|  | /* | 
|  | * Copyright (c) International Business Machines Corp., 2006 | 
|  | * Copyright (c) Nokia Corporation, 2006, 2007 | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License as published by | 
|  | * the Free Software Foundation; either version 2 of the License, or | 
|  | * (at your option) any later version. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See | 
|  | * the GNU General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * along with this program; if not, write to the Free Software | 
|  | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA | 
|  | * | 
|  | * Author: Artem Bityutskiy (Битюцкий Артём) | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * UBI input/output sub-system. | 
|  | * | 
|  | * This sub-system provides a uniform way to work with all kinds of the | 
|  | * underlying MTD devices. It also implements handy functions for reading and | 
|  | * writing UBI headers. | 
|  | * | 
|  | * We are trying to have a paranoid mindset and not to trust to what we read | 
|  | * from the flash media in order to be more secure and robust. So this | 
|  | * sub-system validates every single header it reads from the flash media. | 
|  | * | 
|  | * Some words about how the eraseblock headers are stored. | 
|  | * | 
|  | * The erase counter header is always stored at offset zero. By default, the | 
|  | * VID header is stored after the EC header at the closest aligned offset | 
|  | * (i.e. aligned to the minimum I/O unit size). Data starts next to the VID | 
|  | * header at the closest aligned offset. But this default layout may be | 
|  | * changed. For example, for different reasons (e.g., optimization) UBI may be | 
|  | * asked to put the VID header at further offset, and even at an unaligned | 
|  | * offset. Of course, if the offset of the VID header is unaligned, UBI adds | 
|  | * proper padding in front of it. Data offset may also be changed but it has to | 
|  | * be aligned. | 
|  | * | 
|  | * About minimal I/O units. In general, UBI assumes flash device model where | 
|  | * there is only one minimal I/O unit size. E.g., in case of NOR flash it is 1, | 
|  | * in case of NAND flash it is a NAND page, etc. This is reported by MTD in the | 
|  | * @ubi->mtd->writesize field. But as an exception, UBI admits of using another | 
|  | * (smaller) minimal I/O unit size for EC and VID headers to make it possible | 
|  | * to do different optimizations. | 
|  | * | 
|  | * This is extremely useful in case of NAND flashes which admit of several | 
|  | * write operations to one NAND page. In this case UBI can fit EC and VID | 
|  | * headers at one NAND page. Thus, UBI may use "sub-page" size as the minimal | 
|  | * I/O unit for the headers (the @ubi->hdrs_min_io_size field). But it still | 
|  | * reports NAND page size (@ubi->min_io_size) as a minimal I/O unit for the UBI | 
|  | * users. | 
|  | * | 
|  | * Example: some Samsung NANDs with 2KiB pages allow 4x 512-byte writes, so | 
|  | * although the minimal I/O unit is 2K, UBI uses 512 bytes for EC and VID | 
|  | * headers. | 
|  | * | 
|  | * Q: why not just to treat sub-page as a minimal I/O unit of this flash | 
|  | * device, e.g., make @ubi->min_io_size = 512 in the example above? | 
|  | * | 
|  | * A: because when writing a sub-page, MTD still writes a full 2K page but the | 
|  | * bytes which are not relevant to the sub-page are 0xFF. So, basically, | 
|  | * writing 4x512 sub-pages is 4 times slower than writing one 2KiB NAND page. | 
|  | * Thus, we prefer to use sub-pages only for EC and VID headers. | 
|  | * | 
|  | * As it was noted above, the VID header may start at a non-aligned offset. | 
|  | * For example, in case of a 2KiB page NAND flash with a 512 bytes sub-page, | 
|  | * the VID header may reside at offset 1984 which is the last 64 bytes of the | 
|  | * last sub-page (EC header is always at offset zero). This causes some | 
|  | * difficulties when reading and writing VID headers. | 
|  | * | 
|  | * Suppose we have a 64-byte buffer and we read a VID header at it. We change | 
|  | * the data and want to write this VID header out. As we can only write in | 
|  | * 512-byte chunks, we have to allocate one more buffer and copy our VID header | 
|  | * to offset 448 of this buffer. | 
|  | * | 
|  | * The I/O sub-system does the following trick in order to avoid this extra | 
|  | * copy. It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID | 
|  | * header and returns a pointer to offset @ubi->vid_hdr_shift of this buffer. | 
|  | * When the VID header is being written out, it shifts the VID header pointer | 
|  | * back and writes the whole sub-page. | 
|  | */ | 
|  |  | 
|  | #include <linux/crc32.h> | 
|  | #include <linux/err.h> | 
|  | #include <linux/slab.h> | 
|  | #include "ubi.h" | 
|  |  | 
|  | #ifdef CONFIG_MTD_UBI_DEBUG | 
|  | static int paranoid_check_not_bad(const struct ubi_device *ubi, int pnum); | 
|  | static int paranoid_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum); | 
|  | static int paranoid_check_ec_hdr(const struct ubi_device *ubi, int pnum, | 
|  | const struct ubi_ec_hdr *ec_hdr); | 
|  | static int paranoid_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum); | 
|  | static int paranoid_check_vid_hdr(const struct ubi_device *ubi, int pnum, | 
|  | const struct ubi_vid_hdr *vid_hdr); | 
|  | #else | 
|  | #define paranoid_check_not_bad(ubi, pnum) 0 | 
|  | #define paranoid_check_peb_ec_hdr(ubi, pnum)  0 | 
|  | #define paranoid_check_ec_hdr(ubi, pnum, ec_hdr)  0 | 
|  | #define paranoid_check_peb_vid_hdr(ubi, pnum) 0 | 
|  | #define paranoid_check_vid_hdr(ubi, pnum, vid_hdr) 0 | 
|  | #endif | 
|  |  | 
|  | /** | 
|  | * ubi_io_read - read data from a physical eraseblock. | 
|  | * @ubi: UBI device description object | 
|  | * @buf: buffer where to store the read data | 
|  | * @pnum: physical eraseblock number to read from | 
|  | * @offset: offset within the physical eraseblock from where to read | 
|  | * @len: how many bytes to read | 
|  | * | 
|  | * This function reads data from offset @offset of physical eraseblock @pnum | 
|  | * and stores the read data in the @buf buffer. The following return codes are | 
|  | * possible: | 
|  | * | 
|  | * o %0 if all the requested data were successfully read; | 
|  | * o %UBI_IO_BITFLIPS if all the requested data were successfully read, but | 
|  | *   correctable bit-flips were detected; this is harmless but may indicate | 
|  | *   that this eraseblock may become bad soon (but do not have to); | 
|  | * o %-EBADMSG if the MTD subsystem reported about data integrity problems, for | 
|  | *   example it can be an ECC error in case of NAND; this most probably means | 
|  | *   that the data is corrupted; | 
|  | * o %-EIO if some I/O error occurred; | 
|  | * o other negative error codes in case of other errors. | 
|  | */ | 
|  | int ubi_io_read(const struct ubi_device *ubi, void *buf, int pnum, int offset, | 
|  | int len) | 
|  | { | 
|  | int err, retries = 0; | 
|  | size_t read; | 
|  | loff_t addr; | 
|  |  | 
|  | dbg_io("read %d bytes from PEB %d:%d", len, pnum, offset); | 
|  |  | 
|  | ubi_assert(pnum >= 0 && pnum < ubi->peb_count); | 
|  | ubi_assert(offset >= 0 && offset + len <= ubi->peb_size); | 
|  | ubi_assert(len > 0); | 
|  |  | 
|  | err = paranoid_check_not_bad(ubi, pnum); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | /* | 
|  | * Deliberately corrupt the buffer to improve robustness. Indeed, if we | 
|  | * do not do this, the following may happen: | 
|  | * 1. The buffer contains data from previous operation, e.g., read from | 
|  | *    another PEB previously. The data looks like expected, e.g., if we | 
|  | *    just do not read anything and return - the caller would not | 
|  | *    notice this. E.g., if we are reading a VID header, the buffer may | 
|  | *    contain a valid VID header from another PEB. | 
|  | * 2. The driver is buggy and returns us success or -EBADMSG or | 
|  | *    -EUCLEAN, but it does not actually put any data to the buffer. | 
|  | * | 
|  | * This may confuse UBI or upper layers - they may think the buffer | 
|  | * contains valid data while in fact it is just old data. This is | 
|  | * especially possible because UBI (and UBIFS) relies on CRC, and | 
|  | * treats data as correct even in case of ECC errors if the CRC is | 
|  | * correct. | 
|  | * | 
|  | * Try to prevent this situation by changing the first byte of the | 
|  | * buffer. | 
|  | */ | 
|  | *((uint8_t *)buf) ^= 0xFF; | 
|  |  | 
|  | addr = (loff_t)pnum * ubi->peb_size + offset; | 
|  | retry: | 
|  | err = ubi->mtd->read(ubi->mtd, addr, len, &read, buf); | 
|  | if (err) { | 
|  | const char *errstr = (err == -EBADMSG) ? " (ECC error)" : ""; | 
|  |  | 
|  | if (err == -EUCLEAN) { | 
|  | /* | 
|  | * -EUCLEAN is reported if there was a bit-flip which | 
|  | * was corrected, so this is harmless. | 
|  | * | 
|  | * We do not report about it here unless debugging is | 
|  | * enabled. A corresponding message will be printed | 
|  | * later, when it is has been scrubbed. | 
|  | */ | 
|  | dbg_msg("fixable bit-flip detected at PEB %d", pnum); | 
|  | ubi_assert(len == read); | 
|  | return UBI_IO_BITFLIPS; | 
|  | } | 
|  |  | 
|  | if (retries++ < UBI_IO_RETRIES) { | 
|  | dbg_io("error %d%s while reading %d bytes from PEB " | 
|  | "%d:%d, read only %zd bytes, retry", | 
|  | err, errstr, len, pnum, offset, read); | 
|  | yield(); | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | ubi_err("error %d%s while reading %d bytes from PEB %d:%d, " | 
|  | "read %zd bytes", err, errstr, len, pnum, offset, read); | 
|  | ubi_dbg_dump_stack(); | 
|  |  | 
|  | /* | 
|  | * The driver should never return -EBADMSG if it failed to read | 
|  | * all the requested data. But some buggy drivers might do | 
|  | * this, so we change it to -EIO. | 
|  | */ | 
|  | if (read != len && err == -EBADMSG) { | 
|  | ubi_assert(0); | 
|  | err = -EIO; | 
|  | } | 
|  | } else { | 
|  | ubi_assert(len == read); | 
|  |  | 
|  | if (ubi_dbg_is_bitflip()) { | 
|  | dbg_gen("bit-flip (emulated)"); | 
|  | err = UBI_IO_BITFLIPS; | 
|  | } | 
|  | } | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ubi_io_write - write data to a physical eraseblock. | 
|  | * @ubi: UBI device description object | 
|  | * @buf: buffer with the data to write | 
|  | * @pnum: physical eraseblock number to write to | 
|  | * @offset: offset within the physical eraseblock where to write | 
|  | * @len: how many bytes to write | 
|  | * | 
|  | * This function writes @len bytes of data from buffer @buf to offset @offset | 
|  | * of physical eraseblock @pnum. If all the data were successfully written, | 
|  | * zero is returned. If an error occurred, this function returns a negative | 
|  | * error code. If %-EIO is returned, the physical eraseblock most probably went | 
|  | * bad. | 
|  | * | 
|  | * Note, in case of an error, it is possible that something was still written | 
|  | * to the flash media, but may be some garbage. | 
|  | */ | 
|  | int ubi_io_write(struct ubi_device *ubi, const void *buf, int pnum, int offset, | 
|  | int len) | 
|  | { | 
|  | int err; | 
|  | size_t written; | 
|  | loff_t addr; | 
|  |  | 
|  | dbg_io("write %d bytes to PEB %d:%d", len, pnum, offset); | 
|  |  | 
|  | ubi_assert(pnum >= 0 && pnum < ubi->peb_count); | 
|  | ubi_assert(offset >= 0 && offset + len <= ubi->peb_size); | 
|  | ubi_assert(offset % ubi->hdrs_min_io_size == 0); | 
|  | ubi_assert(len > 0 && len % ubi->hdrs_min_io_size == 0); | 
|  |  | 
|  | if (ubi->ro_mode) { | 
|  | ubi_err("read-only mode"); | 
|  | return -EROFS; | 
|  | } | 
|  |  | 
|  | /* The below has to be compiled out if paranoid checks are disabled */ | 
|  |  | 
|  | err = paranoid_check_not_bad(ubi, pnum); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | /* The area we are writing to has to contain all 0xFF bytes */ | 
|  | err = ubi_dbg_check_all_ff(ubi, pnum, offset, len); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | if (offset >= ubi->leb_start) { | 
|  | /* | 
|  | * We write to the data area of the physical eraseblock. Make | 
|  | * sure it has valid EC and VID headers. | 
|  | */ | 
|  | err = paranoid_check_peb_ec_hdr(ubi, pnum); | 
|  | if (err) | 
|  | return err; | 
|  | err = paranoid_check_peb_vid_hdr(ubi, pnum); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  |  | 
|  | if (ubi_dbg_is_write_failure()) { | 
|  | dbg_err("cannot write %d bytes to PEB %d:%d " | 
|  | "(emulated)", len, pnum, offset); | 
|  | ubi_dbg_dump_stack(); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | addr = (loff_t)pnum * ubi->peb_size + offset; | 
|  | err = ubi->mtd->write(ubi->mtd, addr, len, &written, buf); | 
|  | if (err) { | 
|  | ubi_err("error %d while writing %d bytes to PEB %d:%d, written " | 
|  | "%zd bytes", err, len, pnum, offset, written); | 
|  | ubi_dbg_dump_stack(); | 
|  | ubi_dbg_dump_flash(ubi, pnum, offset, len); | 
|  | } else | 
|  | ubi_assert(written == len); | 
|  |  | 
|  | if (!err) { | 
|  | err = ubi_dbg_check_write(ubi, buf, pnum, offset, len); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | /* | 
|  | * Since we always write sequentially, the rest of the PEB has | 
|  | * to contain only 0xFF bytes. | 
|  | */ | 
|  | offset += len; | 
|  | len = ubi->peb_size - offset; | 
|  | if (len) | 
|  | err = ubi_dbg_check_all_ff(ubi, pnum, offset, len); | 
|  | } | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * erase_callback - MTD erasure call-back. | 
|  | * @ei: MTD erase information object. | 
|  | * | 
|  | * Note, even though MTD erase interface is asynchronous, all the current | 
|  | * implementations are synchronous anyway. | 
|  | */ | 
|  | static void erase_callback(struct erase_info *ei) | 
|  | { | 
|  | wake_up_interruptible((wait_queue_head_t *)ei->priv); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * do_sync_erase - synchronously erase a physical eraseblock. | 
|  | * @ubi: UBI device description object | 
|  | * @pnum: the physical eraseblock number to erase | 
|  | * | 
|  | * This function synchronously erases physical eraseblock @pnum and returns | 
|  | * zero in case of success and a negative error code in case of failure. If | 
|  | * %-EIO is returned, the physical eraseblock most probably went bad. | 
|  | */ | 
|  | static int do_sync_erase(struct ubi_device *ubi, int pnum) | 
|  | { | 
|  | int err, retries = 0; | 
|  | struct erase_info ei; | 
|  | wait_queue_head_t wq; | 
|  |  | 
|  | dbg_io("erase PEB %d", pnum); | 
|  | ubi_assert(pnum >= 0 && pnum < ubi->peb_count); | 
|  |  | 
|  | if (ubi->ro_mode) { | 
|  | ubi_err("read-only mode"); | 
|  | return -EROFS; | 
|  | } | 
|  |  | 
|  | retry: | 
|  | init_waitqueue_head(&wq); | 
|  | memset(&ei, 0, sizeof(struct erase_info)); | 
|  |  | 
|  | ei.mtd      = ubi->mtd; | 
|  | ei.addr     = (loff_t)pnum * ubi->peb_size; | 
|  | ei.len      = ubi->peb_size; | 
|  | ei.callback = erase_callback; | 
|  | ei.priv     = (unsigned long)&wq; | 
|  |  | 
|  | err = ubi->mtd->erase(ubi->mtd, &ei); | 
|  | if (err) { | 
|  | if (retries++ < UBI_IO_RETRIES) { | 
|  | dbg_io("error %d while erasing PEB %d, retry", | 
|  | err, pnum); | 
|  | yield(); | 
|  | goto retry; | 
|  | } | 
|  | ubi_err("cannot erase PEB %d, error %d", pnum, err); | 
|  | ubi_dbg_dump_stack(); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | err = wait_event_interruptible(wq, ei.state == MTD_ERASE_DONE || | 
|  | ei.state == MTD_ERASE_FAILED); | 
|  | if (err) { | 
|  | ubi_err("interrupted PEB %d erasure", pnum); | 
|  | return -EINTR; | 
|  | } | 
|  |  | 
|  | if (ei.state == MTD_ERASE_FAILED) { | 
|  | if (retries++ < UBI_IO_RETRIES) { | 
|  | dbg_io("error while erasing PEB %d, retry", pnum); | 
|  | yield(); | 
|  | goto retry; | 
|  | } | 
|  | ubi_err("cannot erase PEB %d", pnum); | 
|  | ubi_dbg_dump_stack(); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | err = ubi_dbg_check_all_ff(ubi, pnum, 0, ubi->peb_size); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | if (ubi_dbg_is_erase_failure()) { | 
|  | dbg_err("cannot erase PEB %d (emulated)", pnum); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Patterns to write to a physical eraseblock when torturing it */ | 
|  | static uint8_t patterns[] = {0xa5, 0x5a, 0x0}; | 
|  |  | 
|  | /** | 
|  | * torture_peb - test a supposedly bad physical eraseblock. | 
|  | * @ubi: UBI device description object | 
|  | * @pnum: the physical eraseblock number to test | 
|  | * | 
|  | * This function returns %-EIO if the physical eraseblock did not pass the | 
|  | * test, a positive number of erase operations done if the test was | 
|  | * successfully passed, and other negative error codes in case of other errors. | 
|  | */ | 
|  | static int torture_peb(struct ubi_device *ubi, int pnum) | 
|  | { | 
|  | int err, i, patt_count; | 
|  |  | 
|  | ubi_msg("run torture test for PEB %d", pnum); | 
|  | patt_count = ARRAY_SIZE(patterns); | 
|  | ubi_assert(patt_count > 0); | 
|  |  | 
|  | mutex_lock(&ubi->buf_mutex); | 
|  | for (i = 0; i < patt_count; i++) { | 
|  | err = do_sync_erase(ubi, pnum); | 
|  | if (err) | 
|  | goto out; | 
|  |  | 
|  | /* Make sure the PEB contains only 0xFF bytes */ | 
|  | err = ubi_io_read(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size); | 
|  | if (err) | 
|  | goto out; | 
|  |  | 
|  | err = ubi_check_pattern(ubi->peb_buf1, 0xFF, ubi->peb_size); | 
|  | if (err == 0) { | 
|  | ubi_err("erased PEB %d, but a non-0xFF byte found", | 
|  | pnum); | 
|  | err = -EIO; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* Write a pattern and check it */ | 
|  | memset(ubi->peb_buf1, patterns[i], ubi->peb_size); | 
|  | err = ubi_io_write(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size); | 
|  | if (err) | 
|  | goto out; | 
|  |  | 
|  | memset(ubi->peb_buf1, ~patterns[i], ubi->peb_size); | 
|  | err = ubi_io_read(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size); | 
|  | if (err) | 
|  | goto out; | 
|  |  | 
|  | err = ubi_check_pattern(ubi->peb_buf1, patterns[i], | 
|  | ubi->peb_size); | 
|  | if (err == 0) { | 
|  | ubi_err("pattern %x checking failed for PEB %d", | 
|  | patterns[i], pnum); | 
|  | err = -EIO; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | err = patt_count; | 
|  | ubi_msg("PEB %d passed torture test, do not mark it as bad", pnum); | 
|  |  | 
|  | out: | 
|  | mutex_unlock(&ubi->buf_mutex); | 
|  | if (err == UBI_IO_BITFLIPS || err == -EBADMSG) { | 
|  | /* | 
|  | * If a bit-flip or data integrity error was detected, the test | 
|  | * has not passed because it happened on a freshly erased | 
|  | * physical eraseblock which means something is wrong with it. | 
|  | */ | 
|  | ubi_err("read problems on freshly erased PEB %d, must be bad", | 
|  | pnum); | 
|  | err = -EIO; | 
|  | } | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * nor_erase_prepare - prepare a NOR flash PEB for erasure. | 
|  | * @ubi: UBI device description object | 
|  | * @pnum: physical eraseblock number to prepare | 
|  | * | 
|  | * NOR flash, or at least some of them, have peculiar embedded PEB erasure | 
|  | * algorithm: the PEB is first filled with zeroes, then it is erased. And | 
|  | * filling with zeroes starts from the end of the PEB. This was observed with | 
|  | * Spansion S29GL512N NOR flash. | 
|  | * | 
|  | * This means that in case of a power cut we may end up with intact data at the | 
|  | * beginning of the PEB, and all zeroes at the end of PEB. In other words, the | 
|  | * EC and VID headers are OK, but a large chunk of data at the end of PEB is | 
|  | * zeroed. This makes UBI mistakenly treat this PEB as used and associate it | 
|  | * with an LEB, which leads to subsequent failures (e.g., UBIFS fails). | 
|  | * | 
|  | * This function is called before erasing NOR PEBs and it zeroes out EC and VID | 
|  | * magic numbers in order to invalidate them and prevent the failures. Returns | 
|  | * zero in case of success and a negative error code in case of failure. | 
|  | */ | 
|  | static int nor_erase_prepare(struct ubi_device *ubi, int pnum) | 
|  | { | 
|  | int err, err1; | 
|  | size_t written; | 
|  | loff_t addr; | 
|  | uint32_t data = 0; | 
|  | /* | 
|  | * Note, we cannot generally define VID header buffers on stack, | 
|  | * because of the way we deal with these buffers (see the header | 
|  | * comment in this file). But we know this is a NOR-specific piece of | 
|  | * code, so we can do this. But yes, this is error-prone and we should | 
|  | * (pre-)allocate VID header buffer instead. | 
|  | */ | 
|  | struct ubi_vid_hdr vid_hdr; | 
|  |  | 
|  | /* | 
|  | * It is important to first invalidate the EC header, and then the VID | 
|  | * header. Otherwise a power cut may lead to valid EC header and | 
|  | * invalid VID header, in which case UBI will treat this PEB as | 
|  | * corrupted and will try to preserve it, and print scary warnings (see | 
|  | * the header comment in scan.c for more information). | 
|  | */ | 
|  | addr = (loff_t)pnum * ubi->peb_size; | 
|  | err = ubi->mtd->write(ubi->mtd, addr, 4, &written, (void *)&data); | 
|  | if (!err) { | 
|  | addr += ubi->vid_hdr_aloffset; | 
|  | err = ubi->mtd->write(ubi->mtd, addr, 4, &written, | 
|  | (void *)&data); | 
|  | if (!err) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We failed to write to the media. This was observed with Spansion | 
|  | * S29GL512N NOR flash. Most probably the previously eraseblock erasure | 
|  | * was interrupted at a very inappropriate moment, so it became | 
|  | * unwritable. In this case we probably anyway have garbage in this | 
|  | * PEB. | 
|  | */ | 
|  | err1 = ubi_io_read_vid_hdr(ubi, pnum, &vid_hdr, 0); | 
|  | if (err1 == UBI_IO_BAD_HDR_EBADMSG || err1 == UBI_IO_BAD_HDR || | 
|  | err1 == UBI_IO_FF) { | 
|  | struct ubi_ec_hdr ec_hdr; | 
|  |  | 
|  | err1 = ubi_io_read_ec_hdr(ubi, pnum, &ec_hdr, 0); | 
|  | if (err1 == UBI_IO_BAD_HDR_EBADMSG || err1 == UBI_IO_BAD_HDR || | 
|  | err1 == UBI_IO_FF) | 
|  | /* | 
|  | * Both VID and EC headers are corrupted, so we can | 
|  | * safely erase this PEB and not afraid that it will be | 
|  | * treated as a valid PEB in case of an unclean reboot. | 
|  | */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The PEB contains a valid VID header, but we cannot invalidate it. | 
|  | * Supposedly the flash media or the driver is screwed up, so return an | 
|  | * error. | 
|  | */ | 
|  | ubi_err("cannot invalidate PEB %d, write returned %d read returned %d", | 
|  | pnum, err, err1); | 
|  | ubi_dbg_dump_flash(ubi, pnum, 0, ubi->peb_size); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ubi_io_sync_erase - synchronously erase a physical eraseblock. | 
|  | * @ubi: UBI device description object | 
|  | * @pnum: physical eraseblock number to erase | 
|  | * @torture: if this physical eraseblock has to be tortured | 
|  | * | 
|  | * This function synchronously erases physical eraseblock @pnum. If @torture | 
|  | * flag is not zero, the physical eraseblock is checked by means of writing | 
|  | * different patterns to it and reading them back. If the torturing is enabled, | 
|  | * the physical eraseblock is erased more than once. | 
|  | * | 
|  | * This function returns the number of erasures made in case of success, %-EIO | 
|  | * if the erasure failed or the torturing test failed, and other negative error | 
|  | * codes in case of other errors. Note, %-EIO means that the physical | 
|  | * eraseblock is bad. | 
|  | */ | 
|  | int ubi_io_sync_erase(struct ubi_device *ubi, int pnum, int torture) | 
|  | { | 
|  | int err, ret = 0; | 
|  |  | 
|  | ubi_assert(pnum >= 0 && pnum < ubi->peb_count); | 
|  |  | 
|  | err = paranoid_check_not_bad(ubi, pnum); | 
|  | if (err != 0) | 
|  | return err; | 
|  |  | 
|  | if (ubi->ro_mode) { | 
|  | ubi_err("read-only mode"); | 
|  | return -EROFS; | 
|  | } | 
|  |  | 
|  | if (ubi->nor_flash) { | 
|  | err = nor_erase_prepare(ubi, pnum); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  |  | 
|  | if (torture) { | 
|  | ret = torture_peb(ubi, pnum); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | err = do_sync_erase(ubi, pnum); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | return ret + 1; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ubi_io_is_bad - check if a physical eraseblock is bad. | 
|  | * @ubi: UBI device description object | 
|  | * @pnum: the physical eraseblock number to check | 
|  | * | 
|  | * This function returns a positive number if the physical eraseblock is bad, | 
|  | * zero if not, and a negative error code if an error occurred. | 
|  | */ | 
|  | int ubi_io_is_bad(const struct ubi_device *ubi, int pnum) | 
|  | { | 
|  | struct mtd_info *mtd = ubi->mtd; | 
|  |  | 
|  | ubi_assert(pnum >= 0 && pnum < ubi->peb_count); | 
|  |  | 
|  | if (ubi->bad_allowed) { | 
|  | int ret; | 
|  |  | 
|  | ret = mtd->block_isbad(mtd, (loff_t)pnum * ubi->peb_size); | 
|  | if (ret < 0) | 
|  | ubi_err("error %d while checking if PEB %d is bad", | 
|  | ret, pnum); | 
|  | else if (ret) | 
|  | dbg_io("PEB %d is bad", pnum); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ubi_io_mark_bad - mark a physical eraseblock as bad. | 
|  | * @ubi: UBI device description object | 
|  | * @pnum: the physical eraseblock number to mark | 
|  | * | 
|  | * This function returns zero in case of success and a negative error code in | 
|  | * case of failure. | 
|  | */ | 
|  | int ubi_io_mark_bad(const struct ubi_device *ubi, int pnum) | 
|  | { | 
|  | int err; | 
|  | struct mtd_info *mtd = ubi->mtd; | 
|  |  | 
|  | ubi_assert(pnum >= 0 && pnum < ubi->peb_count); | 
|  |  | 
|  | if (ubi->ro_mode) { | 
|  | ubi_err("read-only mode"); | 
|  | return -EROFS; | 
|  | } | 
|  |  | 
|  | if (!ubi->bad_allowed) | 
|  | return 0; | 
|  |  | 
|  | err = mtd->block_markbad(mtd, (loff_t)pnum * ubi->peb_size); | 
|  | if (err) | 
|  | ubi_err("cannot mark PEB %d bad, error %d", pnum, err); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * validate_ec_hdr - validate an erase counter header. | 
|  | * @ubi: UBI device description object | 
|  | * @ec_hdr: the erase counter header to check | 
|  | * | 
|  | * This function returns zero if the erase counter header is OK, and %1 if | 
|  | * not. | 
|  | */ | 
|  | static int validate_ec_hdr(const struct ubi_device *ubi, | 
|  | const struct ubi_ec_hdr *ec_hdr) | 
|  | { | 
|  | long long ec; | 
|  | int vid_hdr_offset, leb_start; | 
|  |  | 
|  | ec = be64_to_cpu(ec_hdr->ec); | 
|  | vid_hdr_offset = be32_to_cpu(ec_hdr->vid_hdr_offset); | 
|  | leb_start = be32_to_cpu(ec_hdr->data_offset); | 
|  |  | 
|  | if (ec_hdr->version != UBI_VERSION) { | 
|  | ubi_err("node with incompatible UBI version found: " | 
|  | "this UBI version is %d, image version is %d", | 
|  | UBI_VERSION, (int)ec_hdr->version); | 
|  | goto bad; | 
|  | } | 
|  |  | 
|  | if (vid_hdr_offset != ubi->vid_hdr_offset) { | 
|  | ubi_err("bad VID header offset %d, expected %d", | 
|  | vid_hdr_offset, ubi->vid_hdr_offset); | 
|  | goto bad; | 
|  | } | 
|  |  | 
|  | if (leb_start != ubi->leb_start) { | 
|  | ubi_err("bad data offset %d, expected %d", | 
|  | leb_start, ubi->leb_start); | 
|  | goto bad; | 
|  | } | 
|  |  | 
|  | if (ec < 0 || ec > UBI_MAX_ERASECOUNTER) { | 
|  | ubi_err("bad erase counter %lld", ec); | 
|  | goto bad; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | bad: | 
|  | ubi_err("bad EC header"); | 
|  | ubi_dbg_dump_ec_hdr(ec_hdr); | 
|  | ubi_dbg_dump_stack(); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ubi_io_read_ec_hdr - read and check an erase counter header. | 
|  | * @ubi: UBI device description object | 
|  | * @pnum: physical eraseblock to read from | 
|  | * @ec_hdr: a &struct ubi_ec_hdr object where to store the read erase counter | 
|  | * header | 
|  | * @verbose: be verbose if the header is corrupted or was not found | 
|  | * | 
|  | * This function reads erase counter header from physical eraseblock @pnum and | 
|  | * stores it in @ec_hdr. This function also checks CRC checksum of the read | 
|  | * erase counter header. The following codes may be returned: | 
|  | * | 
|  | * o %0 if the CRC checksum is correct and the header was successfully read; | 
|  | * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected | 
|  | *   and corrected by the flash driver; this is harmless but may indicate that | 
|  | *   this eraseblock may become bad soon (but may be not); | 
|  | * o %UBI_IO_BAD_HDR if the erase counter header is corrupted (a CRC error); | 
|  | * o %UBI_IO_BAD_HDR_EBADMSG is the same as %UBI_IO_BAD_HDR, but there also was | 
|  | *   a data integrity error (uncorrectable ECC error in case of NAND); | 
|  | * o %UBI_IO_FF if only 0xFF bytes were read (the PEB is supposedly empty) | 
|  | * o a negative error code in case of failure. | 
|  | */ | 
|  | int ubi_io_read_ec_hdr(struct ubi_device *ubi, int pnum, | 
|  | struct ubi_ec_hdr *ec_hdr, int verbose) | 
|  | { | 
|  | int err, read_err; | 
|  | uint32_t crc, magic, hdr_crc; | 
|  |  | 
|  | dbg_io("read EC header from PEB %d", pnum); | 
|  | ubi_assert(pnum >= 0 && pnum < ubi->peb_count); | 
|  |  | 
|  | read_err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE); | 
|  | if (read_err) { | 
|  | if (read_err != UBI_IO_BITFLIPS && read_err != -EBADMSG) | 
|  | return read_err; | 
|  |  | 
|  | /* | 
|  | * We read all the data, but either a correctable bit-flip | 
|  | * occurred, or MTD reported a data integrity error | 
|  | * (uncorrectable ECC error in case of NAND). The former is | 
|  | * harmless, the later may mean that the read data is | 
|  | * corrupted. But we have a CRC check-sum and we will detect | 
|  | * this. If the EC header is still OK, we just report this as | 
|  | * there was a bit-flip, to force scrubbing. | 
|  | */ | 
|  | } | 
|  |  | 
|  | magic = be32_to_cpu(ec_hdr->magic); | 
|  | if (magic != UBI_EC_HDR_MAGIC) { | 
|  | if (read_err == -EBADMSG) | 
|  | return UBI_IO_BAD_HDR_EBADMSG; | 
|  |  | 
|  | /* | 
|  | * The magic field is wrong. Let's check if we have read all | 
|  | * 0xFF. If yes, this physical eraseblock is assumed to be | 
|  | * empty. | 
|  | */ | 
|  | if (ubi_check_pattern(ec_hdr, 0xFF, UBI_EC_HDR_SIZE)) { | 
|  | /* The physical eraseblock is supposedly empty */ | 
|  | if (verbose) | 
|  | ubi_warn("no EC header found at PEB %d, " | 
|  | "only 0xFF bytes", pnum); | 
|  | dbg_bld("no EC header found at PEB %d, " | 
|  | "only 0xFF bytes", pnum); | 
|  | if (!read_err) | 
|  | return UBI_IO_FF; | 
|  | else | 
|  | return UBI_IO_FF_BITFLIPS; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is not a valid erase counter header, and these are not | 
|  | * 0xFF bytes. Report that the header is corrupted. | 
|  | */ | 
|  | if (verbose) { | 
|  | ubi_warn("bad magic number at PEB %d: %08x instead of " | 
|  | "%08x", pnum, magic, UBI_EC_HDR_MAGIC); | 
|  | ubi_dbg_dump_ec_hdr(ec_hdr); | 
|  | } | 
|  | dbg_bld("bad magic number at PEB %d: %08x instead of " | 
|  | "%08x", pnum, magic, UBI_EC_HDR_MAGIC); | 
|  | return UBI_IO_BAD_HDR; | 
|  | } | 
|  |  | 
|  | crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC); | 
|  | hdr_crc = be32_to_cpu(ec_hdr->hdr_crc); | 
|  |  | 
|  | if (hdr_crc != crc) { | 
|  | if (verbose) { | 
|  | ubi_warn("bad EC header CRC at PEB %d, calculated " | 
|  | "%#08x, read %#08x", pnum, crc, hdr_crc); | 
|  | ubi_dbg_dump_ec_hdr(ec_hdr); | 
|  | } | 
|  | dbg_bld("bad EC header CRC at PEB %d, calculated " | 
|  | "%#08x, read %#08x", pnum, crc, hdr_crc); | 
|  |  | 
|  | if (!read_err) | 
|  | return UBI_IO_BAD_HDR; | 
|  | else | 
|  | return UBI_IO_BAD_HDR_EBADMSG; | 
|  | } | 
|  |  | 
|  | /* And of course validate what has just been read from the media */ | 
|  | err = validate_ec_hdr(ubi, ec_hdr); | 
|  | if (err) { | 
|  | ubi_err("validation failed for PEB %d", pnum); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If there was %-EBADMSG, but the header CRC is still OK, report about | 
|  | * a bit-flip to force scrubbing on this PEB. | 
|  | */ | 
|  | return read_err ? UBI_IO_BITFLIPS : 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ubi_io_write_ec_hdr - write an erase counter header. | 
|  | * @ubi: UBI device description object | 
|  | * @pnum: physical eraseblock to write to | 
|  | * @ec_hdr: the erase counter header to write | 
|  | * | 
|  | * This function writes erase counter header described by @ec_hdr to physical | 
|  | * eraseblock @pnum. It also fills most fields of @ec_hdr before writing, so | 
|  | * the caller do not have to fill them. Callers must only fill the @ec_hdr->ec | 
|  | * field. | 
|  | * | 
|  | * This function returns zero in case of success and a negative error code in | 
|  | * case of failure. If %-EIO is returned, the physical eraseblock most probably | 
|  | * went bad. | 
|  | */ | 
|  | int ubi_io_write_ec_hdr(struct ubi_device *ubi, int pnum, | 
|  | struct ubi_ec_hdr *ec_hdr) | 
|  | { | 
|  | int err; | 
|  | uint32_t crc; | 
|  |  | 
|  | dbg_io("write EC header to PEB %d", pnum); | 
|  | ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count); | 
|  |  | 
|  | ec_hdr->magic = cpu_to_be32(UBI_EC_HDR_MAGIC); | 
|  | ec_hdr->version = UBI_VERSION; | 
|  | ec_hdr->vid_hdr_offset = cpu_to_be32(ubi->vid_hdr_offset); | 
|  | ec_hdr->data_offset = cpu_to_be32(ubi->leb_start); | 
|  | ec_hdr->image_seq = cpu_to_be32(ubi->image_seq); | 
|  | crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC); | 
|  | ec_hdr->hdr_crc = cpu_to_be32(crc); | 
|  |  | 
|  | err = paranoid_check_ec_hdr(ubi, pnum, ec_hdr); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | err = ubi_io_write(ubi, ec_hdr, pnum, 0, ubi->ec_hdr_alsize); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * validate_vid_hdr - validate a volume identifier header. | 
|  | * @ubi: UBI device description object | 
|  | * @vid_hdr: the volume identifier header to check | 
|  | * | 
|  | * This function checks that data stored in the volume identifier header | 
|  | * @vid_hdr. Returns zero if the VID header is OK and %1 if not. | 
|  | */ | 
|  | static int validate_vid_hdr(const struct ubi_device *ubi, | 
|  | const struct ubi_vid_hdr *vid_hdr) | 
|  | { | 
|  | int vol_type = vid_hdr->vol_type; | 
|  | int copy_flag = vid_hdr->copy_flag; | 
|  | int vol_id = be32_to_cpu(vid_hdr->vol_id); | 
|  | int lnum = be32_to_cpu(vid_hdr->lnum); | 
|  | int compat = vid_hdr->compat; | 
|  | int data_size = be32_to_cpu(vid_hdr->data_size); | 
|  | int used_ebs = be32_to_cpu(vid_hdr->used_ebs); | 
|  | int data_pad = be32_to_cpu(vid_hdr->data_pad); | 
|  | int data_crc = be32_to_cpu(vid_hdr->data_crc); | 
|  | int usable_leb_size = ubi->leb_size - data_pad; | 
|  |  | 
|  | if (copy_flag != 0 && copy_flag != 1) { | 
|  | dbg_err("bad copy_flag"); | 
|  | goto bad; | 
|  | } | 
|  |  | 
|  | if (vol_id < 0 || lnum < 0 || data_size < 0 || used_ebs < 0 || | 
|  | data_pad < 0) { | 
|  | dbg_err("negative values"); | 
|  | goto bad; | 
|  | } | 
|  |  | 
|  | if (vol_id >= UBI_MAX_VOLUMES && vol_id < UBI_INTERNAL_VOL_START) { | 
|  | dbg_err("bad vol_id"); | 
|  | goto bad; | 
|  | } | 
|  |  | 
|  | if (vol_id < UBI_INTERNAL_VOL_START && compat != 0) { | 
|  | dbg_err("bad compat"); | 
|  | goto bad; | 
|  | } | 
|  |  | 
|  | if (vol_id >= UBI_INTERNAL_VOL_START && compat != UBI_COMPAT_DELETE && | 
|  | compat != UBI_COMPAT_RO && compat != UBI_COMPAT_PRESERVE && | 
|  | compat != UBI_COMPAT_REJECT) { | 
|  | dbg_err("bad compat"); | 
|  | goto bad; | 
|  | } | 
|  |  | 
|  | if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) { | 
|  | dbg_err("bad vol_type"); | 
|  | goto bad; | 
|  | } | 
|  |  | 
|  | if (data_pad >= ubi->leb_size / 2) { | 
|  | dbg_err("bad data_pad"); | 
|  | goto bad; | 
|  | } | 
|  |  | 
|  | if (vol_type == UBI_VID_STATIC) { | 
|  | /* | 
|  | * Although from high-level point of view static volumes may | 
|  | * contain zero bytes of data, but no VID headers can contain | 
|  | * zero at these fields, because they empty volumes do not have | 
|  | * mapped logical eraseblocks. | 
|  | */ | 
|  | if (used_ebs == 0) { | 
|  | dbg_err("zero used_ebs"); | 
|  | goto bad; | 
|  | } | 
|  | if (data_size == 0) { | 
|  | dbg_err("zero data_size"); | 
|  | goto bad; | 
|  | } | 
|  | if (lnum < used_ebs - 1) { | 
|  | if (data_size != usable_leb_size) { | 
|  | dbg_err("bad data_size"); | 
|  | goto bad; | 
|  | } | 
|  | } else if (lnum == used_ebs - 1) { | 
|  | if (data_size == 0) { | 
|  | dbg_err("bad data_size at last LEB"); | 
|  | goto bad; | 
|  | } | 
|  | } else { | 
|  | dbg_err("too high lnum"); | 
|  | goto bad; | 
|  | } | 
|  | } else { | 
|  | if (copy_flag == 0) { | 
|  | if (data_crc != 0) { | 
|  | dbg_err("non-zero data CRC"); | 
|  | goto bad; | 
|  | } | 
|  | if (data_size != 0) { | 
|  | dbg_err("non-zero data_size"); | 
|  | goto bad; | 
|  | } | 
|  | } else { | 
|  | if (data_size == 0) { | 
|  | dbg_err("zero data_size of copy"); | 
|  | goto bad; | 
|  | } | 
|  | } | 
|  | if (used_ebs != 0) { | 
|  | dbg_err("bad used_ebs"); | 
|  | goto bad; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | bad: | 
|  | ubi_err("bad VID header"); | 
|  | ubi_dbg_dump_vid_hdr(vid_hdr); | 
|  | ubi_dbg_dump_stack(); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ubi_io_read_vid_hdr - read and check a volume identifier header. | 
|  | * @ubi: UBI device description object | 
|  | * @pnum: physical eraseblock number to read from | 
|  | * @vid_hdr: &struct ubi_vid_hdr object where to store the read volume | 
|  | * identifier header | 
|  | * @verbose: be verbose if the header is corrupted or wasn't found | 
|  | * | 
|  | * This function reads the volume identifier header from physical eraseblock | 
|  | * @pnum and stores it in @vid_hdr. It also checks CRC checksum of the read | 
|  | * volume identifier header. The error codes are the same as in | 
|  | * 'ubi_io_read_ec_hdr()'. | 
|  | * | 
|  | * Note, the implementation of this function is also very similar to | 
|  | * 'ubi_io_read_ec_hdr()', so refer commentaries in 'ubi_io_read_ec_hdr()'. | 
|  | */ | 
|  | int ubi_io_read_vid_hdr(struct ubi_device *ubi, int pnum, | 
|  | struct ubi_vid_hdr *vid_hdr, int verbose) | 
|  | { | 
|  | int err, read_err; | 
|  | uint32_t crc, magic, hdr_crc; | 
|  | void *p; | 
|  |  | 
|  | dbg_io("read VID header from PEB %d", pnum); | 
|  | ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count); | 
|  |  | 
|  | p = (char *)vid_hdr - ubi->vid_hdr_shift; | 
|  | read_err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset, | 
|  | ubi->vid_hdr_alsize); | 
|  | if (read_err && read_err != UBI_IO_BITFLIPS && read_err != -EBADMSG) | 
|  | return read_err; | 
|  |  | 
|  | magic = be32_to_cpu(vid_hdr->magic); | 
|  | if (magic != UBI_VID_HDR_MAGIC) { | 
|  | if (read_err == -EBADMSG) | 
|  | return UBI_IO_BAD_HDR_EBADMSG; | 
|  |  | 
|  | if (ubi_check_pattern(vid_hdr, 0xFF, UBI_VID_HDR_SIZE)) { | 
|  | if (verbose) | 
|  | ubi_warn("no VID header found at PEB %d, " | 
|  | "only 0xFF bytes", pnum); | 
|  | dbg_bld("no VID header found at PEB %d, " | 
|  | "only 0xFF bytes", pnum); | 
|  | if (!read_err) | 
|  | return UBI_IO_FF; | 
|  | else | 
|  | return UBI_IO_FF_BITFLIPS; | 
|  | } | 
|  |  | 
|  | if (verbose) { | 
|  | ubi_warn("bad magic number at PEB %d: %08x instead of " | 
|  | "%08x", pnum, magic, UBI_VID_HDR_MAGIC); | 
|  | ubi_dbg_dump_vid_hdr(vid_hdr); | 
|  | } | 
|  | dbg_bld("bad magic number at PEB %d: %08x instead of " | 
|  | "%08x", pnum, magic, UBI_VID_HDR_MAGIC); | 
|  | return UBI_IO_BAD_HDR; | 
|  | } | 
|  |  | 
|  | crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC); | 
|  | hdr_crc = be32_to_cpu(vid_hdr->hdr_crc); | 
|  |  | 
|  | if (hdr_crc != crc) { | 
|  | if (verbose) { | 
|  | ubi_warn("bad CRC at PEB %d, calculated %#08x, " | 
|  | "read %#08x", pnum, crc, hdr_crc); | 
|  | ubi_dbg_dump_vid_hdr(vid_hdr); | 
|  | } | 
|  | dbg_bld("bad CRC at PEB %d, calculated %#08x, " | 
|  | "read %#08x", pnum, crc, hdr_crc); | 
|  | if (!read_err) | 
|  | return UBI_IO_BAD_HDR; | 
|  | else | 
|  | return UBI_IO_BAD_HDR_EBADMSG; | 
|  | } | 
|  |  | 
|  | err = validate_vid_hdr(ubi, vid_hdr); | 
|  | if (err) { | 
|  | ubi_err("validation failed for PEB %d", pnum); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return read_err ? UBI_IO_BITFLIPS : 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ubi_io_write_vid_hdr - write a volume identifier header. | 
|  | * @ubi: UBI device description object | 
|  | * @pnum: the physical eraseblock number to write to | 
|  | * @vid_hdr: the volume identifier header to write | 
|  | * | 
|  | * This function writes the volume identifier header described by @vid_hdr to | 
|  | * physical eraseblock @pnum. This function automatically fills the | 
|  | * @vid_hdr->magic and the @vid_hdr->version fields, as well as calculates | 
|  | * header CRC checksum and stores it at vid_hdr->hdr_crc. | 
|  | * | 
|  | * This function returns zero in case of success and a negative error code in | 
|  | * case of failure. If %-EIO is returned, the physical eraseblock probably went | 
|  | * bad. | 
|  | */ | 
|  | int ubi_io_write_vid_hdr(struct ubi_device *ubi, int pnum, | 
|  | struct ubi_vid_hdr *vid_hdr) | 
|  | { | 
|  | int err; | 
|  | uint32_t crc; | 
|  | void *p; | 
|  |  | 
|  | dbg_io("write VID header to PEB %d", pnum); | 
|  | ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count); | 
|  |  | 
|  | err = paranoid_check_peb_ec_hdr(ubi, pnum); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | vid_hdr->magic = cpu_to_be32(UBI_VID_HDR_MAGIC); | 
|  | vid_hdr->version = UBI_VERSION; | 
|  | crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC); | 
|  | vid_hdr->hdr_crc = cpu_to_be32(crc); | 
|  |  | 
|  | err = paranoid_check_vid_hdr(ubi, pnum, vid_hdr); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | p = (char *)vid_hdr - ubi->vid_hdr_shift; | 
|  | err = ubi_io_write(ubi, p, pnum, ubi->vid_hdr_aloffset, | 
|  | ubi->vid_hdr_alsize); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_MTD_UBI_DEBUG | 
|  |  | 
|  | /** | 
|  | * paranoid_check_not_bad - ensure that a physical eraseblock is not bad. | 
|  | * @ubi: UBI device description object | 
|  | * @pnum: physical eraseblock number to check | 
|  | * | 
|  | * This function returns zero if the physical eraseblock is good, %-EINVAL if | 
|  | * it is bad and a negative error code if an error occurred. | 
|  | */ | 
|  | static int paranoid_check_not_bad(const struct ubi_device *ubi, int pnum) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | if (!(ubi_chk_flags & UBI_CHK_IO)) | 
|  | return 0; | 
|  |  | 
|  | err = ubi_io_is_bad(ubi, pnum); | 
|  | if (!err) | 
|  | return err; | 
|  |  | 
|  | ubi_err("paranoid check failed for PEB %d", pnum); | 
|  | ubi_dbg_dump_stack(); | 
|  | return err > 0 ? -EINVAL : err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * paranoid_check_ec_hdr - check if an erase counter header is all right. | 
|  | * @ubi: UBI device description object | 
|  | * @pnum: physical eraseblock number the erase counter header belongs to | 
|  | * @ec_hdr: the erase counter header to check | 
|  | * | 
|  | * This function returns zero if the erase counter header contains valid | 
|  | * values, and %-EINVAL if not. | 
|  | */ | 
|  | static int paranoid_check_ec_hdr(const struct ubi_device *ubi, int pnum, | 
|  | const struct ubi_ec_hdr *ec_hdr) | 
|  | { | 
|  | int err; | 
|  | uint32_t magic; | 
|  |  | 
|  | if (!(ubi_chk_flags & UBI_CHK_IO)) | 
|  | return 0; | 
|  |  | 
|  | magic = be32_to_cpu(ec_hdr->magic); | 
|  | if (magic != UBI_EC_HDR_MAGIC) { | 
|  | ubi_err("bad magic %#08x, must be %#08x", | 
|  | magic, UBI_EC_HDR_MAGIC); | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | err = validate_ec_hdr(ubi, ec_hdr); | 
|  | if (err) { | 
|  | ubi_err("paranoid check failed for PEB %d", pnum); | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | fail: | 
|  | ubi_dbg_dump_ec_hdr(ec_hdr); | 
|  | ubi_dbg_dump_stack(); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * paranoid_check_peb_ec_hdr - check erase counter header. | 
|  | * @ubi: UBI device description object | 
|  | * @pnum: the physical eraseblock number to check | 
|  | * | 
|  | * This function returns zero if the erase counter header is all right and and | 
|  | * a negative error code if not or if an error occurred. | 
|  | */ | 
|  | static int paranoid_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum) | 
|  | { | 
|  | int err; | 
|  | uint32_t crc, hdr_crc; | 
|  | struct ubi_ec_hdr *ec_hdr; | 
|  |  | 
|  | if (!(ubi_chk_flags & UBI_CHK_IO)) | 
|  | return 0; | 
|  |  | 
|  | ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS); | 
|  | if (!ec_hdr) | 
|  | return -ENOMEM; | 
|  |  | 
|  | err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE); | 
|  | if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG) | 
|  | goto exit; | 
|  |  | 
|  | crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC); | 
|  | hdr_crc = be32_to_cpu(ec_hdr->hdr_crc); | 
|  | if (hdr_crc != crc) { | 
|  | ubi_err("bad CRC, calculated %#08x, read %#08x", crc, hdr_crc); | 
|  | ubi_err("paranoid check failed for PEB %d", pnum); | 
|  | ubi_dbg_dump_ec_hdr(ec_hdr); | 
|  | ubi_dbg_dump_stack(); | 
|  | err = -EINVAL; | 
|  | goto exit; | 
|  | } | 
|  |  | 
|  | err = paranoid_check_ec_hdr(ubi, pnum, ec_hdr); | 
|  |  | 
|  | exit: | 
|  | kfree(ec_hdr); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * paranoid_check_vid_hdr - check that a volume identifier header is all right. | 
|  | * @ubi: UBI device description object | 
|  | * @pnum: physical eraseblock number the volume identifier header belongs to | 
|  | * @vid_hdr: the volume identifier header to check | 
|  | * | 
|  | * This function returns zero if the volume identifier header is all right, and | 
|  | * %-EINVAL if not. | 
|  | */ | 
|  | static int paranoid_check_vid_hdr(const struct ubi_device *ubi, int pnum, | 
|  | const struct ubi_vid_hdr *vid_hdr) | 
|  | { | 
|  | int err; | 
|  | uint32_t magic; | 
|  |  | 
|  | if (!(ubi_chk_flags & UBI_CHK_IO)) | 
|  | return 0; | 
|  |  | 
|  | magic = be32_to_cpu(vid_hdr->magic); | 
|  | if (magic != UBI_VID_HDR_MAGIC) { | 
|  | ubi_err("bad VID header magic %#08x at PEB %d, must be %#08x", | 
|  | magic, pnum, UBI_VID_HDR_MAGIC); | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | err = validate_vid_hdr(ubi, vid_hdr); | 
|  | if (err) { | 
|  | ubi_err("paranoid check failed for PEB %d", pnum); | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | return err; | 
|  |  | 
|  | fail: | 
|  | ubi_err("paranoid check failed for PEB %d", pnum); | 
|  | ubi_dbg_dump_vid_hdr(vid_hdr); | 
|  | ubi_dbg_dump_stack(); | 
|  | return -EINVAL; | 
|  |  | 
|  | } | 
|  |  | 
|  | /** | 
|  | * paranoid_check_peb_vid_hdr - check volume identifier header. | 
|  | * @ubi: UBI device description object | 
|  | * @pnum: the physical eraseblock number to check | 
|  | * | 
|  | * This function returns zero if the volume identifier header is all right, | 
|  | * and a negative error code if not or if an error occurred. | 
|  | */ | 
|  | static int paranoid_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum) | 
|  | { | 
|  | int err; | 
|  | uint32_t crc, hdr_crc; | 
|  | struct ubi_vid_hdr *vid_hdr; | 
|  | void *p; | 
|  |  | 
|  | if (!(ubi_chk_flags & UBI_CHK_IO)) | 
|  | return 0; | 
|  |  | 
|  | vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS); | 
|  | if (!vid_hdr) | 
|  | return -ENOMEM; | 
|  |  | 
|  | p = (char *)vid_hdr - ubi->vid_hdr_shift; | 
|  | err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset, | 
|  | ubi->vid_hdr_alsize); | 
|  | if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG) | 
|  | goto exit; | 
|  |  | 
|  | crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_EC_HDR_SIZE_CRC); | 
|  | hdr_crc = be32_to_cpu(vid_hdr->hdr_crc); | 
|  | if (hdr_crc != crc) { | 
|  | ubi_err("bad VID header CRC at PEB %d, calculated %#08x, " | 
|  | "read %#08x", pnum, crc, hdr_crc); | 
|  | ubi_err("paranoid check failed for PEB %d", pnum); | 
|  | ubi_dbg_dump_vid_hdr(vid_hdr); | 
|  | ubi_dbg_dump_stack(); | 
|  | err = -EINVAL; | 
|  | goto exit; | 
|  | } | 
|  |  | 
|  | err = paranoid_check_vid_hdr(ubi, pnum, vid_hdr); | 
|  |  | 
|  | exit: | 
|  | ubi_free_vid_hdr(ubi, vid_hdr); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ubi_dbg_check_write - make sure write succeeded. | 
|  | * @ubi: UBI device description object | 
|  | * @buf: buffer with data which were written | 
|  | * @pnum: physical eraseblock number the data were written to | 
|  | * @offset: offset within the physical eraseblock the data were written to | 
|  | * @len: how many bytes were written | 
|  | * | 
|  | * This functions reads data which were recently written and compares it with | 
|  | * the original data buffer - the data have to match. Returns zero if the data | 
|  | * match and a negative error code if not or in case of failure. | 
|  | */ | 
|  | int ubi_dbg_check_write(struct ubi_device *ubi, const void *buf, int pnum, | 
|  | int offset, int len) | 
|  | { | 
|  | int err, i; | 
|  | size_t read; | 
|  | void *buf1; | 
|  | loff_t addr = (loff_t)pnum * ubi->peb_size + offset; | 
|  |  | 
|  | if (!(ubi_chk_flags & UBI_CHK_IO)) | 
|  | return 0; | 
|  |  | 
|  | buf1 = __vmalloc(len, GFP_NOFS, PAGE_KERNEL); | 
|  | if (!buf1) { | 
|  | ubi_err("cannot allocate memory to check writes"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | err = ubi->mtd->read(ubi->mtd, addr, len, &read, buf1); | 
|  | if (err && err != -EUCLEAN) | 
|  | goto out_free; | 
|  |  | 
|  | for (i = 0; i < len; i++) { | 
|  | uint8_t c = ((uint8_t *)buf)[i]; | 
|  | uint8_t c1 = ((uint8_t *)buf1)[i]; | 
|  | int dump_len; | 
|  |  | 
|  | if (c == c1) | 
|  | continue; | 
|  |  | 
|  | ubi_err("paranoid check failed for PEB %d:%d, len %d", | 
|  | pnum, offset, len); | 
|  | ubi_msg("data differ at position %d", i); | 
|  | dump_len = max_t(int, 128, len - i); | 
|  | ubi_msg("hex dump of the original buffer from %d to %d", | 
|  | i, i + dump_len); | 
|  | print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, | 
|  | buf + i, dump_len, 1); | 
|  | ubi_msg("hex dump of the read buffer from %d to %d", | 
|  | i, i + dump_len); | 
|  | print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, | 
|  | buf1 + i, dump_len, 1); | 
|  | ubi_dbg_dump_stack(); | 
|  | err = -EINVAL; | 
|  | goto out_free; | 
|  | } | 
|  |  | 
|  | vfree(buf1); | 
|  | return 0; | 
|  |  | 
|  | out_free: | 
|  | vfree(buf1); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ubi_dbg_check_all_ff - check that a region of flash is empty. | 
|  | * @ubi: UBI device description object | 
|  | * @pnum: the physical eraseblock number to check | 
|  | * @offset: the starting offset within the physical eraseblock to check | 
|  | * @len: the length of the region to check | 
|  | * | 
|  | * This function returns zero if only 0xFF bytes are present at offset | 
|  | * @offset of the physical eraseblock @pnum, and a negative error code if not | 
|  | * or if an error occurred. | 
|  | */ | 
|  | int ubi_dbg_check_all_ff(struct ubi_device *ubi, int pnum, int offset, int len) | 
|  | { | 
|  | size_t read; | 
|  | int err; | 
|  | void *buf; | 
|  | loff_t addr = (loff_t)pnum * ubi->peb_size + offset; | 
|  |  | 
|  | if (!(ubi_chk_flags & UBI_CHK_IO)) | 
|  | return 0; | 
|  |  | 
|  | buf = __vmalloc(len, GFP_NOFS, PAGE_KERNEL); | 
|  | if (!buf) { | 
|  | ubi_err("cannot allocate memory to check for 0xFFs"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | err = ubi->mtd->read(ubi->mtd, addr, len, &read, buf); | 
|  | if (err && err != -EUCLEAN) { | 
|  | ubi_err("error %d while reading %d bytes from PEB %d:%d, " | 
|  | "read %zd bytes", err, len, pnum, offset, read); | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | err = ubi_check_pattern(buf, 0xFF, len); | 
|  | if (err == 0) { | 
|  | ubi_err("flash region at PEB %d:%d, length %d does not " | 
|  | "contain all 0xFF bytes", pnum, offset, len); | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | vfree(buf); | 
|  | return 0; | 
|  |  | 
|  | fail: | 
|  | ubi_err("paranoid check failed for PEB %d", pnum); | 
|  | ubi_msg("hex dump of the %d-%d region", offset, offset + len); | 
|  | print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, buf, len, 1); | 
|  | err = -EINVAL; | 
|  | error: | 
|  | ubi_dbg_dump_stack(); | 
|  | vfree(buf); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_MTD_UBI_DEBUG */ |