|  | /* | 
|  | * Generic hugetlb support. | 
|  | * (C) William Irwin, April 2004 | 
|  | */ | 
|  | #include <linux/list.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/seq_file.h> | 
|  | #include <linux/sysctl.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/mmu_notifier.h> | 
|  | #include <linux/nodemask.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/mempolicy.h> | 
|  | #include <linux/cpuset.h> | 
|  | #include <linux/mutex.h> | 
|  | #include <linux/bootmem.h> | 
|  | #include <linux/sysfs.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/rmap.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/swapops.h> | 
|  |  | 
|  | #include <asm/page.h> | 
|  | #include <asm/pgtable.h> | 
|  | #include <asm/io.h> | 
|  |  | 
|  | #include <linux/hugetlb.h> | 
|  | #include <linux/node.h> | 
|  | #include "internal.h" | 
|  |  | 
|  | const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL; | 
|  | static gfp_t htlb_alloc_mask = GFP_HIGHUSER; | 
|  | unsigned long hugepages_treat_as_movable; | 
|  |  | 
|  | static int max_hstate; | 
|  | unsigned int default_hstate_idx; | 
|  | struct hstate hstates[HUGE_MAX_HSTATE]; | 
|  |  | 
|  | __initdata LIST_HEAD(huge_boot_pages); | 
|  |  | 
|  | /* for command line parsing */ | 
|  | static struct hstate * __initdata parsed_hstate; | 
|  | static unsigned long __initdata default_hstate_max_huge_pages; | 
|  | static unsigned long __initdata default_hstate_size; | 
|  |  | 
|  | #define for_each_hstate(h) \ | 
|  | for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++) | 
|  |  | 
|  | /* | 
|  | * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages | 
|  | */ | 
|  | static DEFINE_SPINLOCK(hugetlb_lock); | 
|  |  | 
|  | /* | 
|  | * Region tracking -- allows tracking of reservations and instantiated pages | 
|  | *                    across the pages in a mapping. | 
|  | * | 
|  | * The region data structures are protected by a combination of the mmap_sem | 
|  | * and the hugetlb_instantion_mutex.  To access or modify a region the caller | 
|  | * must either hold the mmap_sem for write, or the mmap_sem for read and | 
|  | * the hugetlb_instantiation mutex: | 
|  | * | 
|  | * 	down_write(&mm->mmap_sem); | 
|  | * or | 
|  | * 	down_read(&mm->mmap_sem); | 
|  | * 	mutex_lock(&hugetlb_instantiation_mutex); | 
|  | */ | 
|  | struct file_region { | 
|  | struct list_head link; | 
|  | long from; | 
|  | long to; | 
|  | }; | 
|  |  | 
|  | static long region_add(struct list_head *head, long f, long t) | 
|  | { | 
|  | struct file_region *rg, *nrg, *trg; | 
|  |  | 
|  | /* Locate the region we are either in or before. */ | 
|  | list_for_each_entry(rg, head, link) | 
|  | if (f <= rg->to) | 
|  | break; | 
|  |  | 
|  | /* Round our left edge to the current segment if it encloses us. */ | 
|  | if (f > rg->from) | 
|  | f = rg->from; | 
|  |  | 
|  | /* Check for and consume any regions we now overlap with. */ | 
|  | nrg = rg; | 
|  | list_for_each_entry_safe(rg, trg, rg->link.prev, link) { | 
|  | if (&rg->link == head) | 
|  | break; | 
|  | if (rg->from > t) | 
|  | break; | 
|  |  | 
|  | /* If this area reaches higher then extend our area to | 
|  | * include it completely.  If this is not the first area | 
|  | * which we intend to reuse, free it. */ | 
|  | if (rg->to > t) | 
|  | t = rg->to; | 
|  | if (rg != nrg) { | 
|  | list_del(&rg->link); | 
|  | kfree(rg); | 
|  | } | 
|  | } | 
|  | nrg->from = f; | 
|  | nrg->to = t; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static long region_chg(struct list_head *head, long f, long t) | 
|  | { | 
|  | struct file_region *rg, *nrg; | 
|  | long chg = 0; | 
|  |  | 
|  | /* Locate the region we are before or in. */ | 
|  | list_for_each_entry(rg, head, link) | 
|  | if (f <= rg->to) | 
|  | break; | 
|  |  | 
|  | /* If we are below the current region then a new region is required. | 
|  | * Subtle, allocate a new region at the position but make it zero | 
|  | * size such that we can guarantee to record the reservation. */ | 
|  | if (&rg->link == head || t < rg->from) { | 
|  | nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); | 
|  | if (!nrg) | 
|  | return -ENOMEM; | 
|  | nrg->from = f; | 
|  | nrg->to   = f; | 
|  | INIT_LIST_HEAD(&nrg->link); | 
|  | list_add(&nrg->link, rg->link.prev); | 
|  |  | 
|  | return t - f; | 
|  | } | 
|  |  | 
|  | /* Round our left edge to the current segment if it encloses us. */ | 
|  | if (f > rg->from) | 
|  | f = rg->from; | 
|  | chg = t - f; | 
|  |  | 
|  | /* Check for and consume any regions we now overlap with. */ | 
|  | list_for_each_entry(rg, rg->link.prev, link) { | 
|  | if (&rg->link == head) | 
|  | break; | 
|  | if (rg->from > t) | 
|  | return chg; | 
|  |  | 
|  | /* We overlap with this area, if it extends further than | 
|  | * us then we must extend ourselves.  Account for its | 
|  | * existing reservation. */ | 
|  | if (rg->to > t) { | 
|  | chg += rg->to - t; | 
|  | t = rg->to; | 
|  | } | 
|  | chg -= rg->to - rg->from; | 
|  | } | 
|  | return chg; | 
|  | } | 
|  |  | 
|  | static long region_truncate(struct list_head *head, long end) | 
|  | { | 
|  | struct file_region *rg, *trg; | 
|  | long chg = 0; | 
|  |  | 
|  | /* Locate the region we are either in or before. */ | 
|  | list_for_each_entry(rg, head, link) | 
|  | if (end <= rg->to) | 
|  | break; | 
|  | if (&rg->link == head) | 
|  | return 0; | 
|  |  | 
|  | /* If we are in the middle of a region then adjust it. */ | 
|  | if (end > rg->from) { | 
|  | chg = rg->to - end; | 
|  | rg->to = end; | 
|  | rg = list_entry(rg->link.next, typeof(*rg), link); | 
|  | } | 
|  |  | 
|  | /* Drop any remaining regions. */ | 
|  | list_for_each_entry_safe(rg, trg, rg->link.prev, link) { | 
|  | if (&rg->link == head) | 
|  | break; | 
|  | chg += rg->to - rg->from; | 
|  | list_del(&rg->link); | 
|  | kfree(rg); | 
|  | } | 
|  | return chg; | 
|  | } | 
|  |  | 
|  | static long region_count(struct list_head *head, long f, long t) | 
|  | { | 
|  | struct file_region *rg; | 
|  | long chg = 0; | 
|  |  | 
|  | /* Locate each segment we overlap with, and count that overlap. */ | 
|  | list_for_each_entry(rg, head, link) { | 
|  | int seg_from; | 
|  | int seg_to; | 
|  |  | 
|  | if (rg->to <= f) | 
|  | continue; | 
|  | if (rg->from >= t) | 
|  | break; | 
|  |  | 
|  | seg_from = max(rg->from, f); | 
|  | seg_to = min(rg->to, t); | 
|  |  | 
|  | chg += seg_to - seg_from; | 
|  | } | 
|  |  | 
|  | return chg; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Convert the address within this vma to the page offset within | 
|  | * the mapping, in pagecache page units; huge pages here. | 
|  | */ | 
|  | static pgoff_t vma_hugecache_offset(struct hstate *h, | 
|  | struct vm_area_struct *vma, unsigned long address) | 
|  | { | 
|  | return ((address - vma->vm_start) >> huge_page_shift(h)) + | 
|  | (vma->vm_pgoff >> huge_page_order(h)); | 
|  | } | 
|  |  | 
|  | pgoff_t linear_hugepage_index(struct vm_area_struct *vma, | 
|  | unsigned long address) | 
|  | { | 
|  | return vma_hugecache_offset(hstate_vma(vma), vma, address); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return the size of the pages allocated when backing a VMA. In the majority | 
|  | * cases this will be same size as used by the page table entries. | 
|  | */ | 
|  | unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) | 
|  | { | 
|  | struct hstate *hstate; | 
|  |  | 
|  | if (!is_vm_hugetlb_page(vma)) | 
|  | return PAGE_SIZE; | 
|  |  | 
|  | hstate = hstate_vma(vma); | 
|  |  | 
|  | return 1UL << (hstate->order + PAGE_SHIFT); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(vma_kernel_pagesize); | 
|  |  | 
|  | /* | 
|  | * Return the page size being used by the MMU to back a VMA. In the majority | 
|  | * of cases, the page size used by the kernel matches the MMU size. On | 
|  | * architectures where it differs, an architecture-specific version of this | 
|  | * function is required. | 
|  | */ | 
|  | #ifndef vma_mmu_pagesize | 
|  | unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) | 
|  | { | 
|  | return vma_kernel_pagesize(vma); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Flags for MAP_PRIVATE reservations.  These are stored in the bottom | 
|  | * bits of the reservation map pointer, which are always clear due to | 
|  | * alignment. | 
|  | */ | 
|  | #define HPAGE_RESV_OWNER    (1UL << 0) | 
|  | #define HPAGE_RESV_UNMAPPED (1UL << 1) | 
|  | #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) | 
|  |  | 
|  | /* | 
|  | * These helpers are used to track how many pages are reserved for | 
|  | * faults in a MAP_PRIVATE mapping. Only the process that called mmap() | 
|  | * is guaranteed to have their future faults succeed. | 
|  | * | 
|  | * With the exception of reset_vma_resv_huge_pages() which is called at fork(), | 
|  | * the reserve counters are updated with the hugetlb_lock held. It is safe | 
|  | * to reset the VMA at fork() time as it is not in use yet and there is no | 
|  | * chance of the global counters getting corrupted as a result of the values. | 
|  | * | 
|  | * The private mapping reservation is represented in a subtly different | 
|  | * manner to a shared mapping.  A shared mapping has a region map associated | 
|  | * with the underlying file, this region map represents the backing file | 
|  | * pages which have ever had a reservation assigned which this persists even | 
|  | * after the page is instantiated.  A private mapping has a region map | 
|  | * associated with the original mmap which is attached to all VMAs which | 
|  | * reference it, this region map represents those offsets which have consumed | 
|  | * reservation ie. where pages have been instantiated. | 
|  | */ | 
|  | static unsigned long get_vma_private_data(struct vm_area_struct *vma) | 
|  | { | 
|  | return (unsigned long)vma->vm_private_data; | 
|  | } | 
|  |  | 
|  | static void set_vma_private_data(struct vm_area_struct *vma, | 
|  | unsigned long value) | 
|  | { | 
|  | vma->vm_private_data = (void *)value; | 
|  | } | 
|  |  | 
|  | struct resv_map { | 
|  | struct kref refs; | 
|  | struct list_head regions; | 
|  | }; | 
|  |  | 
|  | static struct resv_map *resv_map_alloc(void) | 
|  | { | 
|  | struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); | 
|  | if (!resv_map) | 
|  | return NULL; | 
|  |  | 
|  | kref_init(&resv_map->refs); | 
|  | INIT_LIST_HEAD(&resv_map->regions); | 
|  |  | 
|  | return resv_map; | 
|  | } | 
|  |  | 
|  | static void resv_map_release(struct kref *ref) | 
|  | { | 
|  | struct resv_map *resv_map = container_of(ref, struct resv_map, refs); | 
|  |  | 
|  | /* Clear out any active regions before we release the map. */ | 
|  | region_truncate(&resv_map->regions, 0); | 
|  | kfree(resv_map); | 
|  | } | 
|  |  | 
|  | static struct resv_map *vma_resv_map(struct vm_area_struct *vma) | 
|  | { | 
|  | VM_BUG_ON(!is_vm_hugetlb_page(vma)); | 
|  | if (!(vma->vm_flags & VM_MAYSHARE)) | 
|  | return (struct resv_map *)(get_vma_private_data(vma) & | 
|  | ~HPAGE_RESV_MASK); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) | 
|  | { | 
|  | VM_BUG_ON(!is_vm_hugetlb_page(vma)); | 
|  | VM_BUG_ON(vma->vm_flags & VM_MAYSHARE); | 
|  |  | 
|  | set_vma_private_data(vma, (get_vma_private_data(vma) & | 
|  | HPAGE_RESV_MASK) | (unsigned long)map); | 
|  | } | 
|  |  | 
|  | static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) | 
|  | { | 
|  | VM_BUG_ON(!is_vm_hugetlb_page(vma)); | 
|  | VM_BUG_ON(vma->vm_flags & VM_MAYSHARE); | 
|  |  | 
|  | set_vma_private_data(vma, get_vma_private_data(vma) | flags); | 
|  | } | 
|  |  | 
|  | static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) | 
|  | { | 
|  | VM_BUG_ON(!is_vm_hugetlb_page(vma)); | 
|  |  | 
|  | return (get_vma_private_data(vma) & flag) != 0; | 
|  | } | 
|  |  | 
|  | /* Decrement the reserved pages in the hugepage pool by one */ | 
|  | static void decrement_hugepage_resv_vma(struct hstate *h, | 
|  | struct vm_area_struct *vma) | 
|  | { | 
|  | if (vma->vm_flags & VM_NORESERVE) | 
|  | return; | 
|  |  | 
|  | if (vma->vm_flags & VM_MAYSHARE) { | 
|  | /* Shared mappings always use reserves */ | 
|  | h->resv_huge_pages--; | 
|  | } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { | 
|  | /* | 
|  | * Only the process that called mmap() has reserves for | 
|  | * private mappings. | 
|  | */ | 
|  | h->resv_huge_pages--; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Reset counters to 0 and clear all HPAGE_RESV_* flags */ | 
|  | void reset_vma_resv_huge_pages(struct vm_area_struct *vma) | 
|  | { | 
|  | VM_BUG_ON(!is_vm_hugetlb_page(vma)); | 
|  | if (!(vma->vm_flags & VM_MAYSHARE)) | 
|  | vma->vm_private_data = (void *)0; | 
|  | } | 
|  |  | 
|  | /* Returns true if the VMA has associated reserve pages */ | 
|  | static int vma_has_reserves(struct vm_area_struct *vma) | 
|  | { | 
|  | if (vma->vm_flags & VM_MAYSHARE) | 
|  | return 1; | 
|  | if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void copy_gigantic_page(struct page *dst, struct page *src) | 
|  | { | 
|  | int i; | 
|  | struct hstate *h = page_hstate(src); | 
|  | struct page *dst_base = dst; | 
|  | struct page *src_base = src; | 
|  |  | 
|  | for (i = 0; i < pages_per_huge_page(h); ) { | 
|  | cond_resched(); | 
|  | copy_highpage(dst, src); | 
|  |  | 
|  | i++; | 
|  | dst = mem_map_next(dst, dst_base, i); | 
|  | src = mem_map_next(src, src_base, i); | 
|  | } | 
|  | } | 
|  |  | 
|  | void copy_huge_page(struct page *dst, struct page *src) | 
|  | { | 
|  | int i; | 
|  | struct hstate *h = page_hstate(src); | 
|  |  | 
|  | if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) { | 
|  | copy_gigantic_page(dst, src); | 
|  | return; | 
|  | } | 
|  |  | 
|  | might_sleep(); | 
|  | for (i = 0; i < pages_per_huge_page(h); i++) { | 
|  | cond_resched(); | 
|  | copy_highpage(dst + i, src + i); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void enqueue_huge_page(struct hstate *h, struct page *page) | 
|  | { | 
|  | int nid = page_to_nid(page); | 
|  | list_add(&page->lru, &h->hugepage_freelists[nid]); | 
|  | h->free_huge_pages++; | 
|  | h->free_huge_pages_node[nid]++; | 
|  | } | 
|  |  | 
|  | static struct page *dequeue_huge_page_node(struct hstate *h, int nid) | 
|  | { | 
|  | struct page *page; | 
|  |  | 
|  | if (list_empty(&h->hugepage_freelists[nid])) | 
|  | return NULL; | 
|  | page = list_entry(h->hugepage_freelists[nid].next, struct page, lru); | 
|  | list_del(&page->lru); | 
|  | set_page_refcounted(page); | 
|  | h->free_huge_pages--; | 
|  | h->free_huge_pages_node[nid]--; | 
|  | return page; | 
|  | } | 
|  |  | 
|  | static struct page *dequeue_huge_page_vma(struct hstate *h, | 
|  | struct vm_area_struct *vma, | 
|  | unsigned long address, int avoid_reserve) | 
|  | { | 
|  | struct page *page = NULL; | 
|  | struct mempolicy *mpol; | 
|  | nodemask_t *nodemask; | 
|  | struct zonelist *zonelist; | 
|  | struct zone *zone; | 
|  | struct zoneref *z; | 
|  |  | 
|  | get_mems_allowed(); | 
|  | zonelist = huge_zonelist(vma, address, | 
|  | htlb_alloc_mask, &mpol, &nodemask); | 
|  | /* | 
|  | * A child process with MAP_PRIVATE mappings created by their parent | 
|  | * have no page reserves. This check ensures that reservations are | 
|  | * not "stolen". The child may still get SIGKILLed | 
|  | */ | 
|  | if (!vma_has_reserves(vma) && | 
|  | h->free_huge_pages - h->resv_huge_pages == 0) | 
|  | goto err; | 
|  |  | 
|  | /* If reserves cannot be used, ensure enough pages are in the pool */ | 
|  | if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0) | 
|  | goto err; | 
|  |  | 
|  | for_each_zone_zonelist_nodemask(zone, z, zonelist, | 
|  | MAX_NR_ZONES - 1, nodemask) { | 
|  | if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) { | 
|  | page = dequeue_huge_page_node(h, zone_to_nid(zone)); | 
|  | if (page) { | 
|  | if (!avoid_reserve) | 
|  | decrement_hugepage_resv_vma(h, vma); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | err: | 
|  | mpol_cond_put(mpol); | 
|  | put_mems_allowed(); | 
|  | return page; | 
|  | } | 
|  |  | 
|  | static void update_and_free_page(struct hstate *h, struct page *page) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | VM_BUG_ON(h->order >= MAX_ORDER); | 
|  |  | 
|  | h->nr_huge_pages--; | 
|  | h->nr_huge_pages_node[page_to_nid(page)]--; | 
|  | for (i = 0; i < pages_per_huge_page(h); i++) { | 
|  | page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced | | 
|  | 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved | | 
|  | 1 << PG_private | 1<< PG_writeback); | 
|  | } | 
|  | set_compound_page_dtor(page, NULL); | 
|  | set_page_refcounted(page); | 
|  | arch_release_hugepage(page); | 
|  | __free_pages(page, huge_page_order(h)); | 
|  | } | 
|  |  | 
|  | struct hstate *size_to_hstate(unsigned long size) | 
|  | { | 
|  | struct hstate *h; | 
|  |  | 
|  | for_each_hstate(h) { | 
|  | if (huge_page_size(h) == size) | 
|  | return h; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void free_huge_page(struct page *page) | 
|  | { | 
|  | /* | 
|  | * Can't pass hstate in here because it is called from the | 
|  | * compound page destructor. | 
|  | */ | 
|  | struct hstate *h = page_hstate(page); | 
|  | int nid = page_to_nid(page); | 
|  | struct address_space *mapping; | 
|  |  | 
|  | mapping = (struct address_space *) page_private(page); | 
|  | set_page_private(page, 0); | 
|  | page->mapping = NULL; | 
|  | BUG_ON(page_count(page)); | 
|  | BUG_ON(page_mapcount(page)); | 
|  | INIT_LIST_HEAD(&page->lru); | 
|  |  | 
|  | spin_lock(&hugetlb_lock); | 
|  | if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) { | 
|  | update_and_free_page(h, page); | 
|  | h->surplus_huge_pages--; | 
|  | h->surplus_huge_pages_node[nid]--; | 
|  | } else { | 
|  | enqueue_huge_page(h, page); | 
|  | } | 
|  | spin_unlock(&hugetlb_lock); | 
|  | if (mapping) | 
|  | hugetlb_put_quota(mapping, 1); | 
|  | } | 
|  |  | 
|  | static void prep_new_huge_page(struct hstate *h, struct page *page, int nid) | 
|  | { | 
|  | set_compound_page_dtor(page, free_huge_page); | 
|  | spin_lock(&hugetlb_lock); | 
|  | h->nr_huge_pages++; | 
|  | h->nr_huge_pages_node[nid]++; | 
|  | spin_unlock(&hugetlb_lock); | 
|  | put_page(page); /* free it into the hugepage allocator */ | 
|  | } | 
|  |  | 
|  | static void prep_compound_gigantic_page(struct page *page, unsigned long order) | 
|  | { | 
|  | int i; | 
|  | int nr_pages = 1 << order; | 
|  | struct page *p = page + 1; | 
|  |  | 
|  | /* we rely on prep_new_huge_page to set the destructor */ | 
|  | set_compound_order(page, order); | 
|  | __SetPageHead(page); | 
|  | for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { | 
|  | __SetPageTail(p); | 
|  | p->first_page = page; | 
|  | } | 
|  | } | 
|  |  | 
|  | int PageHuge(struct page *page) | 
|  | { | 
|  | compound_page_dtor *dtor; | 
|  |  | 
|  | if (!PageCompound(page)) | 
|  | return 0; | 
|  |  | 
|  | page = compound_head(page); | 
|  | dtor = get_compound_page_dtor(page); | 
|  |  | 
|  | return dtor == free_huge_page; | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL_GPL(PageHuge); | 
|  |  | 
|  | static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid) | 
|  | { | 
|  | struct page *page; | 
|  |  | 
|  | if (h->order >= MAX_ORDER) | 
|  | return NULL; | 
|  |  | 
|  | page = alloc_pages_exact_node(nid, | 
|  | htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE| | 
|  | __GFP_REPEAT|__GFP_NOWARN, | 
|  | huge_page_order(h)); | 
|  | if (page) { | 
|  | if (arch_prepare_hugepage(page)) { | 
|  | __free_pages(page, huge_page_order(h)); | 
|  | return NULL; | 
|  | } | 
|  | prep_new_huge_page(h, page, nid); | 
|  | } | 
|  |  | 
|  | return page; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * common helper functions for hstate_next_node_to_{alloc|free}. | 
|  | * We may have allocated or freed a huge page based on a different | 
|  | * nodes_allowed previously, so h->next_node_to_{alloc|free} might | 
|  | * be outside of *nodes_allowed.  Ensure that we use an allowed | 
|  | * node for alloc or free. | 
|  | */ | 
|  | static int next_node_allowed(int nid, nodemask_t *nodes_allowed) | 
|  | { | 
|  | nid = next_node(nid, *nodes_allowed); | 
|  | if (nid == MAX_NUMNODES) | 
|  | nid = first_node(*nodes_allowed); | 
|  | VM_BUG_ON(nid >= MAX_NUMNODES); | 
|  |  | 
|  | return nid; | 
|  | } | 
|  |  | 
|  | static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) | 
|  | { | 
|  | if (!node_isset(nid, *nodes_allowed)) | 
|  | nid = next_node_allowed(nid, nodes_allowed); | 
|  | return nid; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * returns the previously saved node ["this node"] from which to | 
|  | * allocate a persistent huge page for the pool and advance the | 
|  | * next node from which to allocate, handling wrap at end of node | 
|  | * mask. | 
|  | */ | 
|  | static int hstate_next_node_to_alloc(struct hstate *h, | 
|  | nodemask_t *nodes_allowed) | 
|  | { | 
|  | int nid; | 
|  |  | 
|  | VM_BUG_ON(!nodes_allowed); | 
|  |  | 
|  | nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed); | 
|  | h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed); | 
|  |  | 
|  | return nid; | 
|  | } | 
|  |  | 
|  | static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed) | 
|  | { | 
|  | struct page *page; | 
|  | int start_nid; | 
|  | int next_nid; | 
|  | int ret = 0; | 
|  |  | 
|  | start_nid = hstate_next_node_to_alloc(h, nodes_allowed); | 
|  | next_nid = start_nid; | 
|  |  | 
|  | do { | 
|  | page = alloc_fresh_huge_page_node(h, next_nid); | 
|  | if (page) { | 
|  | ret = 1; | 
|  | break; | 
|  | } | 
|  | next_nid = hstate_next_node_to_alloc(h, nodes_allowed); | 
|  | } while (next_nid != start_nid); | 
|  |  | 
|  | if (ret) | 
|  | count_vm_event(HTLB_BUDDY_PGALLOC); | 
|  | else | 
|  | count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * helper for free_pool_huge_page() - return the previously saved | 
|  | * node ["this node"] from which to free a huge page.  Advance the | 
|  | * next node id whether or not we find a free huge page to free so | 
|  | * that the next attempt to free addresses the next node. | 
|  | */ | 
|  | static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) | 
|  | { | 
|  | int nid; | 
|  |  | 
|  | VM_BUG_ON(!nodes_allowed); | 
|  |  | 
|  | nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); | 
|  | h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); | 
|  |  | 
|  | return nid; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Free huge page from pool from next node to free. | 
|  | * Attempt to keep persistent huge pages more or less | 
|  | * balanced over allowed nodes. | 
|  | * Called with hugetlb_lock locked. | 
|  | */ | 
|  | static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, | 
|  | bool acct_surplus) | 
|  | { | 
|  | int start_nid; | 
|  | int next_nid; | 
|  | int ret = 0; | 
|  |  | 
|  | start_nid = hstate_next_node_to_free(h, nodes_allowed); | 
|  | next_nid = start_nid; | 
|  |  | 
|  | do { | 
|  | /* | 
|  | * If we're returning unused surplus pages, only examine | 
|  | * nodes with surplus pages. | 
|  | */ | 
|  | if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) && | 
|  | !list_empty(&h->hugepage_freelists[next_nid])) { | 
|  | struct page *page = | 
|  | list_entry(h->hugepage_freelists[next_nid].next, | 
|  | struct page, lru); | 
|  | list_del(&page->lru); | 
|  | h->free_huge_pages--; | 
|  | h->free_huge_pages_node[next_nid]--; | 
|  | if (acct_surplus) { | 
|  | h->surplus_huge_pages--; | 
|  | h->surplus_huge_pages_node[next_nid]--; | 
|  | } | 
|  | update_and_free_page(h, page); | 
|  | ret = 1; | 
|  | break; | 
|  | } | 
|  | next_nid = hstate_next_node_to_free(h, nodes_allowed); | 
|  | } while (next_nid != start_nid); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static struct page *alloc_buddy_huge_page(struct hstate *h, int nid) | 
|  | { | 
|  | struct page *page; | 
|  | unsigned int r_nid; | 
|  |  | 
|  | if (h->order >= MAX_ORDER) | 
|  | return NULL; | 
|  |  | 
|  | /* | 
|  | * Assume we will successfully allocate the surplus page to | 
|  | * prevent racing processes from causing the surplus to exceed | 
|  | * overcommit | 
|  | * | 
|  | * This however introduces a different race, where a process B | 
|  | * tries to grow the static hugepage pool while alloc_pages() is | 
|  | * called by process A. B will only examine the per-node | 
|  | * counters in determining if surplus huge pages can be | 
|  | * converted to normal huge pages in adjust_pool_surplus(). A | 
|  | * won't be able to increment the per-node counter, until the | 
|  | * lock is dropped by B, but B doesn't drop hugetlb_lock until | 
|  | * no more huge pages can be converted from surplus to normal | 
|  | * state (and doesn't try to convert again). Thus, we have a | 
|  | * case where a surplus huge page exists, the pool is grown, and | 
|  | * the surplus huge page still exists after, even though it | 
|  | * should just have been converted to a normal huge page. This | 
|  | * does not leak memory, though, as the hugepage will be freed | 
|  | * once it is out of use. It also does not allow the counters to | 
|  | * go out of whack in adjust_pool_surplus() as we don't modify | 
|  | * the node values until we've gotten the hugepage and only the | 
|  | * per-node value is checked there. | 
|  | */ | 
|  | spin_lock(&hugetlb_lock); | 
|  | if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { | 
|  | spin_unlock(&hugetlb_lock); | 
|  | return NULL; | 
|  | } else { | 
|  | h->nr_huge_pages++; | 
|  | h->surplus_huge_pages++; | 
|  | } | 
|  | spin_unlock(&hugetlb_lock); | 
|  |  | 
|  | if (nid == NUMA_NO_NODE) | 
|  | page = alloc_pages(htlb_alloc_mask|__GFP_COMP| | 
|  | __GFP_REPEAT|__GFP_NOWARN, | 
|  | huge_page_order(h)); | 
|  | else | 
|  | page = alloc_pages_exact_node(nid, | 
|  | htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE| | 
|  | __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h)); | 
|  |  | 
|  | if (page && arch_prepare_hugepage(page)) { | 
|  | __free_pages(page, huge_page_order(h)); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | spin_lock(&hugetlb_lock); | 
|  | if (page) { | 
|  | r_nid = page_to_nid(page); | 
|  | set_compound_page_dtor(page, free_huge_page); | 
|  | /* | 
|  | * We incremented the global counters already | 
|  | */ | 
|  | h->nr_huge_pages_node[r_nid]++; | 
|  | h->surplus_huge_pages_node[r_nid]++; | 
|  | __count_vm_event(HTLB_BUDDY_PGALLOC); | 
|  | } else { | 
|  | h->nr_huge_pages--; | 
|  | h->surplus_huge_pages--; | 
|  | __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); | 
|  | } | 
|  | spin_unlock(&hugetlb_lock); | 
|  |  | 
|  | return page; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This allocation function is useful in the context where vma is irrelevant. | 
|  | * E.g. soft-offlining uses this function because it only cares physical | 
|  | * address of error page. | 
|  | */ | 
|  | struct page *alloc_huge_page_node(struct hstate *h, int nid) | 
|  | { | 
|  | struct page *page; | 
|  |  | 
|  | spin_lock(&hugetlb_lock); | 
|  | page = dequeue_huge_page_node(h, nid); | 
|  | spin_unlock(&hugetlb_lock); | 
|  |  | 
|  | if (!page) | 
|  | page = alloc_buddy_huge_page(h, nid); | 
|  |  | 
|  | return page; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Increase the hugetlb pool such that it can accommodate a reservation | 
|  | * of size 'delta'. | 
|  | */ | 
|  | static int gather_surplus_pages(struct hstate *h, int delta) | 
|  | { | 
|  | struct list_head surplus_list; | 
|  | struct page *page, *tmp; | 
|  | int ret, i; | 
|  | int needed, allocated; | 
|  |  | 
|  | needed = (h->resv_huge_pages + delta) - h->free_huge_pages; | 
|  | if (needed <= 0) { | 
|  | h->resv_huge_pages += delta; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | allocated = 0; | 
|  | INIT_LIST_HEAD(&surplus_list); | 
|  |  | 
|  | ret = -ENOMEM; | 
|  | retry: | 
|  | spin_unlock(&hugetlb_lock); | 
|  | for (i = 0; i < needed; i++) { | 
|  | page = alloc_buddy_huge_page(h, NUMA_NO_NODE); | 
|  | if (!page) | 
|  | /* | 
|  | * We were not able to allocate enough pages to | 
|  | * satisfy the entire reservation so we free what | 
|  | * we've allocated so far. | 
|  | */ | 
|  | goto free; | 
|  |  | 
|  | list_add(&page->lru, &surplus_list); | 
|  | } | 
|  | allocated += needed; | 
|  |  | 
|  | /* | 
|  | * After retaking hugetlb_lock, we need to recalculate 'needed' | 
|  | * because either resv_huge_pages or free_huge_pages may have changed. | 
|  | */ | 
|  | spin_lock(&hugetlb_lock); | 
|  | needed = (h->resv_huge_pages + delta) - | 
|  | (h->free_huge_pages + allocated); | 
|  | if (needed > 0) | 
|  | goto retry; | 
|  |  | 
|  | /* | 
|  | * The surplus_list now contains _at_least_ the number of extra pages | 
|  | * needed to accommodate the reservation.  Add the appropriate number | 
|  | * of pages to the hugetlb pool and free the extras back to the buddy | 
|  | * allocator.  Commit the entire reservation here to prevent another | 
|  | * process from stealing the pages as they are added to the pool but | 
|  | * before they are reserved. | 
|  | */ | 
|  | needed += allocated; | 
|  | h->resv_huge_pages += delta; | 
|  | ret = 0; | 
|  |  | 
|  | spin_unlock(&hugetlb_lock); | 
|  | /* Free the needed pages to the hugetlb pool */ | 
|  | list_for_each_entry_safe(page, tmp, &surplus_list, lru) { | 
|  | if ((--needed) < 0) | 
|  | break; | 
|  | list_del(&page->lru); | 
|  | /* | 
|  | * This page is now managed by the hugetlb allocator and has | 
|  | * no users -- drop the buddy allocator's reference. | 
|  | */ | 
|  | put_page_testzero(page); | 
|  | VM_BUG_ON(page_count(page)); | 
|  | enqueue_huge_page(h, page); | 
|  | } | 
|  |  | 
|  | /* Free unnecessary surplus pages to the buddy allocator */ | 
|  | free: | 
|  | if (!list_empty(&surplus_list)) { | 
|  | list_for_each_entry_safe(page, tmp, &surplus_list, lru) { | 
|  | list_del(&page->lru); | 
|  | put_page(page); | 
|  | } | 
|  | } | 
|  | spin_lock(&hugetlb_lock); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When releasing a hugetlb pool reservation, any surplus pages that were | 
|  | * allocated to satisfy the reservation must be explicitly freed if they were | 
|  | * never used. | 
|  | * Called with hugetlb_lock held. | 
|  | */ | 
|  | static void return_unused_surplus_pages(struct hstate *h, | 
|  | unsigned long unused_resv_pages) | 
|  | { | 
|  | unsigned long nr_pages; | 
|  |  | 
|  | /* Uncommit the reservation */ | 
|  | h->resv_huge_pages -= unused_resv_pages; | 
|  |  | 
|  | /* Cannot return gigantic pages currently */ | 
|  | if (h->order >= MAX_ORDER) | 
|  | return; | 
|  |  | 
|  | nr_pages = min(unused_resv_pages, h->surplus_huge_pages); | 
|  |  | 
|  | /* | 
|  | * We want to release as many surplus pages as possible, spread | 
|  | * evenly across all nodes with memory. Iterate across these nodes | 
|  | * until we can no longer free unreserved surplus pages. This occurs | 
|  | * when the nodes with surplus pages have no free pages. | 
|  | * free_pool_huge_page() will balance the the freed pages across the | 
|  | * on-line nodes with memory and will handle the hstate accounting. | 
|  | */ | 
|  | while (nr_pages--) { | 
|  | if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1)) | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Determine if the huge page at addr within the vma has an associated | 
|  | * reservation.  Where it does not we will need to logically increase | 
|  | * reservation and actually increase quota before an allocation can occur. | 
|  | * Where any new reservation would be required the reservation change is | 
|  | * prepared, but not committed.  Once the page has been quota'd allocated | 
|  | * an instantiated the change should be committed via vma_commit_reservation. | 
|  | * No action is required on failure. | 
|  | */ | 
|  | static long vma_needs_reservation(struct hstate *h, | 
|  | struct vm_area_struct *vma, unsigned long addr) | 
|  | { | 
|  | struct address_space *mapping = vma->vm_file->f_mapping; | 
|  | struct inode *inode = mapping->host; | 
|  |  | 
|  | if (vma->vm_flags & VM_MAYSHARE) { | 
|  | pgoff_t idx = vma_hugecache_offset(h, vma, addr); | 
|  | return region_chg(&inode->i_mapping->private_list, | 
|  | idx, idx + 1); | 
|  |  | 
|  | } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { | 
|  | return 1; | 
|  |  | 
|  | } else  { | 
|  | long err; | 
|  | pgoff_t idx = vma_hugecache_offset(h, vma, addr); | 
|  | struct resv_map *reservations = vma_resv_map(vma); | 
|  |  | 
|  | err = region_chg(&reservations->regions, idx, idx + 1); | 
|  | if (err < 0) | 
|  | return err; | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | static void vma_commit_reservation(struct hstate *h, | 
|  | struct vm_area_struct *vma, unsigned long addr) | 
|  | { | 
|  | struct address_space *mapping = vma->vm_file->f_mapping; | 
|  | struct inode *inode = mapping->host; | 
|  |  | 
|  | if (vma->vm_flags & VM_MAYSHARE) { | 
|  | pgoff_t idx = vma_hugecache_offset(h, vma, addr); | 
|  | region_add(&inode->i_mapping->private_list, idx, idx + 1); | 
|  |  | 
|  | } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { | 
|  | pgoff_t idx = vma_hugecache_offset(h, vma, addr); | 
|  | struct resv_map *reservations = vma_resv_map(vma); | 
|  |  | 
|  | /* Mark this page used in the map. */ | 
|  | region_add(&reservations->regions, idx, idx + 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | static struct page *alloc_huge_page(struct vm_area_struct *vma, | 
|  | unsigned long addr, int avoid_reserve) | 
|  | { | 
|  | struct hstate *h = hstate_vma(vma); | 
|  | struct page *page; | 
|  | struct address_space *mapping = vma->vm_file->f_mapping; | 
|  | struct inode *inode = mapping->host; | 
|  | long chg; | 
|  |  | 
|  | /* | 
|  | * Processes that did not create the mapping will have no reserves and | 
|  | * will not have accounted against quota. Check that the quota can be | 
|  | * made before satisfying the allocation | 
|  | * MAP_NORESERVE mappings may also need pages and quota allocated | 
|  | * if no reserve mapping overlaps. | 
|  | */ | 
|  | chg = vma_needs_reservation(h, vma, addr); | 
|  | if (chg < 0) | 
|  | return ERR_PTR(-VM_FAULT_OOM); | 
|  | if (chg) | 
|  | if (hugetlb_get_quota(inode->i_mapping, chg)) | 
|  | return ERR_PTR(-VM_FAULT_SIGBUS); | 
|  |  | 
|  | spin_lock(&hugetlb_lock); | 
|  | page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve); | 
|  | spin_unlock(&hugetlb_lock); | 
|  |  | 
|  | if (!page) { | 
|  | page = alloc_buddy_huge_page(h, NUMA_NO_NODE); | 
|  | if (!page) { | 
|  | hugetlb_put_quota(inode->i_mapping, chg); | 
|  | return ERR_PTR(-VM_FAULT_SIGBUS); | 
|  | } | 
|  | } | 
|  |  | 
|  | set_page_private(page, (unsigned long) mapping); | 
|  |  | 
|  | vma_commit_reservation(h, vma, addr); | 
|  |  | 
|  | return page; | 
|  | } | 
|  |  | 
|  | int __weak alloc_bootmem_huge_page(struct hstate *h) | 
|  | { | 
|  | struct huge_bootmem_page *m; | 
|  | int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]); | 
|  |  | 
|  | while (nr_nodes) { | 
|  | void *addr; | 
|  |  | 
|  | addr = __alloc_bootmem_node_nopanic( | 
|  | NODE_DATA(hstate_next_node_to_alloc(h, | 
|  | &node_states[N_HIGH_MEMORY])), | 
|  | huge_page_size(h), huge_page_size(h), 0); | 
|  |  | 
|  | if (addr) { | 
|  | /* | 
|  | * Use the beginning of the huge page to store the | 
|  | * huge_bootmem_page struct (until gather_bootmem | 
|  | * puts them into the mem_map). | 
|  | */ | 
|  | m = addr; | 
|  | goto found; | 
|  | } | 
|  | nr_nodes--; | 
|  | } | 
|  | return 0; | 
|  |  | 
|  | found: | 
|  | BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1)); | 
|  | /* Put them into a private list first because mem_map is not up yet */ | 
|  | list_add(&m->list, &huge_boot_pages); | 
|  | m->hstate = h; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static void prep_compound_huge_page(struct page *page, int order) | 
|  | { | 
|  | if (unlikely(order > (MAX_ORDER - 1))) | 
|  | prep_compound_gigantic_page(page, order); | 
|  | else | 
|  | prep_compound_page(page, order); | 
|  | } | 
|  |  | 
|  | /* Put bootmem huge pages into the standard lists after mem_map is up */ | 
|  | static void __init gather_bootmem_prealloc(void) | 
|  | { | 
|  | struct huge_bootmem_page *m; | 
|  |  | 
|  | list_for_each_entry(m, &huge_boot_pages, list) { | 
|  | struct page *page = virt_to_page(m); | 
|  | struct hstate *h = m->hstate; | 
|  | __ClearPageReserved(page); | 
|  | WARN_ON(page_count(page) != 1); | 
|  | prep_compound_huge_page(page, h->order); | 
|  | prep_new_huge_page(h, page, page_to_nid(page)); | 
|  | /* | 
|  | * If we had gigantic hugepages allocated at boot time, we need | 
|  | * to restore the 'stolen' pages to totalram_pages in order to | 
|  | * fix confusing memory reports from free(1) and another | 
|  | * side-effects, like CommitLimit going negative. | 
|  | */ | 
|  | if (h->order > (MAX_ORDER - 1)) | 
|  | totalram_pages += 1 << h->order; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void __init hugetlb_hstate_alloc_pages(struct hstate *h) | 
|  | { | 
|  | unsigned long i; | 
|  |  | 
|  | for (i = 0; i < h->max_huge_pages; ++i) { | 
|  | if (h->order >= MAX_ORDER) { | 
|  | if (!alloc_bootmem_huge_page(h)) | 
|  | break; | 
|  | } else if (!alloc_fresh_huge_page(h, | 
|  | &node_states[N_HIGH_MEMORY])) | 
|  | break; | 
|  | } | 
|  | h->max_huge_pages = i; | 
|  | } | 
|  |  | 
|  | static void __init hugetlb_init_hstates(void) | 
|  | { | 
|  | struct hstate *h; | 
|  |  | 
|  | for_each_hstate(h) { | 
|  | /* oversize hugepages were init'ed in early boot */ | 
|  | if (h->order < MAX_ORDER) | 
|  | hugetlb_hstate_alloc_pages(h); | 
|  | } | 
|  | } | 
|  |  | 
|  | static char * __init memfmt(char *buf, unsigned long n) | 
|  | { | 
|  | if (n >= (1UL << 30)) | 
|  | sprintf(buf, "%lu GB", n >> 30); | 
|  | else if (n >= (1UL << 20)) | 
|  | sprintf(buf, "%lu MB", n >> 20); | 
|  | else | 
|  | sprintf(buf, "%lu KB", n >> 10); | 
|  | return buf; | 
|  | } | 
|  |  | 
|  | static void __init report_hugepages(void) | 
|  | { | 
|  | struct hstate *h; | 
|  |  | 
|  | for_each_hstate(h) { | 
|  | char buf[32]; | 
|  | printk(KERN_INFO "HugeTLB registered %s page size, " | 
|  | "pre-allocated %ld pages\n", | 
|  | memfmt(buf, huge_page_size(h)), | 
|  | h->free_huge_pages); | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_HIGHMEM | 
|  | static void try_to_free_low(struct hstate *h, unsigned long count, | 
|  | nodemask_t *nodes_allowed) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | if (h->order >= MAX_ORDER) | 
|  | return; | 
|  |  | 
|  | for_each_node_mask(i, *nodes_allowed) { | 
|  | struct page *page, *next; | 
|  | struct list_head *freel = &h->hugepage_freelists[i]; | 
|  | list_for_each_entry_safe(page, next, freel, lru) { | 
|  | if (count >= h->nr_huge_pages) | 
|  | return; | 
|  | if (PageHighMem(page)) | 
|  | continue; | 
|  | list_del(&page->lru); | 
|  | update_and_free_page(h, page); | 
|  | h->free_huge_pages--; | 
|  | h->free_huge_pages_node[page_to_nid(page)]--; | 
|  | } | 
|  | } | 
|  | } | 
|  | #else | 
|  | static inline void try_to_free_low(struct hstate *h, unsigned long count, | 
|  | nodemask_t *nodes_allowed) | 
|  | { | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Increment or decrement surplus_huge_pages.  Keep node-specific counters | 
|  | * balanced by operating on them in a round-robin fashion. | 
|  | * Returns 1 if an adjustment was made. | 
|  | */ | 
|  | static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, | 
|  | int delta) | 
|  | { | 
|  | int start_nid, next_nid; | 
|  | int ret = 0; | 
|  |  | 
|  | VM_BUG_ON(delta != -1 && delta != 1); | 
|  |  | 
|  | if (delta < 0) | 
|  | start_nid = hstate_next_node_to_alloc(h, nodes_allowed); | 
|  | else | 
|  | start_nid = hstate_next_node_to_free(h, nodes_allowed); | 
|  | next_nid = start_nid; | 
|  |  | 
|  | do { | 
|  | int nid = next_nid; | 
|  | if (delta < 0)  { | 
|  | /* | 
|  | * To shrink on this node, there must be a surplus page | 
|  | */ | 
|  | if (!h->surplus_huge_pages_node[nid]) { | 
|  | next_nid = hstate_next_node_to_alloc(h, | 
|  | nodes_allowed); | 
|  | continue; | 
|  | } | 
|  | } | 
|  | if (delta > 0) { | 
|  | /* | 
|  | * Surplus cannot exceed the total number of pages | 
|  | */ | 
|  | if (h->surplus_huge_pages_node[nid] >= | 
|  | h->nr_huge_pages_node[nid]) { | 
|  | next_nid = hstate_next_node_to_free(h, | 
|  | nodes_allowed); | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | h->surplus_huge_pages += delta; | 
|  | h->surplus_huge_pages_node[nid] += delta; | 
|  | ret = 1; | 
|  | break; | 
|  | } while (next_nid != start_nid); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) | 
|  | static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count, | 
|  | nodemask_t *nodes_allowed) | 
|  | { | 
|  | unsigned long min_count, ret; | 
|  |  | 
|  | if (h->order >= MAX_ORDER) | 
|  | return h->max_huge_pages; | 
|  |  | 
|  | /* | 
|  | * Increase the pool size | 
|  | * First take pages out of surplus state.  Then make up the | 
|  | * remaining difference by allocating fresh huge pages. | 
|  | * | 
|  | * We might race with alloc_buddy_huge_page() here and be unable | 
|  | * to convert a surplus huge page to a normal huge page. That is | 
|  | * not critical, though, it just means the overall size of the | 
|  | * pool might be one hugepage larger than it needs to be, but | 
|  | * within all the constraints specified by the sysctls. | 
|  | */ | 
|  | spin_lock(&hugetlb_lock); | 
|  | while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { | 
|  | if (!adjust_pool_surplus(h, nodes_allowed, -1)) | 
|  | break; | 
|  | } | 
|  |  | 
|  | while (count > persistent_huge_pages(h)) { | 
|  | /* | 
|  | * If this allocation races such that we no longer need the | 
|  | * page, free_huge_page will handle it by freeing the page | 
|  | * and reducing the surplus. | 
|  | */ | 
|  | spin_unlock(&hugetlb_lock); | 
|  | ret = alloc_fresh_huge_page(h, nodes_allowed); | 
|  | spin_lock(&hugetlb_lock); | 
|  | if (!ret) | 
|  | goto out; | 
|  |  | 
|  | /* Bail for signals. Probably ctrl-c from user */ | 
|  | if (signal_pending(current)) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Decrease the pool size | 
|  | * First return free pages to the buddy allocator (being careful | 
|  | * to keep enough around to satisfy reservations).  Then place | 
|  | * pages into surplus state as needed so the pool will shrink | 
|  | * to the desired size as pages become free. | 
|  | * | 
|  | * By placing pages into the surplus state independent of the | 
|  | * overcommit value, we are allowing the surplus pool size to | 
|  | * exceed overcommit. There are few sane options here. Since | 
|  | * alloc_buddy_huge_page() is checking the global counter, | 
|  | * though, we'll note that we're not allowed to exceed surplus | 
|  | * and won't grow the pool anywhere else. Not until one of the | 
|  | * sysctls are changed, or the surplus pages go out of use. | 
|  | */ | 
|  | min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; | 
|  | min_count = max(count, min_count); | 
|  | try_to_free_low(h, min_count, nodes_allowed); | 
|  | while (min_count < persistent_huge_pages(h)) { | 
|  | if (!free_pool_huge_page(h, nodes_allowed, 0)) | 
|  | break; | 
|  | } | 
|  | while (count < persistent_huge_pages(h)) { | 
|  | if (!adjust_pool_surplus(h, nodes_allowed, 1)) | 
|  | break; | 
|  | } | 
|  | out: | 
|  | ret = persistent_huge_pages(h); | 
|  | spin_unlock(&hugetlb_lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #define HSTATE_ATTR_RO(_name) \ | 
|  | static struct kobj_attribute _name##_attr = __ATTR_RO(_name) | 
|  |  | 
|  | #define HSTATE_ATTR(_name) \ | 
|  | static struct kobj_attribute _name##_attr = \ | 
|  | __ATTR(_name, 0644, _name##_show, _name##_store) | 
|  |  | 
|  | static struct kobject *hugepages_kobj; | 
|  | static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; | 
|  |  | 
|  | static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); | 
|  |  | 
|  | static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < HUGE_MAX_HSTATE; i++) | 
|  | if (hstate_kobjs[i] == kobj) { | 
|  | if (nidp) | 
|  | *nidp = NUMA_NO_NODE; | 
|  | return &hstates[i]; | 
|  | } | 
|  |  | 
|  | return kobj_to_node_hstate(kobj, nidp); | 
|  | } | 
|  |  | 
|  | static ssize_t nr_hugepages_show_common(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, char *buf) | 
|  | { | 
|  | struct hstate *h; | 
|  | unsigned long nr_huge_pages; | 
|  | int nid; | 
|  |  | 
|  | h = kobj_to_hstate(kobj, &nid); | 
|  | if (nid == NUMA_NO_NODE) | 
|  | nr_huge_pages = h->nr_huge_pages; | 
|  | else | 
|  | nr_huge_pages = h->nr_huge_pages_node[nid]; | 
|  |  | 
|  | return sprintf(buf, "%lu\n", nr_huge_pages); | 
|  | } | 
|  |  | 
|  | static ssize_t nr_hugepages_store_common(bool obey_mempolicy, | 
|  | struct kobject *kobj, struct kobj_attribute *attr, | 
|  | const char *buf, size_t len) | 
|  | { | 
|  | int err; | 
|  | int nid; | 
|  | unsigned long count; | 
|  | struct hstate *h; | 
|  | NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY); | 
|  |  | 
|  | err = strict_strtoul(buf, 10, &count); | 
|  | if (err) | 
|  | goto out; | 
|  |  | 
|  | h = kobj_to_hstate(kobj, &nid); | 
|  | if (h->order >= MAX_ORDER) { | 
|  | err = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (nid == NUMA_NO_NODE) { | 
|  | /* | 
|  | * global hstate attribute | 
|  | */ | 
|  | if (!(obey_mempolicy && | 
|  | init_nodemask_of_mempolicy(nodes_allowed))) { | 
|  | NODEMASK_FREE(nodes_allowed); | 
|  | nodes_allowed = &node_states[N_HIGH_MEMORY]; | 
|  | } | 
|  | } else if (nodes_allowed) { | 
|  | /* | 
|  | * per node hstate attribute: adjust count to global, | 
|  | * but restrict alloc/free to the specified node. | 
|  | */ | 
|  | count += h->nr_huge_pages - h->nr_huge_pages_node[nid]; | 
|  | init_nodemask_of_node(nodes_allowed, nid); | 
|  | } else | 
|  | nodes_allowed = &node_states[N_HIGH_MEMORY]; | 
|  |  | 
|  | h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed); | 
|  |  | 
|  | if (nodes_allowed != &node_states[N_HIGH_MEMORY]) | 
|  | NODEMASK_FREE(nodes_allowed); | 
|  |  | 
|  | return len; | 
|  | out: | 
|  | NODEMASK_FREE(nodes_allowed); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static ssize_t nr_hugepages_show(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, char *buf) | 
|  | { | 
|  | return nr_hugepages_show_common(kobj, attr, buf); | 
|  | } | 
|  |  | 
|  | static ssize_t nr_hugepages_store(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, const char *buf, size_t len) | 
|  | { | 
|  | return nr_hugepages_store_common(false, kobj, attr, buf, len); | 
|  | } | 
|  | HSTATE_ATTR(nr_hugepages); | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  |  | 
|  | /* | 
|  | * hstate attribute for optionally mempolicy-based constraint on persistent | 
|  | * huge page alloc/free. | 
|  | */ | 
|  | static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, char *buf) | 
|  | { | 
|  | return nr_hugepages_show_common(kobj, attr, buf); | 
|  | } | 
|  |  | 
|  | static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, const char *buf, size_t len) | 
|  | { | 
|  | return nr_hugepages_store_common(true, kobj, attr, buf, len); | 
|  | } | 
|  | HSTATE_ATTR(nr_hugepages_mempolicy); | 
|  | #endif | 
|  |  | 
|  |  | 
|  | static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, char *buf) | 
|  | { | 
|  | struct hstate *h = kobj_to_hstate(kobj, NULL); | 
|  | return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages); | 
|  | } | 
|  |  | 
|  | static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, const char *buf, size_t count) | 
|  | { | 
|  | int err; | 
|  | unsigned long input; | 
|  | struct hstate *h = kobj_to_hstate(kobj, NULL); | 
|  |  | 
|  | if (h->order >= MAX_ORDER) | 
|  | return -EINVAL; | 
|  |  | 
|  | err = strict_strtoul(buf, 10, &input); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | spin_lock(&hugetlb_lock); | 
|  | h->nr_overcommit_huge_pages = input; | 
|  | spin_unlock(&hugetlb_lock); | 
|  |  | 
|  | return count; | 
|  | } | 
|  | HSTATE_ATTR(nr_overcommit_hugepages); | 
|  |  | 
|  | static ssize_t free_hugepages_show(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, char *buf) | 
|  | { | 
|  | struct hstate *h; | 
|  | unsigned long free_huge_pages; | 
|  | int nid; | 
|  |  | 
|  | h = kobj_to_hstate(kobj, &nid); | 
|  | if (nid == NUMA_NO_NODE) | 
|  | free_huge_pages = h->free_huge_pages; | 
|  | else | 
|  | free_huge_pages = h->free_huge_pages_node[nid]; | 
|  |  | 
|  | return sprintf(buf, "%lu\n", free_huge_pages); | 
|  | } | 
|  | HSTATE_ATTR_RO(free_hugepages); | 
|  |  | 
|  | static ssize_t resv_hugepages_show(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, char *buf) | 
|  | { | 
|  | struct hstate *h = kobj_to_hstate(kobj, NULL); | 
|  | return sprintf(buf, "%lu\n", h->resv_huge_pages); | 
|  | } | 
|  | HSTATE_ATTR_RO(resv_hugepages); | 
|  |  | 
|  | static ssize_t surplus_hugepages_show(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, char *buf) | 
|  | { | 
|  | struct hstate *h; | 
|  | unsigned long surplus_huge_pages; | 
|  | int nid; | 
|  |  | 
|  | h = kobj_to_hstate(kobj, &nid); | 
|  | if (nid == NUMA_NO_NODE) | 
|  | surplus_huge_pages = h->surplus_huge_pages; | 
|  | else | 
|  | surplus_huge_pages = h->surplus_huge_pages_node[nid]; | 
|  |  | 
|  | return sprintf(buf, "%lu\n", surplus_huge_pages); | 
|  | } | 
|  | HSTATE_ATTR_RO(surplus_hugepages); | 
|  |  | 
|  | static struct attribute *hstate_attrs[] = { | 
|  | &nr_hugepages_attr.attr, | 
|  | &nr_overcommit_hugepages_attr.attr, | 
|  | &free_hugepages_attr.attr, | 
|  | &resv_hugepages_attr.attr, | 
|  | &surplus_hugepages_attr.attr, | 
|  | #ifdef CONFIG_NUMA | 
|  | &nr_hugepages_mempolicy_attr.attr, | 
|  | #endif | 
|  | NULL, | 
|  | }; | 
|  |  | 
|  | static struct attribute_group hstate_attr_group = { | 
|  | .attrs = hstate_attrs, | 
|  | }; | 
|  |  | 
|  | static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, | 
|  | struct kobject **hstate_kobjs, | 
|  | struct attribute_group *hstate_attr_group) | 
|  | { | 
|  | int retval; | 
|  | int hi = h - hstates; | 
|  |  | 
|  | hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); | 
|  | if (!hstate_kobjs[hi]) | 
|  | return -ENOMEM; | 
|  |  | 
|  | retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); | 
|  | if (retval) | 
|  | kobject_put(hstate_kobjs[hi]); | 
|  |  | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | static void __init hugetlb_sysfs_init(void) | 
|  | { | 
|  | struct hstate *h; | 
|  | int err; | 
|  |  | 
|  | hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); | 
|  | if (!hugepages_kobj) | 
|  | return; | 
|  |  | 
|  | for_each_hstate(h) { | 
|  | err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, | 
|  | hstate_kobjs, &hstate_attr_group); | 
|  | if (err) | 
|  | printk(KERN_ERR "Hugetlb: Unable to add hstate %s", | 
|  | h->name); | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  |  | 
|  | /* | 
|  | * node_hstate/s - associate per node hstate attributes, via their kobjects, | 
|  | * with node sysdevs in node_devices[] using a parallel array.  The array | 
|  | * index of a node sysdev or _hstate == node id. | 
|  | * This is here to avoid any static dependency of the node sysdev driver, in | 
|  | * the base kernel, on the hugetlb module. | 
|  | */ | 
|  | struct node_hstate { | 
|  | struct kobject		*hugepages_kobj; | 
|  | struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE]; | 
|  | }; | 
|  | struct node_hstate node_hstates[MAX_NUMNODES]; | 
|  |  | 
|  | /* | 
|  | * A subset of global hstate attributes for node sysdevs | 
|  | */ | 
|  | static struct attribute *per_node_hstate_attrs[] = { | 
|  | &nr_hugepages_attr.attr, | 
|  | &free_hugepages_attr.attr, | 
|  | &surplus_hugepages_attr.attr, | 
|  | NULL, | 
|  | }; | 
|  |  | 
|  | static struct attribute_group per_node_hstate_attr_group = { | 
|  | .attrs = per_node_hstate_attrs, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * kobj_to_node_hstate - lookup global hstate for node sysdev hstate attr kobj. | 
|  | * Returns node id via non-NULL nidp. | 
|  | */ | 
|  | static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) | 
|  | { | 
|  | int nid; | 
|  |  | 
|  | for (nid = 0; nid < nr_node_ids; nid++) { | 
|  | struct node_hstate *nhs = &node_hstates[nid]; | 
|  | int i; | 
|  | for (i = 0; i < HUGE_MAX_HSTATE; i++) | 
|  | if (nhs->hstate_kobjs[i] == kobj) { | 
|  | if (nidp) | 
|  | *nidp = nid; | 
|  | return &hstates[i]; | 
|  | } | 
|  | } | 
|  |  | 
|  | BUG(); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Unregister hstate attributes from a single node sysdev. | 
|  | * No-op if no hstate attributes attached. | 
|  | */ | 
|  | void hugetlb_unregister_node(struct node *node) | 
|  | { | 
|  | struct hstate *h; | 
|  | struct node_hstate *nhs = &node_hstates[node->sysdev.id]; | 
|  |  | 
|  | if (!nhs->hugepages_kobj) | 
|  | return;		/* no hstate attributes */ | 
|  |  | 
|  | for_each_hstate(h) | 
|  | if (nhs->hstate_kobjs[h - hstates]) { | 
|  | kobject_put(nhs->hstate_kobjs[h - hstates]); | 
|  | nhs->hstate_kobjs[h - hstates] = NULL; | 
|  | } | 
|  |  | 
|  | kobject_put(nhs->hugepages_kobj); | 
|  | nhs->hugepages_kobj = NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * hugetlb module exit:  unregister hstate attributes from node sysdevs | 
|  | * that have them. | 
|  | */ | 
|  | static void hugetlb_unregister_all_nodes(void) | 
|  | { | 
|  | int nid; | 
|  |  | 
|  | /* | 
|  | * disable node sysdev registrations. | 
|  | */ | 
|  | register_hugetlbfs_with_node(NULL, NULL); | 
|  |  | 
|  | /* | 
|  | * remove hstate attributes from any nodes that have them. | 
|  | */ | 
|  | for (nid = 0; nid < nr_node_ids; nid++) | 
|  | hugetlb_unregister_node(&node_devices[nid]); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Register hstate attributes for a single node sysdev. | 
|  | * No-op if attributes already registered. | 
|  | */ | 
|  | void hugetlb_register_node(struct node *node) | 
|  | { | 
|  | struct hstate *h; | 
|  | struct node_hstate *nhs = &node_hstates[node->sysdev.id]; | 
|  | int err; | 
|  |  | 
|  | if (nhs->hugepages_kobj) | 
|  | return;		/* already allocated */ | 
|  |  | 
|  | nhs->hugepages_kobj = kobject_create_and_add("hugepages", | 
|  | &node->sysdev.kobj); | 
|  | if (!nhs->hugepages_kobj) | 
|  | return; | 
|  |  | 
|  | for_each_hstate(h) { | 
|  | err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, | 
|  | nhs->hstate_kobjs, | 
|  | &per_node_hstate_attr_group); | 
|  | if (err) { | 
|  | printk(KERN_ERR "Hugetlb: Unable to add hstate %s" | 
|  | " for node %d\n", | 
|  | h->name, node->sysdev.id); | 
|  | hugetlb_unregister_node(node); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * hugetlb init time:  register hstate attributes for all registered node | 
|  | * sysdevs of nodes that have memory.  All on-line nodes should have | 
|  | * registered their associated sysdev by this time. | 
|  | */ | 
|  | static void hugetlb_register_all_nodes(void) | 
|  | { | 
|  | int nid; | 
|  |  | 
|  | for_each_node_state(nid, N_HIGH_MEMORY) { | 
|  | struct node *node = &node_devices[nid]; | 
|  | if (node->sysdev.id == nid) | 
|  | hugetlb_register_node(node); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Let the node sysdev driver know we're here so it can | 
|  | * [un]register hstate attributes on node hotplug. | 
|  | */ | 
|  | register_hugetlbfs_with_node(hugetlb_register_node, | 
|  | hugetlb_unregister_node); | 
|  | } | 
|  | #else	/* !CONFIG_NUMA */ | 
|  |  | 
|  | static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) | 
|  | { | 
|  | BUG(); | 
|  | if (nidp) | 
|  | *nidp = -1; | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void hugetlb_unregister_all_nodes(void) { } | 
|  |  | 
|  | static void hugetlb_register_all_nodes(void) { } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | static void __exit hugetlb_exit(void) | 
|  | { | 
|  | struct hstate *h; | 
|  |  | 
|  | hugetlb_unregister_all_nodes(); | 
|  |  | 
|  | for_each_hstate(h) { | 
|  | kobject_put(hstate_kobjs[h - hstates]); | 
|  | } | 
|  |  | 
|  | kobject_put(hugepages_kobj); | 
|  | } | 
|  | module_exit(hugetlb_exit); | 
|  |  | 
|  | static int __init hugetlb_init(void) | 
|  | { | 
|  | /* Some platform decide whether they support huge pages at boot | 
|  | * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when | 
|  | * there is no such support | 
|  | */ | 
|  | if (HPAGE_SHIFT == 0) | 
|  | return 0; | 
|  |  | 
|  | if (!size_to_hstate(default_hstate_size)) { | 
|  | default_hstate_size = HPAGE_SIZE; | 
|  | if (!size_to_hstate(default_hstate_size)) | 
|  | hugetlb_add_hstate(HUGETLB_PAGE_ORDER); | 
|  | } | 
|  | default_hstate_idx = size_to_hstate(default_hstate_size) - hstates; | 
|  | if (default_hstate_max_huge_pages) | 
|  | default_hstate.max_huge_pages = default_hstate_max_huge_pages; | 
|  |  | 
|  | hugetlb_init_hstates(); | 
|  |  | 
|  | gather_bootmem_prealloc(); | 
|  |  | 
|  | report_hugepages(); | 
|  |  | 
|  | hugetlb_sysfs_init(); | 
|  |  | 
|  | hugetlb_register_all_nodes(); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | module_init(hugetlb_init); | 
|  |  | 
|  | /* Should be called on processing a hugepagesz=... option */ | 
|  | void __init hugetlb_add_hstate(unsigned order) | 
|  | { | 
|  | struct hstate *h; | 
|  | unsigned long i; | 
|  |  | 
|  | if (size_to_hstate(PAGE_SIZE << order)) { | 
|  | printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n"); | 
|  | return; | 
|  | } | 
|  | BUG_ON(max_hstate >= HUGE_MAX_HSTATE); | 
|  | BUG_ON(order == 0); | 
|  | h = &hstates[max_hstate++]; | 
|  | h->order = order; | 
|  | h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1); | 
|  | h->nr_huge_pages = 0; | 
|  | h->free_huge_pages = 0; | 
|  | for (i = 0; i < MAX_NUMNODES; ++i) | 
|  | INIT_LIST_HEAD(&h->hugepage_freelists[i]); | 
|  | h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]); | 
|  | h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]); | 
|  | snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", | 
|  | huge_page_size(h)/1024); | 
|  |  | 
|  | parsed_hstate = h; | 
|  | } | 
|  |  | 
|  | static int __init hugetlb_nrpages_setup(char *s) | 
|  | { | 
|  | unsigned long *mhp; | 
|  | static unsigned long *last_mhp; | 
|  |  | 
|  | /* | 
|  | * !max_hstate means we haven't parsed a hugepagesz= parameter yet, | 
|  | * so this hugepages= parameter goes to the "default hstate". | 
|  | */ | 
|  | if (!max_hstate) | 
|  | mhp = &default_hstate_max_huge_pages; | 
|  | else | 
|  | mhp = &parsed_hstate->max_huge_pages; | 
|  |  | 
|  | if (mhp == last_mhp) { | 
|  | printk(KERN_WARNING "hugepages= specified twice without " | 
|  | "interleaving hugepagesz=, ignoring\n"); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (sscanf(s, "%lu", mhp) <= 0) | 
|  | *mhp = 0; | 
|  |  | 
|  | /* | 
|  | * Global state is always initialized later in hugetlb_init. | 
|  | * But we need to allocate >= MAX_ORDER hstates here early to still | 
|  | * use the bootmem allocator. | 
|  | */ | 
|  | if (max_hstate && parsed_hstate->order >= MAX_ORDER) | 
|  | hugetlb_hstate_alloc_pages(parsed_hstate); | 
|  |  | 
|  | last_mhp = mhp; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  | __setup("hugepages=", hugetlb_nrpages_setup); | 
|  |  | 
|  | static int __init hugetlb_default_setup(char *s) | 
|  | { | 
|  | default_hstate_size = memparse(s, &s); | 
|  | return 1; | 
|  | } | 
|  | __setup("default_hugepagesz=", hugetlb_default_setup); | 
|  |  | 
|  | static unsigned int cpuset_mems_nr(unsigned int *array) | 
|  | { | 
|  | int node; | 
|  | unsigned int nr = 0; | 
|  |  | 
|  | for_each_node_mask(node, cpuset_current_mems_allowed) | 
|  | nr += array[node]; | 
|  |  | 
|  | return nr; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SYSCTL | 
|  | static int hugetlb_sysctl_handler_common(bool obey_mempolicy, | 
|  | struct ctl_table *table, int write, | 
|  | void __user *buffer, size_t *length, loff_t *ppos) | 
|  | { | 
|  | struct hstate *h = &default_hstate; | 
|  | unsigned long tmp; | 
|  | int ret; | 
|  |  | 
|  | tmp = h->max_huge_pages; | 
|  |  | 
|  | if (write && h->order >= MAX_ORDER) | 
|  | return -EINVAL; | 
|  |  | 
|  | table->data = &tmp; | 
|  | table->maxlen = sizeof(unsigned long); | 
|  | ret = proc_doulongvec_minmax(table, write, buffer, length, ppos); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | if (write) { | 
|  | NODEMASK_ALLOC(nodemask_t, nodes_allowed, | 
|  | GFP_KERNEL | __GFP_NORETRY); | 
|  | if (!(obey_mempolicy && | 
|  | init_nodemask_of_mempolicy(nodes_allowed))) { | 
|  | NODEMASK_FREE(nodes_allowed); | 
|  | nodes_allowed = &node_states[N_HIGH_MEMORY]; | 
|  | } | 
|  | h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed); | 
|  |  | 
|  | if (nodes_allowed != &node_states[N_HIGH_MEMORY]) | 
|  | NODEMASK_FREE(nodes_allowed); | 
|  | } | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int hugetlb_sysctl_handler(struct ctl_table *table, int write, | 
|  | void __user *buffer, size_t *length, loff_t *ppos) | 
|  | { | 
|  |  | 
|  | return hugetlb_sysctl_handler_common(false, table, write, | 
|  | buffer, length, ppos); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write, | 
|  | void __user *buffer, size_t *length, loff_t *ppos) | 
|  | { | 
|  | return hugetlb_sysctl_handler_common(true, table, write, | 
|  | buffer, length, ppos); | 
|  | } | 
|  | #endif /* CONFIG_NUMA */ | 
|  |  | 
|  | int hugetlb_treat_movable_handler(struct ctl_table *table, int write, | 
|  | void __user *buffer, | 
|  | size_t *length, loff_t *ppos) | 
|  | { | 
|  | proc_dointvec(table, write, buffer, length, ppos); | 
|  | if (hugepages_treat_as_movable) | 
|  | htlb_alloc_mask = GFP_HIGHUSER_MOVABLE; | 
|  | else | 
|  | htlb_alloc_mask = GFP_HIGHUSER; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int hugetlb_overcommit_handler(struct ctl_table *table, int write, | 
|  | void __user *buffer, | 
|  | size_t *length, loff_t *ppos) | 
|  | { | 
|  | struct hstate *h = &default_hstate; | 
|  | unsigned long tmp; | 
|  | int ret; | 
|  |  | 
|  | tmp = h->nr_overcommit_huge_pages; | 
|  |  | 
|  | if (write && h->order >= MAX_ORDER) | 
|  | return -EINVAL; | 
|  |  | 
|  | table->data = &tmp; | 
|  | table->maxlen = sizeof(unsigned long); | 
|  | ret = proc_doulongvec_minmax(table, write, buffer, length, ppos); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | if (write) { | 
|  | spin_lock(&hugetlb_lock); | 
|  | h->nr_overcommit_huge_pages = tmp; | 
|  | spin_unlock(&hugetlb_lock); | 
|  | } | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_SYSCTL */ | 
|  |  | 
|  | void hugetlb_report_meminfo(struct seq_file *m) | 
|  | { | 
|  | struct hstate *h = &default_hstate; | 
|  | seq_printf(m, | 
|  | "HugePages_Total:   %5lu\n" | 
|  | "HugePages_Free:    %5lu\n" | 
|  | "HugePages_Rsvd:    %5lu\n" | 
|  | "HugePages_Surp:    %5lu\n" | 
|  | "Hugepagesize:   %8lu kB\n", | 
|  | h->nr_huge_pages, | 
|  | h->free_huge_pages, | 
|  | h->resv_huge_pages, | 
|  | h->surplus_huge_pages, | 
|  | 1UL << (huge_page_order(h) + PAGE_SHIFT - 10)); | 
|  | } | 
|  |  | 
|  | int hugetlb_report_node_meminfo(int nid, char *buf) | 
|  | { | 
|  | struct hstate *h = &default_hstate; | 
|  | return sprintf(buf, | 
|  | "Node %d HugePages_Total: %5u\n" | 
|  | "Node %d HugePages_Free:  %5u\n" | 
|  | "Node %d HugePages_Surp:  %5u\n", | 
|  | nid, h->nr_huge_pages_node[nid], | 
|  | nid, h->free_huge_pages_node[nid], | 
|  | nid, h->surplus_huge_pages_node[nid]); | 
|  | } | 
|  |  | 
|  | /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ | 
|  | unsigned long hugetlb_total_pages(void) | 
|  | { | 
|  | struct hstate *h = &default_hstate; | 
|  | return h->nr_huge_pages * pages_per_huge_page(h); | 
|  | } | 
|  |  | 
|  | static int hugetlb_acct_memory(struct hstate *h, long delta) | 
|  | { | 
|  | int ret = -ENOMEM; | 
|  |  | 
|  | spin_lock(&hugetlb_lock); | 
|  | /* | 
|  | * When cpuset is configured, it breaks the strict hugetlb page | 
|  | * reservation as the accounting is done on a global variable. Such | 
|  | * reservation is completely rubbish in the presence of cpuset because | 
|  | * the reservation is not checked against page availability for the | 
|  | * current cpuset. Application can still potentially OOM'ed by kernel | 
|  | * with lack of free htlb page in cpuset that the task is in. | 
|  | * Attempt to enforce strict accounting with cpuset is almost | 
|  | * impossible (or too ugly) because cpuset is too fluid that | 
|  | * task or memory node can be dynamically moved between cpusets. | 
|  | * | 
|  | * The change of semantics for shared hugetlb mapping with cpuset is | 
|  | * undesirable. However, in order to preserve some of the semantics, | 
|  | * we fall back to check against current free page availability as | 
|  | * a best attempt and hopefully to minimize the impact of changing | 
|  | * semantics that cpuset has. | 
|  | */ | 
|  | if (delta > 0) { | 
|  | if (gather_surplus_pages(h, delta) < 0) | 
|  | goto out; | 
|  |  | 
|  | if (delta > cpuset_mems_nr(h->free_huge_pages_node)) { | 
|  | return_unused_surplus_pages(h, delta); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | ret = 0; | 
|  | if (delta < 0) | 
|  | return_unused_surplus_pages(h, (unsigned long) -delta); | 
|  |  | 
|  | out: | 
|  | spin_unlock(&hugetlb_lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void hugetlb_vm_op_open(struct vm_area_struct *vma) | 
|  | { | 
|  | struct resv_map *reservations = vma_resv_map(vma); | 
|  |  | 
|  | /* | 
|  | * This new VMA should share its siblings reservation map if present. | 
|  | * The VMA will only ever have a valid reservation map pointer where | 
|  | * it is being copied for another still existing VMA.  As that VMA | 
|  | * has a reference to the reservation map it cannot disappear until | 
|  | * after this open call completes.  It is therefore safe to take a | 
|  | * new reference here without additional locking. | 
|  | */ | 
|  | if (reservations) | 
|  | kref_get(&reservations->refs); | 
|  | } | 
|  |  | 
|  | static void hugetlb_vm_op_close(struct vm_area_struct *vma) | 
|  | { | 
|  | struct hstate *h = hstate_vma(vma); | 
|  | struct resv_map *reservations = vma_resv_map(vma); | 
|  | unsigned long reserve; | 
|  | unsigned long start; | 
|  | unsigned long end; | 
|  |  | 
|  | if (reservations) { | 
|  | start = vma_hugecache_offset(h, vma, vma->vm_start); | 
|  | end = vma_hugecache_offset(h, vma, vma->vm_end); | 
|  |  | 
|  | reserve = (end - start) - | 
|  | region_count(&reservations->regions, start, end); | 
|  |  | 
|  | kref_put(&reservations->refs, resv_map_release); | 
|  |  | 
|  | if (reserve) { | 
|  | hugetlb_acct_memory(h, -reserve); | 
|  | hugetlb_put_quota(vma->vm_file->f_mapping, reserve); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We cannot handle pagefaults against hugetlb pages at all.  They cause | 
|  | * handle_mm_fault() to try to instantiate regular-sized pages in the | 
|  | * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get | 
|  | * this far. | 
|  | */ | 
|  | static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf) | 
|  | { | 
|  | BUG(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | const struct vm_operations_struct hugetlb_vm_ops = { | 
|  | .fault = hugetlb_vm_op_fault, | 
|  | .open = hugetlb_vm_op_open, | 
|  | .close = hugetlb_vm_op_close, | 
|  | }; | 
|  |  | 
|  | static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, | 
|  | int writable) | 
|  | { | 
|  | pte_t entry; | 
|  |  | 
|  | if (writable) { | 
|  | entry = | 
|  | pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot))); | 
|  | } else { | 
|  | entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot)); | 
|  | } | 
|  | entry = pte_mkyoung(entry); | 
|  | entry = pte_mkhuge(entry); | 
|  |  | 
|  | return entry; | 
|  | } | 
|  |  | 
|  | static void set_huge_ptep_writable(struct vm_area_struct *vma, | 
|  | unsigned long address, pte_t *ptep) | 
|  | { | 
|  | pte_t entry; | 
|  |  | 
|  | entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep))); | 
|  | if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) { | 
|  | update_mmu_cache(vma, address, ptep); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, | 
|  | struct vm_area_struct *vma) | 
|  | { | 
|  | pte_t *src_pte, *dst_pte, entry; | 
|  | struct page *ptepage; | 
|  | unsigned long addr; | 
|  | int cow; | 
|  | struct hstate *h = hstate_vma(vma); | 
|  | unsigned long sz = huge_page_size(h); | 
|  |  | 
|  | cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; | 
|  |  | 
|  | for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) { | 
|  | src_pte = huge_pte_offset(src, addr); | 
|  | if (!src_pte) | 
|  | continue; | 
|  | dst_pte = huge_pte_alloc(dst, addr, sz); | 
|  | if (!dst_pte) | 
|  | goto nomem; | 
|  |  | 
|  | /* If the pagetables are shared don't copy or take references */ | 
|  | if (dst_pte == src_pte) | 
|  | continue; | 
|  |  | 
|  | spin_lock(&dst->page_table_lock); | 
|  | spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING); | 
|  | if (!huge_pte_none(huge_ptep_get(src_pte))) { | 
|  | if (cow) | 
|  | huge_ptep_set_wrprotect(src, addr, src_pte); | 
|  | entry = huge_ptep_get(src_pte); | 
|  | ptepage = pte_page(entry); | 
|  | get_page(ptepage); | 
|  | page_dup_rmap(ptepage); | 
|  | set_huge_pte_at(dst, addr, dst_pte, entry); | 
|  | } | 
|  | spin_unlock(&src->page_table_lock); | 
|  | spin_unlock(&dst->page_table_lock); | 
|  | } | 
|  | return 0; | 
|  |  | 
|  | nomem: | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | static int is_hugetlb_entry_migration(pte_t pte) | 
|  | { | 
|  | swp_entry_t swp; | 
|  |  | 
|  | if (huge_pte_none(pte) || pte_present(pte)) | 
|  | return 0; | 
|  | swp = pte_to_swp_entry(pte); | 
|  | if (non_swap_entry(swp) && is_migration_entry(swp)) { | 
|  | return 1; | 
|  | } else | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int is_hugetlb_entry_hwpoisoned(pte_t pte) | 
|  | { | 
|  | swp_entry_t swp; | 
|  |  | 
|  | if (huge_pte_none(pte) || pte_present(pte)) | 
|  | return 0; | 
|  | swp = pte_to_swp_entry(pte); | 
|  | if (non_swap_entry(swp) && is_hwpoison_entry(swp)) { | 
|  | return 1; | 
|  | } else | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, | 
|  | unsigned long end, struct page *ref_page) | 
|  | { | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  | unsigned long address; | 
|  | pte_t *ptep; | 
|  | pte_t pte; | 
|  | struct page *page; | 
|  | struct page *tmp; | 
|  | struct hstate *h = hstate_vma(vma); | 
|  | unsigned long sz = huge_page_size(h); | 
|  |  | 
|  | /* | 
|  | * A page gathering list, protected by per file i_mmap_mutex. The | 
|  | * lock is used to avoid list corruption from multiple unmapping | 
|  | * of the same page since we are using page->lru. | 
|  | */ | 
|  | LIST_HEAD(page_list); | 
|  |  | 
|  | WARN_ON(!is_vm_hugetlb_page(vma)); | 
|  | BUG_ON(start & ~huge_page_mask(h)); | 
|  | BUG_ON(end & ~huge_page_mask(h)); | 
|  |  | 
|  | mmu_notifier_invalidate_range_start(mm, start, end); | 
|  | spin_lock(&mm->page_table_lock); | 
|  | for (address = start; address < end; address += sz) { | 
|  | ptep = huge_pte_offset(mm, address); | 
|  | if (!ptep) | 
|  | continue; | 
|  |  | 
|  | if (huge_pmd_unshare(mm, &address, ptep)) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * If a reference page is supplied, it is because a specific | 
|  | * page is being unmapped, not a range. Ensure the page we | 
|  | * are about to unmap is the actual page of interest. | 
|  | */ | 
|  | if (ref_page) { | 
|  | pte = huge_ptep_get(ptep); | 
|  | if (huge_pte_none(pte)) | 
|  | continue; | 
|  | page = pte_page(pte); | 
|  | if (page != ref_page) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * Mark the VMA as having unmapped its page so that | 
|  | * future faults in this VMA will fail rather than | 
|  | * looking like data was lost | 
|  | */ | 
|  | set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); | 
|  | } | 
|  |  | 
|  | pte = huge_ptep_get_and_clear(mm, address, ptep); | 
|  | if (huge_pte_none(pte)) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * HWPoisoned hugepage is already unmapped and dropped reference | 
|  | */ | 
|  | if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) | 
|  | continue; | 
|  |  | 
|  | page = pte_page(pte); | 
|  | if (pte_dirty(pte)) | 
|  | set_page_dirty(page); | 
|  | list_add(&page->lru, &page_list); | 
|  | } | 
|  | spin_unlock(&mm->page_table_lock); | 
|  | flush_tlb_range(vma, start, end); | 
|  | mmu_notifier_invalidate_range_end(mm, start, end); | 
|  | list_for_each_entry_safe(page, tmp, &page_list, lru) { | 
|  | page_remove_rmap(page); | 
|  | list_del(&page->lru); | 
|  | put_page(page); | 
|  | } | 
|  | } | 
|  |  | 
|  | void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, | 
|  | unsigned long end, struct page *ref_page) | 
|  | { | 
|  | mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex); | 
|  | __unmap_hugepage_range(vma, start, end, ref_page); | 
|  | mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is called when the original mapper is failing to COW a MAP_PRIVATE | 
|  | * mappping it owns the reserve page for. The intention is to unmap the page | 
|  | * from other VMAs and let the children be SIGKILLed if they are faulting the | 
|  | * same region. | 
|  | */ | 
|  | static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, | 
|  | struct page *page, unsigned long address) | 
|  | { | 
|  | struct hstate *h = hstate_vma(vma); | 
|  | struct vm_area_struct *iter_vma; | 
|  | struct address_space *mapping; | 
|  | struct prio_tree_iter iter; | 
|  | pgoff_t pgoff; | 
|  |  | 
|  | /* | 
|  | * vm_pgoff is in PAGE_SIZE units, hence the different calculation | 
|  | * from page cache lookup which is in HPAGE_SIZE units. | 
|  | */ | 
|  | address = address & huge_page_mask(h); | 
|  | pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) | 
|  | + (vma->vm_pgoff >> PAGE_SHIFT); | 
|  | mapping = (struct address_space *)page_private(page); | 
|  |  | 
|  | /* | 
|  | * Take the mapping lock for the duration of the table walk. As | 
|  | * this mapping should be shared between all the VMAs, | 
|  | * __unmap_hugepage_range() is called as the lock is already held | 
|  | */ | 
|  | mutex_lock(&mapping->i_mmap_mutex); | 
|  | vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) { | 
|  | /* Do not unmap the current VMA */ | 
|  | if (iter_vma == vma) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * Unmap the page from other VMAs without their own reserves. | 
|  | * They get marked to be SIGKILLed if they fault in these | 
|  | * areas. This is because a future no-page fault on this VMA | 
|  | * could insert a zeroed page instead of the data existing | 
|  | * from the time of fork. This would look like data corruption | 
|  | */ | 
|  | if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) | 
|  | __unmap_hugepage_range(iter_vma, | 
|  | address, address + huge_page_size(h), | 
|  | page); | 
|  | } | 
|  | mutex_unlock(&mapping->i_mmap_mutex); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Hugetlb_cow() should be called with page lock of the original hugepage held. | 
|  | */ | 
|  | static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, | 
|  | unsigned long address, pte_t *ptep, pte_t pte, | 
|  | struct page *pagecache_page) | 
|  | { | 
|  | struct hstate *h = hstate_vma(vma); | 
|  | struct page *old_page, *new_page; | 
|  | int avoidcopy; | 
|  | int outside_reserve = 0; | 
|  |  | 
|  | old_page = pte_page(pte); | 
|  |  | 
|  | retry_avoidcopy: | 
|  | /* If no-one else is actually using this page, avoid the copy | 
|  | * and just make the page writable */ | 
|  | avoidcopy = (page_mapcount(old_page) == 1); | 
|  | if (avoidcopy) { | 
|  | if (PageAnon(old_page)) | 
|  | page_move_anon_rmap(old_page, vma, address); | 
|  | set_huge_ptep_writable(vma, address, ptep); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the process that created a MAP_PRIVATE mapping is about to | 
|  | * perform a COW due to a shared page count, attempt to satisfy | 
|  | * the allocation without using the existing reserves. The pagecache | 
|  | * page is used to determine if the reserve at this address was | 
|  | * consumed or not. If reserves were used, a partial faulted mapping | 
|  | * at the time of fork() could consume its reserves on COW instead | 
|  | * of the full address range. | 
|  | */ | 
|  | if (!(vma->vm_flags & VM_MAYSHARE) && | 
|  | is_vma_resv_set(vma, HPAGE_RESV_OWNER) && | 
|  | old_page != pagecache_page) | 
|  | outside_reserve = 1; | 
|  |  | 
|  | page_cache_get(old_page); | 
|  |  | 
|  | /* Drop page_table_lock as buddy allocator may be called */ | 
|  | spin_unlock(&mm->page_table_lock); | 
|  | new_page = alloc_huge_page(vma, address, outside_reserve); | 
|  |  | 
|  | if (IS_ERR(new_page)) { | 
|  | page_cache_release(old_page); | 
|  |  | 
|  | /* | 
|  | * If a process owning a MAP_PRIVATE mapping fails to COW, | 
|  | * it is due to references held by a child and an insufficient | 
|  | * huge page pool. To guarantee the original mappers | 
|  | * reliability, unmap the page from child processes. The child | 
|  | * may get SIGKILLed if it later faults. | 
|  | */ | 
|  | if (outside_reserve) { | 
|  | BUG_ON(huge_pte_none(pte)); | 
|  | if (unmap_ref_private(mm, vma, old_page, address)) { | 
|  | BUG_ON(page_count(old_page) != 1); | 
|  | BUG_ON(huge_pte_none(pte)); | 
|  | spin_lock(&mm->page_table_lock); | 
|  | goto retry_avoidcopy; | 
|  | } | 
|  | WARN_ON_ONCE(1); | 
|  | } | 
|  |  | 
|  | /* Caller expects lock to be held */ | 
|  | spin_lock(&mm->page_table_lock); | 
|  | return -PTR_ERR(new_page); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When the original hugepage is shared one, it does not have | 
|  | * anon_vma prepared. | 
|  | */ | 
|  | if (unlikely(anon_vma_prepare(vma))) { | 
|  | /* Caller expects lock to be held */ | 
|  | spin_lock(&mm->page_table_lock); | 
|  | return VM_FAULT_OOM; | 
|  | } | 
|  |  | 
|  | copy_user_huge_page(new_page, old_page, address, vma, | 
|  | pages_per_huge_page(h)); | 
|  | __SetPageUptodate(new_page); | 
|  |  | 
|  | /* | 
|  | * Retake the page_table_lock to check for racing updates | 
|  | * before the page tables are altered | 
|  | */ | 
|  | spin_lock(&mm->page_table_lock); | 
|  | ptep = huge_pte_offset(mm, address & huge_page_mask(h)); | 
|  | if (likely(pte_same(huge_ptep_get(ptep), pte))) { | 
|  | /* Break COW */ | 
|  | mmu_notifier_invalidate_range_start(mm, | 
|  | address & huge_page_mask(h), | 
|  | (address & huge_page_mask(h)) + huge_page_size(h)); | 
|  | huge_ptep_clear_flush(vma, address, ptep); | 
|  | set_huge_pte_at(mm, address, ptep, | 
|  | make_huge_pte(vma, new_page, 1)); | 
|  | page_remove_rmap(old_page); | 
|  | hugepage_add_new_anon_rmap(new_page, vma, address); | 
|  | /* Make the old page be freed below */ | 
|  | new_page = old_page; | 
|  | mmu_notifier_invalidate_range_end(mm, | 
|  | address & huge_page_mask(h), | 
|  | (address & huge_page_mask(h)) + huge_page_size(h)); | 
|  | } | 
|  | page_cache_release(new_page); | 
|  | page_cache_release(old_page); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Return the pagecache page at a given address within a VMA */ | 
|  | static struct page *hugetlbfs_pagecache_page(struct hstate *h, | 
|  | struct vm_area_struct *vma, unsigned long address) | 
|  | { | 
|  | struct address_space *mapping; | 
|  | pgoff_t idx; | 
|  |  | 
|  | mapping = vma->vm_file->f_mapping; | 
|  | idx = vma_hugecache_offset(h, vma, address); | 
|  |  | 
|  | return find_lock_page(mapping, idx); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return whether there is a pagecache page to back given address within VMA. | 
|  | * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page. | 
|  | */ | 
|  | static bool hugetlbfs_pagecache_present(struct hstate *h, | 
|  | struct vm_area_struct *vma, unsigned long address) | 
|  | { | 
|  | struct address_space *mapping; | 
|  | pgoff_t idx; | 
|  | struct page *page; | 
|  |  | 
|  | mapping = vma->vm_file->f_mapping; | 
|  | idx = vma_hugecache_offset(h, vma, address); | 
|  |  | 
|  | page = find_get_page(mapping, idx); | 
|  | if (page) | 
|  | put_page(page); | 
|  | return page != NULL; | 
|  | } | 
|  |  | 
|  | static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma, | 
|  | unsigned long address, pte_t *ptep, unsigned int flags) | 
|  | { | 
|  | struct hstate *h = hstate_vma(vma); | 
|  | int ret = VM_FAULT_SIGBUS; | 
|  | pgoff_t idx; | 
|  | unsigned long size; | 
|  | struct page *page; | 
|  | struct address_space *mapping; | 
|  | pte_t new_pte; | 
|  |  | 
|  | /* | 
|  | * Currently, we are forced to kill the process in the event the | 
|  | * original mapper has unmapped pages from the child due to a failed | 
|  | * COW. Warn that such a situation has occurred as it may not be obvious | 
|  | */ | 
|  | if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { | 
|  | printk(KERN_WARNING | 
|  | "PID %d killed due to inadequate hugepage pool\n", | 
|  | current->pid); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | mapping = vma->vm_file->f_mapping; | 
|  | idx = vma_hugecache_offset(h, vma, address); | 
|  |  | 
|  | /* | 
|  | * Use page lock to guard against racing truncation | 
|  | * before we get page_table_lock. | 
|  | */ | 
|  | retry: | 
|  | page = find_lock_page(mapping, idx); | 
|  | if (!page) { | 
|  | size = i_size_read(mapping->host) >> huge_page_shift(h); | 
|  | if (idx >= size) | 
|  | goto out; | 
|  | page = alloc_huge_page(vma, address, 0); | 
|  | if (IS_ERR(page)) { | 
|  | ret = -PTR_ERR(page); | 
|  | goto out; | 
|  | } | 
|  | clear_huge_page(page, address, pages_per_huge_page(h)); | 
|  | __SetPageUptodate(page); | 
|  |  | 
|  | if (vma->vm_flags & VM_MAYSHARE) { | 
|  | int err; | 
|  | struct inode *inode = mapping->host; | 
|  |  | 
|  | err = add_to_page_cache(page, mapping, idx, GFP_KERNEL); | 
|  | if (err) { | 
|  | put_page(page); | 
|  | if (err == -EEXIST) | 
|  | goto retry; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | spin_lock(&inode->i_lock); | 
|  | inode->i_blocks += blocks_per_huge_page(h); | 
|  | spin_unlock(&inode->i_lock); | 
|  | page_dup_rmap(page); | 
|  | } else { | 
|  | lock_page(page); | 
|  | if (unlikely(anon_vma_prepare(vma))) { | 
|  | ret = VM_FAULT_OOM; | 
|  | goto backout_unlocked; | 
|  | } | 
|  | hugepage_add_new_anon_rmap(page, vma, address); | 
|  | } | 
|  | } else { | 
|  | /* | 
|  | * If memory error occurs between mmap() and fault, some process | 
|  | * don't have hwpoisoned swap entry for errored virtual address. | 
|  | * So we need to block hugepage fault by PG_hwpoison bit check. | 
|  | */ | 
|  | if (unlikely(PageHWPoison(page))) { | 
|  | ret = VM_FAULT_HWPOISON | | 
|  | VM_FAULT_SET_HINDEX(h - hstates); | 
|  | goto backout_unlocked; | 
|  | } | 
|  | page_dup_rmap(page); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we are going to COW a private mapping later, we examine the | 
|  | * pending reservations for this page now. This will ensure that | 
|  | * any allocations necessary to record that reservation occur outside | 
|  | * the spinlock. | 
|  | */ | 
|  | if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) | 
|  | if (vma_needs_reservation(h, vma, address) < 0) { | 
|  | ret = VM_FAULT_OOM; | 
|  | goto backout_unlocked; | 
|  | } | 
|  |  | 
|  | spin_lock(&mm->page_table_lock); | 
|  | size = i_size_read(mapping->host) >> huge_page_shift(h); | 
|  | if (idx >= size) | 
|  | goto backout; | 
|  |  | 
|  | ret = 0; | 
|  | if (!huge_pte_none(huge_ptep_get(ptep))) | 
|  | goto backout; | 
|  |  | 
|  | new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE) | 
|  | && (vma->vm_flags & VM_SHARED))); | 
|  | set_huge_pte_at(mm, address, ptep, new_pte); | 
|  |  | 
|  | if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { | 
|  | /* Optimization, do the COW without a second fault */ | 
|  | ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page); | 
|  | } | 
|  |  | 
|  | spin_unlock(&mm->page_table_lock); | 
|  | unlock_page(page); | 
|  | out: | 
|  | return ret; | 
|  |  | 
|  | backout: | 
|  | spin_unlock(&mm->page_table_lock); | 
|  | backout_unlocked: | 
|  | unlock_page(page); | 
|  | put_page(page); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, | 
|  | unsigned long address, unsigned int flags) | 
|  | { | 
|  | pte_t *ptep; | 
|  | pte_t entry; | 
|  | int ret; | 
|  | struct page *page = NULL; | 
|  | struct page *pagecache_page = NULL; | 
|  | static DEFINE_MUTEX(hugetlb_instantiation_mutex); | 
|  | struct hstate *h = hstate_vma(vma); | 
|  |  | 
|  | ptep = huge_pte_offset(mm, address); | 
|  | if (ptep) { | 
|  | entry = huge_ptep_get(ptep); | 
|  | if (unlikely(is_hugetlb_entry_migration(entry))) { | 
|  | migration_entry_wait(mm, (pmd_t *)ptep, address); | 
|  | return 0; | 
|  | } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) | 
|  | return VM_FAULT_HWPOISON_LARGE | | 
|  | VM_FAULT_SET_HINDEX(h - hstates); | 
|  | } | 
|  |  | 
|  | ptep = huge_pte_alloc(mm, address, huge_page_size(h)); | 
|  | if (!ptep) | 
|  | return VM_FAULT_OOM; | 
|  |  | 
|  | /* | 
|  | * Serialize hugepage allocation and instantiation, so that we don't | 
|  | * get spurious allocation failures if two CPUs race to instantiate | 
|  | * the same page in the page cache. | 
|  | */ | 
|  | mutex_lock(&hugetlb_instantiation_mutex); | 
|  | entry = huge_ptep_get(ptep); | 
|  | if (huge_pte_none(entry)) { | 
|  | ret = hugetlb_no_page(mm, vma, address, ptep, flags); | 
|  | goto out_mutex; | 
|  | } | 
|  |  | 
|  | ret = 0; | 
|  |  | 
|  | /* | 
|  | * If we are going to COW the mapping later, we examine the pending | 
|  | * reservations for this page now. This will ensure that any | 
|  | * allocations necessary to record that reservation occur outside the | 
|  | * spinlock. For private mappings, we also lookup the pagecache | 
|  | * page now as it is used to determine if a reservation has been | 
|  | * consumed. | 
|  | */ | 
|  | if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) { | 
|  | if (vma_needs_reservation(h, vma, address) < 0) { | 
|  | ret = VM_FAULT_OOM; | 
|  | goto out_mutex; | 
|  | } | 
|  |  | 
|  | if (!(vma->vm_flags & VM_MAYSHARE)) | 
|  | pagecache_page = hugetlbfs_pagecache_page(h, | 
|  | vma, address); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * hugetlb_cow() requires page locks of pte_page(entry) and | 
|  | * pagecache_page, so here we need take the former one | 
|  | * when page != pagecache_page or !pagecache_page. | 
|  | * Note that locking order is always pagecache_page -> page, | 
|  | * so no worry about deadlock. | 
|  | */ | 
|  | page = pte_page(entry); | 
|  | if (page != pagecache_page) | 
|  | lock_page(page); | 
|  |  | 
|  | spin_lock(&mm->page_table_lock); | 
|  | /* Check for a racing update before calling hugetlb_cow */ | 
|  | if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) | 
|  | goto out_page_table_lock; | 
|  |  | 
|  |  | 
|  | if (flags & FAULT_FLAG_WRITE) { | 
|  | if (!pte_write(entry)) { | 
|  | ret = hugetlb_cow(mm, vma, address, ptep, entry, | 
|  | pagecache_page); | 
|  | goto out_page_table_lock; | 
|  | } | 
|  | entry = pte_mkdirty(entry); | 
|  | } | 
|  | entry = pte_mkyoung(entry); | 
|  | if (huge_ptep_set_access_flags(vma, address, ptep, entry, | 
|  | flags & FAULT_FLAG_WRITE)) | 
|  | update_mmu_cache(vma, address, ptep); | 
|  |  | 
|  | out_page_table_lock: | 
|  | spin_unlock(&mm->page_table_lock); | 
|  |  | 
|  | if (pagecache_page) { | 
|  | unlock_page(pagecache_page); | 
|  | put_page(pagecache_page); | 
|  | } | 
|  | if (page != pagecache_page) | 
|  | unlock_page(page); | 
|  |  | 
|  | out_mutex: | 
|  | mutex_unlock(&hugetlb_instantiation_mutex); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Can be overriden by architectures */ | 
|  | __attribute__((weak)) struct page * | 
|  | follow_huge_pud(struct mm_struct *mm, unsigned long address, | 
|  | pud_t *pud, int write) | 
|  | { | 
|  | BUG(); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, | 
|  | struct page **pages, struct vm_area_struct **vmas, | 
|  | unsigned long *position, int *length, int i, | 
|  | unsigned int flags) | 
|  | { | 
|  | unsigned long pfn_offset; | 
|  | unsigned long vaddr = *position; | 
|  | int remainder = *length; | 
|  | struct hstate *h = hstate_vma(vma); | 
|  |  | 
|  | spin_lock(&mm->page_table_lock); | 
|  | while (vaddr < vma->vm_end && remainder) { | 
|  | pte_t *pte; | 
|  | int absent; | 
|  | struct page *page; | 
|  |  | 
|  | /* | 
|  | * Some archs (sparc64, sh*) have multiple pte_ts to | 
|  | * each hugepage.  We have to make sure we get the | 
|  | * first, for the page indexing below to work. | 
|  | */ | 
|  | pte = huge_pte_offset(mm, vaddr & huge_page_mask(h)); | 
|  | absent = !pte || huge_pte_none(huge_ptep_get(pte)); | 
|  |  | 
|  | /* | 
|  | * When coredumping, it suits get_dump_page if we just return | 
|  | * an error where there's an empty slot with no huge pagecache | 
|  | * to back it.  This way, we avoid allocating a hugepage, and | 
|  | * the sparse dumpfile avoids allocating disk blocks, but its | 
|  | * huge holes still show up with zeroes where they need to be. | 
|  | */ | 
|  | if (absent && (flags & FOLL_DUMP) && | 
|  | !hugetlbfs_pagecache_present(h, vma, vaddr)) { | 
|  | remainder = 0; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (absent || | 
|  | ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) { | 
|  | int ret; | 
|  |  | 
|  | spin_unlock(&mm->page_table_lock); | 
|  | ret = hugetlb_fault(mm, vma, vaddr, | 
|  | (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0); | 
|  | spin_lock(&mm->page_table_lock); | 
|  | if (!(ret & VM_FAULT_ERROR)) | 
|  | continue; | 
|  |  | 
|  | remainder = 0; | 
|  | break; | 
|  | } | 
|  |  | 
|  | pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT; | 
|  | page = pte_page(huge_ptep_get(pte)); | 
|  | same_page: | 
|  | if (pages) { | 
|  | pages[i] = mem_map_offset(page, pfn_offset); | 
|  | get_page(pages[i]); | 
|  | } | 
|  |  | 
|  | if (vmas) | 
|  | vmas[i] = vma; | 
|  |  | 
|  | vaddr += PAGE_SIZE; | 
|  | ++pfn_offset; | 
|  | --remainder; | 
|  | ++i; | 
|  | if (vaddr < vma->vm_end && remainder && | 
|  | pfn_offset < pages_per_huge_page(h)) { | 
|  | /* | 
|  | * We use pfn_offset to avoid touching the pageframes | 
|  | * of this compound page. | 
|  | */ | 
|  | goto same_page; | 
|  | } | 
|  | } | 
|  | spin_unlock(&mm->page_table_lock); | 
|  | *length = remainder; | 
|  | *position = vaddr; | 
|  |  | 
|  | return i ? i : -EFAULT; | 
|  | } | 
|  |  | 
|  | void hugetlb_change_protection(struct vm_area_struct *vma, | 
|  | unsigned long address, unsigned long end, pgprot_t newprot) | 
|  | { | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  | unsigned long start = address; | 
|  | pte_t *ptep; | 
|  | pte_t pte; | 
|  | struct hstate *h = hstate_vma(vma); | 
|  |  | 
|  | BUG_ON(address >= end); | 
|  | flush_cache_range(vma, address, end); | 
|  |  | 
|  | mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex); | 
|  | spin_lock(&mm->page_table_lock); | 
|  | for (; address < end; address += huge_page_size(h)) { | 
|  | ptep = huge_pte_offset(mm, address); | 
|  | if (!ptep) | 
|  | continue; | 
|  | if (huge_pmd_unshare(mm, &address, ptep)) | 
|  | continue; | 
|  | if (!huge_pte_none(huge_ptep_get(ptep))) { | 
|  | pte = huge_ptep_get_and_clear(mm, address, ptep); | 
|  | pte = pte_mkhuge(pte_modify(pte, newprot)); | 
|  | set_huge_pte_at(mm, address, ptep, pte); | 
|  | } | 
|  | } | 
|  | spin_unlock(&mm->page_table_lock); | 
|  | mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex); | 
|  |  | 
|  | flush_tlb_range(vma, start, end); | 
|  | } | 
|  |  | 
|  | int hugetlb_reserve_pages(struct inode *inode, | 
|  | long from, long to, | 
|  | struct vm_area_struct *vma, | 
|  | vm_flags_t vm_flags) | 
|  | { | 
|  | long ret, chg; | 
|  | struct hstate *h = hstate_inode(inode); | 
|  |  | 
|  | /* | 
|  | * Only apply hugepage reservation if asked. At fault time, an | 
|  | * attempt will be made for VM_NORESERVE to allocate a page | 
|  | * and filesystem quota without using reserves | 
|  | */ | 
|  | if (vm_flags & VM_NORESERVE) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Shared mappings base their reservation on the number of pages that | 
|  | * are already allocated on behalf of the file. Private mappings need | 
|  | * to reserve the full area even if read-only as mprotect() may be | 
|  | * called to make the mapping read-write. Assume !vma is a shm mapping | 
|  | */ | 
|  | if (!vma || vma->vm_flags & VM_MAYSHARE) | 
|  | chg = region_chg(&inode->i_mapping->private_list, from, to); | 
|  | else { | 
|  | struct resv_map *resv_map = resv_map_alloc(); | 
|  | if (!resv_map) | 
|  | return -ENOMEM; | 
|  |  | 
|  | chg = to - from; | 
|  |  | 
|  | set_vma_resv_map(vma, resv_map); | 
|  | set_vma_resv_flags(vma, HPAGE_RESV_OWNER); | 
|  | } | 
|  |  | 
|  | if (chg < 0) | 
|  | return chg; | 
|  |  | 
|  | /* There must be enough filesystem quota for the mapping */ | 
|  | if (hugetlb_get_quota(inode->i_mapping, chg)) | 
|  | return -ENOSPC; | 
|  |  | 
|  | /* | 
|  | * Check enough hugepages are available for the reservation. | 
|  | * Hand back the quota if there are not | 
|  | */ | 
|  | ret = hugetlb_acct_memory(h, chg); | 
|  | if (ret < 0) { | 
|  | hugetlb_put_quota(inode->i_mapping, chg); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Account for the reservations made. Shared mappings record regions | 
|  | * that have reservations as they are shared by multiple VMAs. | 
|  | * When the last VMA disappears, the region map says how much | 
|  | * the reservation was and the page cache tells how much of | 
|  | * the reservation was consumed. Private mappings are per-VMA and | 
|  | * only the consumed reservations are tracked. When the VMA | 
|  | * disappears, the original reservation is the VMA size and the | 
|  | * consumed reservations are stored in the map. Hence, nothing | 
|  | * else has to be done for private mappings here | 
|  | */ | 
|  | if (!vma || vma->vm_flags & VM_MAYSHARE) | 
|  | region_add(&inode->i_mapping->private_list, from, to); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed) | 
|  | { | 
|  | struct hstate *h = hstate_inode(inode); | 
|  | long chg = region_truncate(&inode->i_mapping->private_list, offset); | 
|  |  | 
|  | spin_lock(&inode->i_lock); | 
|  | inode->i_blocks -= (blocks_per_huge_page(h) * freed); | 
|  | spin_unlock(&inode->i_lock); | 
|  |  | 
|  | hugetlb_put_quota(inode->i_mapping, (chg - freed)); | 
|  | hugetlb_acct_memory(h, -(chg - freed)); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_MEMORY_FAILURE | 
|  |  | 
|  | /* Should be called in hugetlb_lock */ | 
|  | static int is_hugepage_on_freelist(struct page *hpage) | 
|  | { | 
|  | struct page *page; | 
|  | struct page *tmp; | 
|  | struct hstate *h = page_hstate(hpage); | 
|  | int nid = page_to_nid(hpage); | 
|  |  | 
|  | list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru) | 
|  | if (page == hpage) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function is called from memory failure code. | 
|  | * Assume the caller holds page lock of the head page. | 
|  | */ | 
|  | int dequeue_hwpoisoned_huge_page(struct page *hpage) | 
|  | { | 
|  | struct hstate *h = page_hstate(hpage); | 
|  | int nid = page_to_nid(hpage); | 
|  | int ret = -EBUSY; | 
|  |  | 
|  | spin_lock(&hugetlb_lock); | 
|  | if (is_hugepage_on_freelist(hpage)) { | 
|  | list_del(&hpage->lru); | 
|  | set_page_refcounted(hpage); | 
|  | h->free_huge_pages--; | 
|  | h->free_huge_pages_node[nid]--; | 
|  | ret = 0; | 
|  | } | 
|  | spin_unlock(&hugetlb_lock); | 
|  | return ret; | 
|  | } | 
|  | #endif |