|  | hw->dpll_b = INREG(DPLL_B); | 
|  | hw->fpa0 = INREG(FPA0); | 
|  | hw->fpa1 = INREG(FPA1); | 
|  | hw->fpb0 = INREG(FPB0); | 
|  | hw->fpb1 = INREG(FPB1); | 
|  |  | 
|  | if (flag == 1) | 
|  | return flag; | 
|  |  | 
|  | #if 0 | 
|  | /* This seems to be a problem with the 852GM/855GM */ | 
|  | for (i = 0; i < PALETTE_8_ENTRIES; i++) { | 
|  | hw->palette_a[i] = INREG(PALETTE_A + (i << 2)); | 
|  | hw->palette_b[i] = INREG(PALETTE_B + (i << 2)); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | if (flag == 2) | 
|  | return flag; | 
|  |  | 
|  | hw->htotal_a = INREG(HTOTAL_A); | 
|  | hw->hblank_a = INREG(HBLANK_A); | 
|  | hw->hsync_a = INREG(HSYNC_A); | 
|  | hw->vtotal_a = INREG(VTOTAL_A); | 
|  | hw->vblank_a = INREG(VBLANK_A); | 
|  | hw->vsync_a = INREG(VSYNC_A); | 
|  | hw->src_size_a = INREG(SRC_SIZE_A); | 
|  | hw->bclrpat_a = INREG(BCLRPAT_A); | 
|  | hw->htotal_b = INREG(HTOTAL_B); | 
|  | hw->hblank_b = INREG(HBLANK_B); | 
|  | hw->hsync_b = INREG(HSYNC_B); | 
|  | hw->vtotal_b = INREG(VTOTAL_B); | 
|  | hw->vblank_b = INREG(VBLANK_B); | 
|  | hw->vsync_b = INREG(VSYNC_B); | 
|  | hw->src_size_b = INREG(SRC_SIZE_B); | 
|  | hw->bclrpat_b = INREG(BCLRPAT_B); | 
|  |  | 
|  | if (flag == 3) | 
|  | return flag; | 
|  |  | 
|  | hw->adpa = INREG(ADPA); | 
|  | hw->dvoa = INREG(DVOA); | 
|  | hw->dvob = INREG(DVOB); | 
|  | hw->dvoc = INREG(DVOC); | 
|  | hw->dvoa_srcdim = INREG(DVOA_SRCDIM); | 
|  | hw->dvob_srcdim = INREG(DVOB_SRCDIM); | 
|  | hw->dvoc_srcdim = INREG(DVOC_SRCDIM); | 
|  | hw->lvds = INREG(LVDS); | 
|  |  | 
|  | if (flag == 4) | 
|  | return flag; | 
|  |  | 
|  | hw->pipe_a_conf = INREG(PIPEACONF); | 
|  | hw->pipe_b_conf = INREG(PIPEBCONF); | 
|  | hw->disp_arb = INREG(DISPARB); | 
|  |  | 
|  | if (flag == 5) | 
|  | return flag; | 
|  |  | 
|  | hw->cursor_a_control = INREG(CURSOR_A_CONTROL); | 
|  | hw->cursor_b_control = INREG(CURSOR_B_CONTROL); | 
|  | hw->cursor_a_base = INREG(CURSOR_A_BASEADDR); | 
|  | hw->cursor_b_base = INREG(CURSOR_B_BASEADDR); | 
|  |  | 
|  | if (flag == 6) | 
|  | return flag; | 
|  |  | 
|  | for (i = 0; i < 4; i++) { | 
|  | hw->cursor_a_palette[i] = INREG(CURSOR_A_PALETTE0 + (i << 2)); | 
|  | hw->cursor_b_palette[i] = INREG(CURSOR_B_PALETTE0 + (i << 2)); | 
|  | } | 
|  |  | 
|  | if (flag == 7) | 
|  | return flag; | 
|  |  | 
|  | hw->cursor_size = INREG(CURSOR_SIZE); | 
|  |  | 
|  | if (flag == 8) | 
|  | return flag; | 
|  |  | 
|  | hw->disp_a_ctrl = INREG(DSPACNTR); | 
|  | hw->disp_b_ctrl = INREG(DSPBCNTR); | 
|  | hw->disp_a_base = INREG(DSPABASE); | 
|  | hw->disp_b_base = INREG(DSPBBASE); | 
|  | hw->disp_a_stride = INREG(DSPASTRIDE); | 
|  | hw->disp_b_stride = INREG(DSPBSTRIDE); | 
|  |  | 
|  | if (flag == 9) | 
|  | return flag; | 
|  |  | 
|  | hw->vgacntrl = INREG(VGACNTRL); | 
|  |  | 
|  | if (flag == 10) | 
|  | return flag; | 
|  |  | 
|  | hw->add_id = INREG(ADD_ID); | 
|  |  | 
|  | if (flag == 11) | 
|  | return flag; | 
|  |  | 
|  | for (i = 0; i < 7; i++) { | 
|  | hw->swf0x[i] = INREG(SWF00 + (i << 2)); | 
|  | hw->swf1x[i] = INREG(SWF10 + (i << 2)); | 
|  | if (i < 3) | 
|  | hw->swf3x[i] = INREG(SWF30 + (i << 2)); | 
|  | } | 
|  |  | 
|  | for (i = 0; i < 8; i++) | 
|  | hw->fence[i] = INREG(FENCE + (i << 2)); | 
|  |  | 
|  | hw->instpm = INREG(INSTPM); | 
|  | hw->mem_mode = INREG(MEM_MODE); | 
|  | hw->fw_blc_0 = INREG(FW_BLC_0); | 
|  | hw->fw_blc_1 = INREG(FW_BLC_1); | 
|  |  | 
|  | hw->hwstam = INREG16(HWSTAM); | 
|  | hw->ier = INREG16(IER); | 
|  | hw->iir = INREG16(IIR); | 
|  | hw->imr = INREG16(IMR); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | static int calc_vclock3(int index, int m, int n, int p) | 
|  | { | 
|  | if (p == 0 || n == 0) | 
|  | return 0; | 
|  | return plls[index].ref_clk * m / n / p; | 
|  | } | 
|  |  | 
|  | static int calc_vclock(int index, int m1, int m2, int n, int p1, int p2, | 
|  | int lvds) | 
|  | { | 
|  | struct pll_min_max *pll = &plls[index]; | 
|  | u32 m, vco, p; | 
|  |  | 
|  | m = (5 * (m1 + 2)) + (m2 + 2); | 
|  | n += 2; | 
|  | vco = pll->ref_clk * m / n; | 
|  |  | 
|  | if (index == PLLS_I8xx) | 
|  | p = ((p1 + 2) * (1 << (p2 + 1))); | 
|  | else | 
|  | p = ((p1) * (p2 ? 5 : 10)); | 
|  | return vco / p; | 
|  | } | 
|  |  | 
|  | #if REGDUMP | 
|  | static void intelfbhw_get_p1p2(struct intelfb_info *dinfo, int dpll, | 
|  | int *o_p1, int *o_p2) | 
|  | { | 
|  | int p1, p2; | 
|  |  | 
|  | if (IS_I9XX(dinfo)) { | 
|  | if (dpll & DPLL_P1_FORCE_DIV2) | 
|  | p1 = 1; | 
|  | else | 
|  | p1 = (dpll >> DPLL_P1_SHIFT) & 0xff; | 
|  |  | 
|  | p1 = ffs(p1); | 
|  |  | 
|  | p2 = (dpll >> DPLL_I9XX_P2_SHIFT) & DPLL_P2_MASK; | 
|  | } else { | 
|  | if (dpll & DPLL_P1_FORCE_DIV2) | 
|  | p1 = 0; | 
|  | else | 
|  | p1 = (dpll >> DPLL_P1_SHIFT) & DPLL_P1_MASK; | 
|  | p2 = (dpll >> DPLL_P2_SHIFT) & DPLL_P2_MASK; | 
|  | } | 
|  |  | 
|  | *o_p1 = p1; | 
|  | *o_p2 = p2; | 
|  | } | 
|  | #endif | 
|  |  | 
|  |  | 
|  | void intelfbhw_print_hw_state(struct intelfb_info *dinfo, | 
|  | struct intelfb_hwstate *hw) | 
|  | { | 
|  | #if REGDUMP | 
|  | int i, m1, m2, n, p1, p2; | 
|  | int index = dinfo->pll_index; | 
|  | DBG_MSG("intelfbhw_print_hw_state\n"); | 
|  |  | 
|  | if (!hw) | 
|  | return; | 
|  | /* Read in as much of the HW state as possible. */ | 
|  | printk("hw state dump start\n"); | 
|  | printk("	VGA0_DIVISOR:		0x%08x\n", hw->vga0_divisor); | 
|  | printk("	VGA1_DIVISOR:		0x%08x\n", hw->vga1_divisor); | 
|  | printk("	VGAPD:			0x%08x\n", hw->vga_pd); | 
|  | n = (hw->vga0_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK; | 
|  | m1 = (hw->vga0_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK; | 
|  | m2 = (hw->vga0_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK; | 
|  |  | 
|  | intelfbhw_get_p1p2(dinfo, hw->vga_pd, &p1, &p2); | 
|  |  | 
|  | printk("	VGA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n", | 
|  | m1, m2, n, p1, p2); | 
|  | printk("	VGA0: clock is %d\n", | 
|  | calc_vclock(index, m1, m2, n, p1, p2, 0)); | 
|  |  | 
|  | n = (hw->vga1_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK; | 
|  | m1 = (hw->vga1_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK; | 
|  | m2 = (hw->vga1_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK; | 
|  |  | 
|  | intelfbhw_get_p1p2(dinfo, hw->vga_pd, &p1, &p2); | 
|  | printk("	VGA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n", | 
|  | m1, m2, n, p1, p2); | 
|  | printk("	VGA1: clock is %d\n", | 
|  | calc_vclock(index, m1, m2, n, p1, p2, 0)); | 
|  |  | 
|  | printk("	DPLL_A:			0x%08x\n", hw->dpll_a); | 
|  | printk("	DPLL_B:			0x%08x\n", hw->dpll_b); | 
|  | printk("	FPA0:			0x%08x\n", hw->fpa0); | 
|  | printk("	FPA1:			0x%08x\n", hw->fpa1); | 
|  | printk("	FPB0:			0x%08x\n", hw->fpb0); | 
|  | printk("	FPB1:			0x%08x\n", hw->fpb1); | 
|  |  | 
|  | n = (hw->fpa0 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK; | 
|  | m1 = (hw->fpa0 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK; | 
|  | m2 = (hw->fpa0 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK; | 
|  |  | 
|  | intelfbhw_get_p1p2(dinfo, hw->dpll_a, &p1, &p2); | 
|  |  | 
|  | printk("	PLLA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n", | 
|  | m1, m2, n, p1, p2); | 
|  | printk("	PLLA0: clock is %d\n", | 
|  | calc_vclock(index, m1, m2, n, p1, p2, 0)); | 
|  |  | 
|  | n = (hw->fpa1 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK; | 
|  | m1 = (hw->fpa1 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK; | 
|  | m2 = (hw->fpa1 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK; | 
|  |  | 
|  | intelfbhw_get_p1p2(dinfo, hw->dpll_a, &p1, &p2); | 
|  |  | 
|  | printk("	PLLA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n", | 
|  | m1, m2, n, p1, p2); | 
|  | printk("	PLLA1: clock is %d\n", | 
|  | calc_vclock(index, m1, m2, n, p1, p2, 0)); | 
|  |  | 
|  | #if 0 | 
|  | printk("	PALETTE_A:\n"); | 
|  | for (i = 0; i < PALETTE_8_ENTRIES) | 
|  | printk("	%3d:	0x%08x\n", i, hw->palette_a[i]); | 
|  | printk("	PALETTE_B:\n"); | 
|  | for (i = 0; i < PALETTE_8_ENTRIES) | 
|  | printk("	%3d:	0x%08x\n", i, hw->palette_b[i]); | 
|  | #endif | 
|  |  | 
|  | printk("	HTOTAL_A:		0x%08x\n", hw->htotal_a); | 
|  | printk("	HBLANK_A:		0x%08x\n", hw->hblank_a); | 
|  | printk("	HSYNC_A:		0x%08x\n", hw->hsync_a); | 
|  | printk("	VTOTAL_A:		0x%08x\n", hw->vtotal_a); | 
|  | printk("	VBLANK_A:		0x%08x\n", hw->vblank_a); | 
|  | printk("	VSYNC_A:		0x%08x\n", hw->vsync_a); | 
|  | printk("	SRC_SIZE_A:		0x%08x\n", hw->src_size_a); | 
|  | printk("	BCLRPAT_A:		0x%08x\n", hw->bclrpat_a); | 
|  | printk("	HTOTAL_B:		0x%08x\n", hw->htotal_b); | 
|  | printk("	HBLANK_B:		0x%08x\n", hw->hblank_b); | 
|  | printk("	HSYNC_B:		0x%08x\n", hw->hsync_b); | 
|  | printk("	VTOTAL_B:		0x%08x\n", hw->vtotal_b); | 
|  | printk("	VBLANK_B:		0x%08x\n", hw->vblank_b); | 
|  | printk("	VSYNC_B:		0x%08x\n", hw->vsync_b); | 
|  | printk("	SRC_SIZE_B:		0x%08x\n", hw->src_size_b); | 
|  | printk("	BCLRPAT_B:		0x%08x\n", hw->bclrpat_b); | 
|  |  | 
|  | printk("	ADPA:			0x%08x\n", hw->adpa); | 
|  | printk("	DVOA:			0x%08x\n", hw->dvoa); | 
|  | printk("	DVOB:			0x%08x\n", hw->dvob); | 
|  | printk("	DVOC:			0x%08x\n", hw->dvoc); | 
|  | printk("	DVOA_SRCDIM:		0x%08x\n", hw->dvoa_srcdim); | 
|  | printk("	DVOB_SRCDIM:		0x%08x\n", hw->dvob_srcdim); | 
|  | printk("	DVOC_SRCDIM:		0x%08x\n", hw->dvoc_srcdim); | 
|  | printk("	LVDS:			0x%08x\n", hw->lvds); | 
|  |  | 
|  | printk("	PIPEACONF:		0x%08x\n", hw->pipe_a_conf); | 
|  | printk("	PIPEBCONF:		0x%08x\n", hw->pipe_b_conf); | 
|  | printk("	DISPARB:		0x%08x\n", hw->disp_arb); | 
|  |  | 
|  | printk("	CURSOR_A_CONTROL:	0x%08x\n", hw->cursor_a_control); | 
|  | printk("	CURSOR_B_CONTROL:	0x%08x\n", hw->cursor_b_control); | 
|  | printk("	CURSOR_A_BASEADDR:	0x%08x\n", hw->cursor_a_base); | 
|  | printk("	CURSOR_B_BASEADDR:	0x%08x\n", hw->cursor_b_base); | 
|  |  | 
|  | printk("	CURSOR_A_PALETTE:	"); | 
|  | for (i = 0; i < 4; i++) { | 
|  | printk("0x%08x", hw->cursor_a_palette[i]); | 
|  | if (i < 3) | 
|  | printk(", "); | 
|  | } | 
|  | printk("\n"); | 
|  | printk("	CURSOR_B_PALETTE:	"); | 
|  | for (i = 0; i < 4; i++) { | 
|  | printk("0x%08x", hw->cursor_b_palette[i]); | 
|  | if (i < 3) | 
|  | printk(", "); | 
|  | } | 
|  | printk("\n"); | 
|  |  | 
|  | printk("	CURSOR_SIZE:		0x%08x\n", hw->cursor_size); | 
|  |  | 
|  | printk("	DSPACNTR:		0x%08x\n", hw->disp_a_ctrl); | 
|  | printk("	DSPBCNTR:		0x%08x\n", hw->disp_b_ctrl); | 
|  | printk("	DSPABASE:		0x%08x\n", hw->disp_a_base); | 
|  | printk("	DSPBBASE:		0x%08x\n", hw->disp_b_base); | 
|  | printk("	DSPASTRIDE:		0x%08x\n", hw->disp_a_stride); | 
|  | printk("	DSPBSTRIDE:		0x%08x\n", hw->disp_b_stride); | 
|  |  | 
|  | printk("	VGACNTRL:		0x%08x\n", hw->vgacntrl); | 
|  | printk("	ADD_ID:			0x%08x\n", hw->add_id); | 
|  |  | 
|  | for (i = 0; i < 7; i++) { | 
|  | printk("	SWF0%d			0x%08x\n", i, | 
|  | hw->swf0x[i]); | 
|  | } | 
|  | for (i = 0; i < 7; i++) { | 
|  | printk("	SWF1%d			0x%08x\n", i, | 
|  | hw->swf1x[i]); | 
|  | } | 
|  | for (i = 0; i < 3; i++) { | 
|  | printk("	SWF3%d			0x%08x\n", i, | 
|  | hw->swf3x[i]); | 
|  | } | 
|  | for (i = 0; i < 8; i++) | 
|  | printk("	FENCE%d			0x%08x\n", i, | 
|  | hw->fence[i]); | 
|  |  | 
|  | printk("	INSTPM			0x%08x\n", hw->instpm); | 
|  | printk("	MEM_MODE		0x%08x\n", hw->mem_mode); | 
|  | printk("	FW_BLC_0		0x%08x\n", hw->fw_blc_0); | 
|  | printk("	FW_BLC_1		0x%08x\n", hw->fw_blc_1); | 
|  |  | 
|  | printk("	HWSTAM			0x%04x\n", hw->hwstam); | 
|  | printk("	IER			0x%04x\n", hw->ier); | 
|  | printk("	IIR			0x%04x\n", hw->iir); | 
|  | printk("	IMR			0x%04x\n", hw->imr); | 
|  | printk("hw state dump end\n"); | 
|  | #endif | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | /* Split the M parameter into M1 and M2. */ | 
|  | static int splitm(int index, unsigned int m, unsigned int *retm1, | 
|  | unsigned int *retm2) | 
|  | { | 
|  | int m1, m2; | 
|  | int testm; | 
|  | struct pll_min_max *pll = &plls[index]; | 
|  |  | 
|  | /* no point optimising too much - brute force m */ | 
|  | for (m1 = pll->min_m1; m1 < pll->max_m1 + 1; m1++) { | 
|  | for (m2 = pll->min_m2; m2 < pll->max_m2 + 1; m2++) { | 
|  | testm = (5 * (m1 + 2)) + (m2 + 2); | 
|  | if (testm == m) { | 
|  | *retm1 = (unsigned int)m1; | 
|  | *retm2 = (unsigned int)m2; | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* Split the P parameter into P1 and P2. */ | 
|  | static int splitp(int index, unsigned int p, unsigned int *retp1, | 
|  | unsigned int *retp2) | 
|  | { | 
|  | int p1, p2; | 
|  | struct pll_min_max *pll = &plls[index]; | 
|  |  | 
|  | if (index == PLLS_I9xx) { | 
|  | p2 = (p % 10) ? 1 : 0; | 
|  |  | 
|  | p1 = p / (p2 ? 5 : 10); | 
|  |  | 
|  | *retp1 = (unsigned int)p1; | 
|  | *retp2 = (unsigned int)p2; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (p % 4 == 0) | 
|  | p2 = 1; | 
|  | else | 
|  | p2 = 0; | 
|  | p1 = (p / (1 << (p2 + 1))) - 2; | 
|  | if (p % 4 == 0 && p1 < pll->min_p1) { | 
|  | p2 = 0; | 
|  | p1 = (p / (1 << (p2 + 1))) - 2; | 
|  | } | 
|  | if (p1 < pll->min_p1 || p1 > pll->max_p1 || | 
|  | (p1 + 2) * (1 << (p2 + 1)) != p) { | 
|  | return 1; | 
|  | } else { | 
|  | *retp1 = (unsigned int)p1; | 
|  | *retp2 = (unsigned int)p2; | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int calc_pll_params(int index, int clock, u32 *retm1, u32 *retm2, | 
|  | u32 *retn, u32 *retp1, u32 *retp2, u32 *retclock) | 
|  | { | 
|  | u32 m1, m2, n, p1, p2, n1, testm; | 
|  | u32 f_vco, p, p_best = 0, m, f_out = 0; | 
|  | u32 err_max, err_target, err_best = 10000000; | 
|  | u32 n_best = 0, m_best = 0, f_best, f_err; | 
|  | u32 p_min, p_max, p_inc, div_max; | 
|  | struct pll_min_max *pll = &plls[index]; | 
|  |  | 
|  | /* Accept 0.5% difference, but aim for 0.1% */ | 
|  | err_max = 5 * clock / 1000; | 
|  | err_target = clock / 1000; | 
|  |  | 
|  | DBG_MSG("Clock is %d\n", clock); | 
|  |  | 
|  | div_max = pll->max_vco / clock; | 
|  |  | 
|  | p_inc = (clock <= pll->p_transition_clk) ? pll->p_inc_lo : pll->p_inc_hi; | 
|  | p_min = p_inc; | 
|  | p_max = ROUND_DOWN_TO(div_max, p_inc); | 
|  | if (p_min < pll->min_p) | 
|  | p_min = pll->min_p; | 
|  | if (p_max > pll->max_p) | 
|  | p_max = pll->max_p; | 
|  |  | 
|  | DBG_MSG("p range is %d-%d (%d)\n", p_min, p_max, p_inc); | 
|  |  | 
|  | p = p_min; | 
|  | do { | 
|  | if (splitp(index, p, &p1, &p2)) { | 
|  | WRN_MSG("cannot split p = %d\n", p); | 
|  | p += p_inc; | 
|  | continue; | 
|  | } | 
|  | n = pll->min_n; | 
|  | f_vco = clock * p; | 
|  |  | 
|  | do { | 
|  | m = ROUND_UP_TO(f_vco * n, pll->ref_clk) / pll->ref_clk; | 
|  | if (m < pll->min_m) | 
|  | m = pll->min_m + 1; | 
|  | if (m > pll->max_m) | 
|  | m = pll->max_m - 1; | 
|  | for (testm = m - 1; testm <= m; testm++) { | 
|  | f_out = calc_vclock3(index, testm, n, p); | 
|  | if (splitm(index, testm, &m1, &m2)) { | 
|  | WRN_MSG("cannot split m = %d\n", | 
|  | testm); | 
|  | continue; | 
|  | } | 
|  | if (clock > f_out) | 
|  | f_err = clock - f_out; | 
|  | else/* slightly bias the error for bigger clocks */ | 
|  | f_err = f_out - clock + 1; | 
|  |  | 
|  | if (f_err < err_best) { | 
|  | m_best = testm; | 
|  | n_best = n; | 
|  | p_best = p; | 
|  | f_best = f_out; | 
|  | err_best = f_err; | 
|  | } | 
|  | } | 
|  | n++; | 
|  | } while ((n <= pll->max_n) && (f_out >= clock)); | 
|  | p += p_inc; | 
|  | } while ((p <= p_max)); | 
|  |  | 
|  | if (!m_best) { | 
|  | WRN_MSG("cannot find parameters for clock %d\n", clock); | 
|  | return 1; | 
|  | } | 
|  | m = m_best; | 
|  | n = n_best; | 
|  | p = p_best; | 
|  | splitm(index, m, &m1, &m2); | 
|  | splitp(index, p, &p1, &p2); | 
|  | n1 = n - 2; | 
|  |  | 
|  | DBG_MSG("m, n, p: %d (%d,%d), %d (%d), %d (%d,%d), " | 
|  | "f: %d (%d), VCO: %d\n", | 
|  | m, m1, m2, n, n1, p, p1, p2, | 
|  | calc_vclock3(index, m, n, p), | 
|  | calc_vclock(index, m1, m2, n1, p1, p2, 0), | 
|  | calc_vclock3(index, m, n, p) * p); | 
|  | *retm1 = m1; | 
|  | *retm2 = m2; | 
|  | *retn = n1; | 
|  | *retp1 = p1; | 
|  | *retp2 = p2; | 
|  | *retclock = calc_vclock(index, m1, m2, n1, p1, p2, 0); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static __inline__ int check_overflow(u32 value, u32 limit, | 
|  | const char *description) | 
|  | { | 
|  | if (value > limit) { | 
|  | WRN_MSG("%s value %d exceeds limit %d\n", | 
|  | description, value, limit); | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* It is assumed that hw is filled in with the initial state information. */ | 
|  | int intelfbhw_mode_to_hw(struct intelfb_info *dinfo, | 
|  | struct intelfb_hwstate *hw, | 
|  | struct fb_var_screeninfo *var) | 
|  | { | 
|  | int pipe = intelfbhw_active_pipe(hw); | 
|  | u32 *dpll, *fp0, *fp1; | 
|  | u32 m1, m2, n, p1, p2, clock_target, clock; | 
|  | u32 hsync_start, hsync_end, hblank_start, hblank_end, htotal, hactive; | 
|  | u32 vsync_start, vsync_end, vblank_start, vblank_end, vtotal, vactive; | 
|  | u32 vsync_pol, hsync_pol; | 
|  | u32 *vs, *vb, *vt, *hs, *hb, *ht, *ss, *pipe_conf; | 
|  | u32 stride_alignment; | 
|  |  | 
|  | DBG_MSG("intelfbhw_mode_to_hw\n"); | 
|  |  | 
|  | /* Disable VGA */ | 
|  | hw->vgacntrl |= VGA_DISABLE; | 
|  |  | 
|  | /* Set which pipe's registers will be set. */ | 
|  | if (pipe == PIPE_B) { | 
|  | dpll = &hw->dpll_b; | 
|  | fp0 = &hw->fpb0; | 
|  | fp1 = &hw->fpb1; | 
|  | hs = &hw->hsync_b; | 
|  | hb = &hw->hblank_b; | 
|  | ht = &hw->htotal_b; | 
|  | vs = &hw->vsync_b; | 
|  | vb = &hw->vblank_b; | 
|  | vt = &hw->vtotal_b; | 
|  | ss = &hw->src_size_b; | 
|  | pipe_conf = &hw->pipe_b_conf; | 
|  | } else { | 
|  | dpll = &hw->dpll_a; | 
|  | fp0 = &hw->fpa0; | 
|  | fp1 = &hw->fpa1; | 
|  | hs = &hw->hsync_a; | 
|  | hb = &hw->hblank_a; | 
|  | ht = &hw->htotal_a; | 
|  | vs = &hw->vsync_a; | 
|  | vb = &hw->vblank_a; | 
|  | vt = &hw->vtotal_a; | 
|  | ss = &hw->src_size_a; | 
|  | pipe_conf = &hw->pipe_a_conf; | 
|  | } | 
|  |  | 
|  | /* Use ADPA register for sync control. */ | 
|  | hw->adpa &= ~ADPA_USE_VGA_HVPOLARITY; | 
|  |  | 
|  | /* sync polarity */ | 
|  | hsync_pol = (var->sync & FB_SYNC_HOR_HIGH_ACT) ? | 
|  | ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW; | 
|  | vsync_pol = (var->sync & FB_SYNC_VERT_HIGH_ACT) ? | 
|  | ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW; | 
|  | hw->adpa &= ~((ADPA_SYNC_ACTIVE_MASK << ADPA_VSYNC_ACTIVE_SHIFT) | | 
|  | (ADPA_SYNC_ACTIVE_MASK << ADPA_HSYNC_ACTIVE_SHIFT)); | 
|  | hw->adpa |= (hsync_pol << ADPA_HSYNC_ACTIVE_SHIFT) | | 
|  | (vsync_pol << ADPA_VSYNC_ACTIVE_SHIFT); | 
|  |  | 
|  | /* Connect correct pipe to the analog port DAC */ | 
|  | hw->adpa &= ~(PIPE_MASK << ADPA_PIPE_SELECT_SHIFT); | 
|  | hw->adpa |= (pipe << ADPA_PIPE_SELECT_SHIFT); | 
|  |  | 
|  | /* Set DPMS state to D0 (on) */ | 
|  | hw->adpa &= ~ADPA_DPMS_CONTROL_MASK; | 
|  | hw->adpa |= ADPA_DPMS_D0; | 
|  |  | 
|  | hw->adpa |= ADPA_DAC_ENABLE; | 
|  |  | 
|  | *dpll |= (DPLL_VCO_ENABLE | DPLL_VGA_MODE_DISABLE); | 
|  | *dpll &= ~(DPLL_RATE_SELECT_MASK | DPLL_REFERENCE_SELECT_MASK); | 
|  | *dpll |= (DPLL_REFERENCE_DEFAULT | DPLL_RATE_SELECT_FP0); | 
|  |  | 
|  | /* Desired clock in kHz */ | 
|  | clock_target = 1000000000 / var->pixclock; | 
|  |  | 
|  | if (calc_pll_params(dinfo->pll_index, clock_target, &m1, &m2, | 
|  | &n, &p1, &p2, &clock)) { | 
|  | WRN_MSG("calc_pll_params failed\n"); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* Check for overflow. */ | 
|  | if (check_overflow(p1, DPLL_P1_MASK, "PLL P1 parameter")) | 
|  | return 1; | 
|  | if (check_overflow(p2, DPLL_P2_MASK, "PLL P2 parameter")) | 
|  | return 1; | 
|  | if (check_overflow(m1, FP_DIVISOR_MASK, "PLL M1 parameter")) | 
|  | return 1; | 
|  | if (check_overflow(m2, FP_DIVISOR_MASK, "PLL M2 parameter")) | 
|  | return 1; | 
|  | if (check_overflow(n, FP_DIVISOR_MASK, "PLL N parameter")) | 
|  | return 1; | 
|  |  | 
|  | *dpll &= ~DPLL_P1_FORCE_DIV2; | 
|  | *dpll &= ~((DPLL_P2_MASK << DPLL_P2_SHIFT) | | 
|  | (DPLL_P1_MASK << DPLL_P1_SHIFT)); | 
|  |  | 
|  | if (IS_I9XX(dinfo)) { | 
|  | *dpll |= (p2 << DPLL_I9XX_P2_SHIFT); | 
|  | *dpll |= (1 << (p1 - 1)) << DPLL_P1_SHIFT; | 
|  | } else | 
|  | *dpll |= (p2 << DPLL_P2_SHIFT) | (p1 << DPLL_P1_SHIFT); | 
|  |  | 
|  | *fp0 = (n << FP_N_DIVISOR_SHIFT) | | 
|  | (m1 << FP_M1_DIVISOR_SHIFT) | | 
|  | (m2 << FP_M2_DIVISOR_SHIFT); | 
|  | *fp1 = *fp0; | 
|  |  | 
|  | hw->dvob &= ~PORT_ENABLE; | 
|  | hw->dvoc &= ~PORT_ENABLE; | 
|  |  | 
|  | /* Use display plane A. */ | 
|  | hw->disp_a_ctrl |= DISPPLANE_PLANE_ENABLE; | 
|  | hw->disp_a_ctrl &= ~DISPPLANE_GAMMA_ENABLE; | 
|  | hw->disp_a_ctrl &= ~DISPPLANE_PIXFORMAT_MASK; | 
|  | switch (intelfb_var_to_depth(var)) { | 
|  | case 8: | 
|  | hw->disp_a_ctrl |= DISPPLANE_8BPP | DISPPLANE_GAMMA_ENABLE; | 
|  | break; | 
|  | case 15: | 
|  | hw->disp_a_ctrl |= DISPPLANE_15_16BPP; | 
|  | break; | 
|  | case 16: | 
|  | hw->disp_a_ctrl |= DISPPLANE_16BPP; | 
|  | break; | 
|  | case 24: | 
|  | hw->disp_a_ctrl |= DISPPLANE_32BPP_NO_ALPHA; | 
|  | break; | 
|  | } | 
|  | hw->disp_a_ctrl &= ~(PIPE_MASK << DISPPLANE_SEL_PIPE_SHIFT); | 
|  | hw->disp_a_ctrl |= (pipe << DISPPLANE_SEL_PIPE_SHIFT); | 
|  |  | 
|  | /* Set CRTC registers. */ | 
|  | hactive = var->xres; | 
|  | hsync_start = hactive + var->right_margin; | 
|  | hsync_end = hsync_start + var->hsync_len; | 
|  | htotal = hsync_end + var->left_margin; | 
|  | hblank_start = hactive; | 
|  | hblank_end = htotal; | 
|  |  | 
|  | DBG_MSG("H: act %d, ss %d, se %d, tot %d bs %d, be %d\n", | 
|  | hactive, hsync_start, hsync_end, htotal, hblank_start, | 
|  | hblank_end); | 
|  |  | 
|  | vactive = var->yres; | 
|  | if (var->vmode & FB_VMODE_INTERLACED) | 
|  | vactive--; /* the chip adds 2 halflines automatically */ | 
|  | vsync_start = vactive + var->lower_margin; | 
|  | vsync_end = vsync_start + var->vsync_len; | 
|  | vtotal = vsync_end + var->upper_margin; | 
|  | vblank_start = vactive; | 
|  | vblank_end = vtotal; | 
|  | vblank_end = vsync_end + 1; | 
|  |  | 
|  | DBG_MSG("V: act %d, ss %d, se %d, tot %d bs %d, be %d\n", | 
|  | vactive, vsync_start, vsync_end, vtotal, vblank_start, | 
|  | vblank_end); | 
|  |  | 
|  | /* Adjust for register values, and check for overflow. */ | 
|  | hactive--; | 
|  | if (check_overflow(hactive, HACTIVE_MASK, "CRTC hactive")) | 
|  | return 1; | 
|  | hsync_start--; | 
|  | if (check_overflow(hsync_start, HSYNCSTART_MASK, "CRTC hsync_start")) | 
|  | return 1; | 
|  | hsync_end--; | 
|  | if (check_overflow(hsync_end, HSYNCEND_MASK, "CRTC hsync_end")) | 
|  | return 1; | 
|  | htotal--; | 
|  | if (check_overflow(htotal, HTOTAL_MASK, "CRTC htotal")) | 
|  | return 1; | 
|  | hblank_start--; | 
|  | if (check_overflow(hblank_start, HBLANKSTART_MASK, "CRTC hblank_start")) | 
|  | return 1; | 
|  | hblank_end--; | 
|  | if (check_overflow(hblank_end, HBLANKEND_MASK, "CRTC hblank_end")) | 
|  | return 1; | 
|  |  | 
|  | vactive--; | 
|  | if (check_overflow(vactive, VACTIVE_MASK, "CRTC vactive")) | 
|  | return 1; | 
|  | vsync_start--; | 
|  | if (check_overflow(vsync_start, VSYNCSTART_MASK, "CRTC vsync_start")) | 
|  | return 1; | 
|  | vsync_end--; | 
|  | if (check_overflow(vsync_end, VSYNCEND_MASK, "CRTC vsync_end")) | 
|  | return 1; | 
|  | vtotal--; | 
|  | if (check_overflow(vtotal, VTOTAL_MASK, "CRTC vtotal")) | 
|  | return 1; | 
|  | vblank_start--; | 
|  | if (check_overflow(vblank_start, VBLANKSTART_MASK, "CRTC vblank_start")) | 
|  | return 1; | 
|  | vblank_end--; | 
|  | if (check_overflow(vblank_end, VBLANKEND_MASK, "CRTC vblank_end")) | 
|  | return 1; | 
|  |  | 
|  | *ht = (htotal << HTOTAL_SHIFT) | (hactive << HACTIVE_SHIFT); | 
|  | *hb = (hblank_start << HBLANKSTART_SHIFT) | | 
|  | (hblank_end << HSYNCEND_SHIFT); | 
|  | *hs = (hsync_start << HSYNCSTART_SHIFT) | (hsync_end << HSYNCEND_SHIFT); | 
|  |  | 
|  | *vt = (vtotal << VTOTAL_SHIFT) | (vactive << VACTIVE_SHIFT); | 
|  | *vb = (vblank_start << VBLANKSTART_SHIFT) | | 
|  | (vblank_end << VSYNCEND_SHIFT); | 
|  | *vs = (vsync_start << VSYNCSTART_SHIFT) | (vsync_end << VSYNCEND_SHIFT); | 
|  | *ss = (hactive << SRC_SIZE_HORIZ_SHIFT) | | 
|  | (vactive << SRC_SIZE_VERT_SHIFT); | 
|  |  | 
|  | hw->disp_a_stride = dinfo->pitch; | 
|  | DBG_MSG("pitch is %d\n", hw->disp_a_stride); | 
|  |  | 
|  | hw->disp_a_base = hw->disp_a_stride * var->yoffset + | 
|  | var->xoffset * var->bits_per_pixel / 8; | 
|  |  | 
|  | hw->disp_a_base += dinfo->fb.offset << 12; | 
|  |  | 
|  | /* Check stride alignment. */ | 
|  | stride_alignment = IS_I9XX(dinfo) ? STRIDE_ALIGNMENT_I9XX : | 
|  | STRIDE_ALIGNMENT; | 
|  | if (hw->disp_a_stride % stride_alignment != 0) { | 
|  | WRN_MSG("display stride %d has bad alignment %d\n", | 
|  | hw->disp_a_stride, stride_alignment); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* Set the palette to 8-bit mode. */ | 
|  | *pipe_conf &= ~PIPECONF_GAMMA; | 
|  |  | 
|  | if (var->vmode & FB_VMODE_INTERLACED) | 
|  | *pipe_conf |= PIPECONF_INTERLACE_W_FIELD_INDICATION; | 
|  | else | 
|  | *pipe_conf &= ~PIPECONF_INTERLACE_MASK; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Program a (non-VGA) video mode. */ | 
|  | int intelfbhw_program_mode(struct intelfb_info *dinfo, | 
|  | const struct intelfb_hwstate *hw, int blank) | 
|  | { | 
|  | u32 tmp; | 
|  | const u32 *dpll, *fp0, *fp1, *pipe_conf; | 
|  | const u32 *hs, *ht, *hb, *vs, *vt, *vb, *ss; | 
|  | u32 dpll_reg, fp0_reg, fp1_reg, pipe_conf_reg, pipe_stat_reg; | 
|  | u32 hsync_reg, htotal_reg, hblank_reg; | 
|  | u32 vsync_reg, vtotal_reg, vblank_reg; | 
|  | u32 src_size_reg; | 
|  | u32 count, tmp_val[3]; | 
|  |  | 
|  | /* Assume single pipe */ | 
|  |  | 
|  | #if VERBOSE > 0 | 
|  | DBG_MSG("intelfbhw_program_mode\n"); | 
|  | #endif | 
|  |  | 
|  | /* Disable VGA */ | 
|  | tmp = INREG(VGACNTRL); | 
|  | tmp |= VGA_DISABLE; | 
|  | OUTREG(VGACNTRL, tmp); | 
|  |  | 
|  | dinfo->pipe = intelfbhw_active_pipe(hw); | 
|  |  | 
|  | if (dinfo->pipe == PIPE_B) { | 
|  | dpll = &hw->dpll_b; | 
|  | fp0 = &hw->fpb0; | 
|  | fp1 = &hw->fpb1; | 
|  | pipe_conf = &hw->pipe_b_conf; | 
|  | hs = &hw->hsync_b; | 
|  | hb = &hw->hblank_b; | 
|  | ht = &hw->htotal_b; | 
|  | vs = &hw->vsync_b; | 
|  | vb = &hw->vblank_b; | 
|  | vt = &hw->vtotal_b; | 
|  | ss = &hw->src_size_b; | 
|  | dpll_reg = DPLL_B; | 
|  | fp0_reg = FPB0; | 
|  | fp1_reg = FPB1; | 
|  | pipe_conf_reg = PIPEBCONF; | 
|  | pipe_stat_reg = PIPEBSTAT; | 
|  | hsync_reg = HSYNC_B; | 
|  | htotal_reg = HTOTAL_B; | 
|  | hblank_reg = HBLANK_B; | 
|  | vsync_reg = VSYNC_B; | 
|  | vtotal_reg = VTOTAL_B; | 
|  | vblank_reg = VBLANK_B; | 
|  | src_size_reg = SRC_SIZE_B; | 
|  | } else { | 
|  | dpll = &hw->dpll_a; | 
|  | fp0 = &hw->fpa0; | 
|  | fp1 = &hw->fpa1; | 
|  | pipe_conf = &hw->pipe_a_conf; | 
|  | hs = &hw->hsync_a; | 
|  | hb = &hw->hblank_a; | 
|  | ht = &hw->htotal_a; | 
|  | vs = &hw->vsync_a; | 
|  | vb = &hw->vblank_a; | 
|  | vt = &hw->vtotal_a; | 
|  | ss = &hw->src_size_a; | 
|  | dpll_reg = DPLL_A; | 
|  | fp0_reg = FPA0; | 
|  | fp1_reg = FPA1; | 
|  | pipe_conf_reg = PIPEACONF; | 
|  | pipe_stat_reg = PIPEASTAT; | 
|  | hsync_reg = HSYNC_A; | 
|  | htotal_reg = HTOTAL_A; | 
|  | hblank_reg = HBLANK_A; | 
|  | vsync_reg = VSYNC_A; | 
|  | vtotal_reg = VTOTAL_A; | 
|  | vblank_reg = VBLANK_A; | 
|  | src_size_reg = SRC_SIZE_A; | 
|  | } | 
|  |  | 
|  | /* turn off pipe */ | 
|  | tmp = INREG(pipe_conf_reg); | 
|  | tmp &= ~PIPECONF_ENABLE; | 
|  | OUTREG(pipe_conf_reg, tmp); | 
|  |  | 
|  | count = 0; | 
|  | do { | 
|  | tmp_val[count % 3] = INREG(PIPEA_DSL); | 
|  | if ((tmp_val[0] == tmp_val[1]) && (tmp_val[1] == tmp_val[2])) | 
|  | break; | 
|  | count++; | 
|  | udelay(1); | 
|  | if (count % 200 == 0) { | 
|  | tmp = INREG(pipe_conf_reg); | 
|  | tmp &= ~PIPECONF_ENABLE; | 
|  | OUTREG(pipe_conf_reg, tmp); | 
|  | } | 
|  | } while (count < 2000); | 
|  |  | 
|  | OUTREG(ADPA, INREG(ADPA) & ~ADPA_DAC_ENABLE); | 
|  |  | 
|  | /* Disable planes A and B. */ | 
|  | tmp = INREG(DSPACNTR); | 
|  | tmp &= ~DISPPLANE_PLANE_ENABLE; | 
|  | OUTREG(DSPACNTR, tmp); | 
|  | tmp = INREG(DSPBCNTR); | 
|  | tmp &= ~DISPPLANE_PLANE_ENABLE; | 
|  | OUTREG(DSPBCNTR, tmp); | 
|  |  | 
|  | /* Wait for vblank. For now, just wait for a 50Hz cycle (20ms)) */ | 
|  | mdelay(20); | 
|  |  | 
|  | OUTREG(DVOB, INREG(DVOB) & ~PORT_ENABLE); | 
|  | OUTREG(DVOC, INREG(DVOC) & ~PORT_ENABLE); | 
|  | OUTREG(ADPA, INREG(ADPA) & ~ADPA_DAC_ENABLE); | 
|  |  | 
|  | /* Disable Sync */ | 
|  | tmp = INREG(ADPA); | 
|  | tmp &= ~ADPA_DPMS_CONTROL_MASK; | 
|  | tmp |= ADPA_DPMS_D3; | 
|  | OUTREG(ADPA, tmp); | 
|  |  | 
|  | /* do some funky magic - xyzzy */ | 
|  | OUTREG(0x61204, 0xabcd0000); | 
|  |  | 
|  | /* turn off PLL */ | 
|  | tmp = INREG(dpll_reg); | 
|  | tmp &= ~DPLL_VCO_ENABLE; | 
|  | OUTREG(dpll_reg, tmp); | 
|  |  | 
|  | /* Set PLL parameters */ | 
|  | OUTREG(fp0_reg, *fp0); | 
|  | OUTREG(fp1_reg, *fp1); | 
|  |  | 
|  | /* Enable PLL */ | 
|  | OUTREG(dpll_reg, *dpll); | 
|  |  | 
|  | /* Set DVOs B/C */ | 
|  | OUTREG(DVOB, hw->dvob); | 
|  | OUTREG(DVOC, hw->dvoc); | 
|  |  | 
|  | /* undo funky magic */ | 
|  | OUTREG(0x61204, 0x00000000); | 
|  |  | 
|  | /* Set ADPA */ | 
|  | OUTREG(ADPA, INREG(ADPA) | ADPA_DAC_ENABLE); | 
|  | OUTREG(ADPA, (hw->adpa & ~(ADPA_DPMS_CONTROL_MASK)) | ADPA_DPMS_D3); | 
|  |  | 
|  | /* Set pipe parameters */ | 
|  | OUTREG(hsync_reg, *hs); | 
|  | OUTREG(hblank_reg, *hb); | 
|  | OUTREG(htotal_reg, *ht); | 
|  | OUTREG(vsync_reg, *vs); | 
|  | OUTREG(vblank_reg, *vb); | 
|  | OUTREG(vtotal_reg, *vt); | 
|  | OUTREG(src_size_reg, *ss); | 
|  |  | 
|  | switch (dinfo->info->var.vmode & (FB_VMODE_INTERLACED | | 
|  | FB_VMODE_ODD_FLD_FIRST)) { | 
|  | case FB_VMODE_INTERLACED | FB_VMODE_ODD_FLD_FIRST: | 
|  | OUTREG(pipe_stat_reg, 0xFFFF | PIPESTAT_FLD_EVT_ODD_EN); | 
|  | break; | 
|  | case FB_VMODE_INTERLACED: /* even lines first */ | 
|  | OUTREG(pipe_stat_reg, 0xFFFF | PIPESTAT_FLD_EVT_EVEN_EN); | 
|  | break; | 
|  | default:		/* non-interlaced */ | 
|  | OUTREG(pipe_stat_reg, 0xFFFF); /* clear all status bits only */ | 
|  | } | 
|  | /* Enable pipe */ | 
|  | OUTREG(pipe_conf_reg, *pipe_conf | PIPECONF_ENABLE); | 
|  |  | 
|  | /* Enable sync */ | 
|  | tmp = INREG(ADPA); | 
|  | tmp &= ~ADPA_DPMS_CONTROL_MASK; | 
|  | tmp |= ADPA_DPMS_D0; | 
|  | OUTREG(ADPA, tmp); | 
|  |  | 
|  | /* setup display plane */ | 
|  | if (dinfo->pdev->device == PCI_DEVICE_ID_INTEL_830M) { | 
|  | /* | 
|  | *      i830M errata: the display plane must be enabled | 
|  | *      to allow writes to the other bits in the plane | 
|  | *      control register. | 
|  | */ | 
|  | tmp = INREG(DSPACNTR); | 
|  | if ((tmp & DISPPLANE_PLANE_ENABLE) != DISPPLANE_PLANE_ENABLE) { | 
|  | tmp |= DISPPLANE_PLANE_ENABLE; | 
|  | OUTREG(DSPACNTR, tmp); | 
|  | OUTREG(DSPACNTR, | 
|  | hw->disp_a_ctrl|DISPPLANE_PLANE_ENABLE); | 
|  | mdelay(1); | 
|  | } | 
|  | } | 
|  |  | 
|  | OUTREG(DSPACNTR, hw->disp_a_ctrl & ~DISPPLANE_PLANE_ENABLE); | 
|  | OUTREG(DSPASTRIDE, hw->disp_a_stride); | 
|  | OUTREG(DSPABASE, hw->disp_a_base); | 
|  |  | 
|  | /* Enable plane */ | 
|  | if (!blank) { | 
|  | tmp = INREG(DSPACNTR); | 
|  | tmp |= DISPPLANE_PLANE_ENABLE; | 
|  | OUTREG(DSPACNTR, tmp); | 
|  | OUTREG(DSPABASE, hw->disp_a_base); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* forward declarations */ | 
|  | static void refresh_ring(struct intelfb_info *dinfo); | 
|  | static void reset_state(struct intelfb_info *dinfo); | 
|  | static void do_flush(struct intelfb_info *dinfo); | 
|  |  | 
|  | static  u32 get_ring_space(struct intelfb_info *dinfo) | 
|  | { | 
|  | u32 ring_space; | 
|  |  | 
|  | if (dinfo->ring_tail >= dinfo->ring_head) | 
|  | ring_space = dinfo->ring.size - | 
|  | (dinfo->ring_tail - dinfo->ring_head); | 
|  | else | 
|  | ring_space = dinfo->ring_head - dinfo->ring_tail; | 
|  |  | 
|  | if (ring_space > RING_MIN_FREE) | 
|  | ring_space -= RING_MIN_FREE; | 
|  | else | 
|  | ring_space = 0; | 
|  |  | 
|  | return ring_space; | 
|  | } | 
|  |  | 
|  | static int wait_ring(struct intelfb_info *dinfo, int n) | 
|  | { | 
|  | int i = 0; | 
|  | unsigned long end; | 
|  | u32 last_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK; | 
|  |  | 
|  | #if VERBOSE > 0 | 
|  | DBG_MSG("wait_ring: %d\n", n); | 
|  | #endif | 
|  |  | 
|  | end = jiffies + (HZ * 3); | 
|  | while (dinfo->ring_space < n) { | 
|  | dinfo->ring_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK; | 
|  | dinfo->ring_space = get_ring_space(dinfo); | 
|  |  | 
|  | if (dinfo->ring_head != last_head) { | 
|  | end = jiffies + (HZ * 3); | 
|  | last_head = dinfo->ring_head; | 
|  | } | 
|  | i++; | 
|  | if (time_before(end, jiffies)) { | 
|  | if (!i) { | 
|  | /* Try again */ | 
|  | reset_state(dinfo); | 
|  | refresh_ring(dinfo); | 
|  | do_flush(dinfo); | 
|  | end = jiffies + (HZ * 3); | 
|  | i = 1; | 
|  | } else { | 
|  | WRN_MSG("ring buffer : space: %d wanted %d\n", | 
|  | dinfo->ring_space, n); | 
|  | WRN_MSG("lockup - turning off hardware " | 
|  | "acceleration\n"); | 
|  | dinfo->ring_lockup = 1; | 
|  | break; | 
|  | } | 
|  | } | 
|  | udelay(1); | 
|  | } | 
|  | return i; | 
|  | } | 
|  |  | 
|  | static void do_flush(struct intelfb_info *dinfo) | 
|  | { | 
|  | START_RING(2); | 
|  | OUT_RING(MI_FLUSH | MI_WRITE_DIRTY_STATE | MI_INVALIDATE_MAP_CACHE); | 
|  | OUT_RING(MI_NOOP); | 
|  | ADVANCE_RING(); | 
|  | } | 
|  |  | 
|  | void intelfbhw_do_sync(struct intelfb_info *dinfo) | 
|  | { | 
|  | #if VERBOSE > 0 | 
|  | DBG_MSG("intelfbhw_do_sync\n"); | 
|  | #endif | 
|  |  | 
|  | if (!dinfo->accel) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Send a flush, then wait until the ring is empty.  This is what | 
|  | * the XFree86 driver does, and actually it doesn't seem a lot worse | 
|  | * than the recommended method (both have problems). | 
|  | */ | 
|  | do_flush(dinfo); | 
|  | wait_ring(dinfo, dinfo->ring.size - RING_MIN_FREE); | 
|  | dinfo->ring_space = dinfo->ring.size - RING_MIN_FREE; | 
|  | } | 
|  |  | 
|  | static void refresh_ring(struct intelfb_info *dinfo) | 
|  | { | 
|  | #if VERBOSE > 0 | 
|  | DBG_MSG("refresh_ring\n"); | 
|  | #endif | 
|  |  | 
|  | dinfo->ring_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK; | 
|  | dinfo->ring_tail = INREG(PRI_RING_TAIL) & RING_TAIL_MASK; | 
|  | dinfo->ring_space = get_ring_space(dinfo); | 
|  | } | 
|  |  | 
|  | static void reset_state(struct intelfb_info *dinfo) | 
|  | { | 
|  | int i; | 
|  | u32 tmp; | 
|  |  | 
|  | #if VERBOSE > 0 | 
|  | DBG_MSG("reset_state\n"); | 
|  | #endif | 
|  |  | 
|  | for (i = 0; i < FENCE_NUM; i++) | 
|  | OUTREG(FENCE + (i << 2), 0); | 
|  |  | 
|  | /* Flush the ring buffer if it's enabled. */ | 
|  | tmp = INREG(PRI_RING_LENGTH); | 
|  | if (tmp & RING_ENABLE) { | 
|  | #if VERBOSE > 0 | 
|  | DBG_MSG("reset_state: ring was enabled\n"); | 
|  | #endif | 
|  | refresh_ring(dinfo); | 
|  | intelfbhw_do_sync(dinfo); | 
|  | DO_RING_IDLE(); | 
|  | } | 
|  |  | 
|  | OUTREG(PRI_RING_LENGTH, 0); | 
|  | OUTREG(PRI_RING_HEAD, 0); | 
|  | OUTREG(PRI_RING_TAIL, 0); | 
|  | OUTREG(PRI_RING_START, 0); | 
|  | } | 
|  |  | 
|  | /* Stop the 2D engine, and turn off the ring buffer. */ | 
|  | void intelfbhw_2d_stop(struct intelfb_info *dinfo) | 
|  | { | 
|  | #if VERBOSE > 0 | 
|  | DBG_MSG("intelfbhw_2d_stop: accel: %d, ring_active: %d\n", | 
|  | dinfo->accel, dinfo->ring_active); | 
|  | #endif | 
|  |  | 
|  | if (!dinfo->accel) | 
|  | return; | 
|  |  | 
|  | dinfo->ring_active = 0; | 
|  | reset_state(dinfo); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Enable the ring buffer, and initialise the 2D engine. | 
|  | * It is assumed that the graphics engine has been stopped by previously | 
|  | * calling intelfb_2d_stop(). | 
|  | */ | 
|  | void intelfbhw_2d_start(struct intelfb_info *dinfo) | 
|  | { | 
|  | #if VERBOSE > 0 | 
|  | DBG_MSG("intelfbhw_2d_start: accel: %d, ring_active: %d\n", | 
|  | dinfo->accel, dinfo->ring_active); | 
|  | #endif | 
|  |  | 
|  | if (!dinfo->accel) | 
|  | return; | 
|  |  | 
|  | /* Initialise the primary ring buffer. */ | 
|  | OUTREG(PRI_RING_LENGTH, 0); | 
|  | OUTREG(PRI_RING_TAIL, 0); | 
|  | OUTREG(PRI_RING_HEAD, 0); | 
|  |  | 
|  | OUTREG(PRI_RING_START, dinfo->ring.physical & RING_START_MASK); | 
|  | OUTREG(PRI_RING_LENGTH, | 
|  | ((dinfo->ring.size - GTT_PAGE_SIZE) & RING_LENGTH_MASK) | | 
|  | RING_NO_REPORT | RING_ENABLE); | 
|  | refresh_ring(dinfo); | 
|  | dinfo->ring_active = 1; | 
|  | } | 
|  |  | 
|  | /* 2D fillrect (solid fill or invert) */ | 
|  | void intelfbhw_do_fillrect(struct intelfb_info *dinfo, u32 x, u32 y, u32 w, | 
|  | u32 h, u32 color, u32 pitch, u32 bpp, u32 rop) | 
|  | { | 
|  | u32 br00, br09, br13, br14, br16; | 
|  |  | 
|  | #if VERBOSE > 0 | 
|  | DBG_MSG("intelfbhw_do_fillrect: (%d,%d) %dx%d, c 0x%06x, p %d bpp %d, " | 
|  | "rop 0x%02x\n", x, y, w, h, color, pitch, bpp, rop); | 
|  | #endif | 
|  |  | 
|  | br00 = COLOR_BLT_CMD; | 
|  | br09 = dinfo->fb_start + (y * pitch + x * (bpp / 8)); | 
|  | br13 = (rop << ROP_SHIFT) | pitch; | 
|  | br14 = (h << HEIGHT_SHIFT) | ((w * (bpp / 8)) << WIDTH_SHIFT); | 
|  | br16 = color; | 
|  |  | 
|  | switch (bpp) { | 
|  | case 8: | 
|  | br13 |= COLOR_DEPTH_8; | 
|  | break; | 
|  | case 16: | 
|  | br13 |= COLOR_DEPTH_16; | 
|  | break; | 
|  | case 32: | 
|  | br13 |= COLOR_DEPTH_32; | 
|  | br00 |= WRITE_ALPHA | WRITE_RGB; | 
|  | break; | 
|  | } | 
|  |  | 
|  | START_RING(6); | 
|  | OUT_RING(br00); | 
|  | OUT_RING(br13); | 
|  | OUT_RING(br14); | 
|  | OUT_RING(br09); | 
|  | OUT_RING(br16); | 
|  | OUT_RING(MI_NOOP); | 
|  | ADVANCE_RING(); | 
|  |  | 
|  | #if VERBOSE > 0 | 
|  | DBG_MSG("ring = 0x%08x, 0x%08x (%d)\n", dinfo->ring_head, | 
|  | dinfo->ring_tail, dinfo->ring_space); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void | 
|  | intelfbhw_do_bitblt(struct intelfb_info *dinfo, u32 curx, u32 cury, | 
|  | u32 dstx, u32 dsty, u32 w, u32 h, u32 pitch, u32 bpp) | 
|  | { | 
|  | u32 br00, br09, br11, br12, br13, br22, br23, br26; | 
|  |  | 
|  | #if VERBOSE > 0 | 
|  | DBG_MSG("intelfbhw_do_bitblt: (%d,%d)->(%d,%d) %dx%d, p %d bpp %d\n", | 
|  | curx, cury, dstx, dsty, w, h, pitch, bpp); | 
|  | #endif | 
|  |  | 
|  | br00 = XY_SRC_COPY_BLT_CMD; | 
|  | br09 = dinfo->fb_start; | 
|  | br11 = (pitch << PITCH_SHIFT); | 
|  | br12 = dinfo->fb_start; | 
|  | br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT); | 
|  | br22 = (dstx << WIDTH_SHIFT) | (dsty << HEIGHT_SHIFT); | 
|  | br23 = ((dstx + w) << WIDTH_SHIFT) | | 
|  | ((dsty + h) << HEIGHT_SHIFT); | 
|  | br26 = (curx << WIDTH_SHIFT) | (cury << HEIGHT_SHIFT); | 
|  |  | 
|  | switch (bpp) { | 
|  | case 8: | 
|  | br13 |= COLOR_DEPTH_8; | 
|  | break; | 
|  | case 16: | 
|  | br13 |= COLOR_DEPTH_16; | 
|  | break; | 
|  | case 32: | 
|  | br13 |= COLOR_DEPTH_32; | 
|  | br00 |= WRITE_ALPHA | WRITE_RGB; | 
|  | break; | 
|  | } | 
|  |  | 
|  | START_RING(8); | 
|  | OUT_RING(br00); | 
|  | OUT_RING(br13); | 
|  | OUT_RING(br22); | 
|  | OUT_RING(br23); | 
|  | OUT_RING(br09); | 
|  | OUT_RING(br26); | 
|  | OUT_RING(br11); | 
|  | OUT_RING(br12); | 
|  | ADVANCE_RING(); | 
|  | } | 
|  |  | 
|  | int intelfbhw_do_drawglyph(struct intelfb_info *dinfo, u32 fg, u32 bg, u32 w, | 
|  | u32 h, const u8* cdat, u32 x, u32 y, u32 pitch, | 
|  | u32 bpp) | 
|  | { | 
|  | int nbytes, ndwords, pad, tmp; | 
|  | u32 br00, br09, br13, br18, br19, br22, br23; | 
|  | int dat, ix, iy, iw; | 
|  | int i, j; | 
|  |  | 
|  | #if VERBOSE > 0 | 
|  | DBG_MSG("intelfbhw_do_drawglyph: (%d,%d) %dx%d\n", x, y, w, h); | 
|  | #endif | 
|  |  | 
|  | /* size in bytes of a padded scanline */ | 
|  | nbytes = ROUND_UP_TO(w, 16) / 8; | 
|  |  | 
|  | /* Total bytes of padded scanline data to write out. */ | 
|  | nbytes = nbytes * h; | 
|  |  | 
|  | /* | 
|  | * Check if the glyph data exceeds the immediate mode limit. | 
|  | * It would take a large font (1K pixels) to hit this limit. | 
|  | */ | 
|  | if (nbytes > MAX_MONO_IMM_SIZE) | 
|  | return 0; | 
|  |  | 
|  | /* Src data is packaged a dword (32-bit) at a time. */ | 
|  | ndwords = ROUND_UP_TO(nbytes, 4) / 4; | 
|  |  | 
|  | /* | 
|  | * Ring has to be padded to a quad word. But because the command starts | 
|  | with 7 bytes, pad only if there is an even number of ndwords | 
|  | */ | 
|  | pad = !(ndwords % 2); | 
|  |  | 
|  | tmp = (XY_MONO_SRC_IMM_BLT_CMD & DW_LENGTH_MASK) + ndwords; | 
|  | br00 = (XY_MONO_SRC_IMM_BLT_CMD & ~DW_LENGTH_MASK) | tmp; | 
|  | br09 = dinfo->fb_start; | 
|  | br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT); | 
|  | br18 = bg; | 
|  | br19 = fg; | 
|  | br22 = (x << WIDTH_SHIFT) | (y << HEIGHT_SHIFT); | 
|  | br23 = ((x + w) << WIDTH_SHIFT) | ((y + h) << HEIGHT_SHIFT); | 
|  |  | 
|  | switch (bpp) { | 
|  | case 8: | 
|  | br13 |= COLOR_DEPTH_8; | 
|  | break; | 
|  | case 16: | 
|  | br13 |= COLOR_DEPTH_16; | 
|  | break; | 
|  | case 32: | 
|  | br13 |= COLOR_DEPTH_32; | 
|  | br00 |= WRITE_ALPHA | WRITE_RGB; | 
|  | break; | 
|  | } | 
|  |  | 
|  | START_RING(8 + ndwords); | 
|  | OUT_RING(br00); | 
|  | OUT_RING(br13); | 
|  | OUT_RING(br22); | 
|  | OUT_RING(br23); | 
|  | OUT_RING(br09); | 
|  | OUT_RING(br18); | 
|  | OUT_RING(br19); | 
|  | ix = iy = 0; | 
|  | iw = ROUND_UP_TO(w, 8) / 8; | 
|  | while (ndwords--) { | 
|  | dat = 0; | 
|  | for (j = 0; j < 2; ++j) { | 
|  | for (i = 0; i < 2; ++i) { | 
|  | if (ix != iw || i == 0) | 
|  | dat |= cdat[iy*iw + ix++] << (i+j*2)*8; | 
|  | } | 
|  | if (ix == iw && iy != (h-1)) { | 
|  | ix = 0; | 
|  | ++iy; | 
|  | } | 
|  | } | 
|  | OUT_RING(dat); | 
|  | } | 
|  | if (pad) | 
|  | OUT_RING(MI_NOOP); | 
|  | ADVANCE_RING(); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* HW cursor functions. */ | 
|  | void intelfbhw_cursor_init(struct intelfb_info *dinfo) | 
|  | { | 
|  | u32 tmp; | 
|  |  | 
|  | #if VERBOSE > 0 | 
|  | DBG_MSG("intelfbhw_cursor_init\n"); | 
|  | #endif | 
|  |  | 
|  | if (dinfo->mobile || IS_I9XX(dinfo)) { | 
|  | if (!dinfo->cursor.physical) | 
|  | return; | 
|  | tmp = INREG(CURSOR_A_CONTROL); | 
|  | tmp &= ~(CURSOR_MODE_MASK | CURSOR_MOBILE_GAMMA_ENABLE | | 
|  | CURSOR_MEM_TYPE_LOCAL | | 
|  | (1 << CURSOR_PIPE_SELECT_SHIFT)); | 
|  | tmp |= CURSOR_MODE_DISABLE; | 
|  | OUTREG(CURSOR_A_CONTROL, tmp); | 
|  | OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical); | 
|  | } else { | 
|  | tmp = INREG(CURSOR_CONTROL); | 
|  | tmp &= ~(CURSOR_FORMAT_MASK | CURSOR_GAMMA_ENABLE | | 
|  | CURSOR_ENABLE | CURSOR_STRIDE_MASK); | 
|  | tmp = CURSOR_FORMAT_3C; | 
|  | OUTREG(CURSOR_CONTROL, tmp); | 
|  | OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.offset << 12); | 
|  | tmp = (64 << CURSOR_SIZE_H_SHIFT) | | 
|  | (64 << CURSOR_SIZE_V_SHIFT); | 
|  | OUTREG(CURSOR_SIZE, tmp); | 
|  | } | 
|  | } | 
|  |  | 
|  | void intelfbhw_cursor_hide(struct intelfb_info *dinfo) | 
|  | { | 
|  | u32 tmp; | 
|  |  | 
|  | #if VERBOSE > 0 | 
|  | DBG_MSG("intelfbhw_cursor_hide\n"); | 
|  | #endif | 
|  |  | 
|  | dinfo->cursor_on = 0; | 
|  | if (dinfo->mobile || IS_I9XX(dinfo)) { | 
|  | if (!dinfo->cursor.physical) | 
|  | return; | 
|  | tmp = INREG(CURSOR_A_CONTROL); | 
|  | tmp &= ~CURSOR_MODE_MASK; | 
|  | tmp |= CURSOR_MODE_DISABLE; | 
|  | OUTREG(CURSOR_A_CONTROL, tmp); | 
|  | /* Flush changes */ | 
|  | OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical); | 
|  | } else { | 
|  | tmp = INREG(CURSOR_CONTROL); | 
|  | tmp &= ~CURSOR_ENABLE; | 
|  | OUTREG(CURSOR_CONTROL, tmp); | 
|  | } | 
|  | } | 
|  |  | 
|  | void intelfbhw_cursor_show(struct intelfb_info *dinfo) | 
|  | { | 
|  | u32 tmp; | 
|  |  | 
|  | #if VERBOSE > 0 | 
|  | DBG_MSG("intelfbhw_cursor_show\n"); | 
|  | #endif | 
|  |  | 
|  | dinfo->cursor_on = 1; | 
|  |  | 
|  | if (dinfo->cursor_blanked) | 
|  | return; | 
|  |  | 
|  | if (dinfo->mobile || IS_I9XX(dinfo)) { | 
|  | if (!dinfo->cursor.physical) | 
|  | return; | 
|  | tmp = INREG(CURSOR_A_CONTROL); | 
|  | tmp &= ~CURSOR_MODE_MASK; | 
|  | tmp |= CURSOR_MODE_64_4C_AX; | 
|  | OUTREG(CURSOR_A_CONTROL, tmp); | 
|  | /* Flush changes */ | 
|  | OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical); | 
|  | } else { | 
|  | tmp = INREG(CURSOR_CONTROL); | 
|  | tmp |= CURSOR_ENABLE; | 
|  | OUTREG(CURSOR_CONTROL, tmp); | 
|  | } | 
|  | } | 
|  |  | 
|  | void intelfbhw_cursor_setpos(struct intelfb_info *dinfo, int x, int y) | 
|  | { | 
|  | u32 tmp; | 
|  |  | 
|  | #if VERBOSE > 0 | 
|  | DBG_MSG("intelfbhw_cursor_setpos: (%d, %d)\n", x, y); | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Sets the position. The coordinates are assumed to already | 
|  | * have any offset adjusted. Assume that the cursor is never | 
|  | * completely off-screen, and that x, y are always >= 0. | 
|  | */ | 
|  |  | 
|  | tmp = ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT) | | 
|  | ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT); | 
|  | OUTREG(CURSOR_A_POSITION, tmp); | 
|  |  | 
|  | if (IS_I9XX(dinfo)) | 
|  | OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical); | 
|  | } | 
|  |  | 
|  | void intelfbhw_cursor_setcolor(struct intelfb_info *dinfo, u32 bg, u32 fg) | 
|  | { | 
|  | #if VERBOSE > 0 | 
|  | DBG_MSG("intelfbhw_cursor_setcolor\n"); | 
|  | #endif | 
|  |  | 
|  | OUTREG(CURSOR_A_PALETTE0, bg & CURSOR_PALETTE_MASK); | 
|  | OUTREG(CURSOR_A_PALETTE1, fg & CURSOR_PALETTE_MASK); | 
|  | OUTREG(CURSOR_A_PALETTE2, fg & CURSOR_PALETTE_MASK); | 
|  | OUTREG(CURSOR_A_PALETTE3, bg & CURSOR_PALETTE_MASK); | 
|  | } | 
|  |  | 
|  | void intelfbhw_cursor_load(struct intelfb_info *dinfo, int width, int height, | 
|  | u8 *data) | 
|  | { | 
|  | u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual; | 
|  | int i, j, w = width / 8; | 
|  | int mod = width % 8, t_mask, d_mask; | 
|  |  | 
|  | #if VERBOSE > 0 | 
|  | DBG_MSG("intelfbhw_cursor_load\n"); | 
|  | #endif | 
|  |  | 
|  | if (!dinfo->cursor.virtual) | 
|  | return; | 
|  |  | 
|  | t_mask = 0xff >> mod; | 
|  | d_mask = ~(0xff >> mod); | 
|  | for (i = height; i--; ) { | 
|  | for (j = 0; j < w; j++) { | 
|  | writeb(0x00, addr + j); | 
|  | writeb(*(data++), addr + j+8); | 
|  | } | 
|  | if (mod) { | 
|  | writeb(t_mask, addr + j); | 
|  | writeb(*(data++) & d_mask, addr + j+8); | 
|  | } | 
|  | addr += 16; | 
|  | } | 
|  | } | 
|  |  | 
|  | void intelfbhw_cursor_reset(struct intelfb_info *dinfo) | 
|  | { | 
|  | u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual; | 
|  | int i, j; | 
|  |  | 
|  | #if VERBOSE > 0 | 
|  | DBG_MSG("intelfbhw_cursor_reset\n"); | 
|  | #endif | 
|  |  | 
|  | if (!dinfo->cursor.virtual) | 
|  | return; | 
|  |  | 
|  | for (i = 64; i--; ) { | 
|  | for (j = 0; j < 8; j++) { | 
|  | writeb(0xff, addr + j+0); | 
|  | writeb(0x00, addr + j+8); | 
|  | } | 
|  | addr += 16; | 
|  | } | 
|  | } | 
|  |  | 
|  | static irqreturn_t intelfbhw_irq(int irq, void *dev_id) | 
|  | { | 
|  | u16 tmp; | 
|  | struct intelfb_info *dinfo = dev_id; | 
|  |  | 
|  | spin_lock(&dinfo->int_lock); | 
|  |  | 
|  | tmp = INREG16(IIR); | 
|  | if (dinfo->info->var.vmode & FB_VMODE_INTERLACED) | 
|  | tmp &= PIPE_A_EVENT_INTERRUPT; | 
|  | else | 
|  | tmp &= VSYNC_PIPE_A_INTERRUPT; /* non-interlaced */ | 
|  |  | 
|  | if (tmp == 0) { | 
|  | spin_unlock(&dinfo->int_lock); | 
|  | return IRQ_RETVAL(0); /* not us */ | 
|  | } | 
|  |  | 
|  | /* clear status bits 0-15 ASAP and don't touch bits 16-31 */ | 
|  | OUTREG(PIPEASTAT, INREG(PIPEASTAT)); | 
|  |  | 
|  | OUTREG16(IIR, tmp); | 
|  | if (dinfo->vsync.pan_display) { | 
|  | dinfo->vsync.pan_display = 0; | 
|  | OUTREG(DSPABASE, dinfo->vsync.pan_offset); | 
|  | } | 
|  |  | 
|  | dinfo->vsync.count++; | 
|  | wake_up_interruptible(&dinfo->vsync.wait); | 
|  |  | 
|  | spin_unlock(&dinfo->int_lock); | 
|  |  | 
|  | return IRQ_RETVAL(1); | 
|  | } | 
|  |  | 
|  | int intelfbhw_enable_irq(struct intelfb_info *dinfo) | 
|  | { | 
|  | u16 tmp; | 
|  | if (!test_and_set_bit(0, &dinfo->irq_flags)) { | 
|  | if (request_irq(dinfo->pdev->irq, intelfbhw_irq, IRQF_SHARED, | 
|  | "intelfb", dinfo)) { | 
|  | clear_bit(0, &dinfo->irq_flags); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | spin_lock_irq(&dinfo->int_lock); | 
|  | OUTREG16(HWSTAM, 0xfffe); /* i830 DRM uses ffff */ | 
|  | OUTREG16(IMR, 0); | 
|  | } else | 
|  | spin_lock_irq(&dinfo->int_lock); | 
|  |  | 
|  | if (dinfo->info->var.vmode & FB_VMODE_INTERLACED) | 
|  | tmp = PIPE_A_EVENT_INTERRUPT; | 
|  | else | 
|  | tmp = VSYNC_PIPE_A_INTERRUPT; /* non-interlaced */ | 
|  | if (tmp != INREG16(IER)) { | 
|  | DBG_MSG("changing IER to 0x%X\n", tmp); | 
|  | OUTREG16(IER, tmp); | 
|  | } | 
|  |  | 
|  | spin_unlock_irq(&dinfo->int_lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void intelfbhw_disable_irq(struct intelfb_info *dinfo) | 
|  | { | 
|  | if (test_and_clear_bit(0, &dinfo->irq_flags)) { | 
|  | if (dinfo->vsync.pan_display) { | 
|  | dinfo->vsync.pan_display = 0; | 
|  | OUTREG(DSPABASE, dinfo->vsync.pan_offset); | 
|  | } | 
|  | spin_lock_irq(&dinfo->int_lock); | 
|  | OUTREG16(HWSTAM, 0xffff); | 
|  | OUTREG16(IMR, 0xffff); | 
|  | OUTREG16(IER, 0x0); | 
|  |  | 
|  | OUTREG16(IIR, INREG16(IIR)); /* clear IRQ requests */ | 
|  | spin_unlock_irq(&dinfo->int_lock); | 
|  |  | 
|  | free_irq(dinfo->pdev->irq, dinfo); | 
|  | } | 
|  | } | 
|  |  | 
|  | int intelfbhw_wait_for_vsync(struct intelfb_info *dinfo, u32 pipe) | 
|  | { | 
|  | struct intelfb_vsync *vsync; | 
|  | unsigned int count; | 
|  | int ret; | 
|  |  | 
|  | switch (pipe) { | 
|  | case 0: | 
|  | vsync = &dinfo->vsync; | 
|  | break; | 
|  | default: | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | ret = intelfbhw_enable_irq(dinfo); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | count = vsync->count; | 
|  | ret = wait_event_interruptible_timeout(vsync->wait, | 
|  | count != vsync->count, HZ / 10); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | if (ret == 0) { | 
|  | DBG_MSG("wait_for_vsync timed out!\n"); | 
|  | return -ETIMEDOUT; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } |