|  | /* | 
|  | * 8253/8254 interval timer emulation | 
|  | * | 
|  | * Copyright (c) 2003-2004 Fabrice Bellard | 
|  | * Copyright (c) 2006 Intel Corporation | 
|  | * Copyright (c) 2007 Keir Fraser, XenSource Inc | 
|  | * Copyright (c) 2008 Intel Corporation | 
|  | * Copyright 2009 Red Hat, Inc. and/or its affiliates. | 
|  | * | 
|  | * Permission is hereby granted, free of charge, to any person obtaining a copy | 
|  | * of this software and associated documentation files (the "Software"), to deal | 
|  | * in the Software without restriction, including without limitation the rights | 
|  | * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | 
|  | * copies of the Software, and to permit persons to whom the Software is | 
|  | * furnished to do so, subject to the following conditions: | 
|  | * | 
|  | * The above copyright notice and this permission notice shall be included in | 
|  | * all copies or substantial portions of the Software. | 
|  | * | 
|  | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | 
|  | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | 
|  | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL | 
|  | * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | 
|  | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | 
|  | * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | 
|  | * THE SOFTWARE. | 
|  | * | 
|  | * Authors: | 
|  | *   Sheng Yang <sheng.yang@intel.com> | 
|  | *   Based on QEMU and Xen. | 
|  | */ | 
|  |  | 
|  | #define pr_fmt(fmt) "pit: " fmt | 
|  |  | 
|  | #include <linux/kvm_host.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/workqueue.h> | 
|  |  | 
|  | #include "irq.h" | 
|  | #include "i8254.h" | 
|  |  | 
|  | #ifndef CONFIG_X86_64 | 
|  | #define mod_64(x, y) ((x) - (y) * div64_u64(x, y)) | 
|  | #else | 
|  | #define mod_64(x, y) ((x) % (y)) | 
|  | #endif | 
|  |  | 
|  | #define RW_STATE_LSB 1 | 
|  | #define RW_STATE_MSB 2 | 
|  | #define RW_STATE_WORD0 3 | 
|  | #define RW_STATE_WORD1 4 | 
|  |  | 
|  | /* Compute with 96 bit intermediate result: (a*b)/c */ | 
|  | static u64 muldiv64(u64 a, u32 b, u32 c) | 
|  | { | 
|  | union { | 
|  | u64 ll; | 
|  | struct { | 
|  | u32 low, high; | 
|  | } l; | 
|  | } u, res; | 
|  | u64 rl, rh; | 
|  |  | 
|  | u.ll = a; | 
|  | rl = (u64)u.l.low * (u64)b; | 
|  | rh = (u64)u.l.high * (u64)b; | 
|  | rh += (rl >> 32); | 
|  | res.l.high = div64_u64(rh, c); | 
|  | res.l.low = div64_u64(((mod_64(rh, c) << 32) + (rl & 0xffffffff)), c); | 
|  | return res.ll; | 
|  | } | 
|  |  | 
|  | static void pit_set_gate(struct kvm *kvm, int channel, u32 val) | 
|  | { | 
|  | struct kvm_kpit_channel_state *c = | 
|  | &kvm->arch.vpit->pit_state.channels[channel]; | 
|  |  | 
|  | WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock)); | 
|  |  | 
|  | switch (c->mode) { | 
|  | default: | 
|  | case 0: | 
|  | case 4: | 
|  | /* XXX: just disable/enable counting */ | 
|  | break; | 
|  | case 1: | 
|  | case 2: | 
|  | case 3: | 
|  | case 5: | 
|  | /* Restart counting on rising edge. */ | 
|  | if (c->gate < val) | 
|  | c->count_load_time = ktime_get(); | 
|  | break; | 
|  | } | 
|  |  | 
|  | c->gate = val; | 
|  | } | 
|  |  | 
|  | static int pit_get_gate(struct kvm *kvm, int channel) | 
|  | { | 
|  | WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock)); | 
|  |  | 
|  | return kvm->arch.vpit->pit_state.channels[channel].gate; | 
|  | } | 
|  |  | 
|  | static s64 __kpit_elapsed(struct kvm *kvm) | 
|  | { | 
|  | s64 elapsed; | 
|  | ktime_t remaining; | 
|  | struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state; | 
|  |  | 
|  | if (!ps->pit_timer.period) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * The Counter does not stop when it reaches zero. In | 
|  | * Modes 0, 1, 4, and 5 the Counter ``wraps around'' to | 
|  | * the highest count, either FFFF hex for binary counting | 
|  | * or 9999 for BCD counting, and continues counting. | 
|  | * Modes 2 and 3 are periodic; the Counter reloads | 
|  | * itself with the initial count and continues counting | 
|  | * from there. | 
|  | */ | 
|  | remaining = hrtimer_get_remaining(&ps->pit_timer.timer); | 
|  | elapsed = ps->pit_timer.period - ktime_to_ns(remaining); | 
|  | elapsed = mod_64(elapsed, ps->pit_timer.period); | 
|  |  | 
|  | return elapsed; | 
|  | } | 
|  |  | 
|  | static s64 kpit_elapsed(struct kvm *kvm, struct kvm_kpit_channel_state *c, | 
|  | int channel) | 
|  | { | 
|  | if (channel == 0) | 
|  | return __kpit_elapsed(kvm); | 
|  |  | 
|  | return ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time)); | 
|  | } | 
|  |  | 
|  | static int pit_get_count(struct kvm *kvm, int channel) | 
|  | { | 
|  | struct kvm_kpit_channel_state *c = | 
|  | &kvm->arch.vpit->pit_state.channels[channel]; | 
|  | s64 d, t; | 
|  | int counter; | 
|  |  | 
|  | WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock)); | 
|  |  | 
|  | t = kpit_elapsed(kvm, c, channel); | 
|  | d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC); | 
|  |  | 
|  | switch (c->mode) { | 
|  | case 0: | 
|  | case 1: | 
|  | case 4: | 
|  | case 5: | 
|  | counter = (c->count - d) & 0xffff; | 
|  | break; | 
|  | case 3: | 
|  | /* XXX: may be incorrect for odd counts */ | 
|  | counter = c->count - (mod_64((2 * d), c->count)); | 
|  | break; | 
|  | default: | 
|  | counter = c->count - mod_64(d, c->count); | 
|  | break; | 
|  | } | 
|  | return counter; | 
|  | } | 
|  |  | 
|  | static int pit_get_out(struct kvm *kvm, int channel) | 
|  | { | 
|  | struct kvm_kpit_channel_state *c = | 
|  | &kvm->arch.vpit->pit_state.channels[channel]; | 
|  | s64 d, t; | 
|  | int out; | 
|  |  | 
|  | WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock)); | 
|  |  | 
|  | t = kpit_elapsed(kvm, c, channel); | 
|  | d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC); | 
|  |  | 
|  | switch (c->mode) { | 
|  | default: | 
|  | case 0: | 
|  | out = (d >= c->count); | 
|  | break; | 
|  | case 1: | 
|  | out = (d < c->count); | 
|  | break; | 
|  | case 2: | 
|  | out = ((mod_64(d, c->count) == 0) && (d != 0)); | 
|  | break; | 
|  | case 3: | 
|  | out = (mod_64(d, c->count) < ((c->count + 1) >> 1)); | 
|  | break; | 
|  | case 4: | 
|  | case 5: | 
|  | out = (d == c->count); | 
|  | break; | 
|  | } | 
|  |  | 
|  | return out; | 
|  | } | 
|  |  | 
|  | static void pit_latch_count(struct kvm *kvm, int channel) | 
|  | { | 
|  | struct kvm_kpit_channel_state *c = | 
|  | &kvm->arch.vpit->pit_state.channels[channel]; | 
|  |  | 
|  | WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock)); | 
|  |  | 
|  | if (!c->count_latched) { | 
|  | c->latched_count = pit_get_count(kvm, channel); | 
|  | c->count_latched = c->rw_mode; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void pit_latch_status(struct kvm *kvm, int channel) | 
|  | { | 
|  | struct kvm_kpit_channel_state *c = | 
|  | &kvm->arch.vpit->pit_state.channels[channel]; | 
|  |  | 
|  | WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock)); | 
|  |  | 
|  | if (!c->status_latched) { | 
|  | /* TODO: Return NULL COUNT (bit 6). */ | 
|  | c->status = ((pit_get_out(kvm, channel) << 7) | | 
|  | (c->rw_mode << 4) | | 
|  | (c->mode << 1) | | 
|  | c->bcd); | 
|  | c->status_latched = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void kvm_pit_ack_irq(struct kvm_irq_ack_notifier *kian) | 
|  | { | 
|  | struct kvm_kpit_state *ps = container_of(kian, struct kvm_kpit_state, | 
|  | irq_ack_notifier); | 
|  | int value; | 
|  |  | 
|  | spin_lock(&ps->inject_lock); | 
|  | value = atomic_dec_return(&ps->pit_timer.pending); | 
|  | if (value < 0) | 
|  | /* spurious acks can be generated if, for example, the | 
|  | * PIC is being reset.  Handle it gracefully here | 
|  | */ | 
|  | atomic_inc(&ps->pit_timer.pending); | 
|  | else if (value > 0) | 
|  | /* in this case, we had multiple outstanding pit interrupts | 
|  | * that we needed to inject.  Reinject | 
|  | */ | 
|  | queue_work(ps->pit->wq, &ps->pit->expired); | 
|  | ps->irq_ack = 1; | 
|  | spin_unlock(&ps->inject_lock); | 
|  | } | 
|  |  | 
|  | void __kvm_migrate_pit_timer(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct kvm_pit *pit = vcpu->kvm->arch.vpit; | 
|  | struct hrtimer *timer; | 
|  |  | 
|  | if (!kvm_vcpu_is_bsp(vcpu) || !pit) | 
|  | return; | 
|  |  | 
|  | timer = &pit->pit_state.pit_timer.timer; | 
|  | if (hrtimer_cancel(timer)) | 
|  | hrtimer_start_expires(timer, HRTIMER_MODE_ABS); | 
|  | } | 
|  |  | 
|  | static void destroy_pit_timer(struct kvm_pit *pit) | 
|  | { | 
|  | hrtimer_cancel(&pit->pit_state.pit_timer.timer); | 
|  | cancel_work_sync(&pit->expired); | 
|  | } | 
|  |  | 
|  | static bool kpit_is_periodic(struct kvm_timer *ktimer) | 
|  | { | 
|  | struct kvm_kpit_state *ps = container_of(ktimer, struct kvm_kpit_state, | 
|  | pit_timer); | 
|  | return ps->is_periodic; | 
|  | } | 
|  |  | 
|  | static struct kvm_timer_ops kpit_ops = { | 
|  | .is_periodic = kpit_is_periodic, | 
|  | }; | 
|  |  | 
|  | static void pit_do_work(struct work_struct *work) | 
|  | { | 
|  | struct kvm_pit *pit = container_of(work, struct kvm_pit, expired); | 
|  | struct kvm *kvm = pit->kvm; | 
|  | struct kvm_vcpu *vcpu; | 
|  | int i; | 
|  | struct kvm_kpit_state *ps = &pit->pit_state; | 
|  | int inject = 0; | 
|  |  | 
|  | /* Try to inject pending interrupts when | 
|  | * last one has been acked. | 
|  | */ | 
|  | spin_lock(&ps->inject_lock); | 
|  | if (ps->irq_ack) { | 
|  | ps->irq_ack = 0; | 
|  | inject = 1; | 
|  | } | 
|  | spin_unlock(&ps->inject_lock); | 
|  | if (inject) { | 
|  | kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 1); | 
|  | kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 0); | 
|  |  | 
|  | /* | 
|  | * Provides NMI watchdog support via Virtual Wire mode. | 
|  | * The route is: PIT -> PIC -> LVT0 in NMI mode. | 
|  | * | 
|  | * Note: Our Virtual Wire implementation is simplified, only | 
|  | * propagating PIT interrupts to all VCPUs when they have set | 
|  | * LVT0 to NMI delivery. Other PIC interrupts are just sent to | 
|  | * VCPU0, and only if its LVT0 is in EXTINT mode. | 
|  | */ | 
|  | if (kvm->arch.vapics_in_nmi_mode > 0) | 
|  | kvm_for_each_vcpu(i, vcpu, kvm) | 
|  | kvm_apic_nmi_wd_deliver(vcpu); | 
|  | } | 
|  | } | 
|  |  | 
|  | static enum hrtimer_restart pit_timer_fn(struct hrtimer *data) | 
|  | { | 
|  | struct kvm_timer *ktimer = container_of(data, struct kvm_timer, timer); | 
|  | struct kvm_pit *pt = ktimer->kvm->arch.vpit; | 
|  |  | 
|  | if (ktimer->reinject || !atomic_read(&ktimer->pending)) { | 
|  | atomic_inc(&ktimer->pending); | 
|  | queue_work(pt->wq, &pt->expired); | 
|  | } | 
|  |  | 
|  | if (ktimer->t_ops->is_periodic(ktimer)) { | 
|  | hrtimer_add_expires_ns(&ktimer->timer, ktimer->period); | 
|  | return HRTIMER_RESTART; | 
|  | } else | 
|  | return HRTIMER_NORESTART; | 
|  | } | 
|  |  | 
|  | static void create_pit_timer(struct kvm_kpit_state *ps, u32 val, int is_period) | 
|  | { | 
|  | struct kvm_timer *pt = &ps->pit_timer; | 
|  | s64 interval; | 
|  |  | 
|  | interval = muldiv64(val, NSEC_PER_SEC, KVM_PIT_FREQ); | 
|  |  | 
|  | pr_debug("create pit timer, interval is %llu nsec\n", interval); | 
|  |  | 
|  | /* TODO The new value only affected after the retriggered */ | 
|  | hrtimer_cancel(&pt->timer); | 
|  | cancel_work_sync(&ps->pit->expired); | 
|  | pt->period = interval; | 
|  | ps->is_periodic = is_period; | 
|  |  | 
|  | pt->timer.function = pit_timer_fn; | 
|  | pt->t_ops = &kpit_ops; | 
|  | pt->kvm = ps->pit->kvm; | 
|  |  | 
|  | atomic_set(&pt->pending, 0); | 
|  | ps->irq_ack = 1; | 
|  |  | 
|  | hrtimer_start(&pt->timer, ktime_add_ns(ktime_get(), interval), | 
|  | HRTIMER_MODE_ABS); | 
|  | } | 
|  |  | 
|  | static void pit_load_count(struct kvm *kvm, int channel, u32 val) | 
|  | { | 
|  | struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state; | 
|  |  | 
|  | WARN_ON(!mutex_is_locked(&ps->lock)); | 
|  |  | 
|  | pr_debug("load_count val is %d, channel is %d\n", val, channel); | 
|  |  | 
|  | /* | 
|  | * The largest possible initial count is 0; this is equivalent | 
|  | * to 216 for binary counting and 104 for BCD counting. | 
|  | */ | 
|  | if (val == 0) | 
|  | val = 0x10000; | 
|  |  | 
|  | ps->channels[channel].count = val; | 
|  |  | 
|  | if (channel != 0) { | 
|  | ps->channels[channel].count_load_time = ktime_get(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Two types of timer | 
|  | * mode 1 is one shot, mode 2 is period, otherwise del timer */ | 
|  | switch (ps->channels[0].mode) { | 
|  | case 0: | 
|  | case 1: | 
|  | /* FIXME: enhance mode 4 precision */ | 
|  | case 4: | 
|  | if (!(ps->flags & KVM_PIT_FLAGS_HPET_LEGACY)) { | 
|  | create_pit_timer(ps, val, 0); | 
|  | } | 
|  | break; | 
|  | case 2: | 
|  | case 3: | 
|  | if (!(ps->flags & KVM_PIT_FLAGS_HPET_LEGACY)){ | 
|  | create_pit_timer(ps, val, 1); | 
|  | } | 
|  | break; | 
|  | default: | 
|  | destroy_pit_timer(kvm->arch.vpit); | 
|  | } | 
|  | } | 
|  |  | 
|  | void kvm_pit_load_count(struct kvm *kvm, int channel, u32 val, int hpet_legacy_start) | 
|  | { | 
|  | u8 saved_mode; | 
|  | if (hpet_legacy_start) { | 
|  | /* save existing mode for later reenablement */ | 
|  | saved_mode = kvm->arch.vpit->pit_state.channels[0].mode; | 
|  | kvm->arch.vpit->pit_state.channels[0].mode = 0xff; /* disable timer */ | 
|  | pit_load_count(kvm, channel, val); | 
|  | kvm->arch.vpit->pit_state.channels[0].mode = saved_mode; | 
|  | } else { | 
|  | pit_load_count(kvm, channel, val); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline struct kvm_pit *dev_to_pit(struct kvm_io_device *dev) | 
|  | { | 
|  | return container_of(dev, struct kvm_pit, dev); | 
|  | } | 
|  |  | 
|  | static inline struct kvm_pit *speaker_to_pit(struct kvm_io_device *dev) | 
|  | { | 
|  | return container_of(dev, struct kvm_pit, speaker_dev); | 
|  | } | 
|  |  | 
|  | static inline int pit_in_range(gpa_t addr) | 
|  | { | 
|  | return ((addr >= KVM_PIT_BASE_ADDRESS) && | 
|  | (addr < KVM_PIT_BASE_ADDRESS + KVM_PIT_MEM_LENGTH)); | 
|  | } | 
|  |  | 
|  | static int pit_ioport_write(struct kvm_io_device *this, | 
|  | gpa_t addr, int len, const void *data) | 
|  | { | 
|  | struct kvm_pit *pit = dev_to_pit(this); | 
|  | struct kvm_kpit_state *pit_state = &pit->pit_state; | 
|  | struct kvm *kvm = pit->kvm; | 
|  | int channel, access; | 
|  | struct kvm_kpit_channel_state *s; | 
|  | u32 val = *(u32 *) data; | 
|  | if (!pit_in_range(addr)) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | val  &= 0xff; | 
|  | addr &= KVM_PIT_CHANNEL_MASK; | 
|  |  | 
|  | mutex_lock(&pit_state->lock); | 
|  |  | 
|  | if (val != 0) | 
|  | pr_debug("write addr is 0x%x, len is %d, val is 0x%x\n", | 
|  | (unsigned int)addr, len, val); | 
|  |  | 
|  | if (addr == 3) { | 
|  | channel = val >> 6; | 
|  | if (channel == 3) { | 
|  | /* Read-Back Command. */ | 
|  | for (channel = 0; channel < 3; channel++) { | 
|  | s = &pit_state->channels[channel]; | 
|  | if (val & (2 << channel)) { | 
|  | if (!(val & 0x20)) | 
|  | pit_latch_count(kvm, channel); | 
|  | if (!(val & 0x10)) | 
|  | pit_latch_status(kvm, channel); | 
|  | } | 
|  | } | 
|  | } else { | 
|  | /* Select Counter <channel>. */ | 
|  | s = &pit_state->channels[channel]; | 
|  | access = (val >> 4) & KVM_PIT_CHANNEL_MASK; | 
|  | if (access == 0) { | 
|  | pit_latch_count(kvm, channel); | 
|  | } else { | 
|  | s->rw_mode = access; | 
|  | s->read_state = access; | 
|  | s->write_state = access; | 
|  | s->mode = (val >> 1) & 7; | 
|  | if (s->mode > 5) | 
|  | s->mode -= 4; | 
|  | s->bcd = val & 1; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | /* Write Count. */ | 
|  | s = &pit_state->channels[addr]; | 
|  | switch (s->write_state) { | 
|  | default: | 
|  | case RW_STATE_LSB: | 
|  | pit_load_count(kvm, addr, val); | 
|  | break; | 
|  | case RW_STATE_MSB: | 
|  | pit_load_count(kvm, addr, val << 8); | 
|  | break; | 
|  | case RW_STATE_WORD0: | 
|  | s->write_latch = val; | 
|  | s->write_state = RW_STATE_WORD1; | 
|  | break; | 
|  | case RW_STATE_WORD1: | 
|  | pit_load_count(kvm, addr, s->write_latch | (val << 8)); | 
|  | s->write_state = RW_STATE_WORD0; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | mutex_unlock(&pit_state->lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int pit_ioport_read(struct kvm_io_device *this, | 
|  | gpa_t addr, int len, void *data) | 
|  | { | 
|  | struct kvm_pit *pit = dev_to_pit(this); | 
|  | struct kvm_kpit_state *pit_state = &pit->pit_state; | 
|  | struct kvm *kvm = pit->kvm; | 
|  | int ret, count; | 
|  | struct kvm_kpit_channel_state *s; | 
|  | if (!pit_in_range(addr)) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | addr &= KVM_PIT_CHANNEL_MASK; | 
|  | if (addr == 3) | 
|  | return 0; | 
|  |  | 
|  | s = &pit_state->channels[addr]; | 
|  |  | 
|  | mutex_lock(&pit_state->lock); | 
|  |  | 
|  | if (s->status_latched) { | 
|  | s->status_latched = 0; | 
|  | ret = s->status; | 
|  | } else if (s->count_latched) { | 
|  | switch (s->count_latched) { | 
|  | default: | 
|  | case RW_STATE_LSB: | 
|  | ret = s->latched_count & 0xff; | 
|  | s->count_latched = 0; | 
|  | break; | 
|  | case RW_STATE_MSB: | 
|  | ret = s->latched_count >> 8; | 
|  | s->count_latched = 0; | 
|  | break; | 
|  | case RW_STATE_WORD0: | 
|  | ret = s->latched_count & 0xff; | 
|  | s->count_latched = RW_STATE_MSB; | 
|  | break; | 
|  | } | 
|  | } else { | 
|  | switch (s->read_state) { | 
|  | default: | 
|  | case RW_STATE_LSB: | 
|  | count = pit_get_count(kvm, addr); | 
|  | ret = count & 0xff; | 
|  | break; | 
|  | case RW_STATE_MSB: | 
|  | count = pit_get_count(kvm, addr); | 
|  | ret = (count >> 8) & 0xff; | 
|  | break; | 
|  | case RW_STATE_WORD0: | 
|  | count = pit_get_count(kvm, addr); | 
|  | ret = count & 0xff; | 
|  | s->read_state = RW_STATE_WORD1; | 
|  | break; | 
|  | case RW_STATE_WORD1: | 
|  | count = pit_get_count(kvm, addr); | 
|  | ret = (count >> 8) & 0xff; | 
|  | s->read_state = RW_STATE_WORD0; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (len > sizeof(ret)) | 
|  | len = sizeof(ret); | 
|  | memcpy(data, (char *)&ret, len); | 
|  |  | 
|  | mutex_unlock(&pit_state->lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int speaker_ioport_write(struct kvm_io_device *this, | 
|  | gpa_t addr, int len, const void *data) | 
|  | { | 
|  | struct kvm_pit *pit = speaker_to_pit(this); | 
|  | struct kvm_kpit_state *pit_state = &pit->pit_state; | 
|  | struct kvm *kvm = pit->kvm; | 
|  | u32 val = *(u32 *) data; | 
|  | if (addr != KVM_SPEAKER_BASE_ADDRESS) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | mutex_lock(&pit_state->lock); | 
|  | pit_state->speaker_data_on = (val >> 1) & 1; | 
|  | pit_set_gate(kvm, 2, val & 1); | 
|  | mutex_unlock(&pit_state->lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int speaker_ioport_read(struct kvm_io_device *this, | 
|  | gpa_t addr, int len, void *data) | 
|  | { | 
|  | struct kvm_pit *pit = speaker_to_pit(this); | 
|  | struct kvm_kpit_state *pit_state = &pit->pit_state; | 
|  | struct kvm *kvm = pit->kvm; | 
|  | unsigned int refresh_clock; | 
|  | int ret; | 
|  | if (addr != KVM_SPEAKER_BASE_ADDRESS) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | /* Refresh clock toggles at about 15us. We approximate as 2^14ns. */ | 
|  | refresh_clock = ((unsigned int)ktime_to_ns(ktime_get()) >> 14) & 1; | 
|  |  | 
|  | mutex_lock(&pit_state->lock); | 
|  | ret = ((pit_state->speaker_data_on << 1) | pit_get_gate(kvm, 2) | | 
|  | (pit_get_out(kvm, 2) << 5) | (refresh_clock << 4)); | 
|  | if (len > sizeof(ret)) | 
|  | len = sizeof(ret); | 
|  | memcpy(data, (char *)&ret, len); | 
|  | mutex_unlock(&pit_state->lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void kvm_pit_reset(struct kvm_pit *pit) | 
|  | { | 
|  | int i; | 
|  | struct kvm_kpit_channel_state *c; | 
|  |  | 
|  | mutex_lock(&pit->pit_state.lock); | 
|  | pit->pit_state.flags = 0; | 
|  | for (i = 0; i < 3; i++) { | 
|  | c = &pit->pit_state.channels[i]; | 
|  | c->mode = 0xff; | 
|  | c->gate = (i != 2); | 
|  | pit_load_count(pit->kvm, i, 0); | 
|  | } | 
|  | mutex_unlock(&pit->pit_state.lock); | 
|  |  | 
|  | atomic_set(&pit->pit_state.pit_timer.pending, 0); | 
|  | pit->pit_state.irq_ack = 1; | 
|  | } | 
|  |  | 
|  | static void pit_mask_notifer(struct kvm_irq_mask_notifier *kimn, bool mask) | 
|  | { | 
|  | struct kvm_pit *pit = container_of(kimn, struct kvm_pit, mask_notifier); | 
|  |  | 
|  | if (!mask) { | 
|  | atomic_set(&pit->pit_state.pit_timer.pending, 0); | 
|  | pit->pit_state.irq_ack = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | static const struct kvm_io_device_ops pit_dev_ops = { | 
|  | .read     = pit_ioport_read, | 
|  | .write    = pit_ioport_write, | 
|  | }; | 
|  |  | 
|  | static const struct kvm_io_device_ops speaker_dev_ops = { | 
|  | .read     = speaker_ioport_read, | 
|  | .write    = speaker_ioport_write, | 
|  | }; | 
|  |  | 
|  | /* Caller must hold slots_lock */ | 
|  | struct kvm_pit *kvm_create_pit(struct kvm *kvm, u32 flags) | 
|  | { | 
|  | struct kvm_pit *pit; | 
|  | struct kvm_kpit_state *pit_state; | 
|  | int ret; | 
|  |  | 
|  | pit = kzalloc(sizeof(struct kvm_pit), GFP_KERNEL); | 
|  | if (!pit) | 
|  | return NULL; | 
|  |  | 
|  | pit->irq_source_id = kvm_request_irq_source_id(kvm); | 
|  | if (pit->irq_source_id < 0) { | 
|  | kfree(pit); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | mutex_init(&pit->pit_state.lock); | 
|  | mutex_lock(&pit->pit_state.lock); | 
|  | spin_lock_init(&pit->pit_state.inject_lock); | 
|  |  | 
|  | pit->wq = create_singlethread_workqueue("kvm-pit-wq"); | 
|  | if (!pit->wq) { | 
|  | mutex_unlock(&pit->pit_state.lock); | 
|  | kvm_free_irq_source_id(kvm, pit->irq_source_id); | 
|  | kfree(pit); | 
|  | return NULL; | 
|  | } | 
|  | INIT_WORK(&pit->expired, pit_do_work); | 
|  |  | 
|  | kvm->arch.vpit = pit; | 
|  | pit->kvm = kvm; | 
|  |  | 
|  | pit_state = &pit->pit_state; | 
|  | pit_state->pit = pit; | 
|  | hrtimer_init(&pit_state->pit_timer.timer, | 
|  | CLOCK_MONOTONIC, HRTIMER_MODE_ABS); | 
|  | pit_state->irq_ack_notifier.gsi = 0; | 
|  | pit_state->irq_ack_notifier.irq_acked = kvm_pit_ack_irq; | 
|  | kvm_register_irq_ack_notifier(kvm, &pit_state->irq_ack_notifier); | 
|  | pit_state->pit_timer.reinject = true; | 
|  | mutex_unlock(&pit->pit_state.lock); | 
|  |  | 
|  | kvm_pit_reset(pit); | 
|  |  | 
|  | pit->mask_notifier.func = pit_mask_notifer; | 
|  | kvm_register_irq_mask_notifier(kvm, 0, &pit->mask_notifier); | 
|  |  | 
|  | kvm_iodevice_init(&pit->dev, &pit_dev_ops); | 
|  | ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS, &pit->dev); | 
|  | if (ret < 0) | 
|  | goto fail; | 
|  |  | 
|  | if (flags & KVM_PIT_SPEAKER_DUMMY) { | 
|  | kvm_iodevice_init(&pit->speaker_dev, &speaker_dev_ops); | 
|  | ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS, | 
|  | &pit->speaker_dev); | 
|  | if (ret < 0) | 
|  | goto fail_unregister; | 
|  | } | 
|  |  | 
|  | return pit; | 
|  |  | 
|  | fail_unregister: | 
|  | kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &pit->dev); | 
|  |  | 
|  | fail: | 
|  | kvm_unregister_irq_mask_notifier(kvm, 0, &pit->mask_notifier); | 
|  | kvm_unregister_irq_ack_notifier(kvm, &pit_state->irq_ack_notifier); | 
|  | kvm_free_irq_source_id(kvm, pit->irq_source_id); | 
|  | destroy_workqueue(pit->wq); | 
|  | kfree(pit); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | void kvm_free_pit(struct kvm *kvm) | 
|  | { | 
|  | struct hrtimer *timer; | 
|  |  | 
|  | if (kvm->arch.vpit) { | 
|  | kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &kvm->arch.vpit->dev); | 
|  | kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, | 
|  | &kvm->arch.vpit->speaker_dev); | 
|  | kvm_unregister_irq_mask_notifier(kvm, 0, | 
|  | &kvm->arch.vpit->mask_notifier); | 
|  | kvm_unregister_irq_ack_notifier(kvm, | 
|  | &kvm->arch.vpit->pit_state.irq_ack_notifier); | 
|  | mutex_lock(&kvm->arch.vpit->pit_state.lock); | 
|  | timer = &kvm->arch.vpit->pit_state.pit_timer.timer; | 
|  | hrtimer_cancel(timer); | 
|  | cancel_work_sync(&kvm->arch.vpit->expired); | 
|  | kvm_free_irq_source_id(kvm, kvm->arch.vpit->irq_source_id); | 
|  | mutex_unlock(&kvm->arch.vpit->pit_state.lock); | 
|  | destroy_workqueue(kvm->arch.vpit->wq); | 
|  | kfree(kvm->arch.vpit); | 
|  | } | 
|  | } |