|  | /* | 
|  | *  PowerPC version | 
|  | *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) | 
|  | * | 
|  | *  Derived from "arch/i386/mm/fault.c" | 
|  | *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds | 
|  | * | 
|  | *  Modified by Cort Dougan and Paul Mackerras. | 
|  | * | 
|  | *  Modified for PPC64 by Dave Engebretsen (engebret@ibm.com) | 
|  | * | 
|  | *  This program is free software; you can redistribute it and/or | 
|  | *  modify it under the terms of the GNU General Public License | 
|  | *  as published by the Free Software Foundation; either version | 
|  | *  2 of the License, or (at your option) any later version. | 
|  | */ | 
|  |  | 
|  | #include <linux/signal.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/ptrace.h> | 
|  | #include <linux/mman.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/kprobes.h> | 
|  | #include <linux/kdebug.h> | 
|  | #include <linux/perf_event.h> | 
|  | #include <linux/magic.h> | 
|  | #include <linux/ratelimit.h> | 
|  |  | 
|  | #include <asm/firmware.h> | 
|  | #include <asm/page.h> | 
|  | #include <asm/pgtable.h> | 
|  | #include <asm/mmu.h> | 
|  | #include <asm/mmu_context.h> | 
|  | #include <asm/system.h> | 
|  | #include <asm/uaccess.h> | 
|  | #include <asm/tlbflush.h> | 
|  | #include <asm/siginfo.h> | 
|  | #include <mm/mmu_decl.h> | 
|  |  | 
|  | #ifdef CONFIG_KPROBES | 
|  | static inline int notify_page_fault(struct pt_regs *regs) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | /* kprobe_running() needs smp_processor_id() */ | 
|  | if (!user_mode(regs)) { | 
|  | preempt_disable(); | 
|  | if (kprobe_running() && kprobe_fault_handler(regs, 11)) | 
|  | ret = 1; | 
|  | preempt_enable(); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | #else | 
|  | static inline int notify_page_fault(struct pt_regs *regs) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Check whether the instruction at regs->nip is a store using | 
|  | * an update addressing form which will update r1. | 
|  | */ | 
|  | static int store_updates_sp(struct pt_regs *regs) | 
|  | { | 
|  | unsigned int inst; | 
|  |  | 
|  | if (get_user(inst, (unsigned int __user *)regs->nip)) | 
|  | return 0; | 
|  | /* check for 1 in the rA field */ | 
|  | if (((inst >> 16) & 0x1f) != 1) | 
|  | return 0; | 
|  | /* check major opcode */ | 
|  | switch (inst >> 26) { | 
|  | case 37:	/* stwu */ | 
|  | case 39:	/* stbu */ | 
|  | case 45:	/* sthu */ | 
|  | case 53:	/* stfsu */ | 
|  | case 55:	/* stfdu */ | 
|  | return 1; | 
|  | case 62:	/* std or stdu */ | 
|  | return (inst & 3) == 1; | 
|  | case 31: | 
|  | /* check minor opcode */ | 
|  | switch ((inst >> 1) & 0x3ff) { | 
|  | case 181:	/* stdux */ | 
|  | case 183:	/* stwux */ | 
|  | case 247:	/* stbux */ | 
|  | case 439:	/* sthux */ | 
|  | case 695:	/* stfsux */ | 
|  | case 759:	/* stfdux */ | 
|  | return 1; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * For 600- and 800-family processors, the error_code parameter is DSISR | 
|  | * for a data fault, SRR1 for an instruction fault. For 400-family processors | 
|  | * the error_code parameter is ESR for a data fault, 0 for an instruction | 
|  | * fault. | 
|  | * For 64-bit processors, the error_code parameter is | 
|  | *  - DSISR for a non-SLB data access fault, | 
|  | *  - SRR1 & 0x08000000 for a non-SLB instruction access fault | 
|  | *  - 0 any SLB fault. | 
|  | * | 
|  | * The return value is 0 if the fault was handled, or the signal | 
|  | * number if this is a kernel fault that can't be handled here. | 
|  | */ | 
|  | int __kprobes do_page_fault(struct pt_regs *regs, unsigned long address, | 
|  | unsigned long error_code) | 
|  | { | 
|  | struct vm_area_struct * vma; | 
|  | struct mm_struct *mm = current->mm; | 
|  | siginfo_t info; | 
|  | int code = SEGV_MAPERR; | 
|  | int is_write = 0, ret; | 
|  | int trap = TRAP(regs); | 
|  | int is_exec = trap == 0x400; | 
|  |  | 
|  | #if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE)) | 
|  | /* | 
|  | * Fortunately the bit assignments in SRR1 for an instruction | 
|  | * fault and DSISR for a data fault are mostly the same for the | 
|  | * bits we are interested in.  But there are some bits which | 
|  | * indicate errors in DSISR but can validly be set in SRR1. | 
|  | */ | 
|  | if (trap == 0x400) | 
|  | error_code &= 0x48200000; | 
|  | else | 
|  | is_write = error_code & DSISR_ISSTORE; | 
|  | #else | 
|  | is_write = error_code & ESR_DST; | 
|  | #endif /* CONFIG_4xx || CONFIG_BOOKE */ | 
|  |  | 
|  | if (notify_page_fault(regs)) | 
|  | return 0; | 
|  |  | 
|  | if (unlikely(debugger_fault_handler(regs))) | 
|  | return 0; | 
|  |  | 
|  | /* On a kernel SLB miss we can only check for a valid exception entry */ | 
|  | if (!user_mode(regs) && (address >= TASK_SIZE)) | 
|  | return SIGSEGV; | 
|  |  | 
|  | #if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE) || \ | 
|  | defined(CONFIG_PPC_BOOK3S_64)) | 
|  | if (error_code & DSISR_DABRMATCH) { | 
|  | /* DABR match */ | 
|  | do_dabr(regs, address, error_code); | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | if (in_atomic() || mm == NULL) { | 
|  | if (!user_mode(regs)) | 
|  | return SIGSEGV; | 
|  | /* in_atomic() in user mode is really bad, | 
|  | as is current->mm == NULL. */ | 
|  | printk(KERN_EMERG "Page fault in user mode with " | 
|  | "in_atomic() = %d mm = %p\n", in_atomic(), mm); | 
|  | printk(KERN_EMERG "NIP = %lx  MSR = %lx\n", | 
|  | regs->nip, regs->msr); | 
|  | die("Weird page fault", regs, SIGSEGV); | 
|  | } | 
|  |  | 
|  | perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, 0, regs, address); | 
|  |  | 
|  | /* When running in the kernel we expect faults to occur only to | 
|  | * addresses in user space.  All other faults represent errors in the | 
|  | * kernel and should generate an OOPS.  Unfortunately, in the case of an | 
|  | * erroneous fault occurring in a code path which already holds mmap_sem | 
|  | * we will deadlock attempting to validate the fault against the | 
|  | * address space.  Luckily the kernel only validly references user | 
|  | * space from well defined areas of code, which are listed in the | 
|  | * exceptions table. | 
|  | * | 
|  | * As the vast majority of faults will be valid we will only perform | 
|  | * the source reference check when there is a possibility of a deadlock. | 
|  | * Attempt to lock the address space, if we cannot we then validate the | 
|  | * source.  If this is invalid we can skip the address space check, | 
|  | * thus avoiding the deadlock. | 
|  | */ | 
|  | if (!down_read_trylock(&mm->mmap_sem)) { | 
|  | if (!user_mode(regs) && !search_exception_tables(regs->nip)) | 
|  | goto bad_area_nosemaphore; | 
|  |  | 
|  | down_read(&mm->mmap_sem); | 
|  | } | 
|  |  | 
|  | vma = find_vma(mm, address); | 
|  | if (!vma) | 
|  | goto bad_area; | 
|  | if (vma->vm_start <= address) | 
|  | goto good_area; | 
|  | if (!(vma->vm_flags & VM_GROWSDOWN)) | 
|  | goto bad_area; | 
|  |  | 
|  | /* | 
|  | * N.B. The POWER/Open ABI allows programs to access up to | 
|  | * 288 bytes below the stack pointer. | 
|  | * The kernel signal delivery code writes up to about 1.5kB | 
|  | * below the stack pointer (r1) before decrementing it. | 
|  | * The exec code can write slightly over 640kB to the stack | 
|  | * before setting the user r1.  Thus we allow the stack to | 
|  | * expand to 1MB without further checks. | 
|  | */ | 
|  | if (address + 0x100000 < vma->vm_end) { | 
|  | /* get user regs even if this fault is in kernel mode */ | 
|  | struct pt_regs *uregs = current->thread.regs; | 
|  | if (uregs == NULL) | 
|  | goto bad_area; | 
|  |  | 
|  | /* | 
|  | * A user-mode access to an address a long way below | 
|  | * the stack pointer is only valid if the instruction | 
|  | * is one which would update the stack pointer to the | 
|  | * address accessed if the instruction completed, | 
|  | * i.e. either stwu rs,n(r1) or stwux rs,r1,rb | 
|  | * (or the byte, halfword, float or double forms). | 
|  | * | 
|  | * If we don't check this then any write to the area | 
|  | * between the last mapped region and the stack will | 
|  | * expand the stack rather than segfaulting. | 
|  | */ | 
|  | if (address + 2048 < uregs->gpr[1] | 
|  | && (!user_mode(regs) || !store_updates_sp(regs))) | 
|  | goto bad_area; | 
|  | } | 
|  | if (expand_stack(vma, address)) | 
|  | goto bad_area; | 
|  |  | 
|  | good_area: | 
|  | code = SEGV_ACCERR; | 
|  | #if defined(CONFIG_6xx) | 
|  | if (error_code & 0x95700000) | 
|  | /* an error such as lwarx to I/O controller space, | 
|  | address matching DABR, eciwx, etc. */ | 
|  | goto bad_area; | 
|  | #endif /* CONFIG_6xx */ | 
|  | #if defined(CONFIG_8xx) | 
|  | /* 8xx sometimes need to load a invalid/non-present TLBs. | 
|  | * These must be invalidated separately as linux mm don't. | 
|  | */ | 
|  | if (error_code & 0x40000000) /* no translation? */ | 
|  | _tlbil_va(address, 0, 0, 0); | 
|  |  | 
|  | /* The MPC8xx seems to always set 0x80000000, which is | 
|  | * "undefined".  Of those that can be set, this is the only | 
|  | * one which seems bad. | 
|  | */ | 
|  | if (error_code & 0x10000000) | 
|  | /* Guarded storage error. */ | 
|  | goto bad_area; | 
|  | #endif /* CONFIG_8xx */ | 
|  |  | 
|  | if (is_exec) { | 
|  | #ifdef CONFIG_PPC_STD_MMU | 
|  | /* Protection fault on exec go straight to failure on | 
|  | * Hash based MMUs as they either don't support per-page | 
|  | * execute permission, or if they do, it's handled already | 
|  | * at the hash level. This test would probably have to | 
|  | * be removed if we change the way this works to make hash | 
|  | * processors use the same I/D cache coherency mechanism | 
|  | * as embedded. | 
|  | */ | 
|  | if (error_code & DSISR_PROTFAULT) | 
|  | goto bad_area; | 
|  | #endif /* CONFIG_PPC_STD_MMU */ | 
|  |  | 
|  | /* | 
|  | * Allow execution from readable areas if the MMU does not | 
|  | * provide separate controls over reading and executing. | 
|  | * | 
|  | * Note: That code used to not be enabled for 4xx/BookE. | 
|  | * It is now as I/D cache coherency for these is done at | 
|  | * set_pte_at() time and I see no reason why the test | 
|  | * below wouldn't be valid on those processors. This -may- | 
|  | * break programs compiled with a really old ABI though. | 
|  | */ | 
|  | if (!(vma->vm_flags & VM_EXEC) && | 
|  | (cpu_has_feature(CPU_FTR_NOEXECUTE) || | 
|  | !(vma->vm_flags & (VM_READ | VM_WRITE)))) | 
|  | goto bad_area; | 
|  | /* a write */ | 
|  | } else if (is_write) { | 
|  | if (!(vma->vm_flags & VM_WRITE)) | 
|  | goto bad_area; | 
|  | /* a read */ | 
|  | } else { | 
|  | /* protection fault */ | 
|  | if (error_code & 0x08000000) | 
|  | goto bad_area; | 
|  | if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))) | 
|  | goto bad_area; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If for any reason at all we couldn't handle the fault, | 
|  | * make sure we exit gracefully rather than endlessly redo | 
|  | * the fault. | 
|  | */ | 
|  | ret = handle_mm_fault(mm, vma, address, is_write ? FAULT_FLAG_WRITE : 0); | 
|  | if (unlikely(ret & VM_FAULT_ERROR)) { | 
|  | if (ret & VM_FAULT_OOM) | 
|  | goto out_of_memory; | 
|  | else if (ret & VM_FAULT_SIGBUS) | 
|  | goto do_sigbus; | 
|  | BUG(); | 
|  | } | 
|  | if (ret & VM_FAULT_MAJOR) { | 
|  | current->maj_flt++; | 
|  | perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, 0, | 
|  | regs, address); | 
|  | #ifdef CONFIG_PPC_SMLPAR | 
|  | if (firmware_has_feature(FW_FEATURE_CMO)) { | 
|  | preempt_disable(); | 
|  | get_lppaca()->page_ins += (1 << PAGE_FACTOR); | 
|  | preempt_enable(); | 
|  | } | 
|  | #endif | 
|  | } else { | 
|  | current->min_flt++; | 
|  | perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, 0, | 
|  | regs, address); | 
|  | } | 
|  | up_read(&mm->mmap_sem); | 
|  | return 0; | 
|  |  | 
|  | bad_area: | 
|  | up_read(&mm->mmap_sem); | 
|  |  | 
|  | bad_area_nosemaphore: | 
|  | /* User mode accesses cause a SIGSEGV */ | 
|  | if (user_mode(regs)) { | 
|  | _exception(SIGSEGV, regs, code, address); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (is_exec && (error_code & DSISR_PROTFAULT)) | 
|  | printk_ratelimited(KERN_CRIT "kernel tried to execute NX-protected" | 
|  | " page (%lx) - exploit attempt? (uid: %d)\n", | 
|  | address, current_uid()); | 
|  |  | 
|  | return SIGSEGV; | 
|  |  | 
|  | /* | 
|  | * We ran out of memory, or some other thing happened to us that made | 
|  | * us unable to handle the page fault gracefully. | 
|  | */ | 
|  | out_of_memory: | 
|  | up_read(&mm->mmap_sem); | 
|  | if (!user_mode(regs)) | 
|  | return SIGKILL; | 
|  | pagefault_out_of_memory(); | 
|  | return 0; | 
|  |  | 
|  | do_sigbus: | 
|  | up_read(&mm->mmap_sem); | 
|  | if (user_mode(regs)) { | 
|  | info.si_signo = SIGBUS; | 
|  | info.si_errno = 0; | 
|  | info.si_code = BUS_ADRERR; | 
|  | info.si_addr = (void __user *)address; | 
|  | force_sig_info(SIGBUS, &info, current); | 
|  | return 0; | 
|  | } | 
|  | return SIGBUS; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * bad_page_fault is called when we have a bad access from the kernel. | 
|  | * It is called from the DSI and ISI handlers in head.S and from some | 
|  | * of the procedures in traps.c. | 
|  | */ | 
|  | void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig) | 
|  | { | 
|  | const struct exception_table_entry *entry; | 
|  | unsigned long *stackend; | 
|  |  | 
|  | /* Are we prepared to handle this fault?  */ | 
|  | if ((entry = search_exception_tables(regs->nip)) != NULL) { | 
|  | regs->nip = entry->fixup; | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* kernel has accessed a bad area */ | 
|  |  | 
|  | switch (regs->trap) { | 
|  | case 0x300: | 
|  | case 0x380: | 
|  | printk(KERN_ALERT "Unable to handle kernel paging request for " | 
|  | "data at address 0x%08lx\n", regs->dar); | 
|  | break; | 
|  | case 0x400: | 
|  | case 0x480: | 
|  | printk(KERN_ALERT "Unable to handle kernel paging request for " | 
|  | "instruction fetch\n"); | 
|  | break; | 
|  | default: | 
|  | printk(KERN_ALERT "Unable to handle kernel paging request for " | 
|  | "unknown fault\n"); | 
|  | break; | 
|  | } | 
|  | printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n", | 
|  | regs->nip); | 
|  |  | 
|  | stackend = end_of_stack(current); | 
|  | if (current != &init_task && *stackend != STACK_END_MAGIC) | 
|  | printk(KERN_ALERT "Thread overran stack, or stack corrupted\n"); | 
|  |  | 
|  | die("Kernel access of bad area", regs, sig); | 
|  | } |