|  | /* | 
|  | * This file is part of UBIFS. | 
|  | * | 
|  | * Copyright (C) 2006-2008 Nokia Corporation | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify it | 
|  | * under the terms of the GNU General Public License version 2 as published by | 
|  | * the Free Software Foundation. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, but WITHOUT | 
|  | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
|  | * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for | 
|  | * more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License along with | 
|  | * this program; if not, write to the Free Software Foundation, Inc., 51 | 
|  | * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA | 
|  | * | 
|  | * Authors: Artem Bityutskiy (Битюцкий Артём) | 
|  | *          Adrian Hunter | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * This file implements most of the debugging stuff which is compiled in only | 
|  | * when it is enabled. But some debugging check functions are implemented in | 
|  | * corresponding subsystem, just because they are closely related and utilize | 
|  | * various local functions of those subsystems. | 
|  | */ | 
|  |  | 
|  | #define UBIFS_DBG_PRESERVE_UBI | 
|  |  | 
|  | #include "ubifs.h" | 
|  | #include <linux/module.h> | 
|  | #include <linux/moduleparam.h> | 
|  | #include <linux/debugfs.h> | 
|  | #include <linux/math64.h> | 
|  |  | 
|  | #ifdef CONFIG_UBIFS_FS_DEBUG | 
|  |  | 
|  | DEFINE_SPINLOCK(dbg_lock); | 
|  |  | 
|  | static char dbg_key_buf0[128]; | 
|  | static char dbg_key_buf1[128]; | 
|  |  | 
|  | unsigned int ubifs_chk_flags; | 
|  | unsigned int ubifs_tst_flags; | 
|  |  | 
|  | module_param_named(debug_chks, ubifs_chk_flags, uint, S_IRUGO | S_IWUSR); | 
|  | module_param_named(debug_tsts, ubifs_tst_flags, uint, S_IRUGO | S_IWUSR); | 
|  |  | 
|  | MODULE_PARM_DESC(debug_chks, "Debug check flags"); | 
|  | MODULE_PARM_DESC(debug_tsts, "Debug special test flags"); | 
|  |  | 
|  | static const char *get_key_fmt(int fmt) | 
|  | { | 
|  | switch (fmt) { | 
|  | case UBIFS_SIMPLE_KEY_FMT: | 
|  | return "simple"; | 
|  | default: | 
|  | return "unknown/invalid format"; | 
|  | } | 
|  | } | 
|  |  | 
|  | static const char *get_key_hash(int hash) | 
|  | { | 
|  | switch (hash) { | 
|  | case UBIFS_KEY_HASH_R5: | 
|  | return "R5"; | 
|  | case UBIFS_KEY_HASH_TEST: | 
|  | return "test"; | 
|  | default: | 
|  | return "unknown/invalid name hash"; | 
|  | } | 
|  | } | 
|  |  | 
|  | static const char *get_key_type(int type) | 
|  | { | 
|  | switch (type) { | 
|  | case UBIFS_INO_KEY: | 
|  | return "inode"; | 
|  | case UBIFS_DENT_KEY: | 
|  | return "direntry"; | 
|  | case UBIFS_XENT_KEY: | 
|  | return "xentry"; | 
|  | case UBIFS_DATA_KEY: | 
|  | return "data"; | 
|  | case UBIFS_TRUN_KEY: | 
|  | return "truncate"; | 
|  | default: | 
|  | return "unknown/invalid key"; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void sprintf_key(const struct ubifs_info *c, const union ubifs_key *key, | 
|  | char *buffer) | 
|  | { | 
|  | char *p = buffer; | 
|  | int type = key_type(c, key); | 
|  |  | 
|  | if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) { | 
|  | switch (type) { | 
|  | case UBIFS_INO_KEY: | 
|  | sprintf(p, "(%lu, %s)", (unsigned long)key_inum(c, key), | 
|  | get_key_type(type)); | 
|  | break; | 
|  | case UBIFS_DENT_KEY: | 
|  | case UBIFS_XENT_KEY: | 
|  | sprintf(p, "(%lu, %s, %#08x)", | 
|  | (unsigned long)key_inum(c, key), | 
|  | get_key_type(type), key_hash(c, key)); | 
|  | break; | 
|  | case UBIFS_DATA_KEY: | 
|  | sprintf(p, "(%lu, %s, %u)", | 
|  | (unsigned long)key_inum(c, key), | 
|  | get_key_type(type), key_block(c, key)); | 
|  | break; | 
|  | case UBIFS_TRUN_KEY: | 
|  | sprintf(p, "(%lu, %s)", | 
|  | (unsigned long)key_inum(c, key), | 
|  | get_key_type(type)); | 
|  | break; | 
|  | default: | 
|  | sprintf(p, "(bad key type: %#08x, %#08x)", | 
|  | key->u32[0], key->u32[1]); | 
|  | } | 
|  | } else | 
|  | sprintf(p, "bad key format %d", c->key_fmt); | 
|  | } | 
|  |  | 
|  | const char *dbg_key_str0(const struct ubifs_info *c, const union ubifs_key *key) | 
|  | { | 
|  | /* dbg_lock must be held */ | 
|  | sprintf_key(c, key, dbg_key_buf0); | 
|  | return dbg_key_buf0; | 
|  | } | 
|  |  | 
|  | const char *dbg_key_str1(const struct ubifs_info *c, const union ubifs_key *key) | 
|  | { | 
|  | /* dbg_lock must be held */ | 
|  | sprintf_key(c, key, dbg_key_buf1); | 
|  | return dbg_key_buf1; | 
|  | } | 
|  |  | 
|  | const char *dbg_ntype(int type) | 
|  | { | 
|  | switch (type) { | 
|  | case UBIFS_PAD_NODE: | 
|  | return "padding node"; | 
|  | case UBIFS_SB_NODE: | 
|  | return "superblock node"; | 
|  | case UBIFS_MST_NODE: | 
|  | return "master node"; | 
|  | case UBIFS_REF_NODE: | 
|  | return "reference node"; | 
|  | case UBIFS_INO_NODE: | 
|  | return "inode node"; | 
|  | case UBIFS_DENT_NODE: | 
|  | return "direntry node"; | 
|  | case UBIFS_XENT_NODE: | 
|  | return "xentry node"; | 
|  | case UBIFS_DATA_NODE: | 
|  | return "data node"; | 
|  | case UBIFS_TRUN_NODE: | 
|  | return "truncate node"; | 
|  | case UBIFS_IDX_NODE: | 
|  | return "indexing node"; | 
|  | case UBIFS_CS_NODE: | 
|  | return "commit start node"; | 
|  | case UBIFS_ORPH_NODE: | 
|  | return "orphan node"; | 
|  | default: | 
|  | return "unknown node"; | 
|  | } | 
|  | } | 
|  |  | 
|  | static const char *dbg_gtype(int type) | 
|  | { | 
|  | switch (type) { | 
|  | case UBIFS_NO_NODE_GROUP: | 
|  | return "no node group"; | 
|  | case UBIFS_IN_NODE_GROUP: | 
|  | return "in node group"; | 
|  | case UBIFS_LAST_OF_NODE_GROUP: | 
|  | return "last of node group"; | 
|  | default: | 
|  | return "unknown"; | 
|  | } | 
|  | } | 
|  |  | 
|  | const char *dbg_cstate(int cmt_state) | 
|  | { | 
|  | switch (cmt_state) { | 
|  | case COMMIT_RESTING: | 
|  | return "commit resting"; | 
|  | case COMMIT_BACKGROUND: | 
|  | return "background commit requested"; | 
|  | case COMMIT_REQUIRED: | 
|  | return "commit required"; | 
|  | case COMMIT_RUNNING_BACKGROUND: | 
|  | return "BACKGROUND commit running"; | 
|  | case COMMIT_RUNNING_REQUIRED: | 
|  | return "commit running and required"; | 
|  | case COMMIT_BROKEN: | 
|  | return "broken commit"; | 
|  | default: | 
|  | return "unknown commit state"; | 
|  | } | 
|  | } | 
|  |  | 
|  | const char *dbg_jhead(int jhead) | 
|  | { | 
|  | switch (jhead) { | 
|  | case GCHD: | 
|  | return "0 (GC)"; | 
|  | case BASEHD: | 
|  | return "1 (base)"; | 
|  | case DATAHD: | 
|  | return "2 (data)"; | 
|  | default: | 
|  | return "unknown journal head"; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void dump_ch(const struct ubifs_ch *ch) | 
|  | { | 
|  | printk(KERN_DEBUG "\tmagic          %#x\n", le32_to_cpu(ch->magic)); | 
|  | printk(KERN_DEBUG "\tcrc            %#x\n", le32_to_cpu(ch->crc)); | 
|  | printk(KERN_DEBUG "\tnode_type      %d (%s)\n", ch->node_type, | 
|  | dbg_ntype(ch->node_type)); | 
|  | printk(KERN_DEBUG "\tgroup_type     %d (%s)\n", ch->group_type, | 
|  | dbg_gtype(ch->group_type)); | 
|  | printk(KERN_DEBUG "\tsqnum          %llu\n", | 
|  | (unsigned long long)le64_to_cpu(ch->sqnum)); | 
|  | printk(KERN_DEBUG "\tlen            %u\n", le32_to_cpu(ch->len)); | 
|  | } | 
|  |  | 
|  | void dbg_dump_inode(const struct ubifs_info *c, const struct inode *inode) | 
|  | { | 
|  | const struct ubifs_inode *ui = ubifs_inode(inode); | 
|  |  | 
|  | printk(KERN_DEBUG "Dump in-memory inode:"); | 
|  | printk(KERN_DEBUG "\tinode          %lu\n", inode->i_ino); | 
|  | printk(KERN_DEBUG "\tsize           %llu\n", | 
|  | (unsigned long long)i_size_read(inode)); | 
|  | printk(KERN_DEBUG "\tnlink          %u\n", inode->i_nlink); | 
|  | printk(KERN_DEBUG "\tuid            %u\n", (unsigned int)inode->i_uid); | 
|  | printk(KERN_DEBUG "\tgid            %u\n", (unsigned int)inode->i_gid); | 
|  | printk(KERN_DEBUG "\tatime          %u.%u\n", | 
|  | (unsigned int)inode->i_atime.tv_sec, | 
|  | (unsigned int)inode->i_atime.tv_nsec); | 
|  | printk(KERN_DEBUG "\tmtime          %u.%u\n", | 
|  | (unsigned int)inode->i_mtime.tv_sec, | 
|  | (unsigned int)inode->i_mtime.tv_nsec); | 
|  | printk(KERN_DEBUG "\tctime          %u.%u\n", | 
|  | (unsigned int)inode->i_ctime.tv_sec, | 
|  | (unsigned int)inode->i_ctime.tv_nsec); | 
|  | printk(KERN_DEBUG "\tcreat_sqnum    %llu\n", ui->creat_sqnum); | 
|  | printk(KERN_DEBUG "\txattr_size     %u\n", ui->xattr_size); | 
|  | printk(KERN_DEBUG "\txattr_cnt      %u\n", ui->xattr_cnt); | 
|  | printk(KERN_DEBUG "\txattr_names    %u\n", ui->xattr_names); | 
|  | printk(KERN_DEBUG "\tdirty          %u\n", ui->dirty); | 
|  | printk(KERN_DEBUG "\txattr          %u\n", ui->xattr); | 
|  | printk(KERN_DEBUG "\tbulk_read      %u\n", ui->xattr); | 
|  | printk(KERN_DEBUG "\tsynced_i_size  %llu\n", | 
|  | (unsigned long long)ui->synced_i_size); | 
|  | printk(KERN_DEBUG "\tui_size        %llu\n", | 
|  | (unsigned long long)ui->ui_size); | 
|  | printk(KERN_DEBUG "\tflags          %d\n", ui->flags); | 
|  | printk(KERN_DEBUG "\tcompr_type     %d\n", ui->compr_type); | 
|  | printk(KERN_DEBUG "\tlast_page_read %lu\n", ui->last_page_read); | 
|  | printk(KERN_DEBUG "\tread_in_a_row  %lu\n", ui->read_in_a_row); | 
|  | printk(KERN_DEBUG "\tdata_len       %d\n", ui->data_len); | 
|  | } | 
|  |  | 
|  | void dbg_dump_node(const struct ubifs_info *c, const void *node) | 
|  | { | 
|  | int i, n; | 
|  | union ubifs_key key; | 
|  | const struct ubifs_ch *ch = node; | 
|  |  | 
|  | if (dbg_failure_mode) | 
|  | return; | 
|  |  | 
|  | /* If the magic is incorrect, just hexdump the first bytes */ | 
|  | if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) { | 
|  | printk(KERN_DEBUG "Not a node, first %zu bytes:", UBIFS_CH_SZ); | 
|  | print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, | 
|  | (void *)node, UBIFS_CH_SZ, 1); | 
|  | return; | 
|  | } | 
|  |  | 
|  | spin_lock(&dbg_lock); | 
|  | dump_ch(node); | 
|  |  | 
|  | switch (ch->node_type) { | 
|  | case UBIFS_PAD_NODE: | 
|  | { | 
|  | const struct ubifs_pad_node *pad = node; | 
|  |  | 
|  | printk(KERN_DEBUG "\tpad_len        %u\n", | 
|  | le32_to_cpu(pad->pad_len)); | 
|  | break; | 
|  | } | 
|  | case UBIFS_SB_NODE: | 
|  | { | 
|  | const struct ubifs_sb_node *sup = node; | 
|  | unsigned int sup_flags = le32_to_cpu(sup->flags); | 
|  |  | 
|  | printk(KERN_DEBUG "\tkey_hash       %d (%s)\n", | 
|  | (int)sup->key_hash, get_key_hash(sup->key_hash)); | 
|  | printk(KERN_DEBUG "\tkey_fmt        %d (%s)\n", | 
|  | (int)sup->key_fmt, get_key_fmt(sup->key_fmt)); | 
|  | printk(KERN_DEBUG "\tflags          %#x\n", sup_flags); | 
|  | printk(KERN_DEBUG "\t  big_lpt      %u\n", | 
|  | !!(sup_flags & UBIFS_FLG_BIGLPT)); | 
|  | printk(KERN_DEBUG "\t  space_fixup  %u\n", | 
|  | !!(sup_flags & UBIFS_FLG_SPACE_FIXUP)); | 
|  | printk(KERN_DEBUG "\tmin_io_size    %u\n", | 
|  | le32_to_cpu(sup->min_io_size)); | 
|  | printk(KERN_DEBUG "\tleb_size       %u\n", | 
|  | le32_to_cpu(sup->leb_size)); | 
|  | printk(KERN_DEBUG "\tleb_cnt        %u\n", | 
|  | le32_to_cpu(sup->leb_cnt)); | 
|  | printk(KERN_DEBUG "\tmax_leb_cnt    %u\n", | 
|  | le32_to_cpu(sup->max_leb_cnt)); | 
|  | printk(KERN_DEBUG "\tmax_bud_bytes  %llu\n", | 
|  | (unsigned long long)le64_to_cpu(sup->max_bud_bytes)); | 
|  | printk(KERN_DEBUG "\tlog_lebs       %u\n", | 
|  | le32_to_cpu(sup->log_lebs)); | 
|  | printk(KERN_DEBUG "\tlpt_lebs       %u\n", | 
|  | le32_to_cpu(sup->lpt_lebs)); | 
|  | printk(KERN_DEBUG "\torph_lebs      %u\n", | 
|  | le32_to_cpu(sup->orph_lebs)); | 
|  | printk(KERN_DEBUG "\tjhead_cnt      %u\n", | 
|  | le32_to_cpu(sup->jhead_cnt)); | 
|  | printk(KERN_DEBUG "\tfanout         %u\n", | 
|  | le32_to_cpu(sup->fanout)); | 
|  | printk(KERN_DEBUG "\tlsave_cnt      %u\n", | 
|  | le32_to_cpu(sup->lsave_cnt)); | 
|  | printk(KERN_DEBUG "\tdefault_compr  %u\n", | 
|  | (int)le16_to_cpu(sup->default_compr)); | 
|  | printk(KERN_DEBUG "\trp_size        %llu\n", | 
|  | (unsigned long long)le64_to_cpu(sup->rp_size)); | 
|  | printk(KERN_DEBUG "\trp_uid         %u\n", | 
|  | le32_to_cpu(sup->rp_uid)); | 
|  | printk(KERN_DEBUG "\trp_gid         %u\n", | 
|  | le32_to_cpu(sup->rp_gid)); | 
|  | printk(KERN_DEBUG "\tfmt_version    %u\n", | 
|  | le32_to_cpu(sup->fmt_version)); | 
|  | printk(KERN_DEBUG "\ttime_gran      %u\n", | 
|  | le32_to_cpu(sup->time_gran)); | 
|  | printk(KERN_DEBUG "\tUUID           %pUB\n", | 
|  | sup->uuid); | 
|  | break; | 
|  | } | 
|  | case UBIFS_MST_NODE: | 
|  | { | 
|  | const struct ubifs_mst_node *mst = node; | 
|  |  | 
|  | printk(KERN_DEBUG "\thighest_inum   %llu\n", | 
|  | (unsigned long long)le64_to_cpu(mst->highest_inum)); | 
|  | printk(KERN_DEBUG "\tcommit number  %llu\n", | 
|  | (unsigned long long)le64_to_cpu(mst->cmt_no)); | 
|  | printk(KERN_DEBUG "\tflags          %#x\n", | 
|  | le32_to_cpu(mst->flags)); | 
|  | printk(KERN_DEBUG "\tlog_lnum       %u\n", | 
|  | le32_to_cpu(mst->log_lnum)); | 
|  | printk(KERN_DEBUG "\troot_lnum      %u\n", | 
|  | le32_to_cpu(mst->root_lnum)); | 
|  | printk(KERN_DEBUG "\troot_offs      %u\n", | 
|  | le32_to_cpu(mst->root_offs)); | 
|  | printk(KERN_DEBUG "\troot_len       %u\n", | 
|  | le32_to_cpu(mst->root_len)); | 
|  | printk(KERN_DEBUG "\tgc_lnum        %u\n", | 
|  | le32_to_cpu(mst->gc_lnum)); | 
|  | printk(KERN_DEBUG "\tihead_lnum     %u\n", | 
|  | le32_to_cpu(mst->ihead_lnum)); | 
|  | printk(KERN_DEBUG "\tihead_offs     %u\n", | 
|  | le32_to_cpu(mst->ihead_offs)); | 
|  | printk(KERN_DEBUG "\tindex_size     %llu\n", | 
|  | (unsigned long long)le64_to_cpu(mst->index_size)); | 
|  | printk(KERN_DEBUG "\tlpt_lnum       %u\n", | 
|  | le32_to_cpu(mst->lpt_lnum)); | 
|  | printk(KERN_DEBUG "\tlpt_offs       %u\n", | 
|  | le32_to_cpu(mst->lpt_offs)); | 
|  | printk(KERN_DEBUG "\tnhead_lnum     %u\n", | 
|  | le32_to_cpu(mst->nhead_lnum)); | 
|  | printk(KERN_DEBUG "\tnhead_offs     %u\n", | 
|  | le32_to_cpu(mst->nhead_offs)); | 
|  | printk(KERN_DEBUG "\tltab_lnum      %u\n", | 
|  | le32_to_cpu(mst->ltab_lnum)); | 
|  | printk(KERN_DEBUG "\tltab_offs      %u\n", | 
|  | le32_to_cpu(mst->ltab_offs)); | 
|  | printk(KERN_DEBUG "\tlsave_lnum     %u\n", | 
|  | le32_to_cpu(mst->lsave_lnum)); | 
|  | printk(KERN_DEBUG "\tlsave_offs     %u\n", | 
|  | le32_to_cpu(mst->lsave_offs)); | 
|  | printk(KERN_DEBUG "\tlscan_lnum     %u\n", | 
|  | le32_to_cpu(mst->lscan_lnum)); | 
|  | printk(KERN_DEBUG "\tleb_cnt        %u\n", | 
|  | le32_to_cpu(mst->leb_cnt)); | 
|  | printk(KERN_DEBUG "\tempty_lebs     %u\n", | 
|  | le32_to_cpu(mst->empty_lebs)); | 
|  | printk(KERN_DEBUG "\tidx_lebs       %u\n", | 
|  | le32_to_cpu(mst->idx_lebs)); | 
|  | printk(KERN_DEBUG "\ttotal_free     %llu\n", | 
|  | (unsigned long long)le64_to_cpu(mst->total_free)); | 
|  | printk(KERN_DEBUG "\ttotal_dirty    %llu\n", | 
|  | (unsigned long long)le64_to_cpu(mst->total_dirty)); | 
|  | printk(KERN_DEBUG "\ttotal_used     %llu\n", | 
|  | (unsigned long long)le64_to_cpu(mst->total_used)); | 
|  | printk(KERN_DEBUG "\ttotal_dead     %llu\n", | 
|  | (unsigned long long)le64_to_cpu(mst->total_dead)); | 
|  | printk(KERN_DEBUG "\ttotal_dark     %llu\n", | 
|  | (unsigned long long)le64_to_cpu(mst->total_dark)); | 
|  | break; | 
|  | } | 
|  | case UBIFS_REF_NODE: | 
|  | { | 
|  | const struct ubifs_ref_node *ref = node; | 
|  |  | 
|  | printk(KERN_DEBUG "\tlnum           %u\n", | 
|  | le32_to_cpu(ref->lnum)); | 
|  | printk(KERN_DEBUG "\toffs           %u\n", | 
|  | le32_to_cpu(ref->offs)); | 
|  | printk(KERN_DEBUG "\tjhead          %u\n", | 
|  | le32_to_cpu(ref->jhead)); | 
|  | break; | 
|  | } | 
|  | case UBIFS_INO_NODE: | 
|  | { | 
|  | const struct ubifs_ino_node *ino = node; | 
|  |  | 
|  | key_read(c, &ino->key, &key); | 
|  | printk(KERN_DEBUG "\tkey            %s\n", DBGKEY(&key)); | 
|  | printk(KERN_DEBUG "\tcreat_sqnum    %llu\n", | 
|  | (unsigned long long)le64_to_cpu(ino->creat_sqnum)); | 
|  | printk(KERN_DEBUG "\tsize           %llu\n", | 
|  | (unsigned long long)le64_to_cpu(ino->size)); | 
|  | printk(KERN_DEBUG "\tnlink          %u\n", | 
|  | le32_to_cpu(ino->nlink)); | 
|  | printk(KERN_DEBUG "\tatime          %lld.%u\n", | 
|  | (long long)le64_to_cpu(ino->atime_sec), | 
|  | le32_to_cpu(ino->atime_nsec)); | 
|  | printk(KERN_DEBUG "\tmtime          %lld.%u\n", | 
|  | (long long)le64_to_cpu(ino->mtime_sec), | 
|  | le32_to_cpu(ino->mtime_nsec)); | 
|  | printk(KERN_DEBUG "\tctime          %lld.%u\n", | 
|  | (long long)le64_to_cpu(ino->ctime_sec), | 
|  | le32_to_cpu(ino->ctime_nsec)); | 
|  | printk(KERN_DEBUG "\tuid            %u\n", | 
|  | le32_to_cpu(ino->uid)); | 
|  | printk(KERN_DEBUG "\tgid            %u\n", | 
|  | le32_to_cpu(ino->gid)); | 
|  | printk(KERN_DEBUG "\tmode           %u\n", | 
|  | le32_to_cpu(ino->mode)); | 
|  | printk(KERN_DEBUG "\tflags          %#x\n", | 
|  | le32_to_cpu(ino->flags)); | 
|  | printk(KERN_DEBUG "\txattr_cnt      %u\n", | 
|  | le32_to_cpu(ino->xattr_cnt)); | 
|  | printk(KERN_DEBUG "\txattr_size     %u\n", | 
|  | le32_to_cpu(ino->xattr_size)); | 
|  | printk(KERN_DEBUG "\txattr_names    %u\n", | 
|  | le32_to_cpu(ino->xattr_names)); | 
|  | printk(KERN_DEBUG "\tcompr_type     %#x\n", | 
|  | (int)le16_to_cpu(ino->compr_type)); | 
|  | printk(KERN_DEBUG "\tdata len       %u\n", | 
|  | le32_to_cpu(ino->data_len)); | 
|  | break; | 
|  | } | 
|  | case UBIFS_DENT_NODE: | 
|  | case UBIFS_XENT_NODE: | 
|  | { | 
|  | const struct ubifs_dent_node *dent = node; | 
|  | int nlen = le16_to_cpu(dent->nlen); | 
|  |  | 
|  | key_read(c, &dent->key, &key); | 
|  | printk(KERN_DEBUG "\tkey            %s\n", DBGKEY(&key)); | 
|  | printk(KERN_DEBUG "\tinum           %llu\n", | 
|  | (unsigned long long)le64_to_cpu(dent->inum)); | 
|  | printk(KERN_DEBUG "\ttype           %d\n", (int)dent->type); | 
|  | printk(KERN_DEBUG "\tnlen           %d\n", nlen); | 
|  | printk(KERN_DEBUG "\tname           "); | 
|  |  | 
|  | if (nlen > UBIFS_MAX_NLEN) | 
|  | printk(KERN_DEBUG "(bad name length, not printing, " | 
|  | "bad or corrupted node)"); | 
|  | else { | 
|  | for (i = 0; i < nlen && dent->name[i]; i++) | 
|  | printk(KERN_CONT "%c", dent->name[i]); | 
|  | } | 
|  | printk(KERN_CONT "\n"); | 
|  |  | 
|  | break; | 
|  | } | 
|  | case UBIFS_DATA_NODE: | 
|  | { | 
|  | const struct ubifs_data_node *dn = node; | 
|  | int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ; | 
|  |  | 
|  | key_read(c, &dn->key, &key); | 
|  | printk(KERN_DEBUG "\tkey            %s\n", DBGKEY(&key)); | 
|  | printk(KERN_DEBUG "\tsize           %u\n", | 
|  | le32_to_cpu(dn->size)); | 
|  | printk(KERN_DEBUG "\tcompr_typ      %d\n", | 
|  | (int)le16_to_cpu(dn->compr_type)); | 
|  | printk(KERN_DEBUG "\tdata size      %d\n", | 
|  | dlen); | 
|  | printk(KERN_DEBUG "\tdata:\n"); | 
|  | print_hex_dump(KERN_DEBUG, "\t", DUMP_PREFIX_OFFSET, 32, 1, | 
|  | (void *)&dn->data, dlen, 0); | 
|  | break; | 
|  | } | 
|  | case UBIFS_TRUN_NODE: | 
|  | { | 
|  | const struct ubifs_trun_node *trun = node; | 
|  |  | 
|  | printk(KERN_DEBUG "\tinum           %u\n", | 
|  | le32_to_cpu(trun->inum)); | 
|  | printk(KERN_DEBUG "\told_size       %llu\n", | 
|  | (unsigned long long)le64_to_cpu(trun->old_size)); | 
|  | printk(KERN_DEBUG "\tnew_size       %llu\n", | 
|  | (unsigned long long)le64_to_cpu(trun->new_size)); | 
|  | break; | 
|  | } | 
|  | case UBIFS_IDX_NODE: | 
|  | { | 
|  | const struct ubifs_idx_node *idx = node; | 
|  |  | 
|  | n = le16_to_cpu(idx->child_cnt); | 
|  | printk(KERN_DEBUG "\tchild_cnt      %d\n", n); | 
|  | printk(KERN_DEBUG "\tlevel          %d\n", | 
|  | (int)le16_to_cpu(idx->level)); | 
|  | printk(KERN_DEBUG "\tBranches:\n"); | 
|  |  | 
|  | for (i = 0; i < n && i < c->fanout - 1; i++) { | 
|  | const struct ubifs_branch *br; | 
|  |  | 
|  | br = ubifs_idx_branch(c, idx, i); | 
|  | key_read(c, &br->key, &key); | 
|  | printk(KERN_DEBUG "\t%d: LEB %d:%d len %d key %s\n", | 
|  | i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs), | 
|  | le32_to_cpu(br->len), DBGKEY(&key)); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case UBIFS_CS_NODE: | 
|  | break; | 
|  | case UBIFS_ORPH_NODE: | 
|  | { | 
|  | const struct ubifs_orph_node *orph = node; | 
|  |  | 
|  | printk(KERN_DEBUG "\tcommit number  %llu\n", | 
|  | (unsigned long long) | 
|  | le64_to_cpu(orph->cmt_no) & LLONG_MAX); | 
|  | printk(KERN_DEBUG "\tlast node flag %llu\n", | 
|  | (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63); | 
|  | n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3; | 
|  | printk(KERN_DEBUG "\t%d orphan inode numbers:\n", n); | 
|  | for (i = 0; i < n; i++) | 
|  | printk(KERN_DEBUG "\t  ino %llu\n", | 
|  | (unsigned long long)le64_to_cpu(orph->inos[i])); | 
|  | break; | 
|  | } | 
|  | default: | 
|  | printk(KERN_DEBUG "node type %d was not recognized\n", | 
|  | (int)ch->node_type); | 
|  | } | 
|  | spin_unlock(&dbg_lock); | 
|  | } | 
|  |  | 
|  | void dbg_dump_budget_req(const struct ubifs_budget_req *req) | 
|  | { | 
|  | spin_lock(&dbg_lock); | 
|  | printk(KERN_DEBUG "Budgeting request: new_ino %d, dirtied_ino %d\n", | 
|  | req->new_ino, req->dirtied_ino); | 
|  | printk(KERN_DEBUG "\tnew_ino_d   %d, dirtied_ino_d %d\n", | 
|  | req->new_ino_d, req->dirtied_ino_d); | 
|  | printk(KERN_DEBUG "\tnew_page    %d, dirtied_page %d\n", | 
|  | req->new_page, req->dirtied_page); | 
|  | printk(KERN_DEBUG "\tnew_dent    %d, mod_dent     %d\n", | 
|  | req->new_dent, req->mod_dent); | 
|  | printk(KERN_DEBUG "\tidx_growth  %d\n", req->idx_growth); | 
|  | printk(KERN_DEBUG "\tdata_growth %d dd_growth     %d\n", | 
|  | req->data_growth, req->dd_growth); | 
|  | spin_unlock(&dbg_lock); | 
|  | } | 
|  |  | 
|  | void dbg_dump_lstats(const struct ubifs_lp_stats *lst) | 
|  | { | 
|  | spin_lock(&dbg_lock); | 
|  | printk(KERN_DEBUG "(pid %d) Lprops statistics: empty_lebs %d, " | 
|  | "idx_lebs  %d\n", current->pid, lst->empty_lebs, lst->idx_lebs); | 
|  | printk(KERN_DEBUG "\ttaken_empty_lebs %d, total_free %lld, " | 
|  | "total_dirty %lld\n", lst->taken_empty_lebs, lst->total_free, | 
|  | lst->total_dirty); | 
|  | printk(KERN_DEBUG "\ttotal_used %lld, total_dark %lld, " | 
|  | "total_dead %lld\n", lst->total_used, lst->total_dark, | 
|  | lst->total_dead); | 
|  | spin_unlock(&dbg_lock); | 
|  | } | 
|  |  | 
|  | void dbg_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi) | 
|  | { | 
|  | int i; | 
|  | struct rb_node *rb; | 
|  | struct ubifs_bud *bud; | 
|  | struct ubifs_gced_idx_leb *idx_gc; | 
|  | long long available, outstanding, free; | 
|  |  | 
|  | spin_lock(&c->space_lock); | 
|  | spin_lock(&dbg_lock); | 
|  | printk(KERN_DEBUG "(pid %d) Budgeting info: data budget sum %lld, " | 
|  | "total budget sum %lld\n", current->pid, | 
|  | bi->data_growth + bi->dd_growth, | 
|  | bi->data_growth + bi->dd_growth + bi->idx_growth); | 
|  | printk(KERN_DEBUG "\tbudg_data_growth %lld, budg_dd_growth %lld, " | 
|  | "budg_idx_growth %lld\n", bi->data_growth, bi->dd_growth, | 
|  | bi->idx_growth); | 
|  | printk(KERN_DEBUG "\tmin_idx_lebs %d, old_idx_sz %llu, " | 
|  | "uncommitted_idx %lld\n", bi->min_idx_lebs, bi->old_idx_sz, | 
|  | bi->uncommitted_idx); | 
|  | printk(KERN_DEBUG "\tpage_budget %d, inode_budget %d, dent_budget %d\n", | 
|  | bi->page_budget, bi->inode_budget, bi->dent_budget); | 
|  | printk(KERN_DEBUG "\tnospace %u, nospace_rp %u\n", | 
|  | bi->nospace, bi->nospace_rp); | 
|  | printk(KERN_DEBUG "\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n", | 
|  | c->dark_wm, c->dead_wm, c->max_idx_node_sz); | 
|  |  | 
|  | if (bi != &c->bi) | 
|  | /* | 
|  | * If we are dumping saved budgeting data, do not print | 
|  | * additional information which is about the current state, not | 
|  | * the old one which corresponded to the saved budgeting data. | 
|  | */ | 
|  | goto out_unlock; | 
|  |  | 
|  | printk(KERN_DEBUG "\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n", | 
|  | c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt); | 
|  | printk(KERN_DEBUG "\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, " | 
|  | "clean_zn_cnt %ld\n", atomic_long_read(&c->dirty_pg_cnt), | 
|  | atomic_long_read(&c->dirty_zn_cnt), | 
|  | atomic_long_read(&c->clean_zn_cnt)); | 
|  | printk(KERN_DEBUG "\tgc_lnum %d, ihead_lnum %d\n", | 
|  | c->gc_lnum, c->ihead_lnum); | 
|  |  | 
|  | /* If we are in R/O mode, journal heads do not exist */ | 
|  | if (c->jheads) | 
|  | for (i = 0; i < c->jhead_cnt; i++) | 
|  | printk(KERN_DEBUG "\tjhead %s\t LEB %d\n", | 
|  | dbg_jhead(c->jheads[i].wbuf.jhead), | 
|  | c->jheads[i].wbuf.lnum); | 
|  | for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) { | 
|  | bud = rb_entry(rb, struct ubifs_bud, rb); | 
|  | printk(KERN_DEBUG "\tbud LEB %d\n", bud->lnum); | 
|  | } | 
|  | list_for_each_entry(bud, &c->old_buds, list) | 
|  | printk(KERN_DEBUG "\told bud LEB %d\n", bud->lnum); | 
|  | list_for_each_entry(idx_gc, &c->idx_gc, list) | 
|  | printk(KERN_DEBUG "\tGC'ed idx LEB %d unmap %d\n", | 
|  | idx_gc->lnum, idx_gc->unmap); | 
|  | printk(KERN_DEBUG "\tcommit state %d\n", c->cmt_state); | 
|  |  | 
|  | /* Print budgeting predictions */ | 
|  | available = ubifs_calc_available(c, c->bi.min_idx_lebs); | 
|  | outstanding = c->bi.data_growth + c->bi.dd_growth; | 
|  | free = ubifs_get_free_space_nolock(c); | 
|  | printk(KERN_DEBUG "Budgeting predictions:\n"); | 
|  | printk(KERN_DEBUG "\tavailable: %lld, outstanding %lld, free %lld\n", | 
|  | available, outstanding, free); | 
|  | out_unlock: | 
|  | spin_unlock(&dbg_lock); | 
|  | spin_unlock(&c->space_lock); | 
|  | } | 
|  |  | 
|  | void dbg_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp) | 
|  | { | 
|  | int i, spc, dark = 0, dead = 0; | 
|  | struct rb_node *rb; | 
|  | struct ubifs_bud *bud; | 
|  |  | 
|  | spc = lp->free + lp->dirty; | 
|  | if (spc < c->dead_wm) | 
|  | dead = spc; | 
|  | else | 
|  | dark = ubifs_calc_dark(c, spc); | 
|  |  | 
|  | if (lp->flags & LPROPS_INDEX) | 
|  | printk(KERN_DEBUG "LEB %-7d free %-8d dirty %-8d used %-8d " | 
|  | "free + dirty %-8d flags %#x (", lp->lnum, lp->free, | 
|  | lp->dirty, c->leb_size - spc, spc, lp->flags); | 
|  | else | 
|  | printk(KERN_DEBUG "LEB %-7d free %-8d dirty %-8d used %-8d " | 
|  | "free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d " | 
|  | "flags %#-4x (", lp->lnum, lp->free, lp->dirty, | 
|  | c->leb_size - spc, spc, dark, dead, | 
|  | (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags); | 
|  |  | 
|  | if (lp->flags & LPROPS_TAKEN) { | 
|  | if (lp->flags & LPROPS_INDEX) | 
|  | printk(KERN_CONT "index, taken"); | 
|  | else | 
|  | printk(KERN_CONT "taken"); | 
|  | } else { | 
|  | const char *s; | 
|  |  | 
|  | if (lp->flags & LPROPS_INDEX) { | 
|  | switch (lp->flags & LPROPS_CAT_MASK) { | 
|  | case LPROPS_DIRTY_IDX: | 
|  | s = "dirty index"; | 
|  | break; | 
|  | case LPROPS_FRDI_IDX: | 
|  | s = "freeable index"; | 
|  | break; | 
|  | default: | 
|  | s = "index"; | 
|  | } | 
|  | } else { | 
|  | switch (lp->flags & LPROPS_CAT_MASK) { | 
|  | case LPROPS_UNCAT: | 
|  | s = "not categorized"; | 
|  | break; | 
|  | case LPROPS_DIRTY: | 
|  | s = "dirty"; | 
|  | break; | 
|  | case LPROPS_FREE: | 
|  | s = "free"; | 
|  | break; | 
|  | case LPROPS_EMPTY: | 
|  | s = "empty"; | 
|  | break; | 
|  | case LPROPS_FREEABLE: | 
|  | s = "freeable"; | 
|  | break; | 
|  | default: | 
|  | s = NULL; | 
|  | break; | 
|  | } | 
|  | } | 
|  | printk(KERN_CONT "%s", s); | 
|  | } | 
|  |  | 
|  | for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) { | 
|  | bud = rb_entry(rb, struct ubifs_bud, rb); | 
|  | if (bud->lnum == lp->lnum) { | 
|  | int head = 0; | 
|  | for (i = 0; i < c->jhead_cnt; i++) { | 
|  | /* | 
|  | * Note, if we are in R/O mode or in the middle | 
|  | * of mounting/re-mounting, the write-buffers do | 
|  | * not exist. | 
|  | */ | 
|  | if (c->jheads && | 
|  | lp->lnum == c->jheads[i].wbuf.lnum) { | 
|  | printk(KERN_CONT ", jhead %s", | 
|  | dbg_jhead(i)); | 
|  | head = 1; | 
|  | } | 
|  | } | 
|  | if (!head) | 
|  | printk(KERN_CONT ", bud of jhead %s", | 
|  | dbg_jhead(bud->jhead)); | 
|  | } | 
|  | } | 
|  | if (lp->lnum == c->gc_lnum) | 
|  | printk(KERN_CONT ", GC LEB"); | 
|  | printk(KERN_CONT ")\n"); | 
|  | } | 
|  |  | 
|  | void dbg_dump_lprops(struct ubifs_info *c) | 
|  | { | 
|  | int lnum, err; | 
|  | struct ubifs_lprops lp; | 
|  | struct ubifs_lp_stats lst; | 
|  |  | 
|  | printk(KERN_DEBUG "(pid %d) start dumping LEB properties\n", | 
|  | current->pid); | 
|  | ubifs_get_lp_stats(c, &lst); | 
|  | dbg_dump_lstats(&lst); | 
|  |  | 
|  | for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) { | 
|  | err = ubifs_read_one_lp(c, lnum, &lp); | 
|  | if (err) | 
|  | ubifs_err("cannot read lprops for LEB %d", lnum); | 
|  |  | 
|  | dbg_dump_lprop(c, &lp); | 
|  | } | 
|  | printk(KERN_DEBUG "(pid %d) finish dumping LEB properties\n", | 
|  | current->pid); | 
|  | } | 
|  |  | 
|  | void dbg_dump_lpt_info(struct ubifs_info *c) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | spin_lock(&dbg_lock); | 
|  | printk(KERN_DEBUG "(pid %d) dumping LPT information\n", current->pid); | 
|  | printk(KERN_DEBUG "\tlpt_sz:        %lld\n", c->lpt_sz); | 
|  | printk(KERN_DEBUG "\tpnode_sz:      %d\n", c->pnode_sz); | 
|  | printk(KERN_DEBUG "\tnnode_sz:      %d\n", c->nnode_sz); | 
|  | printk(KERN_DEBUG "\tltab_sz:       %d\n", c->ltab_sz); | 
|  | printk(KERN_DEBUG "\tlsave_sz:      %d\n", c->lsave_sz); | 
|  | printk(KERN_DEBUG "\tbig_lpt:       %d\n", c->big_lpt); | 
|  | printk(KERN_DEBUG "\tlpt_hght:      %d\n", c->lpt_hght); | 
|  | printk(KERN_DEBUG "\tpnode_cnt:     %d\n", c->pnode_cnt); | 
|  | printk(KERN_DEBUG "\tnnode_cnt:     %d\n", c->nnode_cnt); | 
|  | printk(KERN_DEBUG "\tdirty_pn_cnt:  %d\n", c->dirty_pn_cnt); | 
|  | printk(KERN_DEBUG "\tdirty_nn_cnt:  %d\n", c->dirty_nn_cnt); | 
|  | printk(KERN_DEBUG "\tlsave_cnt:     %d\n", c->lsave_cnt); | 
|  | printk(KERN_DEBUG "\tspace_bits:    %d\n", c->space_bits); | 
|  | printk(KERN_DEBUG "\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits); | 
|  | printk(KERN_DEBUG "\tlpt_offs_bits: %d\n", c->lpt_offs_bits); | 
|  | printk(KERN_DEBUG "\tlpt_spc_bits:  %d\n", c->lpt_spc_bits); | 
|  | printk(KERN_DEBUG "\tpcnt_bits:     %d\n", c->pcnt_bits); | 
|  | printk(KERN_DEBUG "\tlnum_bits:     %d\n", c->lnum_bits); | 
|  | printk(KERN_DEBUG "\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs); | 
|  | printk(KERN_DEBUG "\tLPT head is at %d:%d\n", | 
|  | c->nhead_lnum, c->nhead_offs); | 
|  | printk(KERN_DEBUG "\tLPT ltab is at %d:%d\n", | 
|  | c->ltab_lnum, c->ltab_offs); | 
|  | if (c->big_lpt) | 
|  | printk(KERN_DEBUG "\tLPT lsave is at %d:%d\n", | 
|  | c->lsave_lnum, c->lsave_offs); | 
|  | for (i = 0; i < c->lpt_lebs; i++) | 
|  | printk(KERN_DEBUG "\tLPT LEB %d free %d dirty %d tgc %d " | 
|  | "cmt %d\n", i + c->lpt_first, c->ltab[i].free, | 
|  | c->ltab[i].dirty, c->ltab[i].tgc, c->ltab[i].cmt); | 
|  | spin_unlock(&dbg_lock); | 
|  | } | 
|  |  | 
|  | void dbg_dump_leb(const struct ubifs_info *c, int lnum) | 
|  | { | 
|  | struct ubifs_scan_leb *sleb; | 
|  | struct ubifs_scan_node *snod; | 
|  | void *buf; | 
|  |  | 
|  | if (dbg_failure_mode) | 
|  | return; | 
|  |  | 
|  | printk(KERN_DEBUG "(pid %d) start dumping LEB %d\n", | 
|  | current->pid, lnum); | 
|  |  | 
|  | buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL); | 
|  | if (!buf) { | 
|  | ubifs_err("cannot allocate memory for dumping LEB %d", lnum); | 
|  | return; | 
|  | } | 
|  |  | 
|  | sleb = ubifs_scan(c, lnum, 0, buf, 0); | 
|  | if (IS_ERR(sleb)) { | 
|  | ubifs_err("scan error %d", (int)PTR_ERR(sleb)); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | printk(KERN_DEBUG "LEB %d has %d nodes ending at %d\n", lnum, | 
|  | sleb->nodes_cnt, sleb->endpt); | 
|  |  | 
|  | list_for_each_entry(snod, &sleb->nodes, list) { | 
|  | cond_resched(); | 
|  | printk(KERN_DEBUG "Dumping node at LEB %d:%d len %d\n", lnum, | 
|  | snod->offs, snod->len); | 
|  | dbg_dump_node(c, snod->node); | 
|  | } | 
|  |  | 
|  | printk(KERN_DEBUG "(pid %d) finish dumping LEB %d\n", | 
|  | current->pid, lnum); | 
|  | ubifs_scan_destroy(sleb); | 
|  |  | 
|  | out: | 
|  | vfree(buf); | 
|  | return; | 
|  | } | 
|  |  | 
|  | void dbg_dump_znode(const struct ubifs_info *c, | 
|  | const struct ubifs_znode *znode) | 
|  | { | 
|  | int n; | 
|  | const struct ubifs_zbranch *zbr; | 
|  |  | 
|  | spin_lock(&dbg_lock); | 
|  | if (znode->parent) | 
|  | zbr = &znode->parent->zbranch[znode->iip]; | 
|  | else | 
|  | zbr = &c->zroot; | 
|  |  | 
|  | printk(KERN_DEBUG "znode %p, LEB %d:%d len %d parent %p iip %d level %d" | 
|  | " child_cnt %d flags %lx\n", znode, zbr->lnum, zbr->offs, | 
|  | zbr->len, znode->parent, znode->iip, znode->level, | 
|  | znode->child_cnt, znode->flags); | 
|  |  | 
|  | if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) { | 
|  | spin_unlock(&dbg_lock); | 
|  | return; | 
|  | } | 
|  |  | 
|  | printk(KERN_DEBUG "zbranches:\n"); | 
|  | for (n = 0; n < znode->child_cnt; n++) { | 
|  | zbr = &znode->zbranch[n]; | 
|  | if (znode->level > 0) | 
|  | printk(KERN_DEBUG "\t%d: znode %p LEB %d:%d len %d key " | 
|  | "%s\n", n, zbr->znode, zbr->lnum, | 
|  | zbr->offs, zbr->len, | 
|  | DBGKEY(&zbr->key)); | 
|  | else | 
|  | printk(KERN_DEBUG "\t%d: LNC %p LEB %d:%d len %d key " | 
|  | "%s\n", n, zbr->znode, zbr->lnum, | 
|  | zbr->offs, zbr->len, | 
|  | DBGKEY(&zbr->key)); | 
|  | } | 
|  | spin_unlock(&dbg_lock); | 
|  | } | 
|  |  | 
|  | void dbg_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | printk(KERN_DEBUG "(pid %d) start dumping heap cat %d (%d elements)\n", | 
|  | current->pid, cat, heap->cnt); | 
|  | for (i = 0; i < heap->cnt; i++) { | 
|  | struct ubifs_lprops *lprops = heap->arr[i]; | 
|  |  | 
|  | printk(KERN_DEBUG "\t%d. LEB %d hpos %d free %d dirty %d " | 
|  | "flags %d\n", i, lprops->lnum, lprops->hpos, | 
|  | lprops->free, lprops->dirty, lprops->flags); | 
|  | } | 
|  | printk(KERN_DEBUG "(pid %d) finish dumping heap\n", current->pid); | 
|  | } | 
|  |  | 
|  | void dbg_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode, | 
|  | struct ubifs_nnode *parent, int iip) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | printk(KERN_DEBUG "(pid %d) dumping pnode:\n", current->pid); | 
|  | printk(KERN_DEBUG "\taddress %zx parent %zx cnext %zx\n", | 
|  | (size_t)pnode, (size_t)parent, (size_t)pnode->cnext); | 
|  | printk(KERN_DEBUG "\tflags %lu iip %d level %d num %d\n", | 
|  | pnode->flags, iip, pnode->level, pnode->num); | 
|  | for (i = 0; i < UBIFS_LPT_FANOUT; i++) { | 
|  | struct ubifs_lprops *lp = &pnode->lprops[i]; | 
|  |  | 
|  | printk(KERN_DEBUG "\t%d: free %d dirty %d flags %d lnum %d\n", | 
|  | i, lp->free, lp->dirty, lp->flags, lp->lnum); | 
|  | } | 
|  | } | 
|  |  | 
|  | void dbg_dump_tnc(struct ubifs_info *c) | 
|  | { | 
|  | struct ubifs_znode *znode; | 
|  | int level; | 
|  |  | 
|  | printk(KERN_DEBUG "\n"); | 
|  | printk(KERN_DEBUG "(pid %d) start dumping TNC tree\n", current->pid); | 
|  | znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL); | 
|  | level = znode->level; | 
|  | printk(KERN_DEBUG "== Level %d ==\n", level); | 
|  | while (znode) { | 
|  | if (level != znode->level) { | 
|  | level = znode->level; | 
|  | printk(KERN_DEBUG "== Level %d ==\n", level); | 
|  | } | 
|  | dbg_dump_znode(c, znode); | 
|  | znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode); | 
|  | } | 
|  | printk(KERN_DEBUG "(pid %d) finish dumping TNC tree\n", current->pid); | 
|  | } | 
|  |  | 
|  | static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode, | 
|  | void *priv) | 
|  | { | 
|  | dbg_dump_znode(c, znode); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * dbg_dump_index - dump the on-flash index. | 
|  | * @c: UBIFS file-system description object | 
|  | * | 
|  | * This function dumps whole UBIFS indexing B-tree, unlike 'dbg_dump_tnc()' | 
|  | * which dumps only in-memory znodes and does not read znodes which from flash. | 
|  | */ | 
|  | void dbg_dump_index(struct ubifs_info *c) | 
|  | { | 
|  | dbg_walk_index(c, NULL, dump_znode, NULL); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * dbg_save_space_info - save information about flash space. | 
|  | * @c: UBIFS file-system description object | 
|  | * | 
|  | * This function saves information about UBIFS free space, dirty space, etc, in | 
|  | * order to check it later. | 
|  | */ | 
|  | void dbg_save_space_info(struct ubifs_info *c) | 
|  | { | 
|  | struct ubifs_debug_info *d = c->dbg; | 
|  | int freeable_cnt; | 
|  |  | 
|  | spin_lock(&c->space_lock); | 
|  | memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats)); | 
|  | memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info)); | 
|  | d->saved_idx_gc_cnt = c->idx_gc_cnt; | 
|  |  | 
|  | /* | 
|  | * We use a dirty hack here and zero out @c->freeable_cnt, because it | 
|  | * affects the free space calculations, and UBIFS might not know about | 
|  | * all freeable eraseblocks. Indeed, we know about freeable eraseblocks | 
|  | * only when we read their lprops, and we do this only lazily, upon the | 
|  | * need. So at any given point of time @c->freeable_cnt might be not | 
|  | * exactly accurate. | 
|  | * | 
|  | * Just one example about the issue we hit when we did not zero | 
|  | * @c->freeable_cnt. | 
|  | * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the | 
|  | *    amount of free space in @d->saved_free | 
|  | * 2. We re-mount R/W, which makes UBIFS to read the "lsave" | 
|  | *    information from flash, where we cache LEBs from various | 
|  | *    categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()' | 
|  | *    -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()' | 
|  | *    -> 'ubifs_get_pnode()' -> 'update_cats()' | 
|  | *    -> 'ubifs_add_to_cat()'). | 
|  | * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt | 
|  | *    becomes %1. | 
|  | * 4. We calculate the amount of free space when the re-mount is | 
|  | *    finished in 'dbg_check_space_info()' and it does not match | 
|  | *    @d->saved_free. | 
|  | */ | 
|  | freeable_cnt = c->freeable_cnt; | 
|  | c->freeable_cnt = 0; | 
|  | d->saved_free = ubifs_get_free_space_nolock(c); | 
|  | c->freeable_cnt = freeable_cnt; | 
|  | spin_unlock(&c->space_lock); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * dbg_check_space_info - check flash space information. | 
|  | * @c: UBIFS file-system description object | 
|  | * | 
|  | * This function compares current flash space information with the information | 
|  | * which was saved when the 'dbg_save_space_info()' function was called. | 
|  | * Returns zero if the information has not changed, and %-EINVAL it it has | 
|  | * changed. | 
|  | */ | 
|  | int dbg_check_space_info(struct ubifs_info *c) | 
|  | { | 
|  | struct ubifs_debug_info *d = c->dbg; | 
|  | struct ubifs_lp_stats lst; | 
|  | long long free; | 
|  | int freeable_cnt; | 
|  |  | 
|  | spin_lock(&c->space_lock); | 
|  | freeable_cnt = c->freeable_cnt; | 
|  | c->freeable_cnt = 0; | 
|  | free = ubifs_get_free_space_nolock(c); | 
|  | c->freeable_cnt = freeable_cnt; | 
|  | spin_unlock(&c->space_lock); | 
|  |  | 
|  | if (free != d->saved_free) { | 
|  | ubifs_err("free space changed from %lld to %lld", | 
|  | d->saved_free, free); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out: | 
|  | ubifs_msg("saved lprops statistics dump"); | 
|  | dbg_dump_lstats(&d->saved_lst); | 
|  | ubifs_msg("saved budgeting info dump"); | 
|  | dbg_dump_budg(c, &d->saved_bi); | 
|  | ubifs_msg("saved idx_gc_cnt %d", d->saved_idx_gc_cnt); | 
|  | ubifs_msg("current lprops statistics dump"); | 
|  | ubifs_get_lp_stats(c, &lst); | 
|  | dbg_dump_lstats(&lst); | 
|  | ubifs_msg("current budgeting info dump"); | 
|  | dbg_dump_budg(c, &c->bi); | 
|  | dump_stack(); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * dbg_check_synced_i_size - check synchronized inode size. | 
|  | * @inode: inode to check | 
|  | * | 
|  | * If inode is clean, synchronized inode size has to be equivalent to current | 
|  | * inode size. This function has to be called only for locked inodes (@i_mutex | 
|  | * has to be locked). Returns %0 if synchronized inode size if correct, and | 
|  | * %-EINVAL if not. | 
|  | */ | 
|  | int dbg_check_synced_i_size(struct inode *inode) | 
|  | { | 
|  | int err = 0; | 
|  | struct ubifs_inode *ui = ubifs_inode(inode); | 
|  |  | 
|  | if (!(ubifs_chk_flags & UBIFS_CHK_GEN)) | 
|  | return 0; | 
|  | if (!S_ISREG(inode->i_mode)) | 
|  | return 0; | 
|  |  | 
|  | mutex_lock(&ui->ui_mutex); | 
|  | spin_lock(&ui->ui_lock); | 
|  | if (ui->ui_size != ui->synced_i_size && !ui->dirty) { | 
|  | ubifs_err("ui_size is %lld, synced_i_size is %lld, but inode " | 
|  | "is clean", ui->ui_size, ui->synced_i_size); | 
|  | ubifs_err("i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino, | 
|  | inode->i_mode, i_size_read(inode)); | 
|  | dbg_dump_stack(); | 
|  | err = -EINVAL; | 
|  | } | 
|  | spin_unlock(&ui->ui_lock); | 
|  | mutex_unlock(&ui->ui_mutex); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * dbg_check_dir - check directory inode size and link count. | 
|  | * @c: UBIFS file-system description object | 
|  | * @dir: the directory to calculate size for | 
|  | * @size: the result is returned here | 
|  | * | 
|  | * This function makes sure that directory size and link count are correct. | 
|  | * Returns zero in case of success and a negative error code in case of | 
|  | * failure. | 
|  | * | 
|  | * Note, it is good idea to make sure the @dir->i_mutex is locked before | 
|  | * calling this function. | 
|  | */ | 
|  | int dbg_check_dir_size(struct ubifs_info *c, const struct inode *dir) | 
|  | { | 
|  | unsigned int nlink = 2; | 
|  | union ubifs_key key; | 
|  | struct ubifs_dent_node *dent, *pdent = NULL; | 
|  | struct qstr nm = { .name = NULL }; | 
|  | loff_t size = UBIFS_INO_NODE_SZ; | 
|  |  | 
|  | if (!(ubifs_chk_flags & UBIFS_CHK_GEN)) | 
|  | return 0; | 
|  |  | 
|  | if (!S_ISDIR(dir->i_mode)) | 
|  | return 0; | 
|  |  | 
|  | lowest_dent_key(c, &key, dir->i_ino); | 
|  | while (1) { | 
|  | int err; | 
|  |  | 
|  | dent = ubifs_tnc_next_ent(c, &key, &nm); | 
|  | if (IS_ERR(dent)) { | 
|  | err = PTR_ERR(dent); | 
|  | if (err == -ENOENT) | 
|  | break; | 
|  | return err; | 
|  | } | 
|  |  | 
|  | nm.name = dent->name; | 
|  | nm.len = le16_to_cpu(dent->nlen); | 
|  | size += CALC_DENT_SIZE(nm.len); | 
|  | if (dent->type == UBIFS_ITYPE_DIR) | 
|  | nlink += 1; | 
|  | kfree(pdent); | 
|  | pdent = dent; | 
|  | key_read(c, &dent->key, &key); | 
|  | } | 
|  | kfree(pdent); | 
|  |  | 
|  | if (i_size_read(dir) != size) { | 
|  | ubifs_err("directory inode %lu has size %llu, " | 
|  | "but calculated size is %llu", dir->i_ino, | 
|  | (unsigned long long)i_size_read(dir), | 
|  | (unsigned long long)size); | 
|  | dump_stack(); | 
|  | return -EINVAL; | 
|  | } | 
|  | if (dir->i_nlink != nlink) { | 
|  | ubifs_err("directory inode %lu has nlink %u, but calculated " | 
|  | "nlink is %u", dir->i_ino, dir->i_nlink, nlink); | 
|  | dump_stack(); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * dbg_check_key_order - make sure that colliding keys are properly ordered. | 
|  | * @c: UBIFS file-system description object | 
|  | * @zbr1: first zbranch | 
|  | * @zbr2: following zbranch | 
|  | * | 
|  | * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of | 
|  | * names of the direntries/xentries which are referred by the keys. This | 
|  | * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes | 
|  | * sure the name of direntry/xentry referred by @zbr1 is less than | 
|  | * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not, | 
|  | * and a negative error code in case of failure. | 
|  | */ | 
|  | static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1, | 
|  | struct ubifs_zbranch *zbr2) | 
|  | { | 
|  | int err, nlen1, nlen2, cmp; | 
|  | struct ubifs_dent_node *dent1, *dent2; | 
|  | union ubifs_key key; | 
|  |  | 
|  | ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key)); | 
|  | dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS); | 
|  | if (!dent1) | 
|  | return -ENOMEM; | 
|  | dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS); | 
|  | if (!dent2) { | 
|  | err = -ENOMEM; | 
|  | goto out_free; | 
|  | } | 
|  |  | 
|  | err = ubifs_tnc_read_node(c, zbr1, dent1); | 
|  | if (err) | 
|  | goto out_free; | 
|  | err = ubifs_validate_entry(c, dent1); | 
|  | if (err) | 
|  | goto out_free; | 
|  |  | 
|  | err = ubifs_tnc_read_node(c, zbr2, dent2); | 
|  | if (err) | 
|  | goto out_free; | 
|  | err = ubifs_validate_entry(c, dent2); | 
|  | if (err) | 
|  | goto out_free; | 
|  |  | 
|  | /* Make sure node keys are the same as in zbranch */ | 
|  | err = 1; | 
|  | key_read(c, &dent1->key, &key); | 
|  | if (keys_cmp(c, &zbr1->key, &key)) { | 
|  | dbg_err("1st entry at %d:%d has key %s", zbr1->lnum, | 
|  | zbr1->offs, DBGKEY(&key)); | 
|  | dbg_err("but it should have key %s according to tnc", | 
|  | DBGKEY(&zbr1->key)); | 
|  | dbg_dump_node(c, dent1); | 
|  | goto out_free; | 
|  | } | 
|  |  | 
|  | key_read(c, &dent2->key, &key); | 
|  | if (keys_cmp(c, &zbr2->key, &key)) { | 
|  | dbg_err("2nd entry at %d:%d has key %s", zbr1->lnum, | 
|  | zbr1->offs, DBGKEY(&key)); | 
|  | dbg_err("but it should have key %s according to tnc", | 
|  | DBGKEY(&zbr2->key)); | 
|  | dbg_dump_node(c, dent2); | 
|  | goto out_free; | 
|  | } | 
|  |  | 
|  | nlen1 = le16_to_cpu(dent1->nlen); | 
|  | nlen2 = le16_to_cpu(dent2->nlen); | 
|  |  | 
|  | cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2)); | 
|  | if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) { | 
|  | err = 0; | 
|  | goto out_free; | 
|  | } | 
|  | if (cmp == 0 && nlen1 == nlen2) | 
|  | dbg_err("2 xent/dent nodes with the same name"); | 
|  | else | 
|  | dbg_err("bad order of colliding key %s", | 
|  | DBGKEY(&key)); | 
|  |  | 
|  | ubifs_msg("first node at %d:%d\n", zbr1->lnum, zbr1->offs); | 
|  | dbg_dump_node(c, dent1); | 
|  | ubifs_msg("second node at %d:%d\n", zbr2->lnum, zbr2->offs); | 
|  | dbg_dump_node(c, dent2); | 
|  |  | 
|  | out_free: | 
|  | kfree(dent2); | 
|  | kfree(dent1); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * dbg_check_znode - check if znode is all right. | 
|  | * @c: UBIFS file-system description object | 
|  | * @zbr: zbranch which points to this znode | 
|  | * | 
|  | * This function makes sure that znode referred to by @zbr is all right. | 
|  | * Returns zero if it is, and %-EINVAL if it is not. | 
|  | */ | 
|  | static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr) | 
|  | { | 
|  | struct ubifs_znode *znode = zbr->znode; | 
|  | struct ubifs_znode *zp = znode->parent; | 
|  | int n, err, cmp; | 
|  |  | 
|  | if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) { | 
|  | err = 1; | 
|  | goto out; | 
|  | } | 
|  | if (znode->level < 0) { | 
|  | err = 2; | 
|  | goto out; | 
|  | } | 
|  | if (znode->iip < 0 || znode->iip >= c->fanout) { | 
|  | err = 3; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (zbr->len == 0) | 
|  | /* Only dirty zbranch may have no on-flash nodes */ | 
|  | if (!ubifs_zn_dirty(znode)) { | 
|  | err = 4; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (ubifs_zn_dirty(znode)) { | 
|  | /* | 
|  | * If znode is dirty, its parent has to be dirty as well. The | 
|  | * order of the operation is important, so we have to have | 
|  | * memory barriers. | 
|  | */ | 
|  | smp_mb(); | 
|  | if (zp && !ubifs_zn_dirty(zp)) { | 
|  | /* | 
|  | * The dirty flag is atomic and is cleared outside the | 
|  | * TNC mutex, so znode's dirty flag may now have | 
|  | * been cleared. The child is always cleared before the | 
|  | * parent, so we just need to check again. | 
|  | */ | 
|  | smp_mb(); | 
|  | if (ubifs_zn_dirty(znode)) { | 
|  | err = 5; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (zp) { | 
|  | const union ubifs_key *min, *max; | 
|  |  | 
|  | if (znode->level != zp->level - 1) { | 
|  | err = 6; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* Make sure the 'parent' pointer in our znode is correct */ | 
|  | err = ubifs_search_zbranch(c, zp, &zbr->key, &n); | 
|  | if (!err) { | 
|  | /* This zbranch does not exist in the parent */ | 
|  | err = 7; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (znode->iip >= zp->child_cnt) { | 
|  | err = 8; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (znode->iip != n) { | 
|  | /* This may happen only in case of collisions */ | 
|  | if (keys_cmp(c, &zp->zbranch[n].key, | 
|  | &zp->zbranch[znode->iip].key)) { | 
|  | err = 9; | 
|  | goto out; | 
|  | } | 
|  | n = znode->iip; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Make sure that the first key in our znode is greater than or | 
|  | * equal to the key in the pointing zbranch. | 
|  | */ | 
|  | min = &zbr->key; | 
|  | cmp = keys_cmp(c, min, &znode->zbranch[0].key); | 
|  | if (cmp == 1) { | 
|  | err = 10; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (n + 1 < zp->child_cnt) { | 
|  | max = &zp->zbranch[n + 1].key; | 
|  |  | 
|  | /* | 
|  | * Make sure the last key in our znode is less or | 
|  | * equivalent than the key in the zbranch which goes | 
|  | * after our pointing zbranch. | 
|  | */ | 
|  | cmp = keys_cmp(c, max, | 
|  | &znode->zbranch[znode->child_cnt - 1].key); | 
|  | if (cmp == -1) { | 
|  | err = 11; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | /* This may only be root znode */ | 
|  | if (zbr != &c->zroot) { | 
|  | err = 12; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Make sure that next key is greater or equivalent then the previous | 
|  | * one. | 
|  | */ | 
|  | for (n = 1; n < znode->child_cnt; n++) { | 
|  | cmp = keys_cmp(c, &znode->zbranch[n - 1].key, | 
|  | &znode->zbranch[n].key); | 
|  | if (cmp > 0) { | 
|  | err = 13; | 
|  | goto out; | 
|  | } | 
|  | if (cmp == 0) { | 
|  | /* This can only be keys with colliding hash */ | 
|  | if (!is_hash_key(c, &znode->zbranch[n].key)) { | 
|  | err = 14; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (znode->level != 0 || c->replaying) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * Colliding keys should follow binary order of | 
|  | * corresponding xentry/dentry names. | 
|  | */ | 
|  | err = dbg_check_key_order(c, &znode->zbranch[n - 1], | 
|  | &znode->zbranch[n]); | 
|  | if (err < 0) | 
|  | return err; | 
|  | if (err) { | 
|  | err = 15; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | for (n = 0; n < znode->child_cnt; n++) { | 
|  | if (!znode->zbranch[n].znode && | 
|  | (znode->zbranch[n].lnum == 0 || | 
|  | znode->zbranch[n].len == 0)) { | 
|  | err = 16; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (znode->zbranch[n].lnum != 0 && | 
|  | znode->zbranch[n].len == 0) { | 
|  | err = 17; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (znode->zbranch[n].lnum == 0 && | 
|  | znode->zbranch[n].len != 0) { | 
|  | err = 18; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (znode->zbranch[n].lnum == 0 && | 
|  | znode->zbranch[n].offs != 0) { | 
|  | err = 19; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (znode->level != 0 && znode->zbranch[n].znode) | 
|  | if (znode->zbranch[n].znode->parent != znode) { | 
|  | err = 20; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out: | 
|  | ubifs_err("failed, error %d", err); | 
|  | ubifs_msg("dump of the znode"); | 
|  | dbg_dump_znode(c, znode); | 
|  | if (zp) { | 
|  | ubifs_msg("dump of the parent znode"); | 
|  | dbg_dump_znode(c, zp); | 
|  | } | 
|  | dump_stack(); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * dbg_check_tnc - check TNC tree. | 
|  | * @c: UBIFS file-system description object | 
|  | * @extra: do extra checks that are possible at start commit | 
|  | * | 
|  | * This function traverses whole TNC tree and checks every znode. Returns zero | 
|  | * if everything is all right and %-EINVAL if something is wrong with TNC. | 
|  | */ | 
|  | int dbg_check_tnc(struct ubifs_info *c, int extra) | 
|  | { | 
|  | struct ubifs_znode *znode; | 
|  | long clean_cnt = 0, dirty_cnt = 0; | 
|  | int err, last; | 
|  |  | 
|  | if (!(ubifs_chk_flags & UBIFS_CHK_TNC)) | 
|  | return 0; | 
|  |  | 
|  | ubifs_assert(mutex_is_locked(&c->tnc_mutex)); | 
|  | if (!c->zroot.znode) | 
|  | return 0; | 
|  |  | 
|  | znode = ubifs_tnc_postorder_first(c->zroot.znode); | 
|  | while (1) { | 
|  | struct ubifs_znode *prev; | 
|  | struct ubifs_zbranch *zbr; | 
|  |  | 
|  | if (!znode->parent) | 
|  | zbr = &c->zroot; | 
|  | else | 
|  | zbr = &znode->parent->zbranch[znode->iip]; | 
|  |  | 
|  | err = dbg_check_znode(c, zbr); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | if (extra) { | 
|  | if (ubifs_zn_dirty(znode)) | 
|  | dirty_cnt += 1; | 
|  | else | 
|  | clean_cnt += 1; | 
|  | } | 
|  |  | 
|  | prev = znode; | 
|  | znode = ubifs_tnc_postorder_next(znode); | 
|  | if (!znode) | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * If the last key of this znode is equivalent to the first key | 
|  | * of the next znode (collision), then check order of the keys. | 
|  | */ | 
|  | last = prev->child_cnt - 1; | 
|  | if (prev->level == 0 && znode->level == 0 && !c->replaying && | 
|  | !keys_cmp(c, &prev->zbranch[last].key, | 
|  | &znode->zbranch[0].key)) { | 
|  | err = dbg_check_key_order(c, &prev->zbranch[last], | 
|  | &znode->zbranch[0]); | 
|  | if (err < 0) | 
|  | return err; | 
|  | if (err) { | 
|  | ubifs_msg("first znode"); | 
|  | dbg_dump_znode(c, prev); | 
|  | ubifs_msg("second znode"); | 
|  | dbg_dump_znode(c, znode); | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (extra) { | 
|  | if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) { | 
|  | ubifs_err("incorrect clean_zn_cnt %ld, calculated %ld", | 
|  | atomic_long_read(&c->clean_zn_cnt), | 
|  | clean_cnt); | 
|  | return -EINVAL; | 
|  | } | 
|  | if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) { | 
|  | ubifs_err("incorrect dirty_zn_cnt %ld, calculated %ld", | 
|  | atomic_long_read(&c->dirty_zn_cnt), | 
|  | dirty_cnt); | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * dbg_walk_index - walk the on-flash index. | 
|  | * @c: UBIFS file-system description object | 
|  | * @leaf_cb: called for each leaf node | 
|  | * @znode_cb: called for each indexing node | 
|  | * @priv: private data which is passed to callbacks | 
|  | * | 
|  | * This function walks the UBIFS index and calls the @leaf_cb for each leaf | 
|  | * node and @znode_cb for each indexing node. Returns zero in case of success | 
|  | * and a negative error code in case of failure. | 
|  | * | 
|  | * It would be better if this function removed every znode it pulled to into | 
|  | * the TNC, so that the behavior more closely matched the non-debugging | 
|  | * behavior. | 
|  | */ | 
|  | int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb, | 
|  | dbg_znode_callback znode_cb, void *priv) | 
|  | { | 
|  | int err; | 
|  | struct ubifs_zbranch *zbr; | 
|  | struct ubifs_znode *znode, *child; | 
|  |  | 
|  | mutex_lock(&c->tnc_mutex); | 
|  | /* If the root indexing node is not in TNC - pull it */ | 
|  | if (!c->zroot.znode) { | 
|  | c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0); | 
|  | if (IS_ERR(c->zroot.znode)) { | 
|  | err = PTR_ERR(c->zroot.znode); | 
|  | c->zroot.znode = NULL; | 
|  | goto out_unlock; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We are going to traverse the indexing tree in the postorder manner. | 
|  | * Go down and find the leftmost indexing node where we are going to | 
|  | * start from. | 
|  | */ | 
|  | znode = c->zroot.znode; | 
|  | while (znode->level > 0) { | 
|  | zbr = &znode->zbranch[0]; | 
|  | child = zbr->znode; | 
|  | if (!child) { | 
|  | child = ubifs_load_znode(c, zbr, znode, 0); | 
|  | if (IS_ERR(child)) { | 
|  | err = PTR_ERR(child); | 
|  | goto out_unlock; | 
|  | } | 
|  | zbr->znode = child; | 
|  | } | 
|  |  | 
|  | znode = child; | 
|  | } | 
|  |  | 
|  | /* Iterate over all indexing nodes */ | 
|  | while (1) { | 
|  | int idx; | 
|  |  | 
|  | cond_resched(); | 
|  |  | 
|  | if (znode_cb) { | 
|  | err = znode_cb(c, znode, priv); | 
|  | if (err) { | 
|  | ubifs_err("znode checking function returned " | 
|  | "error %d", err); | 
|  | dbg_dump_znode(c, znode); | 
|  | goto out_dump; | 
|  | } | 
|  | } | 
|  | if (leaf_cb && znode->level == 0) { | 
|  | for (idx = 0; idx < znode->child_cnt; idx++) { | 
|  | zbr = &znode->zbranch[idx]; | 
|  | err = leaf_cb(c, zbr, priv); | 
|  | if (err) { | 
|  | ubifs_err("leaf checking function " | 
|  | "returned error %d, for leaf " | 
|  | "at LEB %d:%d", | 
|  | err, zbr->lnum, zbr->offs); | 
|  | goto out_dump; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!znode->parent) | 
|  | break; | 
|  |  | 
|  | idx = znode->iip + 1; | 
|  | znode = znode->parent; | 
|  | if (idx < znode->child_cnt) { | 
|  | /* Switch to the next index in the parent */ | 
|  | zbr = &znode->zbranch[idx]; | 
|  | child = zbr->znode; | 
|  | if (!child) { | 
|  | child = ubifs_load_znode(c, zbr, znode, idx); | 
|  | if (IS_ERR(child)) { | 
|  | err = PTR_ERR(child); | 
|  | goto out_unlock; | 
|  | } | 
|  | zbr->znode = child; | 
|  | } | 
|  | znode = child; | 
|  | } else | 
|  | /* | 
|  | * This is the last child, switch to the parent and | 
|  | * continue. | 
|  | */ | 
|  | continue; | 
|  |  | 
|  | /* Go to the lowest leftmost znode in the new sub-tree */ | 
|  | while (znode->level > 0) { | 
|  | zbr = &znode->zbranch[0]; | 
|  | child = zbr->znode; | 
|  | if (!child) { | 
|  | child = ubifs_load_znode(c, zbr, znode, 0); | 
|  | if (IS_ERR(child)) { | 
|  | err = PTR_ERR(child); | 
|  | goto out_unlock; | 
|  | } | 
|  | zbr->znode = child; | 
|  | } | 
|  | znode = child; | 
|  | } | 
|  | } | 
|  |  | 
|  | mutex_unlock(&c->tnc_mutex); | 
|  | return 0; | 
|  |  | 
|  | out_dump: | 
|  | if (znode->parent) | 
|  | zbr = &znode->parent->zbranch[znode->iip]; | 
|  | else | 
|  | zbr = &c->zroot; | 
|  | ubifs_msg("dump of znode at LEB %d:%d", zbr->lnum, zbr->offs); | 
|  | dbg_dump_znode(c, znode); | 
|  | out_unlock: | 
|  | mutex_unlock(&c->tnc_mutex); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * add_size - add znode size to partially calculated index size. | 
|  | * @c: UBIFS file-system description object | 
|  | * @znode: znode to add size for | 
|  | * @priv: partially calculated index size | 
|  | * | 
|  | * This is a helper function for 'dbg_check_idx_size()' which is called for | 
|  | * every indexing node and adds its size to the 'long long' variable pointed to | 
|  | * by @priv. | 
|  | */ | 
|  | static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv) | 
|  | { | 
|  | long long *idx_size = priv; | 
|  | int add; | 
|  |  | 
|  | add = ubifs_idx_node_sz(c, znode->child_cnt); | 
|  | add = ALIGN(add, 8); | 
|  | *idx_size += add; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * dbg_check_idx_size - check index size. | 
|  | * @c: UBIFS file-system description object | 
|  | * @idx_size: size to check | 
|  | * | 
|  | * This function walks the UBIFS index, calculates its size and checks that the | 
|  | * size is equivalent to @idx_size. Returns zero in case of success and a | 
|  | * negative error code in case of failure. | 
|  | */ | 
|  | int dbg_check_idx_size(struct ubifs_info *c, long long idx_size) | 
|  | { | 
|  | int err; | 
|  | long long calc = 0; | 
|  |  | 
|  | if (!(ubifs_chk_flags & UBIFS_CHK_IDX_SZ)) | 
|  | return 0; | 
|  |  | 
|  | err = dbg_walk_index(c, NULL, add_size, &calc); | 
|  | if (err) { | 
|  | ubifs_err("error %d while walking the index", err); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | if (calc != idx_size) { | 
|  | ubifs_err("index size check failed: calculated size is %lld, " | 
|  | "should be %lld", calc, idx_size); | 
|  | dump_stack(); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * struct fsck_inode - information about an inode used when checking the file-system. | 
|  | * @rb: link in the RB-tree of inodes | 
|  | * @inum: inode number | 
|  | * @mode: inode type, permissions, etc | 
|  | * @nlink: inode link count | 
|  | * @xattr_cnt: count of extended attributes | 
|  | * @references: how many directory/xattr entries refer this inode (calculated | 
|  | *              while walking the index) | 
|  | * @calc_cnt: for directory inode count of child directories | 
|  | * @size: inode size (read from on-flash inode) | 
|  | * @xattr_sz: summary size of all extended attributes (read from on-flash | 
|  | *            inode) | 
|  | * @calc_sz: for directories calculated directory size | 
|  | * @calc_xcnt: count of extended attributes | 
|  | * @calc_xsz: calculated summary size of all extended attributes | 
|  | * @xattr_nms: sum of lengths of all extended attribute names belonging to this | 
|  | *             inode (read from on-flash inode) | 
|  | * @calc_xnms: calculated sum of lengths of all extended attribute names | 
|  | */ | 
|  | struct fsck_inode { | 
|  | struct rb_node rb; | 
|  | ino_t inum; | 
|  | umode_t mode; | 
|  | unsigned int nlink; | 
|  | unsigned int xattr_cnt; | 
|  | int references; | 
|  | int calc_cnt; | 
|  | long long size; | 
|  | unsigned int xattr_sz; | 
|  | long long calc_sz; | 
|  | long long calc_xcnt; | 
|  | long long calc_xsz; | 
|  | unsigned int xattr_nms; | 
|  | long long calc_xnms; | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * struct fsck_data - private FS checking information. | 
|  | * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects) | 
|  | */ | 
|  | struct fsck_data { | 
|  | struct rb_root inodes; | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * add_inode - add inode information to RB-tree of inodes. | 
|  | * @c: UBIFS file-system description object | 
|  | * @fsckd: FS checking information | 
|  | * @ino: raw UBIFS inode to add | 
|  | * | 
|  | * This is a helper function for 'check_leaf()' which adds information about | 
|  | * inode @ino to the RB-tree of inodes. Returns inode information pointer in | 
|  | * case of success and a negative error code in case of failure. | 
|  | */ | 
|  | static struct fsck_inode *add_inode(struct ubifs_info *c, | 
|  | struct fsck_data *fsckd, | 
|  | struct ubifs_ino_node *ino) | 
|  | { | 
|  | struct rb_node **p, *parent = NULL; | 
|  | struct fsck_inode *fscki; | 
|  | ino_t inum = key_inum_flash(c, &ino->key); | 
|  | struct inode *inode; | 
|  | struct ubifs_inode *ui; | 
|  |  | 
|  | p = &fsckd->inodes.rb_node; | 
|  | while (*p) { | 
|  | parent = *p; | 
|  | fscki = rb_entry(parent, struct fsck_inode, rb); | 
|  | if (inum < fscki->inum) | 
|  | p = &(*p)->rb_left; | 
|  | else if (inum > fscki->inum) | 
|  | p = &(*p)->rb_right; | 
|  | else | 
|  | return fscki; | 
|  | } | 
|  |  | 
|  | if (inum > c->highest_inum) { | 
|  | ubifs_err("too high inode number, max. is %lu", | 
|  | (unsigned long)c->highest_inum); | 
|  | return ERR_PTR(-EINVAL); | 
|  | } | 
|  |  | 
|  | fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS); | 
|  | if (!fscki) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | inode = ilookup(c->vfs_sb, inum); | 
|  |  | 
|  | fscki->inum = inum; | 
|  | /* | 
|  | * If the inode is present in the VFS inode cache, use it instead of | 
|  | * the on-flash inode which might be out-of-date. E.g., the size might | 
|  | * be out-of-date. If we do not do this, the following may happen, for | 
|  | * example: | 
|  | *   1. A power cut happens | 
|  | *   2. We mount the file-system R/O, the replay process fixes up the | 
|  | *      inode size in the VFS cache, but on on-flash. | 
|  | *   3. 'check_leaf()' fails because it hits a data node beyond inode | 
|  | *      size. | 
|  | */ | 
|  | if (!inode) { | 
|  | fscki->nlink = le32_to_cpu(ino->nlink); | 
|  | fscki->size = le64_to_cpu(ino->size); | 
|  | fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt); | 
|  | fscki->xattr_sz = le32_to_cpu(ino->xattr_size); | 
|  | fscki->xattr_nms = le32_to_cpu(ino->xattr_names); | 
|  | fscki->mode = le32_to_cpu(ino->mode); | 
|  | } else { | 
|  | ui = ubifs_inode(inode); | 
|  | fscki->nlink = inode->i_nlink; | 
|  | fscki->size = inode->i_size; | 
|  | fscki->xattr_cnt = ui->xattr_cnt; | 
|  | fscki->xattr_sz = ui->xattr_size; | 
|  | fscki->xattr_nms = ui->xattr_names; | 
|  | fscki->mode = inode->i_mode; | 
|  | iput(inode); | 
|  | } | 
|  |  | 
|  | if (S_ISDIR(fscki->mode)) { | 
|  | fscki->calc_sz = UBIFS_INO_NODE_SZ; | 
|  | fscki->calc_cnt = 2; | 
|  | } | 
|  |  | 
|  | rb_link_node(&fscki->rb, parent, p); | 
|  | rb_insert_color(&fscki->rb, &fsckd->inodes); | 
|  |  | 
|  | return fscki; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * search_inode - search inode in the RB-tree of inodes. | 
|  | * @fsckd: FS checking information | 
|  | * @inum: inode number to search | 
|  | * | 
|  | * This is a helper function for 'check_leaf()' which searches inode @inum in | 
|  | * the RB-tree of inodes and returns an inode information pointer or %NULL if | 
|  | * the inode was not found. | 
|  | */ | 
|  | static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum) | 
|  | { | 
|  | struct rb_node *p; | 
|  | struct fsck_inode *fscki; | 
|  |  | 
|  | p = fsckd->inodes.rb_node; | 
|  | while (p) { | 
|  | fscki = rb_entry(p, struct fsck_inode, rb); | 
|  | if (inum < fscki->inum) | 
|  | p = p->rb_left; | 
|  | else if (inum > fscki->inum) | 
|  | p = p->rb_right; | 
|  | else | 
|  | return fscki; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * read_add_inode - read inode node and add it to RB-tree of inodes. | 
|  | * @c: UBIFS file-system description object | 
|  | * @fsckd: FS checking information | 
|  | * @inum: inode number to read | 
|  | * | 
|  | * This is a helper function for 'check_leaf()' which finds inode node @inum in | 
|  | * the index, reads it, and adds it to the RB-tree of inodes. Returns inode | 
|  | * information pointer in case of success and a negative error code in case of | 
|  | * failure. | 
|  | */ | 
|  | static struct fsck_inode *read_add_inode(struct ubifs_info *c, | 
|  | struct fsck_data *fsckd, ino_t inum) | 
|  | { | 
|  | int n, err; | 
|  | union ubifs_key key; | 
|  | struct ubifs_znode *znode; | 
|  | struct ubifs_zbranch *zbr; | 
|  | struct ubifs_ino_node *ino; | 
|  | struct fsck_inode *fscki; | 
|  |  | 
|  | fscki = search_inode(fsckd, inum); | 
|  | if (fscki) | 
|  | return fscki; | 
|  |  | 
|  | ino_key_init(c, &key, inum); | 
|  | err = ubifs_lookup_level0(c, &key, &znode, &n); | 
|  | if (!err) { | 
|  | ubifs_err("inode %lu not found in index", (unsigned long)inum); | 
|  | return ERR_PTR(-ENOENT); | 
|  | } else if (err < 0) { | 
|  | ubifs_err("error %d while looking up inode %lu", | 
|  | err, (unsigned long)inum); | 
|  | return ERR_PTR(err); | 
|  | } | 
|  |  | 
|  | zbr = &znode->zbranch[n]; | 
|  | if (zbr->len < UBIFS_INO_NODE_SZ) { | 
|  | ubifs_err("bad node %lu node length %d", | 
|  | (unsigned long)inum, zbr->len); | 
|  | return ERR_PTR(-EINVAL); | 
|  | } | 
|  |  | 
|  | ino = kmalloc(zbr->len, GFP_NOFS); | 
|  | if (!ino) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | err = ubifs_tnc_read_node(c, zbr, ino); | 
|  | if (err) { | 
|  | ubifs_err("cannot read inode node at LEB %d:%d, error %d", | 
|  | zbr->lnum, zbr->offs, err); | 
|  | kfree(ino); | 
|  | return ERR_PTR(err); | 
|  | } | 
|  |  | 
|  | fscki = add_inode(c, fsckd, ino); | 
|  | kfree(ino); | 
|  | if (IS_ERR(fscki)) { | 
|  | ubifs_err("error %ld while adding inode %lu node", | 
|  | PTR_ERR(fscki), (unsigned long)inum); | 
|  | return fscki; | 
|  | } | 
|  |  | 
|  | return fscki; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * check_leaf - check leaf node. | 
|  | * @c: UBIFS file-system description object | 
|  | * @zbr: zbranch of the leaf node to check | 
|  | * @priv: FS checking information | 
|  | * | 
|  | * This is a helper function for 'dbg_check_filesystem()' which is called for | 
|  | * every single leaf node while walking the indexing tree. It checks that the | 
|  | * leaf node referred from the indexing tree exists, has correct CRC, and does | 
|  | * some other basic validation. This function is also responsible for building | 
|  | * an RB-tree of inodes - it adds all inodes into the RB-tree. It also | 
|  | * calculates reference count, size, etc for each inode in order to later | 
|  | * compare them to the information stored inside the inodes and detect possible | 
|  | * inconsistencies. Returns zero in case of success and a negative error code | 
|  | * in case of failure. | 
|  | */ | 
|  | static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr, | 
|  | void *priv) | 
|  | { | 
|  | ino_t inum; | 
|  | void *node; | 
|  | struct ubifs_ch *ch; | 
|  | int err, type = key_type(c, &zbr->key); | 
|  | struct fsck_inode *fscki; | 
|  |  | 
|  | if (zbr->len < UBIFS_CH_SZ) { | 
|  | ubifs_err("bad leaf length %d (LEB %d:%d)", | 
|  | zbr->len, zbr->lnum, zbr->offs); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | node = kmalloc(zbr->len, GFP_NOFS); | 
|  | if (!node) | 
|  | return -ENOMEM; | 
|  |  | 
|  | err = ubifs_tnc_read_node(c, zbr, node); | 
|  | if (err) { | 
|  | ubifs_err("cannot read leaf node at LEB %d:%d, error %d", | 
|  | zbr->lnum, zbr->offs, err); | 
|  | goto out_free; | 
|  | } | 
|  |  | 
|  | /* If this is an inode node, add it to RB-tree of inodes */ | 
|  | if (type == UBIFS_INO_KEY) { | 
|  | fscki = add_inode(c, priv, node); | 
|  | if (IS_ERR(fscki)) { | 
|  | err = PTR_ERR(fscki); | 
|  | ubifs_err("error %d while adding inode node", err); | 
|  | goto out_dump; | 
|  | } | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY && | 
|  | type != UBIFS_DATA_KEY) { | 
|  | ubifs_err("unexpected node type %d at LEB %d:%d", | 
|  | type, zbr->lnum, zbr->offs); | 
|  | err = -EINVAL; | 
|  | goto out_free; | 
|  | } | 
|  |  | 
|  | ch = node; | 
|  | if (le64_to_cpu(ch->sqnum) > c->max_sqnum) { | 
|  | ubifs_err("too high sequence number, max. is %llu", | 
|  | c->max_sqnum); | 
|  | err = -EINVAL; | 
|  | goto out_dump; | 
|  | } | 
|  |  | 
|  | if (type == UBIFS_DATA_KEY) { | 
|  | long long blk_offs; | 
|  | struct ubifs_data_node *dn = node; | 
|  |  | 
|  | /* | 
|  | * Search the inode node this data node belongs to and insert | 
|  | * it to the RB-tree of inodes. | 
|  | */ | 
|  | inum = key_inum_flash(c, &dn->key); | 
|  | fscki = read_add_inode(c, priv, inum); | 
|  | if (IS_ERR(fscki)) { | 
|  | err = PTR_ERR(fscki); | 
|  | ubifs_err("error %d while processing data node and " | 
|  | "trying to find inode node %lu", | 
|  | err, (unsigned long)inum); | 
|  | goto out_dump; | 
|  | } | 
|  |  | 
|  | /* Make sure the data node is within inode size */ | 
|  | blk_offs = key_block_flash(c, &dn->key); | 
|  | blk_offs <<= UBIFS_BLOCK_SHIFT; | 
|  | blk_offs += le32_to_cpu(dn->size); | 
|  | if (blk_offs > fscki->size) { | 
|  | ubifs_err("data node at LEB %d:%d is not within inode " | 
|  | "size %lld", zbr->lnum, zbr->offs, | 
|  | fscki->size); | 
|  | err = -EINVAL; | 
|  | goto out_dump; | 
|  | } | 
|  | } else { | 
|  | int nlen; | 
|  | struct ubifs_dent_node *dent = node; | 
|  | struct fsck_inode *fscki1; | 
|  |  | 
|  | err = ubifs_validate_entry(c, dent); | 
|  | if (err) | 
|  | goto out_dump; | 
|  |  | 
|  | /* | 
|  | * Search the inode node this entry refers to and the parent | 
|  | * inode node and insert them to the RB-tree of inodes. | 
|  | */ | 
|  | inum = le64_to_cpu(dent->inum); | 
|  | fscki = read_add_inode(c, priv, inum); | 
|  | if (IS_ERR(fscki)) { | 
|  | err = PTR_ERR(fscki); | 
|  | ubifs_err("error %d while processing entry node and " | 
|  | "trying to find inode node %lu", | 
|  | err, (unsigned long)inum); | 
|  | goto out_dump; | 
|  | } | 
|  |  | 
|  | /* Count how many direntries or xentries refers this inode */ | 
|  | fscki->references += 1; | 
|  |  | 
|  | inum = key_inum_flash(c, &dent->key); | 
|  | fscki1 = read_add_inode(c, priv, inum); | 
|  | if (IS_ERR(fscki1)) { | 
|  | err = PTR_ERR(fscki1); | 
|  | ubifs_err("error %d while processing entry node and " | 
|  | "trying to find parent inode node %lu", | 
|  | err, (unsigned long)inum); | 
|  | goto out_dump; | 
|  | } | 
|  |  | 
|  | nlen = le16_to_cpu(dent->nlen); | 
|  | if (type == UBIFS_XENT_KEY) { | 
|  | fscki1->calc_xcnt += 1; | 
|  | fscki1->calc_xsz += CALC_DENT_SIZE(nlen); | 
|  | fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size); | 
|  | fscki1->calc_xnms += nlen; | 
|  | } else { | 
|  | fscki1->calc_sz += CALC_DENT_SIZE(nlen); | 
|  | if (dent->type == UBIFS_ITYPE_DIR) | 
|  | fscki1->calc_cnt += 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | out: | 
|  | kfree(node); | 
|  | return 0; | 
|  |  | 
|  | out_dump: | 
|  | ubifs_msg("dump of node at LEB %d:%d", zbr->lnum, zbr->offs); | 
|  | dbg_dump_node(c, node); | 
|  | out_free: | 
|  | kfree(node); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * free_inodes - free RB-tree of inodes. | 
|  | * @fsckd: FS checking information | 
|  | */ | 
|  | static void free_inodes(struct fsck_data *fsckd) | 
|  | { | 
|  | struct rb_node *this = fsckd->inodes.rb_node; | 
|  | struct fsck_inode *fscki; | 
|  |  | 
|  | while (this) { | 
|  | if (this->rb_left) | 
|  | this = this->rb_left; | 
|  | else if (this->rb_right) | 
|  | this = this->rb_right; | 
|  | else { | 
|  | fscki = rb_entry(this, struct fsck_inode, rb); | 
|  | this = rb_parent(this); | 
|  | if (this) { | 
|  | if (this->rb_left == &fscki->rb) | 
|  | this->rb_left = NULL; | 
|  | else | 
|  | this->rb_right = NULL; | 
|  | } | 
|  | kfree(fscki); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * check_inodes - checks all inodes. | 
|  | * @c: UBIFS file-system description object | 
|  | * @fsckd: FS checking information | 
|  | * | 
|  | * This is a helper function for 'dbg_check_filesystem()' which walks the | 
|  | * RB-tree of inodes after the index scan has been finished, and checks that | 
|  | * inode nlink, size, etc are correct. Returns zero if inodes are fine, | 
|  | * %-EINVAL if not, and a negative error code in case of failure. | 
|  | */ | 
|  | static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd) | 
|  | { | 
|  | int n, err; | 
|  | union ubifs_key key; | 
|  | struct ubifs_znode *znode; | 
|  | struct ubifs_zbranch *zbr; | 
|  | struct ubifs_ino_node *ino; | 
|  | struct fsck_inode *fscki; | 
|  | struct rb_node *this = rb_first(&fsckd->inodes); | 
|  |  | 
|  | while (this) { | 
|  | fscki = rb_entry(this, struct fsck_inode, rb); | 
|  | this = rb_next(this); | 
|  |  | 
|  | if (S_ISDIR(fscki->mode)) { | 
|  | /* | 
|  | * Directories have to have exactly one reference (they | 
|  | * cannot have hardlinks), although root inode is an | 
|  | * exception. | 
|  | */ | 
|  | if (fscki->inum != UBIFS_ROOT_INO && | 
|  | fscki->references != 1) { | 
|  | ubifs_err("directory inode %lu has %d " | 
|  | "direntries which refer it, but " | 
|  | "should be 1", | 
|  | (unsigned long)fscki->inum, | 
|  | fscki->references); | 
|  | goto out_dump; | 
|  | } | 
|  | if (fscki->inum == UBIFS_ROOT_INO && | 
|  | fscki->references != 0) { | 
|  | ubifs_err("root inode %lu has non-zero (%d) " | 
|  | "direntries which refer it", | 
|  | (unsigned long)fscki->inum, | 
|  | fscki->references); | 
|  | goto out_dump; | 
|  | } | 
|  | if (fscki->calc_sz != fscki->size) { | 
|  | ubifs_err("directory inode %lu size is %lld, " | 
|  | "but calculated size is %lld", | 
|  | (unsigned long)fscki->inum, | 
|  | fscki->size, fscki->calc_sz); | 
|  | goto out_dump; | 
|  | } | 
|  | if (fscki->calc_cnt != fscki->nlink) { | 
|  | ubifs_err("directory inode %lu nlink is %d, " | 
|  | "but calculated nlink is %d", | 
|  | (unsigned long)fscki->inum, | 
|  | fscki->nlink, fscki->calc_cnt); | 
|  | goto out_dump; | 
|  | } | 
|  | } else { | 
|  | if (fscki->references != fscki->nlink) { | 
|  | ubifs_err("inode %lu nlink is %d, but " | 
|  | "calculated nlink is %d", | 
|  | (unsigned long)fscki->inum, | 
|  | fscki->nlink, fscki->references); | 
|  | goto out_dump; | 
|  | } | 
|  | } | 
|  | if (fscki->xattr_sz != fscki->calc_xsz) { | 
|  | ubifs_err("inode %lu has xattr size %u, but " | 
|  | "calculated size is %lld", | 
|  | (unsigned long)fscki->inum, fscki->xattr_sz, | 
|  | fscki->calc_xsz); | 
|  | goto out_dump; | 
|  | } | 
|  | if (fscki->xattr_cnt != fscki->calc_xcnt) { | 
|  | ubifs_err("inode %lu has %u xattrs, but " | 
|  | "calculated count is %lld", | 
|  | (unsigned long)fscki->inum, | 
|  | fscki->xattr_cnt, fscki->calc_xcnt); | 
|  | goto out_dump; | 
|  | } | 
|  | if (fscki->xattr_nms != fscki->calc_xnms) { | 
|  | ubifs_err("inode %lu has xattr names' size %u, but " | 
|  | "calculated names' size is %lld", | 
|  | (unsigned long)fscki->inum, fscki->xattr_nms, | 
|  | fscki->calc_xnms); | 
|  | goto out_dump; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out_dump: | 
|  | /* Read the bad inode and dump it */ | 
|  | ino_key_init(c, &key, fscki->inum); | 
|  | err = ubifs_lookup_level0(c, &key, &znode, &n); | 
|  | if (!err) { | 
|  | ubifs_err("inode %lu not found in index", | 
|  | (unsigned long)fscki->inum); | 
|  | return -ENOENT; | 
|  | } else if (err < 0) { | 
|  | ubifs_err("error %d while looking up inode %lu", | 
|  | err, (unsigned long)fscki->inum); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | zbr = &znode->zbranch[n]; | 
|  | ino = kmalloc(zbr->len, GFP_NOFS); | 
|  | if (!ino) | 
|  | return -ENOMEM; | 
|  |  | 
|  | err = ubifs_tnc_read_node(c, zbr, ino); | 
|  | if (err) { | 
|  | ubifs_err("cannot read inode node at LEB %d:%d, error %d", | 
|  | zbr->lnum, zbr->offs, err); | 
|  | kfree(ino); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | ubifs_msg("dump of the inode %lu sitting in LEB %d:%d", | 
|  | (unsigned long)fscki->inum, zbr->lnum, zbr->offs); | 
|  | dbg_dump_node(c, ino); | 
|  | kfree(ino); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * dbg_check_filesystem - check the file-system. | 
|  | * @c: UBIFS file-system description object | 
|  | * | 
|  | * This function checks the file system, namely: | 
|  | * o makes sure that all leaf nodes exist and their CRCs are correct; | 
|  | * o makes sure inode nlink, size, xattr size/count are correct (for all | 
|  | *   inodes). | 
|  | * | 
|  | * The function reads whole indexing tree and all nodes, so it is pretty | 
|  | * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if | 
|  | * not, and a negative error code in case of failure. | 
|  | */ | 
|  | int dbg_check_filesystem(struct ubifs_info *c) | 
|  | { | 
|  | int err; | 
|  | struct fsck_data fsckd; | 
|  |  | 
|  | if (!(ubifs_chk_flags & UBIFS_CHK_FS)) | 
|  | return 0; | 
|  |  | 
|  | fsckd.inodes = RB_ROOT; | 
|  | err = dbg_walk_index(c, check_leaf, NULL, &fsckd); | 
|  | if (err) | 
|  | goto out_free; | 
|  |  | 
|  | err = check_inodes(c, &fsckd); | 
|  | if (err) | 
|  | goto out_free; | 
|  |  | 
|  | free_inodes(&fsckd); | 
|  | return 0; | 
|  |  | 
|  | out_free: | 
|  | ubifs_err("file-system check failed with error %d", err); | 
|  | dump_stack(); | 
|  | free_inodes(&fsckd); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * dbg_check_data_nodes_order - check that list of data nodes is sorted. | 
|  | * @c: UBIFS file-system description object | 
|  | * @head: the list of nodes ('struct ubifs_scan_node' objects) | 
|  | * | 
|  | * This function returns zero if the list of data nodes is sorted correctly, | 
|  | * and %-EINVAL if not. | 
|  | */ | 
|  | int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head) | 
|  | { | 
|  | struct list_head *cur; | 
|  | struct ubifs_scan_node *sa, *sb; | 
|  |  | 
|  | if (!(ubifs_chk_flags & UBIFS_CHK_GEN)) | 
|  | return 0; | 
|  |  | 
|  | for (cur = head->next; cur->next != head; cur = cur->next) { | 
|  | ino_t inuma, inumb; | 
|  | uint32_t blka, blkb; | 
|  |  | 
|  | cond_resched(); | 
|  | sa = container_of(cur, struct ubifs_scan_node, list); | 
|  | sb = container_of(cur->next, struct ubifs_scan_node, list); | 
|  |  | 
|  | if (sa->type != UBIFS_DATA_NODE) { | 
|  | ubifs_err("bad node type %d", sa->type); | 
|  | dbg_dump_node(c, sa->node); | 
|  | return -EINVAL; | 
|  | } | 
|  | if (sb->type != UBIFS_DATA_NODE) { | 
|  | ubifs_err("bad node type %d", sb->type); | 
|  | dbg_dump_node(c, sb->node); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | inuma = key_inum(c, &sa->key); | 
|  | inumb = key_inum(c, &sb->key); | 
|  |  | 
|  | if (inuma < inumb) | 
|  | continue; | 
|  | if (inuma > inumb) { | 
|  | ubifs_err("larger inum %lu goes before inum %lu", | 
|  | (unsigned long)inuma, (unsigned long)inumb); | 
|  | goto error_dump; | 
|  | } | 
|  |  | 
|  | blka = key_block(c, &sa->key); | 
|  | blkb = key_block(c, &sb->key); | 
|  |  | 
|  | if (blka > blkb) { | 
|  | ubifs_err("larger block %u goes before %u", blka, blkb); | 
|  | goto error_dump; | 
|  | } | 
|  | if (blka == blkb) { | 
|  | ubifs_err("two data nodes for the same block"); | 
|  | goto error_dump; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | error_dump: | 
|  | dbg_dump_node(c, sa->node); | 
|  | dbg_dump_node(c, sb->node); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * dbg_check_nondata_nodes_order - check that list of data nodes is sorted. | 
|  | * @c: UBIFS file-system description object | 
|  | * @head: the list of nodes ('struct ubifs_scan_node' objects) | 
|  | * | 
|  | * This function returns zero if the list of non-data nodes is sorted correctly, | 
|  | * and %-EINVAL if not. | 
|  | */ | 
|  | int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head) | 
|  | { | 
|  | struct list_head *cur; | 
|  | struct ubifs_scan_node *sa, *sb; | 
|  |  | 
|  | if (!(ubifs_chk_flags & UBIFS_CHK_GEN)) | 
|  | return 0; | 
|  |  | 
|  | for (cur = head->next; cur->next != head; cur = cur->next) { | 
|  | ino_t inuma, inumb; | 
|  | uint32_t hasha, hashb; | 
|  |  | 
|  | cond_resched(); | 
|  | sa = container_of(cur, struct ubifs_scan_node, list); | 
|  | sb = container_of(cur->next, struct ubifs_scan_node, list); | 
|  |  | 
|  | if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE && | 
|  | sa->type != UBIFS_XENT_NODE) { | 
|  | ubifs_err("bad node type %d", sa->type); | 
|  | dbg_dump_node(c, sa->node); | 
|  | return -EINVAL; | 
|  | } | 
|  | if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE && | 
|  | sa->type != UBIFS_XENT_NODE) { | 
|  | ubifs_err("bad node type %d", sb->type); | 
|  | dbg_dump_node(c, sb->node); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) { | 
|  | ubifs_err("non-inode node goes before inode node"); | 
|  | goto error_dump; | 
|  | } | 
|  |  | 
|  | if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE) | 
|  | continue; | 
|  |  | 
|  | if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) { | 
|  | /* Inode nodes are sorted in descending size order */ | 
|  | if (sa->len < sb->len) { | 
|  | ubifs_err("smaller inode node goes first"); | 
|  | goto error_dump; | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is either a dentry or xentry, which should be sorted in | 
|  | * ascending (parent ino, hash) order. | 
|  | */ | 
|  | inuma = key_inum(c, &sa->key); | 
|  | inumb = key_inum(c, &sb->key); | 
|  |  | 
|  | if (inuma < inumb) | 
|  | continue; | 
|  | if (inuma > inumb) { | 
|  | ubifs_err("larger inum %lu goes before inum %lu", | 
|  | (unsigned long)inuma, (unsigned long)inumb); | 
|  | goto error_dump; | 
|  | } | 
|  |  | 
|  | hasha = key_block(c, &sa->key); | 
|  | hashb = key_block(c, &sb->key); | 
|  |  | 
|  | if (hasha > hashb) { | 
|  | ubifs_err("larger hash %u goes before %u", | 
|  | hasha, hashb); | 
|  | goto error_dump; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | error_dump: | 
|  | ubifs_msg("dumping first node"); | 
|  | dbg_dump_node(c, sa->node); | 
|  | ubifs_msg("dumping second node"); | 
|  | dbg_dump_node(c, sb->node); | 
|  | return -EINVAL; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int dbg_force_in_the_gaps(void) | 
|  | { | 
|  | if (!(ubifs_chk_flags & UBIFS_CHK_GEN)) | 
|  | return 0; | 
|  |  | 
|  | return !(random32() & 7); | 
|  | } | 
|  |  | 
|  | /* Failure mode for recovery testing */ | 
|  |  | 
|  | #define chance(n, d) (simple_rand() <= (n) * 32768LL / (d)) | 
|  |  | 
|  | struct failure_mode_info { | 
|  | struct list_head list; | 
|  | struct ubifs_info *c; | 
|  | }; | 
|  |  | 
|  | static LIST_HEAD(fmi_list); | 
|  | static DEFINE_SPINLOCK(fmi_lock); | 
|  |  | 
|  | static unsigned int next; | 
|  |  | 
|  | static int simple_rand(void) | 
|  | { | 
|  | if (next == 0) | 
|  | next = current->pid; | 
|  | next = next * 1103515245 + 12345; | 
|  | return (next >> 16) & 32767; | 
|  | } | 
|  |  | 
|  | static void failure_mode_init(struct ubifs_info *c) | 
|  | { | 
|  | struct failure_mode_info *fmi; | 
|  |  | 
|  | fmi = kmalloc(sizeof(struct failure_mode_info), GFP_NOFS); | 
|  | if (!fmi) { | 
|  | ubifs_err("Failed to register failure mode - no memory"); | 
|  | return; | 
|  | } | 
|  | fmi->c = c; | 
|  | spin_lock(&fmi_lock); | 
|  | list_add_tail(&fmi->list, &fmi_list); | 
|  | spin_unlock(&fmi_lock); | 
|  | } | 
|  |  | 
|  | static void failure_mode_exit(struct ubifs_info *c) | 
|  | { | 
|  | struct failure_mode_info *fmi, *tmp; | 
|  |  | 
|  | spin_lock(&fmi_lock); | 
|  | list_for_each_entry_safe(fmi, tmp, &fmi_list, list) | 
|  | if (fmi->c == c) { | 
|  | list_del(&fmi->list); | 
|  | kfree(fmi); | 
|  | } | 
|  | spin_unlock(&fmi_lock); | 
|  | } | 
|  |  | 
|  | static struct ubifs_info *dbg_find_info(struct ubi_volume_desc *desc) | 
|  | { | 
|  | struct failure_mode_info *fmi; | 
|  |  | 
|  | spin_lock(&fmi_lock); | 
|  | list_for_each_entry(fmi, &fmi_list, list) | 
|  | if (fmi->c->ubi == desc) { | 
|  | struct ubifs_info *c = fmi->c; | 
|  |  | 
|  | spin_unlock(&fmi_lock); | 
|  | return c; | 
|  | } | 
|  | spin_unlock(&fmi_lock); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static int in_failure_mode(struct ubi_volume_desc *desc) | 
|  | { | 
|  | struct ubifs_info *c = dbg_find_info(desc); | 
|  |  | 
|  | if (c && dbg_failure_mode) | 
|  | return c->dbg->failure_mode; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int do_fail(struct ubi_volume_desc *desc, int lnum, int write) | 
|  | { | 
|  | struct ubifs_info *c = dbg_find_info(desc); | 
|  | struct ubifs_debug_info *d; | 
|  |  | 
|  | if (!c || !dbg_failure_mode) | 
|  | return 0; | 
|  | d = c->dbg; | 
|  | if (d->failure_mode) | 
|  | return 1; | 
|  | if (!d->fail_cnt) { | 
|  | /* First call - decide delay to failure */ | 
|  | if (chance(1, 2)) { | 
|  | unsigned int delay = 1 << (simple_rand() >> 11); | 
|  |  | 
|  | if (chance(1, 2)) { | 
|  | d->fail_delay = 1; | 
|  | d->fail_timeout = jiffies + | 
|  | msecs_to_jiffies(delay); | 
|  | dbg_rcvry("failing after %ums", delay); | 
|  | } else { | 
|  | d->fail_delay = 2; | 
|  | d->fail_cnt_max = delay; | 
|  | dbg_rcvry("failing after %u calls", delay); | 
|  | } | 
|  | } | 
|  | d->fail_cnt += 1; | 
|  | } | 
|  | /* Determine if failure delay has expired */ | 
|  | if (d->fail_delay == 1) { | 
|  | if (time_before(jiffies, d->fail_timeout)) | 
|  | return 0; | 
|  | } else if (d->fail_delay == 2) | 
|  | if (d->fail_cnt++ < d->fail_cnt_max) | 
|  | return 0; | 
|  | if (lnum == UBIFS_SB_LNUM) { | 
|  | if (write) { | 
|  | if (chance(1, 2)) | 
|  | return 0; | 
|  | } else if (chance(19, 20)) | 
|  | return 0; | 
|  | dbg_rcvry("failing in super block LEB %d", lnum); | 
|  | } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) { | 
|  | if (chance(19, 20)) | 
|  | return 0; | 
|  | dbg_rcvry("failing in master LEB %d", lnum); | 
|  | } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) { | 
|  | if (write) { | 
|  | if (chance(99, 100)) | 
|  | return 0; | 
|  | } else if (chance(399, 400)) | 
|  | return 0; | 
|  | dbg_rcvry("failing in log LEB %d", lnum); | 
|  | } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) { | 
|  | if (write) { | 
|  | if (chance(7, 8)) | 
|  | return 0; | 
|  | } else if (chance(19, 20)) | 
|  | return 0; | 
|  | dbg_rcvry("failing in LPT LEB %d", lnum); | 
|  | } else if (lnum >= c->orph_first && lnum <= c->orph_last) { | 
|  | if (write) { | 
|  | if (chance(1, 2)) | 
|  | return 0; | 
|  | } else if (chance(9, 10)) | 
|  | return 0; | 
|  | dbg_rcvry("failing in orphan LEB %d", lnum); | 
|  | } else if (lnum == c->ihead_lnum) { | 
|  | if (chance(99, 100)) | 
|  | return 0; | 
|  | dbg_rcvry("failing in index head LEB %d", lnum); | 
|  | } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) { | 
|  | if (chance(9, 10)) | 
|  | return 0; | 
|  | dbg_rcvry("failing in GC head LEB %d", lnum); | 
|  | } else if (write && !RB_EMPTY_ROOT(&c->buds) && | 
|  | !ubifs_search_bud(c, lnum)) { | 
|  | if (chance(19, 20)) | 
|  | return 0; | 
|  | dbg_rcvry("failing in non-bud LEB %d", lnum); | 
|  | } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND || | 
|  | c->cmt_state == COMMIT_RUNNING_REQUIRED) { | 
|  | if (chance(999, 1000)) | 
|  | return 0; | 
|  | dbg_rcvry("failing in bud LEB %d commit running", lnum); | 
|  | } else { | 
|  | if (chance(9999, 10000)) | 
|  | return 0; | 
|  | dbg_rcvry("failing in bud LEB %d commit not running", lnum); | 
|  | } | 
|  | ubifs_err("*** SETTING FAILURE MODE ON (LEB %d) ***", lnum); | 
|  | d->failure_mode = 1; | 
|  | dump_stack(); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static void cut_data(const void *buf, int len) | 
|  | { | 
|  | int flen, i; | 
|  | unsigned char *p = (void *)buf; | 
|  |  | 
|  | flen = (len * (long long)simple_rand()) >> 15; | 
|  | for (i = flen; i < len; i++) | 
|  | p[i] = 0xff; | 
|  | } | 
|  |  | 
|  | int dbg_leb_read(struct ubi_volume_desc *desc, int lnum, char *buf, int offset, | 
|  | int len, int check) | 
|  | { | 
|  | if (in_failure_mode(desc)) | 
|  | return -EROFS; | 
|  | return ubi_leb_read(desc, lnum, buf, offset, len, check); | 
|  | } | 
|  |  | 
|  | int dbg_leb_write(struct ubi_volume_desc *desc, int lnum, const void *buf, | 
|  | int offset, int len, int dtype) | 
|  | { | 
|  | int err, failing; | 
|  |  | 
|  | if (in_failure_mode(desc)) | 
|  | return -EROFS; | 
|  | failing = do_fail(desc, lnum, 1); | 
|  | if (failing) | 
|  | cut_data(buf, len); | 
|  | err = ubi_leb_write(desc, lnum, buf, offset, len, dtype); | 
|  | if (err) | 
|  | return err; | 
|  | if (failing) | 
|  | return -EROFS; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int dbg_leb_change(struct ubi_volume_desc *desc, int lnum, const void *buf, | 
|  | int len, int dtype) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | if (do_fail(desc, lnum, 1)) | 
|  | return -EROFS; | 
|  | err = ubi_leb_change(desc, lnum, buf, len, dtype); | 
|  | if (err) | 
|  | return err; | 
|  | if (do_fail(desc, lnum, 1)) | 
|  | return -EROFS; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int dbg_leb_erase(struct ubi_volume_desc *desc, int lnum) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | if (do_fail(desc, lnum, 0)) | 
|  | return -EROFS; | 
|  | err = ubi_leb_erase(desc, lnum); | 
|  | if (err) | 
|  | return err; | 
|  | if (do_fail(desc, lnum, 0)) | 
|  | return -EROFS; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int dbg_leb_unmap(struct ubi_volume_desc *desc, int lnum) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | if (do_fail(desc, lnum, 0)) | 
|  | return -EROFS; | 
|  | err = ubi_leb_unmap(desc, lnum); | 
|  | if (err) | 
|  | return err; | 
|  | if (do_fail(desc, lnum, 0)) | 
|  | return -EROFS; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int dbg_is_mapped(struct ubi_volume_desc *desc, int lnum) | 
|  | { | 
|  | if (in_failure_mode(desc)) | 
|  | return -EROFS; | 
|  | return ubi_is_mapped(desc, lnum); | 
|  | } | 
|  |  | 
|  | int dbg_leb_map(struct ubi_volume_desc *desc, int lnum, int dtype) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | if (do_fail(desc, lnum, 0)) | 
|  | return -EROFS; | 
|  | err = ubi_leb_map(desc, lnum, dtype); | 
|  | if (err) | 
|  | return err; | 
|  | if (do_fail(desc, lnum, 0)) | 
|  | return -EROFS; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ubifs_debugging_init - initialize UBIFS debugging. | 
|  | * @c: UBIFS file-system description object | 
|  | * | 
|  | * This function initializes debugging-related data for the file system. | 
|  | * Returns zero in case of success and a negative error code in case of | 
|  | * failure. | 
|  | */ | 
|  | int ubifs_debugging_init(struct ubifs_info *c) | 
|  | { | 
|  | c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL); | 
|  | if (!c->dbg) | 
|  | return -ENOMEM; | 
|  |  | 
|  | failure_mode_init(c); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ubifs_debugging_exit - free debugging data. | 
|  | * @c: UBIFS file-system description object | 
|  | */ | 
|  | void ubifs_debugging_exit(struct ubifs_info *c) | 
|  | { | 
|  | failure_mode_exit(c); | 
|  | kfree(c->dbg); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Root directory for UBIFS stuff in debugfs. Contains sub-directories which | 
|  | * contain the stuff specific to particular file-system mounts. | 
|  | */ | 
|  | static struct dentry *dfs_rootdir; | 
|  |  | 
|  | /** | 
|  | * dbg_debugfs_init - initialize debugfs file-system. | 
|  | * | 
|  | * UBIFS uses debugfs file-system to expose various debugging knobs to | 
|  | * user-space. This function creates "ubifs" directory in the debugfs | 
|  | * file-system. Returns zero in case of success and a negative error code in | 
|  | * case of failure. | 
|  | */ | 
|  | int dbg_debugfs_init(void) | 
|  | { | 
|  | dfs_rootdir = debugfs_create_dir("ubifs", NULL); | 
|  | if (IS_ERR(dfs_rootdir)) { | 
|  | int err = PTR_ERR(dfs_rootdir); | 
|  | ubifs_err("cannot create \"ubifs\" debugfs directory, " | 
|  | "error %d\n", err); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system. | 
|  | */ | 
|  | void dbg_debugfs_exit(void) | 
|  | { | 
|  | debugfs_remove(dfs_rootdir); | 
|  | } | 
|  |  | 
|  | static int open_debugfs_file(struct inode *inode, struct file *file) | 
|  | { | 
|  | file->private_data = inode->i_private; | 
|  | return nonseekable_open(inode, file); | 
|  | } | 
|  |  | 
|  | static ssize_t write_debugfs_file(struct file *file, const char __user *buf, | 
|  | size_t count, loff_t *ppos) | 
|  | { | 
|  | struct ubifs_info *c = file->private_data; | 
|  | struct ubifs_debug_info *d = c->dbg; | 
|  |  | 
|  | if (file->f_path.dentry == d->dfs_dump_lprops) | 
|  | dbg_dump_lprops(c); | 
|  | else if (file->f_path.dentry == d->dfs_dump_budg) | 
|  | dbg_dump_budg(c, &c->bi); | 
|  | else if (file->f_path.dentry == d->dfs_dump_tnc) { | 
|  | mutex_lock(&c->tnc_mutex); | 
|  | dbg_dump_tnc(c); | 
|  | mutex_unlock(&c->tnc_mutex); | 
|  | } else | 
|  | return -EINVAL; | 
|  |  | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static const struct file_operations dfs_fops = { | 
|  | .open = open_debugfs_file, | 
|  | .write = write_debugfs_file, | 
|  | .owner = THIS_MODULE, | 
|  | .llseek = no_llseek, | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance. | 
|  | * @c: UBIFS file-system description object | 
|  | * | 
|  | * This function creates all debugfs files for this instance of UBIFS. Returns | 
|  | * zero in case of success and a negative error code in case of failure. | 
|  | * | 
|  | * Note, the only reason we have not merged this function with the | 
|  | * 'ubifs_debugging_init()' function is because it is better to initialize | 
|  | * debugfs interfaces at the very end of the mount process, and remove them at | 
|  | * the very beginning of the mount process. | 
|  | */ | 
|  | int dbg_debugfs_init_fs(struct ubifs_info *c) | 
|  | { | 
|  | int err; | 
|  | const char *fname; | 
|  | struct dentry *dent; | 
|  | struct ubifs_debug_info *d = c->dbg; | 
|  |  | 
|  | sprintf(d->dfs_dir_name, "ubi%d_%d", c->vi.ubi_num, c->vi.vol_id); | 
|  | fname = d->dfs_dir_name; | 
|  | dent = debugfs_create_dir(fname, dfs_rootdir); | 
|  | if (IS_ERR_OR_NULL(dent)) | 
|  | goto out; | 
|  | d->dfs_dir = dent; | 
|  |  | 
|  | fname = "dump_lprops"; | 
|  | dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops); | 
|  | if (IS_ERR_OR_NULL(dent)) | 
|  | goto out_remove; | 
|  | d->dfs_dump_lprops = dent; | 
|  |  | 
|  | fname = "dump_budg"; | 
|  | dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops); | 
|  | if (IS_ERR_OR_NULL(dent)) | 
|  | goto out_remove; | 
|  | d->dfs_dump_budg = dent; | 
|  |  | 
|  | fname = "dump_tnc"; | 
|  | dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops); | 
|  | if (IS_ERR_OR_NULL(dent)) | 
|  | goto out_remove; | 
|  | d->dfs_dump_tnc = dent; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out_remove: | 
|  | debugfs_remove_recursive(d->dfs_dir); | 
|  | out: | 
|  | err = dent ? PTR_ERR(dent) : -ENODEV; | 
|  | ubifs_err("cannot create \"%s\" debugfs directory, error %d\n", | 
|  | fname, err); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * dbg_debugfs_exit_fs - remove all debugfs files. | 
|  | * @c: UBIFS file-system description object | 
|  | */ | 
|  | void dbg_debugfs_exit_fs(struct ubifs_info *c) | 
|  | { | 
|  | debugfs_remove_recursive(c->dbg->dfs_dir); | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_UBIFS_FS_DEBUG */ |