|  | /* | 
|  | *   (c) 2003-2010 Advanced Micro Devices, Inc. | 
|  | *  Your use of this code is subject to the terms and conditions of the | 
|  | *  GNU general public license version 2. See "COPYING" or | 
|  | *  http://www.gnu.org/licenses/gpl.html | 
|  | * | 
|  | *  Support : mark.langsdorf@amd.com | 
|  | * | 
|  | *  Based on the powernow-k7.c module written by Dave Jones. | 
|  | *  (C) 2003 Dave Jones on behalf of SuSE Labs | 
|  | *  (C) 2004 Dominik Brodowski <linux@brodo.de> | 
|  | *  (C) 2004 Pavel Machek <pavel@ucw.cz> | 
|  | *  Licensed under the terms of the GNU GPL License version 2. | 
|  | *  Based upon datasheets & sample CPUs kindly provided by AMD. | 
|  | * | 
|  | *  Valuable input gratefully received from Dave Jones, Pavel Machek, | 
|  | *  Dominik Brodowski, Jacob Shin, and others. | 
|  | *  Originally developed by Paul Devriendt. | 
|  | *  Processor information obtained from Chapter 9 (Power and Thermal Management) | 
|  | *  of the "BIOS and Kernel Developer's Guide for the AMD Athlon 64 and AMD | 
|  | *  Opteron Processors" available for download from www.amd.com | 
|  | * | 
|  | *  Tables for specific CPUs can be inferred from | 
|  | *     http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/30430.pdf | 
|  | */ | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/smp.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/cpufreq.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/cpumask.h> | 
|  | #include <linux/sched.h>	/* for current / set_cpus_allowed() */ | 
|  | #include <linux/io.h> | 
|  | #include <linux/delay.h> | 
|  |  | 
|  | #include <asm/msr.h> | 
|  |  | 
|  | #include <linux/acpi.h> | 
|  | #include <linux/mutex.h> | 
|  | #include <acpi/processor.h> | 
|  |  | 
|  | #define PFX "powernow-k8: " | 
|  | #define VERSION "version 2.20.00" | 
|  | #include "powernow-k8.h" | 
|  | #include "mperf.h" | 
|  |  | 
|  | /* serialize freq changes  */ | 
|  | static DEFINE_MUTEX(fidvid_mutex); | 
|  |  | 
|  | static DEFINE_PER_CPU(struct powernow_k8_data *, powernow_data); | 
|  |  | 
|  | static int cpu_family = CPU_OPTERON; | 
|  |  | 
|  | /* core performance boost */ | 
|  | static bool cpb_capable, cpb_enabled; | 
|  | static struct msr __percpu *msrs; | 
|  |  | 
|  | static struct cpufreq_driver cpufreq_amd64_driver; | 
|  |  | 
|  | #ifndef CONFIG_SMP | 
|  | static inline const struct cpumask *cpu_core_mask(int cpu) | 
|  | { | 
|  | return cpumask_of(0); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* Return a frequency in MHz, given an input fid */ | 
|  | static u32 find_freq_from_fid(u32 fid) | 
|  | { | 
|  | return 800 + (fid * 100); | 
|  | } | 
|  |  | 
|  | /* Return a frequency in KHz, given an input fid */ | 
|  | static u32 find_khz_freq_from_fid(u32 fid) | 
|  | { | 
|  | return 1000 * find_freq_from_fid(fid); | 
|  | } | 
|  |  | 
|  | static u32 find_khz_freq_from_pstate(struct cpufreq_frequency_table *data, | 
|  | u32 pstate) | 
|  | { | 
|  | return data[pstate].frequency; | 
|  | } | 
|  |  | 
|  | /* Return the vco fid for an input fid | 
|  | * | 
|  | * Each "low" fid has corresponding "high" fid, and you can get to "low" fids | 
|  | * only from corresponding high fids. This returns "high" fid corresponding to | 
|  | * "low" one. | 
|  | */ | 
|  | static u32 convert_fid_to_vco_fid(u32 fid) | 
|  | { | 
|  | if (fid < HI_FID_TABLE_BOTTOM) | 
|  | return 8 + (2 * fid); | 
|  | else | 
|  | return fid; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return 1 if the pending bit is set. Unless we just instructed the processor | 
|  | * to transition to a new state, seeing this bit set is really bad news. | 
|  | */ | 
|  | static int pending_bit_stuck(void) | 
|  | { | 
|  | u32 lo, hi; | 
|  |  | 
|  | if (cpu_family == CPU_HW_PSTATE) | 
|  | return 0; | 
|  |  | 
|  | rdmsr(MSR_FIDVID_STATUS, lo, hi); | 
|  | return lo & MSR_S_LO_CHANGE_PENDING ? 1 : 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Update the global current fid / vid values from the status msr. | 
|  | * Returns 1 on error. | 
|  | */ | 
|  | static int query_current_values_with_pending_wait(struct powernow_k8_data *data) | 
|  | { | 
|  | u32 lo, hi; | 
|  | u32 i = 0; | 
|  |  | 
|  | if (cpu_family == CPU_HW_PSTATE) { | 
|  | rdmsr(MSR_PSTATE_STATUS, lo, hi); | 
|  | i = lo & HW_PSTATE_MASK; | 
|  | data->currpstate = i; | 
|  |  | 
|  | /* | 
|  | * a workaround for family 11h erratum 311 might cause | 
|  | * an "out-of-range Pstate if the core is in Pstate-0 | 
|  | */ | 
|  | if ((boot_cpu_data.x86 == 0x11) && (i >= data->numps)) | 
|  | data->currpstate = HW_PSTATE_0; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | do { | 
|  | if (i++ > 10000) { | 
|  | pr_debug("detected change pending stuck\n"); | 
|  | return 1; | 
|  | } | 
|  | rdmsr(MSR_FIDVID_STATUS, lo, hi); | 
|  | } while (lo & MSR_S_LO_CHANGE_PENDING); | 
|  |  | 
|  | data->currvid = hi & MSR_S_HI_CURRENT_VID; | 
|  | data->currfid = lo & MSR_S_LO_CURRENT_FID; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* the isochronous relief time */ | 
|  | static void count_off_irt(struct powernow_k8_data *data) | 
|  | { | 
|  | udelay((1 << data->irt) * 10); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* the voltage stabilization time */ | 
|  | static void count_off_vst(struct powernow_k8_data *data) | 
|  | { | 
|  | udelay(data->vstable * VST_UNITS_20US); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* need to init the control msr to a safe value (for each cpu) */ | 
|  | static void fidvid_msr_init(void) | 
|  | { | 
|  | u32 lo, hi; | 
|  | u8 fid, vid; | 
|  |  | 
|  | rdmsr(MSR_FIDVID_STATUS, lo, hi); | 
|  | vid = hi & MSR_S_HI_CURRENT_VID; | 
|  | fid = lo & MSR_S_LO_CURRENT_FID; | 
|  | lo = fid | (vid << MSR_C_LO_VID_SHIFT); | 
|  | hi = MSR_C_HI_STP_GNT_BENIGN; | 
|  | pr_debug("cpu%d, init lo 0x%x, hi 0x%x\n", smp_processor_id(), lo, hi); | 
|  | wrmsr(MSR_FIDVID_CTL, lo, hi); | 
|  | } | 
|  |  | 
|  | /* write the new fid value along with the other control fields to the msr */ | 
|  | static int write_new_fid(struct powernow_k8_data *data, u32 fid) | 
|  | { | 
|  | u32 lo; | 
|  | u32 savevid = data->currvid; | 
|  | u32 i = 0; | 
|  |  | 
|  | if ((fid & INVALID_FID_MASK) || (data->currvid & INVALID_VID_MASK)) { | 
|  | printk(KERN_ERR PFX "internal error - overflow on fid write\n"); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | lo = fid; | 
|  | lo |= (data->currvid << MSR_C_LO_VID_SHIFT); | 
|  | lo |= MSR_C_LO_INIT_FID_VID; | 
|  |  | 
|  | pr_debug("writing fid 0x%x, lo 0x%x, hi 0x%x\n", | 
|  | fid, lo, data->plllock * PLL_LOCK_CONVERSION); | 
|  |  | 
|  | do { | 
|  | wrmsr(MSR_FIDVID_CTL, lo, data->plllock * PLL_LOCK_CONVERSION); | 
|  | if (i++ > 100) { | 
|  | printk(KERN_ERR PFX | 
|  | "Hardware error - pending bit very stuck - " | 
|  | "no further pstate changes possible\n"); | 
|  | return 1; | 
|  | } | 
|  | } while (query_current_values_with_pending_wait(data)); | 
|  |  | 
|  | count_off_irt(data); | 
|  |  | 
|  | if (savevid != data->currvid) { | 
|  | printk(KERN_ERR PFX | 
|  | "vid change on fid trans, old 0x%x, new 0x%x\n", | 
|  | savevid, data->currvid); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (fid != data->currfid) { | 
|  | printk(KERN_ERR PFX | 
|  | "fid trans failed, fid 0x%x, curr 0x%x\n", fid, | 
|  | data->currfid); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Write a new vid to the hardware */ | 
|  | static int write_new_vid(struct powernow_k8_data *data, u32 vid) | 
|  | { | 
|  | u32 lo; | 
|  | u32 savefid = data->currfid; | 
|  | int i = 0; | 
|  |  | 
|  | if ((data->currfid & INVALID_FID_MASK) || (vid & INVALID_VID_MASK)) { | 
|  | printk(KERN_ERR PFX "internal error - overflow on vid write\n"); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | lo = data->currfid; | 
|  | lo |= (vid << MSR_C_LO_VID_SHIFT); | 
|  | lo |= MSR_C_LO_INIT_FID_VID; | 
|  |  | 
|  | pr_debug("writing vid 0x%x, lo 0x%x, hi 0x%x\n", | 
|  | vid, lo, STOP_GRANT_5NS); | 
|  |  | 
|  | do { | 
|  | wrmsr(MSR_FIDVID_CTL, lo, STOP_GRANT_5NS); | 
|  | if (i++ > 100) { | 
|  | printk(KERN_ERR PFX "internal error - pending bit " | 
|  | "very stuck - no further pstate " | 
|  | "changes possible\n"); | 
|  | return 1; | 
|  | } | 
|  | } while (query_current_values_with_pending_wait(data)); | 
|  |  | 
|  | if (savefid != data->currfid) { | 
|  | printk(KERN_ERR PFX "fid changed on vid trans, old " | 
|  | "0x%x new 0x%x\n", | 
|  | savefid, data->currfid); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (vid != data->currvid) { | 
|  | printk(KERN_ERR PFX "vid trans failed, vid 0x%x, " | 
|  | "curr 0x%x\n", | 
|  | vid, data->currvid); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Reduce the vid by the max of step or reqvid. | 
|  | * Decreasing vid codes represent increasing voltages: | 
|  | * vid of 0 is 1.550V, vid of 0x1e is 0.800V, vid of VID_OFF is off. | 
|  | */ | 
|  | static int decrease_vid_code_by_step(struct powernow_k8_data *data, | 
|  | u32 reqvid, u32 step) | 
|  | { | 
|  | if ((data->currvid - reqvid) > step) | 
|  | reqvid = data->currvid - step; | 
|  |  | 
|  | if (write_new_vid(data, reqvid)) | 
|  | return 1; | 
|  |  | 
|  | count_off_vst(data); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Change hardware pstate by single MSR write */ | 
|  | static int transition_pstate(struct powernow_k8_data *data, u32 pstate) | 
|  | { | 
|  | wrmsr(MSR_PSTATE_CTRL, pstate, 0); | 
|  | data->currpstate = pstate; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Change Opteron/Athlon64 fid and vid, by the 3 phases. */ | 
|  | static int transition_fid_vid(struct powernow_k8_data *data, | 
|  | u32 reqfid, u32 reqvid) | 
|  | { | 
|  | if (core_voltage_pre_transition(data, reqvid, reqfid)) | 
|  | return 1; | 
|  |  | 
|  | if (core_frequency_transition(data, reqfid)) | 
|  | return 1; | 
|  |  | 
|  | if (core_voltage_post_transition(data, reqvid)) | 
|  | return 1; | 
|  |  | 
|  | if (query_current_values_with_pending_wait(data)) | 
|  | return 1; | 
|  |  | 
|  | if ((reqfid != data->currfid) || (reqvid != data->currvid)) { | 
|  | printk(KERN_ERR PFX "failed (cpu%d): req 0x%x 0x%x, " | 
|  | "curr 0x%x 0x%x\n", | 
|  | smp_processor_id(), | 
|  | reqfid, reqvid, data->currfid, data->currvid); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | pr_debug("transitioned (cpu%d): new fid 0x%x, vid 0x%x\n", | 
|  | smp_processor_id(), data->currfid, data->currvid); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Phase 1 - core voltage transition ... setup voltage */ | 
|  | static int core_voltage_pre_transition(struct powernow_k8_data *data, | 
|  | u32 reqvid, u32 reqfid) | 
|  | { | 
|  | u32 rvosteps = data->rvo; | 
|  | u32 savefid = data->currfid; | 
|  | u32 maxvid, lo, rvomult = 1; | 
|  |  | 
|  | pr_debug("ph1 (cpu%d): start, currfid 0x%x, currvid 0x%x, " | 
|  | "reqvid 0x%x, rvo 0x%x\n", | 
|  | smp_processor_id(), | 
|  | data->currfid, data->currvid, reqvid, data->rvo); | 
|  |  | 
|  | if ((savefid < LO_FID_TABLE_TOP) && (reqfid < LO_FID_TABLE_TOP)) | 
|  | rvomult = 2; | 
|  | rvosteps *= rvomult; | 
|  | rdmsr(MSR_FIDVID_STATUS, lo, maxvid); | 
|  | maxvid = 0x1f & (maxvid >> 16); | 
|  | pr_debug("ph1 maxvid=0x%x\n", maxvid); | 
|  | if (reqvid < maxvid) /* lower numbers are higher voltages */ | 
|  | reqvid = maxvid; | 
|  |  | 
|  | while (data->currvid > reqvid) { | 
|  | pr_debug("ph1: curr 0x%x, req vid 0x%x\n", | 
|  | data->currvid, reqvid); | 
|  | if (decrease_vid_code_by_step(data, reqvid, data->vidmvs)) | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | while ((rvosteps > 0) && | 
|  | ((rvomult * data->rvo + data->currvid) > reqvid)) { | 
|  | if (data->currvid == maxvid) { | 
|  | rvosteps = 0; | 
|  | } else { | 
|  | pr_debug("ph1: changing vid for rvo, req 0x%x\n", | 
|  | data->currvid - 1); | 
|  | if (decrease_vid_code_by_step(data, data->currvid-1, 1)) | 
|  | return 1; | 
|  | rvosteps--; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (query_current_values_with_pending_wait(data)) | 
|  | return 1; | 
|  |  | 
|  | if (savefid != data->currfid) { | 
|  | printk(KERN_ERR PFX "ph1 err, currfid changed 0x%x\n", | 
|  | data->currfid); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | pr_debug("ph1 complete, currfid 0x%x, currvid 0x%x\n", | 
|  | data->currfid, data->currvid); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Phase 2 - core frequency transition */ | 
|  | static int core_frequency_transition(struct powernow_k8_data *data, u32 reqfid) | 
|  | { | 
|  | u32 vcoreqfid, vcocurrfid, vcofiddiff; | 
|  | u32 fid_interval, savevid = data->currvid; | 
|  |  | 
|  | if (data->currfid == reqfid) { | 
|  | printk(KERN_ERR PFX "ph2 null fid transition 0x%x\n", | 
|  | data->currfid); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | pr_debug("ph2 (cpu%d): starting, currfid 0x%x, currvid 0x%x, " | 
|  | "reqfid 0x%x\n", | 
|  | smp_processor_id(), | 
|  | data->currfid, data->currvid, reqfid); | 
|  |  | 
|  | vcoreqfid = convert_fid_to_vco_fid(reqfid); | 
|  | vcocurrfid = convert_fid_to_vco_fid(data->currfid); | 
|  | vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid | 
|  | : vcoreqfid - vcocurrfid; | 
|  |  | 
|  | if ((reqfid <= LO_FID_TABLE_TOP) && (data->currfid <= LO_FID_TABLE_TOP)) | 
|  | vcofiddiff = 0; | 
|  |  | 
|  | while (vcofiddiff > 2) { | 
|  | (data->currfid & 1) ? (fid_interval = 1) : (fid_interval = 2); | 
|  |  | 
|  | if (reqfid > data->currfid) { | 
|  | if (data->currfid > LO_FID_TABLE_TOP) { | 
|  | if (write_new_fid(data, | 
|  | data->currfid + fid_interval)) | 
|  | return 1; | 
|  | } else { | 
|  | if (write_new_fid | 
|  | (data, | 
|  | 2 + convert_fid_to_vco_fid(data->currfid))) | 
|  | return 1; | 
|  | } | 
|  | } else { | 
|  | if (write_new_fid(data, data->currfid - fid_interval)) | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | vcocurrfid = convert_fid_to_vco_fid(data->currfid); | 
|  | vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid | 
|  | : vcoreqfid - vcocurrfid; | 
|  | } | 
|  |  | 
|  | if (write_new_fid(data, reqfid)) | 
|  | return 1; | 
|  |  | 
|  | if (query_current_values_with_pending_wait(data)) | 
|  | return 1; | 
|  |  | 
|  | if (data->currfid != reqfid) { | 
|  | printk(KERN_ERR PFX | 
|  | "ph2: mismatch, failed fid transition, " | 
|  | "curr 0x%x, req 0x%x\n", | 
|  | data->currfid, reqfid); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (savevid != data->currvid) { | 
|  | printk(KERN_ERR PFX "ph2: vid changed, save 0x%x, curr 0x%x\n", | 
|  | savevid, data->currvid); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | pr_debug("ph2 complete, currfid 0x%x, currvid 0x%x\n", | 
|  | data->currfid, data->currvid); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Phase 3 - core voltage transition flow ... jump to the final vid. */ | 
|  | static int core_voltage_post_transition(struct powernow_k8_data *data, | 
|  | u32 reqvid) | 
|  | { | 
|  | u32 savefid = data->currfid; | 
|  | u32 savereqvid = reqvid; | 
|  |  | 
|  | pr_debug("ph3 (cpu%d): starting, currfid 0x%x, currvid 0x%x\n", | 
|  | smp_processor_id(), | 
|  | data->currfid, data->currvid); | 
|  |  | 
|  | if (reqvid != data->currvid) { | 
|  | if (write_new_vid(data, reqvid)) | 
|  | return 1; | 
|  |  | 
|  | if (savefid != data->currfid) { | 
|  | printk(KERN_ERR PFX | 
|  | "ph3: bad fid change, save 0x%x, curr 0x%x\n", | 
|  | savefid, data->currfid); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (data->currvid != reqvid) { | 
|  | printk(KERN_ERR PFX | 
|  | "ph3: failed vid transition\n, " | 
|  | "req 0x%x, curr 0x%x", | 
|  | reqvid, data->currvid); | 
|  | return 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (query_current_values_with_pending_wait(data)) | 
|  | return 1; | 
|  |  | 
|  | if (savereqvid != data->currvid) { | 
|  | pr_debug("ph3 failed, currvid 0x%x\n", data->currvid); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (savefid != data->currfid) { | 
|  | pr_debug("ph3 failed, currfid changed 0x%x\n", | 
|  | data->currfid); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | pr_debug("ph3 complete, currfid 0x%x, currvid 0x%x\n", | 
|  | data->currfid, data->currvid); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void check_supported_cpu(void *_rc) | 
|  | { | 
|  | u32 eax, ebx, ecx, edx; | 
|  | int *rc = _rc; | 
|  |  | 
|  | *rc = -ENODEV; | 
|  |  | 
|  | if (__this_cpu_read(cpu_info.x86_vendor) != X86_VENDOR_AMD) | 
|  | return; | 
|  |  | 
|  | eax = cpuid_eax(CPUID_PROCESSOR_SIGNATURE); | 
|  | if (((eax & CPUID_XFAM) != CPUID_XFAM_K8) && | 
|  | ((eax & CPUID_XFAM) < CPUID_XFAM_10H)) | 
|  | return; | 
|  |  | 
|  | if ((eax & CPUID_XFAM) == CPUID_XFAM_K8) { | 
|  | if (((eax & CPUID_USE_XFAM_XMOD) != CPUID_USE_XFAM_XMOD) || | 
|  | ((eax & CPUID_XMOD) > CPUID_XMOD_REV_MASK)) { | 
|  | printk(KERN_INFO PFX | 
|  | "Processor cpuid %x not supported\n", eax); | 
|  | return; | 
|  | } | 
|  |  | 
|  | eax = cpuid_eax(CPUID_GET_MAX_CAPABILITIES); | 
|  | if (eax < CPUID_FREQ_VOLT_CAPABILITIES) { | 
|  | printk(KERN_INFO PFX | 
|  | "No frequency change capabilities detected\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx); | 
|  | if ((edx & P_STATE_TRANSITION_CAPABLE) | 
|  | != P_STATE_TRANSITION_CAPABLE) { | 
|  | printk(KERN_INFO PFX | 
|  | "Power state transitions not supported\n"); | 
|  | return; | 
|  | } | 
|  | } else { /* must be a HW Pstate capable processor */ | 
|  | cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx); | 
|  | if ((edx & USE_HW_PSTATE) == USE_HW_PSTATE) | 
|  | cpu_family = CPU_HW_PSTATE; | 
|  | else | 
|  | return; | 
|  | } | 
|  |  | 
|  | *rc = 0; | 
|  | } | 
|  |  | 
|  | static int check_pst_table(struct powernow_k8_data *data, struct pst_s *pst, | 
|  | u8 maxvid) | 
|  | { | 
|  | unsigned int j; | 
|  | u8 lastfid = 0xff; | 
|  |  | 
|  | for (j = 0; j < data->numps; j++) { | 
|  | if (pst[j].vid > LEAST_VID) { | 
|  | printk(KERN_ERR FW_BUG PFX "vid %d invalid : 0x%x\n", | 
|  | j, pst[j].vid); | 
|  | return -EINVAL; | 
|  | } | 
|  | if (pst[j].vid < data->rvo) { | 
|  | /* vid + rvo >= 0 */ | 
|  | printk(KERN_ERR FW_BUG PFX "0 vid exceeded with pstate" | 
|  | " %d\n", j); | 
|  | return -ENODEV; | 
|  | } | 
|  | if (pst[j].vid < maxvid + data->rvo) { | 
|  | /* vid + rvo >= maxvid */ | 
|  | printk(KERN_ERR FW_BUG PFX "maxvid exceeded with pstate" | 
|  | " %d\n", j); | 
|  | return -ENODEV; | 
|  | } | 
|  | if (pst[j].fid > MAX_FID) { | 
|  | printk(KERN_ERR FW_BUG PFX "maxfid exceeded with pstate" | 
|  | " %d\n", j); | 
|  | return -ENODEV; | 
|  | } | 
|  | if (j && (pst[j].fid < HI_FID_TABLE_BOTTOM)) { | 
|  | /* Only first fid is allowed to be in "low" range */ | 
|  | printk(KERN_ERR FW_BUG PFX "two low fids - %d : " | 
|  | "0x%x\n", j, pst[j].fid); | 
|  | return -EINVAL; | 
|  | } | 
|  | if (pst[j].fid < lastfid) | 
|  | lastfid = pst[j].fid; | 
|  | } | 
|  | if (lastfid & 1) { | 
|  | printk(KERN_ERR FW_BUG PFX "lastfid invalid\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | if (lastfid > LO_FID_TABLE_TOP) | 
|  | printk(KERN_INFO FW_BUG PFX | 
|  | "first fid not from lo freq table\n"); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void invalidate_entry(struct cpufreq_frequency_table *powernow_table, | 
|  | unsigned int entry) | 
|  | { | 
|  | powernow_table[entry].frequency = CPUFREQ_ENTRY_INVALID; | 
|  | } | 
|  |  | 
|  | static void print_basics(struct powernow_k8_data *data) | 
|  | { | 
|  | int j; | 
|  | for (j = 0; j < data->numps; j++) { | 
|  | if (data->powernow_table[j].frequency != | 
|  | CPUFREQ_ENTRY_INVALID) { | 
|  | if (cpu_family == CPU_HW_PSTATE) { | 
|  | printk(KERN_INFO PFX | 
|  | "   %d : pstate %d (%d MHz)\n", j, | 
|  | data->powernow_table[j].index, | 
|  | data->powernow_table[j].frequency/1000); | 
|  | } else { | 
|  | printk(KERN_INFO PFX | 
|  | "fid 0x%x (%d MHz), vid 0x%x\n", | 
|  | data->powernow_table[j].index & 0xff, | 
|  | data->powernow_table[j].frequency/1000, | 
|  | data->powernow_table[j].index >> 8); | 
|  | } | 
|  | } | 
|  | } | 
|  | if (data->batps) | 
|  | printk(KERN_INFO PFX "Only %d pstates on battery\n", | 
|  | data->batps); | 
|  | } | 
|  |  | 
|  | static u32 freq_from_fid_did(u32 fid, u32 did) | 
|  | { | 
|  | u32 mhz = 0; | 
|  |  | 
|  | if (boot_cpu_data.x86 == 0x10) | 
|  | mhz = (100 * (fid + 0x10)) >> did; | 
|  | else if (boot_cpu_data.x86 == 0x11) | 
|  | mhz = (100 * (fid + 8)) >> did; | 
|  | else | 
|  | BUG(); | 
|  |  | 
|  | return mhz * 1000; | 
|  | } | 
|  |  | 
|  | static int fill_powernow_table(struct powernow_k8_data *data, | 
|  | struct pst_s *pst, u8 maxvid) | 
|  | { | 
|  | struct cpufreq_frequency_table *powernow_table; | 
|  | unsigned int j; | 
|  |  | 
|  | if (data->batps) { | 
|  | /* use ACPI support to get full speed on mains power */ | 
|  | printk(KERN_WARNING PFX | 
|  | "Only %d pstates usable (use ACPI driver for full " | 
|  | "range\n", data->batps); | 
|  | data->numps = data->batps; | 
|  | } | 
|  |  | 
|  | for (j = 1; j < data->numps; j++) { | 
|  | if (pst[j-1].fid >= pst[j].fid) { | 
|  | printk(KERN_ERR PFX "PST out of sequence\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (data->numps < 2) { | 
|  | printk(KERN_ERR PFX "no p states to transition\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | if (check_pst_table(data, pst, maxvid)) | 
|  | return -EINVAL; | 
|  |  | 
|  | powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table) | 
|  | * (data->numps + 1)), GFP_KERNEL); | 
|  | if (!powernow_table) { | 
|  | printk(KERN_ERR PFX "powernow_table memory alloc failure\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | for (j = 0; j < data->numps; j++) { | 
|  | int freq; | 
|  | powernow_table[j].index = pst[j].fid; /* lower 8 bits */ | 
|  | powernow_table[j].index |= (pst[j].vid << 8); /* upper 8 bits */ | 
|  | freq = find_khz_freq_from_fid(pst[j].fid); | 
|  | powernow_table[j].frequency = freq; | 
|  | } | 
|  | powernow_table[data->numps].frequency = CPUFREQ_TABLE_END; | 
|  | powernow_table[data->numps].index = 0; | 
|  |  | 
|  | if (query_current_values_with_pending_wait(data)) { | 
|  | kfree(powernow_table); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | pr_debug("cfid 0x%x, cvid 0x%x\n", data->currfid, data->currvid); | 
|  | data->powernow_table = powernow_table; | 
|  | if (cpumask_first(cpu_core_mask(data->cpu)) == data->cpu) | 
|  | print_basics(data); | 
|  |  | 
|  | for (j = 0; j < data->numps; j++) | 
|  | if ((pst[j].fid == data->currfid) && | 
|  | (pst[j].vid == data->currvid)) | 
|  | return 0; | 
|  |  | 
|  | pr_debug("currfid/vid do not match PST, ignoring\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Find and validate the PSB/PST table in BIOS. */ | 
|  | static int find_psb_table(struct powernow_k8_data *data) | 
|  | { | 
|  | struct psb_s *psb; | 
|  | unsigned int i; | 
|  | u32 mvs; | 
|  | u8 maxvid; | 
|  | u32 cpst = 0; | 
|  | u32 thiscpuid; | 
|  |  | 
|  | for (i = 0xc0000; i < 0xffff0; i += 0x10) { | 
|  | /* Scan BIOS looking for the signature. */ | 
|  | /* It can not be at ffff0 - it is too big. */ | 
|  |  | 
|  | psb = phys_to_virt(i); | 
|  | if (memcmp(psb, PSB_ID_STRING, PSB_ID_STRING_LEN) != 0) | 
|  | continue; | 
|  |  | 
|  | pr_debug("found PSB header at 0x%p\n", psb); | 
|  |  | 
|  | pr_debug("table vers: 0x%x\n", psb->tableversion); | 
|  | if (psb->tableversion != PSB_VERSION_1_4) { | 
|  | printk(KERN_ERR FW_BUG PFX "PSB table is not v1.4\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | pr_debug("flags: 0x%x\n", psb->flags1); | 
|  | if (psb->flags1) { | 
|  | printk(KERN_ERR FW_BUG PFX "unknown flags\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | data->vstable = psb->vstable; | 
|  | pr_debug("voltage stabilization time: %d(*20us)\n", | 
|  | data->vstable); | 
|  |  | 
|  | pr_debug("flags2: 0x%x\n", psb->flags2); | 
|  | data->rvo = psb->flags2 & 3; | 
|  | data->irt = ((psb->flags2) >> 2) & 3; | 
|  | mvs = ((psb->flags2) >> 4) & 3; | 
|  | data->vidmvs = 1 << mvs; | 
|  | data->batps = ((psb->flags2) >> 6) & 3; | 
|  |  | 
|  | pr_debug("ramp voltage offset: %d\n", data->rvo); | 
|  | pr_debug("isochronous relief time: %d\n", data->irt); | 
|  | pr_debug("maximum voltage step: %d - 0x%x\n", mvs, data->vidmvs); | 
|  |  | 
|  | pr_debug("numpst: 0x%x\n", psb->num_tables); | 
|  | cpst = psb->num_tables; | 
|  | if ((psb->cpuid == 0x00000fc0) || | 
|  | (psb->cpuid == 0x00000fe0)) { | 
|  | thiscpuid = cpuid_eax(CPUID_PROCESSOR_SIGNATURE); | 
|  | if ((thiscpuid == 0x00000fc0) || | 
|  | (thiscpuid == 0x00000fe0)) | 
|  | cpst = 1; | 
|  | } | 
|  | if (cpst != 1) { | 
|  | printk(KERN_ERR FW_BUG PFX "numpst must be 1\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | data->plllock = psb->plllocktime; | 
|  | pr_debug("plllocktime: 0x%x (units 1us)\n", psb->plllocktime); | 
|  | pr_debug("maxfid: 0x%x\n", psb->maxfid); | 
|  | pr_debug("maxvid: 0x%x\n", psb->maxvid); | 
|  | maxvid = psb->maxvid; | 
|  |  | 
|  | data->numps = psb->numps; | 
|  | pr_debug("numpstates: 0x%x\n", data->numps); | 
|  | return fill_powernow_table(data, | 
|  | (struct pst_s *)(psb+1), maxvid); | 
|  | } | 
|  | /* | 
|  | * If you see this message, complain to BIOS manufacturer. If | 
|  | * he tells you "we do not support Linux" or some similar | 
|  | * nonsense, remember that Windows 2000 uses the same legacy | 
|  | * mechanism that the old Linux PSB driver uses. Tell them it | 
|  | * is broken with Windows 2000. | 
|  | * | 
|  | * The reference to the AMD documentation is chapter 9 in the | 
|  | * BIOS and Kernel Developer's Guide, which is available on | 
|  | * www.amd.com | 
|  | */ | 
|  | printk(KERN_ERR FW_BUG PFX "No PSB or ACPI _PSS objects\n"); | 
|  | printk(KERN_ERR PFX "Make sure that your BIOS is up to date" | 
|  | " and Cool'N'Quiet support is enabled in BIOS setup\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data, | 
|  | unsigned int index) | 
|  | { | 
|  | u64 control; | 
|  |  | 
|  | if (!data->acpi_data.state_count || (cpu_family == CPU_HW_PSTATE)) | 
|  | return; | 
|  |  | 
|  | control = data->acpi_data.states[index].control; | 
|  | data->irt = (control >> IRT_SHIFT) & IRT_MASK; | 
|  | data->rvo = (control >> RVO_SHIFT) & RVO_MASK; | 
|  | data->exttype = (control >> EXT_TYPE_SHIFT) & EXT_TYPE_MASK; | 
|  | data->plllock = (control >> PLL_L_SHIFT) & PLL_L_MASK; | 
|  | data->vidmvs = 1 << ((control >> MVS_SHIFT) & MVS_MASK); | 
|  | data->vstable = (control >> VST_SHIFT) & VST_MASK; | 
|  | } | 
|  |  | 
|  | static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data) | 
|  | { | 
|  | struct cpufreq_frequency_table *powernow_table; | 
|  | int ret_val = -ENODEV; | 
|  | u64 control, status; | 
|  |  | 
|  | if (acpi_processor_register_performance(&data->acpi_data, data->cpu)) { | 
|  | pr_debug("register performance failed: bad ACPI data\n"); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | /* verify the data contained in the ACPI structures */ | 
|  | if (data->acpi_data.state_count <= 1) { | 
|  | pr_debug("No ACPI P-States\n"); | 
|  | goto err_out; | 
|  | } | 
|  |  | 
|  | control = data->acpi_data.control_register.space_id; | 
|  | status = data->acpi_data.status_register.space_id; | 
|  |  | 
|  | if ((control != ACPI_ADR_SPACE_FIXED_HARDWARE) || | 
|  | (status != ACPI_ADR_SPACE_FIXED_HARDWARE)) { | 
|  | pr_debug("Invalid control/status registers (%llx - %llx)\n", | 
|  | control, status); | 
|  | goto err_out; | 
|  | } | 
|  |  | 
|  | /* fill in data->powernow_table */ | 
|  | powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table) | 
|  | * (data->acpi_data.state_count + 1)), GFP_KERNEL); | 
|  | if (!powernow_table) { | 
|  | pr_debug("powernow_table memory alloc failure\n"); | 
|  | goto err_out; | 
|  | } | 
|  |  | 
|  | /* fill in data */ | 
|  | data->numps = data->acpi_data.state_count; | 
|  | powernow_k8_acpi_pst_values(data, 0); | 
|  |  | 
|  | if (cpu_family == CPU_HW_PSTATE) | 
|  | ret_val = fill_powernow_table_pstate(data, powernow_table); | 
|  | else | 
|  | ret_val = fill_powernow_table_fidvid(data, powernow_table); | 
|  | if (ret_val) | 
|  | goto err_out_mem; | 
|  |  | 
|  | powernow_table[data->acpi_data.state_count].frequency = | 
|  | CPUFREQ_TABLE_END; | 
|  | powernow_table[data->acpi_data.state_count].index = 0; | 
|  | data->powernow_table = powernow_table; | 
|  |  | 
|  | if (cpumask_first(cpu_core_mask(data->cpu)) == data->cpu) | 
|  | print_basics(data); | 
|  |  | 
|  | /* notify BIOS that we exist */ | 
|  | acpi_processor_notify_smm(THIS_MODULE); | 
|  |  | 
|  | if (!zalloc_cpumask_var(&data->acpi_data.shared_cpu_map, GFP_KERNEL)) { | 
|  | printk(KERN_ERR PFX | 
|  | "unable to alloc powernow_k8_data cpumask\n"); | 
|  | ret_val = -ENOMEM; | 
|  | goto err_out_mem; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err_out_mem: | 
|  | kfree(powernow_table); | 
|  |  | 
|  | err_out: | 
|  | acpi_processor_unregister_performance(&data->acpi_data, data->cpu); | 
|  |  | 
|  | /* data->acpi_data.state_count informs us at ->exit() | 
|  | * whether ACPI was used */ | 
|  | data->acpi_data.state_count = 0; | 
|  |  | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | static int fill_powernow_table_pstate(struct powernow_k8_data *data, | 
|  | struct cpufreq_frequency_table *powernow_table) | 
|  | { | 
|  | int i; | 
|  | u32 hi = 0, lo = 0; | 
|  | rdmsr(MSR_PSTATE_CUR_LIMIT, lo, hi); | 
|  | data->max_hw_pstate = (lo & HW_PSTATE_MAX_MASK) >> HW_PSTATE_MAX_SHIFT; | 
|  |  | 
|  | for (i = 0; i < data->acpi_data.state_count; i++) { | 
|  | u32 index; | 
|  |  | 
|  | index = data->acpi_data.states[i].control & HW_PSTATE_MASK; | 
|  | if (index > data->max_hw_pstate) { | 
|  | printk(KERN_ERR PFX "invalid pstate %d - " | 
|  | "bad value %d.\n", i, index); | 
|  | printk(KERN_ERR PFX "Please report to BIOS " | 
|  | "manufacturer\n"); | 
|  | invalidate_entry(powernow_table, i); | 
|  | continue; | 
|  | } | 
|  | rdmsr(MSR_PSTATE_DEF_BASE + index, lo, hi); | 
|  | if (!(hi & HW_PSTATE_VALID_MASK)) { | 
|  | pr_debug("invalid pstate %d, ignoring\n", index); | 
|  | invalidate_entry(powernow_table, i); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | powernow_table[i].index = index; | 
|  |  | 
|  | /* Frequency may be rounded for these */ | 
|  | if ((boot_cpu_data.x86 == 0x10 && boot_cpu_data.x86_model < 10) | 
|  | || boot_cpu_data.x86 == 0x11) { | 
|  | powernow_table[i].frequency = | 
|  | freq_from_fid_did(lo & 0x3f, (lo >> 6) & 7); | 
|  | } else | 
|  | powernow_table[i].frequency = | 
|  | data->acpi_data.states[i].core_frequency * 1000; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int fill_powernow_table_fidvid(struct powernow_k8_data *data, | 
|  | struct cpufreq_frequency_table *powernow_table) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < data->acpi_data.state_count; i++) { | 
|  | u32 fid; | 
|  | u32 vid; | 
|  | u32 freq, index; | 
|  | u64 status, control; | 
|  |  | 
|  | if (data->exttype) { | 
|  | status =  data->acpi_data.states[i].status; | 
|  | fid = status & EXT_FID_MASK; | 
|  | vid = (status >> VID_SHIFT) & EXT_VID_MASK; | 
|  | } else { | 
|  | control =  data->acpi_data.states[i].control; | 
|  | fid = control & FID_MASK; | 
|  | vid = (control >> VID_SHIFT) & VID_MASK; | 
|  | } | 
|  |  | 
|  | pr_debug("   %d : fid 0x%x, vid 0x%x\n", i, fid, vid); | 
|  |  | 
|  | index = fid | (vid<<8); | 
|  | powernow_table[i].index = index; | 
|  |  | 
|  | freq = find_khz_freq_from_fid(fid); | 
|  | powernow_table[i].frequency = freq; | 
|  |  | 
|  | /* verify frequency is OK */ | 
|  | if ((freq > (MAX_FREQ * 1000)) || (freq < (MIN_FREQ * 1000))) { | 
|  | pr_debug("invalid freq %u kHz, ignoring\n", freq); | 
|  | invalidate_entry(powernow_table, i); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* verify voltage is OK - | 
|  | * BIOSs are using "off" to indicate invalid */ | 
|  | if (vid == VID_OFF) { | 
|  | pr_debug("invalid vid %u, ignoring\n", vid); | 
|  | invalidate_entry(powernow_table, i); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (freq != (data->acpi_data.states[i].core_frequency * 1000)) { | 
|  | printk(KERN_INFO PFX "invalid freq entries " | 
|  | "%u kHz vs. %u kHz\n", freq, | 
|  | (unsigned int) | 
|  | (data->acpi_data.states[i].core_frequency | 
|  | * 1000)); | 
|  | invalidate_entry(powernow_table, i); | 
|  | continue; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void powernow_k8_cpu_exit_acpi(struct powernow_k8_data *data) | 
|  | { | 
|  | if (data->acpi_data.state_count) | 
|  | acpi_processor_unregister_performance(&data->acpi_data, | 
|  | data->cpu); | 
|  | free_cpumask_var(data->acpi_data.shared_cpu_map); | 
|  | } | 
|  |  | 
|  | static int get_transition_latency(struct powernow_k8_data *data) | 
|  | { | 
|  | int max_latency = 0; | 
|  | int i; | 
|  | for (i = 0; i < data->acpi_data.state_count; i++) { | 
|  | int cur_latency = data->acpi_data.states[i].transition_latency | 
|  | + data->acpi_data.states[i].bus_master_latency; | 
|  | if (cur_latency > max_latency) | 
|  | max_latency = cur_latency; | 
|  | } | 
|  | if (max_latency == 0) { | 
|  | /* | 
|  | * Fam 11h and later may return 0 as transition latency. This | 
|  | * is intended and means "very fast". While cpufreq core and | 
|  | * governors currently can handle that gracefully, better set it | 
|  | * to 1 to avoid problems in the future. | 
|  | */ | 
|  | if (boot_cpu_data.x86 < 0x11) | 
|  | printk(KERN_ERR FW_WARN PFX "Invalid zero transition " | 
|  | "latency\n"); | 
|  | max_latency = 1; | 
|  | } | 
|  | /* value in usecs, needs to be in nanoseconds */ | 
|  | return 1000 * max_latency; | 
|  | } | 
|  |  | 
|  | /* Take a frequency, and issue the fid/vid transition command */ | 
|  | static int transition_frequency_fidvid(struct powernow_k8_data *data, | 
|  | unsigned int index) | 
|  | { | 
|  | u32 fid = 0; | 
|  | u32 vid = 0; | 
|  | int res, i; | 
|  | struct cpufreq_freqs freqs; | 
|  |  | 
|  | pr_debug("cpu %d transition to index %u\n", smp_processor_id(), index); | 
|  |  | 
|  | /* fid/vid correctness check for k8 */ | 
|  | /* fid are the lower 8 bits of the index we stored into | 
|  | * the cpufreq frequency table in find_psb_table, vid | 
|  | * are the upper 8 bits. | 
|  | */ | 
|  | fid = data->powernow_table[index].index & 0xFF; | 
|  | vid = (data->powernow_table[index].index & 0xFF00) >> 8; | 
|  |  | 
|  | pr_debug("table matched fid 0x%x, giving vid 0x%x\n", fid, vid); | 
|  |  | 
|  | if (query_current_values_with_pending_wait(data)) | 
|  | return 1; | 
|  |  | 
|  | if ((data->currvid == vid) && (data->currfid == fid)) { | 
|  | pr_debug("target matches current values (fid 0x%x, vid 0x%x)\n", | 
|  | fid, vid); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | pr_debug("cpu %d, changing to fid 0x%x, vid 0x%x\n", | 
|  | smp_processor_id(), fid, vid); | 
|  | freqs.old = find_khz_freq_from_fid(data->currfid); | 
|  | freqs.new = find_khz_freq_from_fid(fid); | 
|  |  | 
|  | for_each_cpu(i, data->available_cores) { | 
|  | freqs.cpu = i; | 
|  | cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE); | 
|  | } | 
|  |  | 
|  | res = transition_fid_vid(data, fid, vid); | 
|  | if (res) | 
|  | return res; | 
|  |  | 
|  | freqs.new = find_khz_freq_from_fid(data->currfid); | 
|  |  | 
|  | for_each_cpu(i, data->available_cores) { | 
|  | freqs.cpu = i; | 
|  | cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE); | 
|  | } | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /* Take a frequency, and issue the hardware pstate transition command */ | 
|  | static int transition_frequency_pstate(struct powernow_k8_data *data, | 
|  | unsigned int index) | 
|  | { | 
|  | u32 pstate = 0; | 
|  | int res, i; | 
|  | struct cpufreq_freqs freqs; | 
|  |  | 
|  | pr_debug("cpu %d transition to index %u\n", smp_processor_id(), index); | 
|  |  | 
|  | /* get MSR index for hardware pstate transition */ | 
|  | pstate = index & HW_PSTATE_MASK; | 
|  | if (pstate > data->max_hw_pstate) | 
|  | return -EINVAL; | 
|  |  | 
|  | freqs.old = find_khz_freq_from_pstate(data->powernow_table, | 
|  | data->currpstate); | 
|  | freqs.new = find_khz_freq_from_pstate(data->powernow_table, pstate); | 
|  |  | 
|  | for_each_cpu(i, data->available_cores) { | 
|  | freqs.cpu = i; | 
|  | cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE); | 
|  | } | 
|  |  | 
|  | res = transition_pstate(data, pstate); | 
|  | freqs.new = find_khz_freq_from_pstate(data->powernow_table, pstate); | 
|  |  | 
|  | for_each_cpu(i, data->available_cores) { | 
|  | freqs.cpu = i; | 
|  | cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE); | 
|  | } | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /* Driver entry point to switch to the target frequency */ | 
|  | static int powernowk8_target(struct cpufreq_policy *pol, | 
|  | unsigned targfreq, unsigned relation) | 
|  | { | 
|  | cpumask_var_t oldmask; | 
|  | struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu); | 
|  | u32 checkfid; | 
|  | u32 checkvid; | 
|  | unsigned int newstate; | 
|  | int ret = -EIO; | 
|  |  | 
|  | if (!data) | 
|  | return -EINVAL; | 
|  |  | 
|  | checkfid = data->currfid; | 
|  | checkvid = data->currvid; | 
|  |  | 
|  | /* only run on specific CPU from here on. */ | 
|  | /* This is poor form: use a workqueue or smp_call_function_single */ | 
|  | if (!alloc_cpumask_var(&oldmask, GFP_KERNEL)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | cpumask_copy(oldmask, tsk_cpus_allowed(current)); | 
|  | set_cpus_allowed_ptr(current, cpumask_of(pol->cpu)); | 
|  |  | 
|  | if (smp_processor_id() != pol->cpu) { | 
|  | printk(KERN_ERR PFX "limiting to cpu %u failed\n", pol->cpu); | 
|  | goto err_out; | 
|  | } | 
|  |  | 
|  | if (pending_bit_stuck()) { | 
|  | printk(KERN_ERR PFX "failing targ, change pending bit set\n"); | 
|  | goto err_out; | 
|  | } | 
|  |  | 
|  | pr_debug("targ: cpu %d, %d kHz, min %d, max %d, relation %d\n", | 
|  | pol->cpu, targfreq, pol->min, pol->max, relation); | 
|  |  | 
|  | if (query_current_values_with_pending_wait(data)) | 
|  | goto err_out; | 
|  |  | 
|  | if (cpu_family != CPU_HW_PSTATE) { | 
|  | pr_debug("targ: curr fid 0x%x, vid 0x%x\n", | 
|  | data->currfid, data->currvid); | 
|  |  | 
|  | if ((checkvid != data->currvid) || | 
|  | (checkfid != data->currfid)) { | 
|  | printk(KERN_INFO PFX | 
|  | "error - out of sync, fix 0x%x 0x%x, " | 
|  | "vid 0x%x 0x%x\n", | 
|  | checkfid, data->currfid, | 
|  | checkvid, data->currvid); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (cpufreq_frequency_table_target(pol, data->powernow_table, | 
|  | targfreq, relation, &newstate)) | 
|  | goto err_out; | 
|  |  | 
|  | mutex_lock(&fidvid_mutex); | 
|  |  | 
|  | powernow_k8_acpi_pst_values(data, newstate); | 
|  |  | 
|  | if (cpu_family == CPU_HW_PSTATE) | 
|  | ret = transition_frequency_pstate(data, newstate); | 
|  | else | 
|  | ret = transition_frequency_fidvid(data, newstate); | 
|  | if (ret) { | 
|  | printk(KERN_ERR PFX "transition frequency failed\n"); | 
|  | ret = 1; | 
|  | mutex_unlock(&fidvid_mutex); | 
|  | goto err_out; | 
|  | } | 
|  | mutex_unlock(&fidvid_mutex); | 
|  |  | 
|  | if (cpu_family == CPU_HW_PSTATE) | 
|  | pol->cur = find_khz_freq_from_pstate(data->powernow_table, | 
|  | newstate); | 
|  | else | 
|  | pol->cur = find_khz_freq_from_fid(data->currfid); | 
|  | ret = 0; | 
|  |  | 
|  | err_out: | 
|  | set_cpus_allowed_ptr(current, oldmask); | 
|  | free_cpumask_var(oldmask); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Driver entry point to verify the policy and range of frequencies */ | 
|  | static int powernowk8_verify(struct cpufreq_policy *pol) | 
|  | { | 
|  | struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu); | 
|  |  | 
|  | if (!data) | 
|  | return -EINVAL; | 
|  |  | 
|  | return cpufreq_frequency_table_verify(pol, data->powernow_table); | 
|  | } | 
|  |  | 
|  | struct init_on_cpu { | 
|  | struct powernow_k8_data *data; | 
|  | int rc; | 
|  | }; | 
|  |  | 
|  | static void __cpuinit powernowk8_cpu_init_on_cpu(void *_init_on_cpu) | 
|  | { | 
|  | struct init_on_cpu *init_on_cpu = _init_on_cpu; | 
|  |  | 
|  | if (pending_bit_stuck()) { | 
|  | printk(KERN_ERR PFX "failing init, change pending bit set\n"); | 
|  | init_on_cpu->rc = -ENODEV; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (query_current_values_with_pending_wait(init_on_cpu->data)) { | 
|  | init_on_cpu->rc = -ENODEV; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (cpu_family == CPU_OPTERON) | 
|  | fidvid_msr_init(); | 
|  |  | 
|  | init_on_cpu->rc = 0; | 
|  | } | 
|  |  | 
|  | /* per CPU init entry point to the driver */ | 
|  | static int __cpuinit powernowk8_cpu_init(struct cpufreq_policy *pol) | 
|  | { | 
|  | static const char ACPI_PSS_BIOS_BUG_MSG[] = | 
|  | KERN_ERR FW_BUG PFX "No compatible ACPI _PSS objects found.\n" | 
|  | FW_BUG PFX "Try again with latest BIOS.\n"; | 
|  | struct powernow_k8_data *data; | 
|  | struct init_on_cpu init_on_cpu; | 
|  | int rc; | 
|  | struct cpuinfo_x86 *c = &cpu_data(pol->cpu); | 
|  |  | 
|  | if (!cpu_online(pol->cpu)) | 
|  | return -ENODEV; | 
|  |  | 
|  | smp_call_function_single(pol->cpu, check_supported_cpu, &rc, 1); | 
|  | if (rc) | 
|  | return -ENODEV; | 
|  |  | 
|  | data = kzalloc(sizeof(struct powernow_k8_data), GFP_KERNEL); | 
|  | if (!data) { | 
|  | printk(KERN_ERR PFX "unable to alloc powernow_k8_data"); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | data->cpu = pol->cpu; | 
|  | data->currpstate = HW_PSTATE_INVALID; | 
|  |  | 
|  | if (powernow_k8_cpu_init_acpi(data)) { | 
|  | /* | 
|  | * Use the PSB BIOS structure. This is only available on | 
|  | * an UP version, and is deprecated by AMD. | 
|  | */ | 
|  | if (num_online_cpus() != 1) { | 
|  | printk_once(ACPI_PSS_BIOS_BUG_MSG); | 
|  | goto err_out; | 
|  | } | 
|  | if (pol->cpu != 0) { | 
|  | printk(KERN_ERR FW_BUG PFX "No ACPI _PSS objects for " | 
|  | "CPU other than CPU0. Complain to your BIOS " | 
|  | "vendor.\n"); | 
|  | goto err_out; | 
|  | } | 
|  | rc = find_psb_table(data); | 
|  | if (rc) | 
|  | goto err_out; | 
|  |  | 
|  | /* Take a crude guess here. | 
|  | * That guess was in microseconds, so multiply with 1000 */ | 
|  | pol->cpuinfo.transition_latency = ( | 
|  | ((data->rvo + 8) * data->vstable * VST_UNITS_20US) + | 
|  | ((1 << data->irt) * 30)) * 1000; | 
|  | } else /* ACPI _PSS objects available */ | 
|  | pol->cpuinfo.transition_latency = get_transition_latency(data); | 
|  |  | 
|  | /* only run on specific CPU from here on */ | 
|  | init_on_cpu.data = data; | 
|  | smp_call_function_single(data->cpu, powernowk8_cpu_init_on_cpu, | 
|  | &init_on_cpu, 1); | 
|  | rc = init_on_cpu.rc; | 
|  | if (rc != 0) | 
|  | goto err_out_exit_acpi; | 
|  |  | 
|  | if (cpu_family == CPU_HW_PSTATE) | 
|  | cpumask_copy(pol->cpus, cpumask_of(pol->cpu)); | 
|  | else | 
|  | cpumask_copy(pol->cpus, cpu_core_mask(pol->cpu)); | 
|  | data->available_cores = pol->cpus; | 
|  |  | 
|  | if (cpu_family == CPU_HW_PSTATE) | 
|  | pol->cur = find_khz_freq_from_pstate(data->powernow_table, | 
|  | data->currpstate); | 
|  | else | 
|  | pol->cur = find_khz_freq_from_fid(data->currfid); | 
|  | pr_debug("policy current frequency %d kHz\n", pol->cur); | 
|  |  | 
|  | /* min/max the cpu is capable of */ | 
|  | if (cpufreq_frequency_table_cpuinfo(pol, data->powernow_table)) { | 
|  | printk(KERN_ERR FW_BUG PFX "invalid powernow_table\n"); | 
|  | powernow_k8_cpu_exit_acpi(data); | 
|  | kfree(data->powernow_table); | 
|  | kfree(data); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* Check for APERF/MPERF support in hardware */ | 
|  | if (cpu_has(c, X86_FEATURE_APERFMPERF)) | 
|  | cpufreq_amd64_driver.getavg = cpufreq_get_measured_perf; | 
|  |  | 
|  | cpufreq_frequency_table_get_attr(data->powernow_table, pol->cpu); | 
|  |  | 
|  | if (cpu_family == CPU_HW_PSTATE) | 
|  | pr_debug("cpu_init done, current pstate 0x%x\n", | 
|  | data->currpstate); | 
|  | else | 
|  | pr_debug("cpu_init done, current fid 0x%x, vid 0x%x\n", | 
|  | data->currfid, data->currvid); | 
|  |  | 
|  | per_cpu(powernow_data, pol->cpu) = data; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err_out_exit_acpi: | 
|  | powernow_k8_cpu_exit_acpi(data); | 
|  |  | 
|  | err_out: | 
|  | kfree(data); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | static int __devexit powernowk8_cpu_exit(struct cpufreq_policy *pol) | 
|  | { | 
|  | struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu); | 
|  |  | 
|  | if (!data) | 
|  | return -EINVAL; | 
|  |  | 
|  | powernow_k8_cpu_exit_acpi(data); | 
|  |  | 
|  | cpufreq_frequency_table_put_attr(pol->cpu); | 
|  |  | 
|  | kfree(data->powernow_table); | 
|  | kfree(data); | 
|  | per_cpu(powernow_data, pol->cpu) = NULL; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void query_values_on_cpu(void *_err) | 
|  | { | 
|  | int *err = _err; | 
|  | struct powernow_k8_data *data = __this_cpu_read(powernow_data); | 
|  |  | 
|  | *err = query_current_values_with_pending_wait(data); | 
|  | } | 
|  |  | 
|  | static unsigned int powernowk8_get(unsigned int cpu) | 
|  | { | 
|  | struct powernow_k8_data *data = per_cpu(powernow_data, cpu); | 
|  | unsigned int khz = 0; | 
|  | int err; | 
|  |  | 
|  | if (!data) | 
|  | return 0; | 
|  |  | 
|  | smp_call_function_single(cpu, query_values_on_cpu, &err, true); | 
|  | if (err) | 
|  | goto out; | 
|  |  | 
|  | if (cpu_family == CPU_HW_PSTATE) | 
|  | khz = find_khz_freq_from_pstate(data->powernow_table, | 
|  | data->currpstate); | 
|  | else | 
|  | khz = find_khz_freq_from_fid(data->currfid); | 
|  |  | 
|  |  | 
|  | out: | 
|  | return khz; | 
|  | } | 
|  |  | 
|  | static void _cpb_toggle_msrs(bool t) | 
|  | { | 
|  | int cpu; | 
|  |  | 
|  | get_online_cpus(); | 
|  |  | 
|  | rdmsr_on_cpus(cpu_online_mask, MSR_K7_HWCR, msrs); | 
|  |  | 
|  | for_each_cpu(cpu, cpu_online_mask) { | 
|  | struct msr *reg = per_cpu_ptr(msrs, cpu); | 
|  | if (t) | 
|  | reg->l &= ~BIT(25); | 
|  | else | 
|  | reg->l |= BIT(25); | 
|  | } | 
|  | wrmsr_on_cpus(cpu_online_mask, MSR_K7_HWCR, msrs); | 
|  |  | 
|  | put_online_cpus(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Switch on/off core performance boosting. | 
|  | * | 
|  | * 0=disable | 
|  | * 1=enable. | 
|  | */ | 
|  | static void cpb_toggle(bool t) | 
|  | { | 
|  | if (!cpb_capable) | 
|  | return; | 
|  |  | 
|  | if (t && !cpb_enabled) { | 
|  | cpb_enabled = true; | 
|  | _cpb_toggle_msrs(t); | 
|  | printk(KERN_INFO PFX "Core Boosting enabled.\n"); | 
|  | } else if (!t && cpb_enabled) { | 
|  | cpb_enabled = false; | 
|  | _cpb_toggle_msrs(t); | 
|  | printk(KERN_INFO PFX "Core Boosting disabled.\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | static ssize_t store_cpb(struct cpufreq_policy *policy, const char *buf, | 
|  | size_t count) | 
|  | { | 
|  | int ret = -EINVAL; | 
|  | unsigned long val = 0; | 
|  |  | 
|  | ret = strict_strtoul(buf, 10, &val); | 
|  | if (!ret && (val == 0 || val == 1) && cpb_capable) | 
|  | cpb_toggle(val); | 
|  | else | 
|  | return -EINVAL; | 
|  |  | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static ssize_t show_cpb(struct cpufreq_policy *policy, char *buf) | 
|  | { | 
|  | return sprintf(buf, "%u\n", cpb_enabled); | 
|  | } | 
|  |  | 
|  | #define define_one_rw(_name) \ | 
|  | static struct freq_attr _name = \ | 
|  | __ATTR(_name, 0644, show_##_name, store_##_name) | 
|  |  | 
|  | define_one_rw(cpb); | 
|  |  | 
|  | static struct freq_attr *powernow_k8_attr[] = { | 
|  | &cpufreq_freq_attr_scaling_available_freqs, | 
|  | &cpb, | 
|  | NULL, | 
|  | }; | 
|  |  | 
|  | static struct cpufreq_driver cpufreq_amd64_driver = { | 
|  | .verify		= powernowk8_verify, | 
|  | .target		= powernowk8_target, | 
|  | .bios_limit	= acpi_processor_get_bios_limit, | 
|  | .init		= powernowk8_cpu_init, | 
|  | .exit		= __devexit_p(powernowk8_cpu_exit), | 
|  | .get		= powernowk8_get, | 
|  | .name		= "powernow-k8", | 
|  | .owner		= THIS_MODULE, | 
|  | .attr		= powernow_k8_attr, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Clear the boost-disable flag on the CPU_DOWN path so that this cpu | 
|  | * cannot block the remaining ones from boosting. On the CPU_UP path we | 
|  | * simply keep the boost-disable flag in sync with the current global | 
|  | * state. | 
|  | */ | 
|  | static int cpb_notify(struct notifier_block *nb, unsigned long action, | 
|  | void *hcpu) | 
|  | { | 
|  | unsigned cpu = (long)hcpu; | 
|  | u32 lo, hi; | 
|  |  | 
|  | switch (action) { | 
|  | case CPU_UP_PREPARE: | 
|  | case CPU_UP_PREPARE_FROZEN: | 
|  |  | 
|  | if (!cpb_enabled) { | 
|  | rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi); | 
|  | lo |= BIT(25); | 
|  | wrmsr_on_cpu(cpu, MSR_K7_HWCR, lo, hi); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case CPU_DOWN_PREPARE: | 
|  | case CPU_DOWN_PREPARE_FROZEN: | 
|  | rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi); | 
|  | lo &= ~BIT(25); | 
|  | wrmsr_on_cpu(cpu, MSR_K7_HWCR, lo, hi); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | return NOTIFY_OK; | 
|  | } | 
|  |  | 
|  | static struct notifier_block cpb_nb = { | 
|  | .notifier_call		= cpb_notify, | 
|  | }; | 
|  |  | 
|  | /* driver entry point for init */ | 
|  | static int __cpuinit powernowk8_init(void) | 
|  | { | 
|  | unsigned int i, supported_cpus = 0, cpu; | 
|  | int rv; | 
|  |  | 
|  | for_each_online_cpu(i) { | 
|  | int rc; | 
|  | smp_call_function_single(i, check_supported_cpu, &rc, 1); | 
|  | if (rc == 0) | 
|  | supported_cpus++; | 
|  | } | 
|  |  | 
|  | if (supported_cpus != num_online_cpus()) | 
|  | return -ENODEV; | 
|  |  | 
|  | printk(KERN_INFO PFX "Found %d %s (%d cpu cores) (" VERSION ")\n", | 
|  | num_online_nodes(), boot_cpu_data.x86_model_id, supported_cpus); | 
|  |  | 
|  | if (boot_cpu_has(X86_FEATURE_CPB)) { | 
|  |  | 
|  | cpb_capable = true; | 
|  |  | 
|  | msrs = msrs_alloc(); | 
|  | if (!msrs) { | 
|  | printk(KERN_ERR "%s: Error allocating msrs!\n", __func__); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | register_cpu_notifier(&cpb_nb); | 
|  |  | 
|  | rdmsr_on_cpus(cpu_online_mask, MSR_K7_HWCR, msrs); | 
|  |  | 
|  | for_each_cpu(cpu, cpu_online_mask) { | 
|  | struct msr *reg = per_cpu_ptr(msrs, cpu); | 
|  | cpb_enabled |= !(!!(reg->l & BIT(25))); | 
|  | } | 
|  |  | 
|  | printk(KERN_INFO PFX "Core Performance Boosting: %s.\n", | 
|  | (cpb_enabled ? "on" : "off")); | 
|  | } | 
|  |  | 
|  | rv = cpufreq_register_driver(&cpufreq_amd64_driver); | 
|  | if (rv < 0 && boot_cpu_has(X86_FEATURE_CPB)) { | 
|  | unregister_cpu_notifier(&cpb_nb); | 
|  | msrs_free(msrs); | 
|  | msrs = NULL; | 
|  | } | 
|  | return rv; | 
|  | } | 
|  |  | 
|  | /* driver entry point for term */ | 
|  | static void __exit powernowk8_exit(void) | 
|  | { | 
|  | pr_debug("exit\n"); | 
|  |  | 
|  | if (boot_cpu_has(X86_FEATURE_CPB)) { | 
|  | msrs_free(msrs); | 
|  | msrs = NULL; | 
|  |  | 
|  | unregister_cpu_notifier(&cpb_nb); | 
|  | } | 
|  |  | 
|  | cpufreq_unregister_driver(&cpufreq_amd64_driver); | 
|  | } | 
|  |  | 
|  | MODULE_AUTHOR("Paul Devriendt <paul.devriendt@amd.com> and " | 
|  | "Mark Langsdorf <mark.langsdorf@amd.com>"); | 
|  | MODULE_DESCRIPTION("AMD Athlon 64 and Opteron processor frequency driver."); | 
|  | MODULE_LICENSE("GPL"); | 
|  |  | 
|  | late_initcall(powernowk8_init); | 
|  | module_exit(powernowk8_exit); |