|  | /* | 
|  | * Copyright (c) 2006 ARM Ltd. | 
|  | * Copyright (c) 2010 ST-Ericsson SA | 
|  | * | 
|  | * Author: Peter Pearse <peter.pearse@arm.com> | 
|  | * Author: Linus Walleij <linus.walleij@stericsson.com> | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify it | 
|  | * under the terms of the GNU General Public License as published by the Free | 
|  | * Software Foundation; either version 2 of the License, or (at your option) | 
|  | * any later version. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, but WITHOUT | 
|  | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
|  | * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for | 
|  | * more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License along with | 
|  | * this program; if not, write to the Free Software Foundation, Inc., 59 | 
|  | * Temple Place - Suite 330, Boston, MA  02111-1307, USA. | 
|  | * | 
|  | * The full GNU General Public License is in this distribution in the file | 
|  | * called COPYING. | 
|  | * | 
|  | * Documentation: ARM DDI 0196G == PL080 | 
|  | * Documentation: ARM DDI 0218E == PL081 | 
|  | * | 
|  | * PL080 & PL081 both have 16 sets of DMA signals that can be routed to any | 
|  | * channel. | 
|  | * | 
|  | * The PL080 has 8 channels available for simultaneous use, and the PL081 | 
|  | * has only two channels. So on these DMA controllers the number of channels | 
|  | * and the number of incoming DMA signals are two totally different things. | 
|  | * It is usually not possible to theoretically handle all physical signals, | 
|  | * so a multiplexing scheme with possible denial of use is necessary. | 
|  | * | 
|  | * The PL080 has a dual bus master, PL081 has a single master. | 
|  | * | 
|  | * Memory to peripheral transfer may be visualized as | 
|  | *	Get data from memory to DMAC | 
|  | *	Until no data left | 
|  | *		On burst request from peripheral | 
|  | *			Destination burst from DMAC to peripheral | 
|  | *			Clear burst request | 
|  | *	Raise terminal count interrupt | 
|  | * | 
|  | * For peripherals with a FIFO: | 
|  | * Source      burst size == half the depth of the peripheral FIFO | 
|  | * Destination burst size == the depth of the peripheral FIFO | 
|  | * | 
|  | * (Bursts are irrelevant for mem to mem transfers - there are no burst | 
|  | * signals, the DMA controller will simply facilitate its AHB master.) | 
|  | * | 
|  | * ASSUMES default (little) endianness for DMA transfers | 
|  | * | 
|  | * The PL08x has two flow control settings: | 
|  | *  - DMAC flow control: the transfer size defines the number of transfers | 
|  | *    which occur for the current LLI entry, and the DMAC raises TC at the | 
|  | *    end of every LLI entry.  Observed behaviour shows the DMAC listening | 
|  | *    to both the BREQ and SREQ signals (contrary to documented), | 
|  | *    transferring data if either is active.  The LBREQ and LSREQ signals | 
|  | *    are ignored. | 
|  | * | 
|  | *  - Peripheral flow control: the transfer size is ignored (and should be | 
|  | *    zero).  The data is transferred from the current LLI entry, until | 
|  | *    after the final transfer signalled by LBREQ or LSREQ.  The DMAC | 
|  | *    will then move to the next LLI entry. | 
|  | * | 
|  | * Only the former works sanely with scatter lists, so we only implement | 
|  | * the DMAC flow control method.  However, peripherals which use the LBREQ | 
|  | * and LSREQ signals (eg, MMCI) are unable to use this mode, which through | 
|  | * these hardware restrictions prevents them from using scatter DMA. | 
|  | * | 
|  | * Global TODO: | 
|  | * - Break out common code from arch/arm/mach-s3c64xx and share | 
|  | */ | 
|  | #include <linux/device.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/dmapool.h> | 
|  | #include <linux/dmaengine.h> | 
|  | #include <linux/amba/bus.h> | 
|  | #include <linux/amba/pl08x.h> | 
|  | #include <linux/debugfs.h> | 
|  | #include <linux/seq_file.h> | 
|  |  | 
|  | #include <asm/hardware/pl080.h> | 
|  |  | 
|  | #define DRIVER_NAME	"pl08xdmac" | 
|  |  | 
|  | /** | 
|  | * struct vendor_data - vendor-specific config parameters for PL08x derivatives | 
|  | * @channels: the number of channels available in this variant | 
|  | * @dualmaster: whether this version supports dual AHB masters or not. | 
|  | */ | 
|  | struct vendor_data { | 
|  | u8 channels; | 
|  | bool dualmaster; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * PL08X private data structures | 
|  | * An LLI struct - see PL08x TRM.  Note that next uses bit[0] as a bus bit, | 
|  | * start & end do not - their bus bit info is in cctl.  Also note that these | 
|  | * are fixed 32-bit quantities. | 
|  | */ | 
|  | struct pl08x_lli { | 
|  | u32 src; | 
|  | u32 dst; | 
|  | u32 lli; | 
|  | u32 cctl; | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * struct pl08x_driver_data - the local state holder for the PL08x | 
|  | * @slave: slave engine for this instance | 
|  | * @memcpy: memcpy engine for this instance | 
|  | * @base: virtual memory base (remapped) for the PL08x | 
|  | * @adev: the corresponding AMBA (PrimeCell) bus entry | 
|  | * @vd: vendor data for this PL08x variant | 
|  | * @pd: platform data passed in from the platform/machine | 
|  | * @phy_chans: array of data for the physical channels | 
|  | * @pool: a pool for the LLI descriptors | 
|  | * @pool_ctr: counter of LLIs in the pool | 
|  | * @lli_buses: bitmask to or in to LLI pointer selecting AHB port for LLI fetches | 
|  | * @mem_buses: set to indicate memory transfers on AHB2. | 
|  | * @lock: a spinlock for this struct | 
|  | */ | 
|  | struct pl08x_driver_data { | 
|  | struct dma_device slave; | 
|  | struct dma_device memcpy; | 
|  | void __iomem *base; | 
|  | struct amba_device *adev; | 
|  | const struct vendor_data *vd; | 
|  | struct pl08x_platform_data *pd; | 
|  | struct pl08x_phy_chan *phy_chans; | 
|  | struct dma_pool *pool; | 
|  | int pool_ctr; | 
|  | u8 lli_buses; | 
|  | u8 mem_buses; | 
|  | spinlock_t lock; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * PL08X specific defines | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Memory boundaries: the manual for PL08x says that the controller | 
|  | * cannot read past a 1KiB boundary, so these defines are used to | 
|  | * create transfer LLIs that do not cross such boundaries. | 
|  | */ | 
|  | #define PL08X_BOUNDARY_SHIFT		(10)	/* 1KB 0x400 */ | 
|  | #define PL08X_BOUNDARY_SIZE		(1 << PL08X_BOUNDARY_SHIFT) | 
|  |  | 
|  | /* Minimum period between work queue runs */ | 
|  | #define PL08X_WQ_PERIODMIN	20 | 
|  |  | 
|  | /* Size (bytes) of each LLI buffer allocated for one transfer */ | 
|  | # define PL08X_LLI_TSFR_SIZE	0x2000 | 
|  |  | 
|  | /* Maximum times we call dma_pool_alloc on this pool without freeing */ | 
|  | #define PL08X_MAX_ALLOCS	0x40 | 
|  | #define MAX_NUM_TSFR_LLIS	(PL08X_LLI_TSFR_SIZE/sizeof(struct pl08x_lli)) | 
|  | #define PL08X_ALIGN		8 | 
|  |  | 
|  | static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan) | 
|  | { | 
|  | return container_of(chan, struct pl08x_dma_chan, chan); | 
|  | } | 
|  |  | 
|  | static inline struct pl08x_txd *to_pl08x_txd(struct dma_async_tx_descriptor *tx) | 
|  | { | 
|  | return container_of(tx, struct pl08x_txd, tx); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Physical channel handling | 
|  | */ | 
|  |  | 
|  | /* Whether a certain channel is busy or not */ | 
|  | static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch) | 
|  | { | 
|  | unsigned int val; | 
|  |  | 
|  | val = readl(ch->base + PL080_CH_CONFIG); | 
|  | return val & PL080_CONFIG_ACTIVE; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set the initial DMA register values i.e. those for the first LLI | 
|  | * The next LLI pointer and the configuration interrupt bit have | 
|  | * been set when the LLIs were constructed.  Poke them into the hardware | 
|  | * and start the transfer. | 
|  | */ | 
|  | static void pl08x_start_txd(struct pl08x_dma_chan *plchan, | 
|  | struct pl08x_txd *txd) | 
|  | { | 
|  | struct pl08x_driver_data *pl08x = plchan->host; | 
|  | struct pl08x_phy_chan *phychan = plchan->phychan; | 
|  | struct pl08x_lli *lli = &txd->llis_va[0]; | 
|  | u32 val; | 
|  |  | 
|  | plchan->at = txd; | 
|  |  | 
|  | /* Wait for channel inactive */ | 
|  | while (pl08x_phy_channel_busy(phychan)) | 
|  | cpu_relax(); | 
|  |  | 
|  | dev_vdbg(&pl08x->adev->dev, | 
|  | "WRITE channel %d: csrc=0x%08x, cdst=0x%08x, " | 
|  | "clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n", | 
|  | phychan->id, lli->src, lli->dst, lli->lli, lli->cctl, | 
|  | txd->ccfg); | 
|  |  | 
|  | writel(lli->src, phychan->base + PL080_CH_SRC_ADDR); | 
|  | writel(lli->dst, phychan->base + PL080_CH_DST_ADDR); | 
|  | writel(lli->lli, phychan->base + PL080_CH_LLI); | 
|  | writel(lli->cctl, phychan->base + PL080_CH_CONTROL); | 
|  | writel(txd->ccfg, phychan->base + PL080_CH_CONFIG); | 
|  |  | 
|  | /* Enable the DMA channel */ | 
|  | /* Do not access config register until channel shows as disabled */ | 
|  | while (readl(pl08x->base + PL080_EN_CHAN) & (1 << phychan->id)) | 
|  | cpu_relax(); | 
|  |  | 
|  | /* Do not access config register until channel shows as inactive */ | 
|  | val = readl(phychan->base + PL080_CH_CONFIG); | 
|  | while ((val & PL080_CONFIG_ACTIVE) || (val & PL080_CONFIG_ENABLE)) | 
|  | val = readl(phychan->base + PL080_CH_CONFIG); | 
|  |  | 
|  | writel(val | PL080_CONFIG_ENABLE, phychan->base + PL080_CH_CONFIG); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Pause the channel by setting the HALT bit. | 
|  | * | 
|  | * For M->P transfers, pause the DMAC first and then stop the peripheral - | 
|  | * the FIFO can only drain if the peripheral is still requesting data. | 
|  | * (note: this can still timeout if the DMAC FIFO never drains of data.) | 
|  | * | 
|  | * For P->M transfers, disable the peripheral first to stop it filling | 
|  | * the DMAC FIFO, and then pause the DMAC. | 
|  | */ | 
|  | static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch) | 
|  | { | 
|  | u32 val; | 
|  | int timeout; | 
|  |  | 
|  | /* Set the HALT bit and wait for the FIFO to drain */ | 
|  | val = readl(ch->base + PL080_CH_CONFIG); | 
|  | val |= PL080_CONFIG_HALT; | 
|  | writel(val, ch->base + PL080_CH_CONFIG); | 
|  |  | 
|  | /* Wait for channel inactive */ | 
|  | for (timeout = 1000; timeout; timeout--) { | 
|  | if (!pl08x_phy_channel_busy(ch)) | 
|  | break; | 
|  | udelay(1); | 
|  | } | 
|  | if (pl08x_phy_channel_busy(ch)) | 
|  | pr_err("pl08x: channel%u timeout waiting for pause\n", ch->id); | 
|  | } | 
|  |  | 
|  | static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch) | 
|  | { | 
|  | u32 val; | 
|  |  | 
|  | /* Clear the HALT bit */ | 
|  | val = readl(ch->base + PL080_CH_CONFIG); | 
|  | val &= ~PL080_CONFIG_HALT; | 
|  | writel(val, ch->base + PL080_CH_CONFIG); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * pl08x_terminate_phy_chan() stops the channel, clears the FIFO and | 
|  | * clears any pending interrupt status.  This should not be used for | 
|  | * an on-going transfer, but as a method of shutting down a channel | 
|  | * (eg, when it's no longer used) or terminating a transfer. | 
|  | */ | 
|  | static void pl08x_terminate_phy_chan(struct pl08x_driver_data *pl08x, | 
|  | struct pl08x_phy_chan *ch) | 
|  | { | 
|  | u32 val = readl(ch->base + PL080_CH_CONFIG); | 
|  |  | 
|  | val &= ~(PL080_CONFIG_ENABLE | PL080_CONFIG_ERR_IRQ_MASK | | 
|  | PL080_CONFIG_TC_IRQ_MASK); | 
|  |  | 
|  | writel(val, ch->base + PL080_CH_CONFIG); | 
|  |  | 
|  | writel(1 << ch->id, pl08x->base + PL080_ERR_CLEAR); | 
|  | writel(1 << ch->id, pl08x->base + PL080_TC_CLEAR); | 
|  | } | 
|  |  | 
|  | static inline u32 get_bytes_in_cctl(u32 cctl) | 
|  | { | 
|  | /* The source width defines the number of bytes */ | 
|  | u32 bytes = cctl & PL080_CONTROL_TRANSFER_SIZE_MASK; | 
|  |  | 
|  | switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) { | 
|  | case PL080_WIDTH_8BIT: | 
|  | break; | 
|  | case PL080_WIDTH_16BIT: | 
|  | bytes *= 2; | 
|  | break; | 
|  | case PL080_WIDTH_32BIT: | 
|  | bytes *= 4; | 
|  | break; | 
|  | } | 
|  | return bytes; | 
|  | } | 
|  |  | 
|  | /* The channel should be paused when calling this */ | 
|  | static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan) | 
|  | { | 
|  | struct pl08x_phy_chan *ch; | 
|  | struct pl08x_txd *txd; | 
|  | unsigned long flags; | 
|  | size_t bytes = 0; | 
|  |  | 
|  | spin_lock_irqsave(&plchan->lock, flags); | 
|  | ch = plchan->phychan; | 
|  | txd = plchan->at; | 
|  |  | 
|  | /* | 
|  | * Follow the LLIs to get the number of remaining | 
|  | * bytes in the currently active transaction. | 
|  | */ | 
|  | if (ch && txd) { | 
|  | u32 clli = readl(ch->base + PL080_CH_LLI) & ~PL080_LLI_LM_AHB2; | 
|  |  | 
|  | /* First get the remaining bytes in the active transfer */ | 
|  | bytes = get_bytes_in_cctl(readl(ch->base + PL080_CH_CONTROL)); | 
|  |  | 
|  | if (clli) { | 
|  | struct pl08x_lli *llis_va = txd->llis_va; | 
|  | dma_addr_t llis_bus = txd->llis_bus; | 
|  | int index; | 
|  |  | 
|  | BUG_ON(clli < llis_bus || clli >= llis_bus + | 
|  | sizeof(struct pl08x_lli) * MAX_NUM_TSFR_LLIS); | 
|  |  | 
|  | /* | 
|  | * Locate the next LLI - as this is an array, | 
|  | * it's simple maths to find. | 
|  | */ | 
|  | index = (clli - llis_bus) / sizeof(struct pl08x_lli); | 
|  |  | 
|  | for (; index < MAX_NUM_TSFR_LLIS; index++) { | 
|  | bytes += get_bytes_in_cctl(llis_va[index].cctl); | 
|  |  | 
|  | /* | 
|  | * A LLI pointer of 0 terminates the LLI list | 
|  | */ | 
|  | if (!llis_va[index].lli) | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Sum up all queued transactions */ | 
|  | if (!list_empty(&plchan->pend_list)) { | 
|  | struct pl08x_txd *txdi; | 
|  | list_for_each_entry(txdi, &plchan->pend_list, node) { | 
|  | bytes += txdi->len; | 
|  | } | 
|  | } | 
|  |  | 
|  | spin_unlock_irqrestore(&plchan->lock, flags); | 
|  |  | 
|  | return bytes; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocate a physical channel for a virtual channel | 
|  | * | 
|  | * Try to locate a physical channel to be used for this transfer. If all | 
|  | * are taken return NULL and the requester will have to cope by using | 
|  | * some fallback PIO mode or retrying later. | 
|  | */ | 
|  | static struct pl08x_phy_chan * | 
|  | pl08x_get_phy_channel(struct pl08x_driver_data *pl08x, | 
|  | struct pl08x_dma_chan *virt_chan) | 
|  | { | 
|  | struct pl08x_phy_chan *ch = NULL; | 
|  | unsigned long flags; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < pl08x->vd->channels; i++) { | 
|  | ch = &pl08x->phy_chans[i]; | 
|  |  | 
|  | spin_lock_irqsave(&ch->lock, flags); | 
|  |  | 
|  | if (!ch->serving) { | 
|  | ch->serving = virt_chan; | 
|  | ch->signal = -1; | 
|  | spin_unlock_irqrestore(&ch->lock, flags); | 
|  | break; | 
|  | } | 
|  |  | 
|  | spin_unlock_irqrestore(&ch->lock, flags); | 
|  | } | 
|  |  | 
|  | if (i == pl08x->vd->channels) { | 
|  | /* No physical channel available, cope with it */ | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | return ch; | 
|  | } | 
|  |  | 
|  | static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x, | 
|  | struct pl08x_phy_chan *ch) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&ch->lock, flags); | 
|  |  | 
|  | /* Stop the channel and clear its interrupts */ | 
|  | pl08x_terminate_phy_chan(pl08x, ch); | 
|  |  | 
|  | /* Mark it as free */ | 
|  | ch->serving = NULL; | 
|  | spin_unlock_irqrestore(&ch->lock, flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * LLI handling | 
|  | */ | 
|  |  | 
|  | static inline unsigned int pl08x_get_bytes_for_cctl(unsigned int coded) | 
|  | { | 
|  | switch (coded) { | 
|  | case PL080_WIDTH_8BIT: | 
|  | return 1; | 
|  | case PL080_WIDTH_16BIT: | 
|  | return 2; | 
|  | case PL080_WIDTH_32BIT: | 
|  | return 4; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | BUG(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline u32 pl08x_cctl_bits(u32 cctl, u8 srcwidth, u8 dstwidth, | 
|  | size_t tsize) | 
|  | { | 
|  | u32 retbits = cctl; | 
|  |  | 
|  | /* Remove all src, dst and transfer size bits */ | 
|  | retbits &= ~PL080_CONTROL_DWIDTH_MASK; | 
|  | retbits &= ~PL080_CONTROL_SWIDTH_MASK; | 
|  | retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK; | 
|  |  | 
|  | /* Then set the bits according to the parameters */ | 
|  | switch (srcwidth) { | 
|  | case 1: | 
|  | retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT; | 
|  | break; | 
|  | case 2: | 
|  | retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT; | 
|  | break; | 
|  | case 4: | 
|  | retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT; | 
|  | break; | 
|  | default: | 
|  | BUG(); | 
|  | break; | 
|  | } | 
|  |  | 
|  | switch (dstwidth) { | 
|  | case 1: | 
|  | retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT; | 
|  | break; | 
|  | case 2: | 
|  | retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT; | 
|  | break; | 
|  | case 4: | 
|  | retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT; | 
|  | break; | 
|  | default: | 
|  | BUG(); | 
|  | break; | 
|  | } | 
|  |  | 
|  | retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT; | 
|  | return retbits; | 
|  | } | 
|  |  | 
|  | struct pl08x_lli_build_data { | 
|  | struct pl08x_txd *txd; | 
|  | struct pl08x_driver_data *pl08x; | 
|  | struct pl08x_bus_data srcbus; | 
|  | struct pl08x_bus_data dstbus; | 
|  | size_t remainder; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Autoselect a master bus to use for the transfer this prefers the | 
|  | * destination bus if both available if fixed address on one bus the | 
|  | * other will be chosen | 
|  | */ | 
|  | static void pl08x_choose_master_bus(struct pl08x_lli_build_data *bd, | 
|  | struct pl08x_bus_data **mbus, struct pl08x_bus_data **sbus, u32 cctl) | 
|  | { | 
|  | if (!(cctl & PL080_CONTROL_DST_INCR)) { | 
|  | *mbus = &bd->srcbus; | 
|  | *sbus = &bd->dstbus; | 
|  | } else if (!(cctl & PL080_CONTROL_SRC_INCR)) { | 
|  | *mbus = &bd->dstbus; | 
|  | *sbus = &bd->srcbus; | 
|  | } else { | 
|  | if (bd->dstbus.buswidth == 4) { | 
|  | *mbus = &bd->dstbus; | 
|  | *sbus = &bd->srcbus; | 
|  | } else if (bd->srcbus.buswidth == 4) { | 
|  | *mbus = &bd->srcbus; | 
|  | *sbus = &bd->dstbus; | 
|  | } else if (bd->dstbus.buswidth == 2) { | 
|  | *mbus = &bd->dstbus; | 
|  | *sbus = &bd->srcbus; | 
|  | } else if (bd->srcbus.buswidth == 2) { | 
|  | *mbus = &bd->srcbus; | 
|  | *sbus = &bd->dstbus; | 
|  | } else { | 
|  | /* bd->srcbus.buswidth == 1 */ | 
|  | *mbus = &bd->dstbus; | 
|  | *sbus = &bd->srcbus; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Fills in one LLI for a certain transfer descriptor and advance the counter | 
|  | */ | 
|  | static void pl08x_fill_lli_for_desc(struct pl08x_lli_build_data *bd, | 
|  | int num_llis, int len, u32 cctl) | 
|  | { | 
|  | struct pl08x_lli *llis_va = bd->txd->llis_va; | 
|  | dma_addr_t llis_bus = bd->txd->llis_bus; | 
|  |  | 
|  | BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS); | 
|  |  | 
|  | llis_va[num_llis].cctl = cctl; | 
|  | llis_va[num_llis].src = bd->srcbus.addr; | 
|  | llis_va[num_llis].dst = bd->dstbus.addr; | 
|  | llis_va[num_llis].lli = llis_bus + (num_llis + 1) * sizeof(struct pl08x_lli); | 
|  | if (bd->pl08x->lli_buses & PL08X_AHB2) | 
|  | llis_va[num_llis].lli |= PL080_LLI_LM_AHB2; | 
|  |  | 
|  | if (cctl & PL080_CONTROL_SRC_INCR) | 
|  | bd->srcbus.addr += len; | 
|  | if (cctl & PL080_CONTROL_DST_INCR) | 
|  | bd->dstbus.addr += len; | 
|  |  | 
|  | BUG_ON(bd->remainder < len); | 
|  |  | 
|  | bd->remainder -= len; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return number of bytes to fill to boundary, or len. | 
|  | * This calculation works for any value of addr. | 
|  | */ | 
|  | static inline size_t pl08x_pre_boundary(u32 addr, size_t len) | 
|  | { | 
|  | size_t boundary_len = PL08X_BOUNDARY_SIZE - | 
|  | (addr & (PL08X_BOUNDARY_SIZE - 1)); | 
|  |  | 
|  | return min(boundary_len, len); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This fills in the table of LLIs for the transfer descriptor | 
|  | * Note that we assume we never have to change the burst sizes | 
|  | * Return 0 for error | 
|  | */ | 
|  | static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x, | 
|  | struct pl08x_txd *txd) | 
|  | { | 
|  | struct pl08x_bus_data *mbus, *sbus; | 
|  | struct pl08x_lli_build_data bd; | 
|  | int num_llis = 0; | 
|  | u32 cctl; | 
|  | size_t max_bytes_per_lli; | 
|  | size_t total_bytes = 0; | 
|  | struct pl08x_lli *llis_va; | 
|  |  | 
|  | txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT, | 
|  | &txd->llis_bus); | 
|  | if (!txd->llis_va) { | 
|  | dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | pl08x->pool_ctr++; | 
|  |  | 
|  | /* Get the default CCTL */ | 
|  | cctl = txd->cctl; | 
|  |  | 
|  | bd.txd = txd; | 
|  | bd.pl08x = pl08x; | 
|  | bd.srcbus.addr = txd->src_addr; | 
|  | bd.dstbus.addr = txd->dst_addr; | 
|  |  | 
|  | /* Find maximum width of the source bus */ | 
|  | bd.srcbus.maxwidth = | 
|  | pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_SWIDTH_MASK) >> | 
|  | PL080_CONTROL_SWIDTH_SHIFT); | 
|  |  | 
|  | /* Find maximum width of the destination bus */ | 
|  | bd.dstbus.maxwidth = | 
|  | pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_DWIDTH_MASK) >> | 
|  | PL080_CONTROL_DWIDTH_SHIFT); | 
|  |  | 
|  | /* Set up the bus widths to the maximum */ | 
|  | bd.srcbus.buswidth = bd.srcbus.maxwidth; | 
|  | bd.dstbus.buswidth = bd.dstbus.maxwidth; | 
|  | dev_vdbg(&pl08x->adev->dev, | 
|  | "%s source bus is %d bytes wide, dest bus is %d bytes wide\n", | 
|  | __func__, bd.srcbus.buswidth, bd.dstbus.buswidth); | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Bytes transferred == tsize * MIN(buswidths), not max(buswidths) | 
|  | */ | 
|  | max_bytes_per_lli = min(bd.srcbus.buswidth, bd.dstbus.buswidth) * | 
|  | PL080_CONTROL_TRANSFER_SIZE_MASK; | 
|  | dev_vdbg(&pl08x->adev->dev, | 
|  | "%s max bytes per lli = %zu\n", | 
|  | __func__, max_bytes_per_lli); | 
|  |  | 
|  | /* We need to count this down to zero */ | 
|  | bd.remainder = txd->len; | 
|  | dev_vdbg(&pl08x->adev->dev, | 
|  | "%s remainder = %zu\n", | 
|  | __func__, bd.remainder); | 
|  |  | 
|  | /* | 
|  | * Choose bus to align to | 
|  | * - prefers destination bus if both available | 
|  | * - if fixed address on one bus chooses other | 
|  | */ | 
|  | pl08x_choose_master_bus(&bd, &mbus, &sbus, cctl); | 
|  |  | 
|  | if (txd->len < mbus->buswidth) { | 
|  | /* Less than a bus width available - send as single bytes */ | 
|  | while (bd.remainder) { | 
|  | dev_vdbg(&pl08x->adev->dev, | 
|  | "%s single byte LLIs for a transfer of " | 
|  | "less than a bus width (remain 0x%08x)\n", | 
|  | __func__, bd.remainder); | 
|  | cctl = pl08x_cctl_bits(cctl, 1, 1, 1); | 
|  | pl08x_fill_lli_for_desc(&bd, num_llis++, 1, cctl); | 
|  | total_bytes++; | 
|  | } | 
|  | } else { | 
|  | /* Make one byte LLIs until master bus is aligned */ | 
|  | while ((mbus->addr) % (mbus->buswidth)) { | 
|  | dev_vdbg(&pl08x->adev->dev, | 
|  | "%s adjustment lli for less than bus width " | 
|  | "(remain 0x%08x)\n", | 
|  | __func__, bd.remainder); | 
|  | cctl = pl08x_cctl_bits(cctl, 1, 1, 1); | 
|  | pl08x_fill_lli_for_desc(&bd, num_llis++, 1, cctl); | 
|  | total_bytes++; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Master now aligned | 
|  | * - if slave is not then we must set its width down | 
|  | */ | 
|  | if (sbus->addr % sbus->buswidth) { | 
|  | dev_dbg(&pl08x->adev->dev, | 
|  | "%s set down bus width to one byte\n", | 
|  | __func__); | 
|  |  | 
|  | sbus->buswidth = 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Make largest possible LLIs until less than one bus | 
|  | * width left | 
|  | */ | 
|  | while (bd.remainder > (mbus->buswidth - 1)) { | 
|  | size_t lli_len, target_len, tsize, odd_bytes; | 
|  |  | 
|  | /* | 
|  | * If enough left try to send max possible, | 
|  | * otherwise try to send the remainder | 
|  | */ | 
|  | target_len = min(bd.remainder, max_bytes_per_lli); | 
|  |  | 
|  | /* | 
|  | * Set bus lengths for incrementing buses to the | 
|  | * number of bytes which fill to next memory boundary, | 
|  | * limiting on the target length calculated above. | 
|  | */ | 
|  | if (cctl & PL080_CONTROL_SRC_INCR) | 
|  | bd.srcbus.fill_bytes = | 
|  | pl08x_pre_boundary(bd.srcbus.addr, | 
|  | target_len); | 
|  | else | 
|  | bd.srcbus.fill_bytes = target_len; | 
|  |  | 
|  | if (cctl & PL080_CONTROL_DST_INCR) | 
|  | bd.dstbus.fill_bytes = | 
|  | pl08x_pre_boundary(bd.dstbus.addr, | 
|  | target_len); | 
|  | else | 
|  | bd.dstbus.fill_bytes = target_len; | 
|  |  | 
|  | /* Find the nearest */ | 
|  | lli_len	= min(bd.srcbus.fill_bytes, | 
|  | bd.dstbus.fill_bytes); | 
|  |  | 
|  | BUG_ON(lli_len > bd.remainder); | 
|  |  | 
|  | if (lli_len <= 0) { | 
|  | dev_err(&pl08x->adev->dev, | 
|  | "%s lli_len is %zu, <= 0\n", | 
|  | __func__, lli_len); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (lli_len == target_len) { | 
|  | /* | 
|  | * Can send what we wanted. | 
|  | * Maintain alignment | 
|  | */ | 
|  | lli_len	= (lli_len/mbus->buswidth) * | 
|  | mbus->buswidth; | 
|  | odd_bytes = 0; | 
|  | } else { | 
|  | /* | 
|  | * So now we know how many bytes to transfer | 
|  | * to get to the nearest boundary.  The next | 
|  | * LLI will past the boundary.  However, we | 
|  | * may be working to a boundary on the slave | 
|  | * bus.  We need to ensure the master stays | 
|  | * aligned, and that we are working in | 
|  | * multiples of the bus widths. | 
|  | */ | 
|  | odd_bytes = lli_len % mbus->buswidth; | 
|  | lli_len -= odd_bytes; | 
|  |  | 
|  | } | 
|  |  | 
|  | if (lli_len) { | 
|  | /* | 
|  | * Check against minimum bus alignment: | 
|  | * Calculate actual transfer size in relation | 
|  | * to bus width an get a maximum remainder of | 
|  | * the smallest bus width - 1 | 
|  | */ | 
|  | /* FIXME: use round_down()? */ | 
|  | tsize = lli_len / min(mbus->buswidth, | 
|  | sbus->buswidth); | 
|  | lli_len	= tsize * min(mbus->buswidth, | 
|  | sbus->buswidth); | 
|  |  | 
|  | if (target_len != lli_len) { | 
|  | dev_vdbg(&pl08x->adev->dev, | 
|  | "%s can't send what we want. Desired 0x%08zx, lli of 0x%08zx bytes in txd of 0x%08zx\n", | 
|  | __func__, target_len, lli_len, txd->len); | 
|  | } | 
|  |  | 
|  | cctl = pl08x_cctl_bits(cctl, | 
|  | bd.srcbus.buswidth, | 
|  | bd.dstbus.buswidth, | 
|  | tsize); | 
|  |  | 
|  | dev_vdbg(&pl08x->adev->dev, | 
|  | "%s fill lli with single lli chunk of size 0x%08zx (remainder 0x%08zx)\n", | 
|  | __func__, lli_len, bd.remainder); | 
|  | pl08x_fill_lli_for_desc(&bd, num_llis++, | 
|  | lli_len, cctl); | 
|  | total_bytes += lli_len; | 
|  | } | 
|  |  | 
|  |  | 
|  | if (odd_bytes) { | 
|  | /* | 
|  | * Creep past the boundary, maintaining | 
|  | * master alignment | 
|  | */ | 
|  | int j; | 
|  | for (j = 0; (j < mbus->buswidth) | 
|  | && (bd.remainder); j++) { | 
|  | cctl = pl08x_cctl_bits(cctl, 1, 1, 1); | 
|  | dev_vdbg(&pl08x->adev->dev, | 
|  | "%s align with boundary, single byte (remain 0x%08zx)\n", | 
|  | __func__, bd.remainder); | 
|  | pl08x_fill_lli_for_desc(&bd, | 
|  | num_llis++, 1, cctl); | 
|  | total_bytes++; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Send any odd bytes | 
|  | */ | 
|  | while (bd.remainder) { | 
|  | cctl = pl08x_cctl_bits(cctl, 1, 1, 1); | 
|  | dev_vdbg(&pl08x->adev->dev, | 
|  | "%s align with boundary, single odd byte (remain %zu)\n", | 
|  | __func__, bd.remainder); | 
|  | pl08x_fill_lli_for_desc(&bd, num_llis++, 1, cctl); | 
|  | total_bytes++; | 
|  | } | 
|  | } | 
|  | if (total_bytes != txd->len) { | 
|  | dev_err(&pl08x->adev->dev, | 
|  | "%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n", | 
|  | __func__, total_bytes, txd->len); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (num_llis >= MAX_NUM_TSFR_LLIS) { | 
|  | dev_err(&pl08x->adev->dev, | 
|  | "%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n", | 
|  | __func__, (u32) MAX_NUM_TSFR_LLIS); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | llis_va = txd->llis_va; | 
|  | /* The final LLI terminates the LLI. */ | 
|  | llis_va[num_llis - 1].lli = 0; | 
|  | /* The final LLI element shall also fire an interrupt. */ | 
|  | llis_va[num_llis - 1].cctl |= PL080_CONTROL_TC_IRQ_EN; | 
|  |  | 
|  | #ifdef VERBOSE_DEBUG | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < num_llis; i++) { | 
|  | dev_vdbg(&pl08x->adev->dev, | 
|  | "lli %d @%p: csrc=0x%08x, cdst=0x%08x, cctl=0x%08x, clli=0x%08x\n", | 
|  | i, | 
|  | &llis_va[i], | 
|  | llis_va[i].src, | 
|  | llis_va[i].dst, | 
|  | llis_va[i].cctl, | 
|  | llis_va[i].lli | 
|  | ); | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | return num_llis; | 
|  | } | 
|  |  | 
|  | /* You should call this with the struct pl08x lock held */ | 
|  | static void pl08x_free_txd(struct pl08x_driver_data *pl08x, | 
|  | struct pl08x_txd *txd) | 
|  | { | 
|  | /* Free the LLI */ | 
|  | dma_pool_free(pl08x->pool, txd->llis_va, txd->llis_bus); | 
|  |  | 
|  | pl08x->pool_ctr--; | 
|  |  | 
|  | kfree(txd); | 
|  | } | 
|  |  | 
|  | static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x, | 
|  | struct pl08x_dma_chan *plchan) | 
|  | { | 
|  | struct pl08x_txd *txdi = NULL; | 
|  | struct pl08x_txd *next; | 
|  |  | 
|  | if (!list_empty(&plchan->pend_list)) { | 
|  | list_for_each_entry_safe(txdi, | 
|  | next, &plchan->pend_list, node) { | 
|  | list_del(&txdi->node); | 
|  | pl08x_free_txd(pl08x, txdi); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The DMA ENGINE API | 
|  | */ | 
|  | static int pl08x_alloc_chan_resources(struct dma_chan *chan) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void pl08x_free_chan_resources(struct dma_chan *chan) | 
|  | { | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This should be called with the channel plchan->lock held | 
|  | */ | 
|  | static int prep_phy_channel(struct pl08x_dma_chan *plchan, | 
|  | struct pl08x_txd *txd) | 
|  | { | 
|  | struct pl08x_driver_data *pl08x = plchan->host; | 
|  | struct pl08x_phy_chan *ch; | 
|  | int ret; | 
|  |  | 
|  | /* Check if we already have a channel */ | 
|  | if (plchan->phychan) | 
|  | return 0; | 
|  |  | 
|  | ch = pl08x_get_phy_channel(pl08x, plchan); | 
|  | if (!ch) { | 
|  | /* No physical channel available, cope with it */ | 
|  | dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name); | 
|  | return -EBUSY; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * OK we have a physical channel: for memcpy() this is all we | 
|  | * need, but for slaves the physical signals may be muxed! | 
|  | * Can the platform allow us to use this channel? | 
|  | */ | 
|  | if (plchan->slave && | 
|  | ch->signal < 0 && | 
|  | pl08x->pd->get_signal) { | 
|  | ret = pl08x->pd->get_signal(plchan); | 
|  | if (ret < 0) { | 
|  | dev_dbg(&pl08x->adev->dev, | 
|  | "unable to use physical channel %d for transfer on %s due to platform restrictions\n", | 
|  | ch->id, plchan->name); | 
|  | /* Release physical channel & return */ | 
|  | pl08x_put_phy_channel(pl08x, ch); | 
|  | return -EBUSY; | 
|  | } | 
|  | ch->signal = ret; | 
|  |  | 
|  | /* Assign the flow control signal to this channel */ | 
|  | if (txd->direction == DMA_TO_DEVICE) | 
|  | txd->ccfg |= ch->signal << PL080_CONFIG_DST_SEL_SHIFT; | 
|  | else if (txd->direction == DMA_FROM_DEVICE) | 
|  | txd->ccfg |= ch->signal << PL080_CONFIG_SRC_SEL_SHIFT; | 
|  | } | 
|  |  | 
|  | dev_dbg(&pl08x->adev->dev, "allocated physical channel %d and signal %d for xfer on %s\n", | 
|  | ch->id, | 
|  | ch->signal, | 
|  | plchan->name); | 
|  |  | 
|  | plchan->phychan_hold++; | 
|  | plchan->phychan = ch; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void release_phy_channel(struct pl08x_dma_chan *plchan) | 
|  | { | 
|  | struct pl08x_driver_data *pl08x = plchan->host; | 
|  |  | 
|  | if ((plchan->phychan->signal >= 0) && pl08x->pd->put_signal) { | 
|  | pl08x->pd->put_signal(plchan); | 
|  | plchan->phychan->signal = -1; | 
|  | } | 
|  | pl08x_put_phy_channel(pl08x, plchan->phychan); | 
|  | plchan->phychan = NULL; | 
|  | } | 
|  |  | 
|  | static dma_cookie_t pl08x_tx_submit(struct dma_async_tx_descriptor *tx) | 
|  | { | 
|  | struct pl08x_dma_chan *plchan = to_pl08x_chan(tx->chan); | 
|  | struct pl08x_txd *txd = to_pl08x_txd(tx); | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&plchan->lock, flags); | 
|  |  | 
|  | plchan->chan.cookie += 1; | 
|  | if (plchan->chan.cookie < 0) | 
|  | plchan->chan.cookie = 1; | 
|  | tx->cookie = plchan->chan.cookie; | 
|  |  | 
|  | /* Put this onto the pending list */ | 
|  | list_add_tail(&txd->node, &plchan->pend_list); | 
|  |  | 
|  | /* | 
|  | * If there was no physical channel available for this memcpy, | 
|  | * stack the request up and indicate that the channel is waiting | 
|  | * for a free physical channel. | 
|  | */ | 
|  | if (!plchan->slave && !plchan->phychan) { | 
|  | /* Do this memcpy whenever there is a channel ready */ | 
|  | plchan->state = PL08X_CHAN_WAITING; | 
|  | plchan->waiting = txd; | 
|  | } else { | 
|  | plchan->phychan_hold--; | 
|  | } | 
|  |  | 
|  | spin_unlock_irqrestore(&plchan->lock, flags); | 
|  |  | 
|  | return tx->cookie; | 
|  | } | 
|  |  | 
|  | static struct dma_async_tx_descriptor *pl08x_prep_dma_interrupt( | 
|  | struct dma_chan *chan, unsigned long flags) | 
|  | { | 
|  | struct dma_async_tx_descriptor *retval = NULL; | 
|  |  | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Code accessing dma_async_is_complete() in a tight loop may give problems. | 
|  | * If slaves are relying on interrupts to signal completion this function | 
|  | * must not be called with interrupts disabled. | 
|  | */ | 
|  | static enum dma_status | 
|  | pl08x_dma_tx_status(struct dma_chan *chan, | 
|  | dma_cookie_t cookie, | 
|  | struct dma_tx_state *txstate) | 
|  | { | 
|  | struct pl08x_dma_chan *plchan = to_pl08x_chan(chan); | 
|  | dma_cookie_t last_used; | 
|  | dma_cookie_t last_complete; | 
|  | enum dma_status ret; | 
|  | u32 bytesleft = 0; | 
|  |  | 
|  | last_used = plchan->chan.cookie; | 
|  | last_complete = plchan->lc; | 
|  |  | 
|  | ret = dma_async_is_complete(cookie, last_complete, last_used); | 
|  | if (ret == DMA_SUCCESS) { | 
|  | dma_set_tx_state(txstate, last_complete, last_used, 0); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This cookie not complete yet | 
|  | */ | 
|  | last_used = plchan->chan.cookie; | 
|  | last_complete = plchan->lc; | 
|  |  | 
|  | /* Get number of bytes left in the active transactions and queue */ | 
|  | bytesleft = pl08x_getbytes_chan(plchan); | 
|  |  | 
|  | dma_set_tx_state(txstate, last_complete, last_used, | 
|  | bytesleft); | 
|  |  | 
|  | if (plchan->state == PL08X_CHAN_PAUSED) | 
|  | return DMA_PAUSED; | 
|  |  | 
|  | /* Whether waiting or running, we're in progress */ | 
|  | return DMA_IN_PROGRESS; | 
|  | } | 
|  |  | 
|  | /* PrimeCell DMA extension */ | 
|  | struct burst_table { | 
|  | int burstwords; | 
|  | u32 reg; | 
|  | }; | 
|  |  | 
|  | static const struct burst_table burst_sizes[] = { | 
|  | { | 
|  | .burstwords = 256, | 
|  | .reg = (PL080_BSIZE_256 << PL080_CONTROL_SB_SIZE_SHIFT) | | 
|  | (PL080_BSIZE_256 << PL080_CONTROL_DB_SIZE_SHIFT), | 
|  | }, | 
|  | { | 
|  | .burstwords = 128, | 
|  | .reg = (PL080_BSIZE_128 << PL080_CONTROL_SB_SIZE_SHIFT) | | 
|  | (PL080_BSIZE_128 << PL080_CONTROL_DB_SIZE_SHIFT), | 
|  | }, | 
|  | { | 
|  | .burstwords = 64, | 
|  | .reg = (PL080_BSIZE_64 << PL080_CONTROL_SB_SIZE_SHIFT) | | 
|  | (PL080_BSIZE_64 << PL080_CONTROL_DB_SIZE_SHIFT), | 
|  | }, | 
|  | { | 
|  | .burstwords = 32, | 
|  | .reg = (PL080_BSIZE_32 << PL080_CONTROL_SB_SIZE_SHIFT) | | 
|  | (PL080_BSIZE_32 << PL080_CONTROL_DB_SIZE_SHIFT), | 
|  | }, | 
|  | { | 
|  | .burstwords = 16, | 
|  | .reg = (PL080_BSIZE_16 << PL080_CONTROL_SB_SIZE_SHIFT) | | 
|  | (PL080_BSIZE_16 << PL080_CONTROL_DB_SIZE_SHIFT), | 
|  | }, | 
|  | { | 
|  | .burstwords = 8, | 
|  | .reg = (PL080_BSIZE_8 << PL080_CONTROL_SB_SIZE_SHIFT) | | 
|  | (PL080_BSIZE_8 << PL080_CONTROL_DB_SIZE_SHIFT), | 
|  | }, | 
|  | { | 
|  | .burstwords = 4, | 
|  | .reg = (PL080_BSIZE_4 << PL080_CONTROL_SB_SIZE_SHIFT) | | 
|  | (PL080_BSIZE_4 << PL080_CONTROL_DB_SIZE_SHIFT), | 
|  | }, | 
|  | { | 
|  | .burstwords = 1, | 
|  | .reg = (PL080_BSIZE_1 << PL080_CONTROL_SB_SIZE_SHIFT) | | 
|  | (PL080_BSIZE_1 << PL080_CONTROL_DB_SIZE_SHIFT), | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static int dma_set_runtime_config(struct dma_chan *chan, | 
|  | struct dma_slave_config *config) | 
|  | { | 
|  | struct pl08x_dma_chan *plchan = to_pl08x_chan(chan); | 
|  | struct pl08x_driver_data *pl08x = plchan->host; | 
|  | struct pl08x_channel_data *cd = plchan->cd; | 
|  | enum dma_slave_buswidth addr_width; | 
|  | dma_addr_t addr; | 
|  | u32 maxburst; | 
|  | u32 cctl = 0; | 
|  | int i; | 
|  |  | 
|  | if (!plchan->slave) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* Transfer direction */ | 
|  | plchan->runtime_direction = config->direction; | 
|  | if (config->direction == DMA_TO_DEVICE) { | 
|  | addr = config->dst_addr; | 
|  | addr_width = config->dst_addr_width; | 
|  | maxburst = config->dst_maxburst; | 
|  | } else if (config->direction == DMA_FROM_DEVICE) { | 
|  | addr = config->src_addr; | 
|  | addr_width = config->src_addr_width; | 
|  | maxburst = config->src_maxburst; | 
|  | } else { | 
|  | dev_err(&pl08x->adev->dev, | 
|  | "bad runtime_config: alien transfer direction\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | switch (addr_width) { | 
|  | case DMA_SLAVE_BUSWIDTH_1_BYTE: | 
|  | cctl |= (PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT) | | 
|  | (PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT); | 
|  | break; | 
|  | case DMA_SLAVE_BUSWIDTH_2_BYTES: | 
|  | cctl |= (PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT) | | 
|  | (PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT); | 
|  | break; | 
|  | case DMA_SLAVE_BUSWIDTH_4_BYTES: | 
|  | cctl |= (PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT) | | 
|  | (PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT); | 
|  | break; | 
|  | default: | 
|  | dev_err(&pl08x->adev->dev, | 
|  | "bad runtime_config: alien address width\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Now decide on a maxburst: | 
|  | * If this channel will only request single transfers, set this | 
|  | * down to ONE element.  Also select one element if no maxburst | 
|  | * is specified. | 
|  | */ | 
|  | if (plchan->cd->single || maxburst == 0) { | 
|  | cctl |= (PL080_BSIZE_1 << PL080_CONTROL_SB_SIZE_SHIFT) | | 
|  | (PL080_BSIZE_1 << PL080_CONTROL_DB_SIZE_SHIFT); | 
|  | } else { | 
|  | for (i = 0; i < ARRAY_SIZE(burst_sizes); i++) | 
|  | if (burst_sizes[i].burstwords <= maxburst) | 
|  | break; | 
|  | cctl |= burst_sizes[i].reg; | 
|  | } | 
|  |  | 
|  | plchan->runtime_addr = addr; | 
|  |  | 
|  | /* Modify the default channel data to fit PrimeCell request */ | 
|  | cd->cctl = cctl; | 
|  |  | 
|  | dev_dbg(&pl08x->adev->dev, | 
|  | "configured channel %s (%s) for %s, data width %d, " | 
|  | "maxburst %d words, LE, CCTL=0x%08x\n", | 
|  | dma_chan_name(chan), plchan->name, | 
|  | (config->direction == DMA_FROM_DEVICE) ? "RX" : "TX", | 
|  | addr_width, | 
|  | maxburst, | 
|  | cctl); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Slave transactions callback to the slave device to allow | 
|  | * synchronization of slave DMA signals with the DMAC enable | 
|  | */ | 
|  | static void pl08x_issue_pending(struct dma_chan *chan) | 
|  | { | 
|  | struct pl08x_dma_chan *plchan = to_pl08x_chan(chan); | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&plchan->lock, flags); | 
|  | /* Something is already active, or we're waiting for a channel... */ | 
|  | if (plchan->at || plchan->state == PL08X_CHAN_WAITING) { | 
|  | spin_unlock_irqrestore(&plchan->lock, flags); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Take the first element in the queue and execute it */ | 
|  | if (!list_empty(&plchan->pend_list)) { | 
|  | struct pl08x_txd *next; | 
|  |  | 
|  | next = list_first_entry(&plchan->pend_list, | 
|  | struct pl08x_txd, | 
|  | node); | 
|  | list_del(&next->node); | 
|  | plchan->state = PL08X_CHAN_RUNNING; | 
|  |  | 
|  | pl08x_start_txd(plchan, next); | 
|  | } | 
|  |  | 
|  | spin_unlock_irqrestore(&plchan->lock, flags); | 
|  | } | 
|  |  | 
|  | static int pl08x_prep_channel_resources(struct pl08x_dma_chan *plchan, | 
|  | struct pl08x_txd *txd) | 
|  | { | 
|  | struct pl08x_driver_data *pl08x = plchan->host; | 
|  | unsigned long flags; | 
|  | int num_llis, ret; | 
|  |  | 
|  | num_llis = pl08x_fill_llis_for_desc(pl08x, txd); | 
|  | if (!num_llis) { | 
|  | kfree(txd); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | spin_lock_irqsave(&plchan->lock, flags); | 
|  |  | 
|  | /* | 
|  | * See if we already have a physical channel allocated, | 
|  | * else this is the time to try to get one. | 
|  | */ | 
|  | ret = prep_phy_channel(plchan, txd); | 
|  | if (ret) { | 
|  | /* | 
|  | * No physical channel was available. | 
|  | * | 
|  | * memcpy transfers can be sorted out at submission time. | 
|  | * | 
|  | * Slave transfers may have been denied due to platform | 
|  | * channel muxing restrictions.  Since there is no guarantee | 
|  | * that this will ever be resolved, and the signal must be | 
|  | * acquired AFTER acquiring the physical channel, we will let | 
|  | * them be NACK:ed with -EBUSY here. The drivers can retry | 
|  | * the prep() call if they are eager on doing this using DMA. | 
|  | */ | 
|  | if (plchan->slave) { | 
|  | pl08x_free_txd_list(pl08x, plchan); | 
|  | pl08x_free_txd(pl08x, txd); | 
|  | spin_unlock_irqrestore(&plchan->lock, flags); | 
|  | return -EBUSY; | 
|  | } | 
|  | } else | 
|  | /* | 
|  | * Else we're all set, paused and ready to roll, status | 
|  | * will switch to PL08X_CHAN_RUNNING when we call | 
|  | * issue_pending(). If there is something running on the | 
|  | * channel already we don't change its state. | 
|  | */ | 
|  | if (plchan->state == PL08X_CHAN_IDLE) | 
|  | plchan->state = PL08X_CHAN_PAUSED; | 
|  |  | 
|  | spin_unlock_irqrestore(&plchan->lock, flags); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Given the source and destination available bus masks, select which | 
|  | * will be routed to each port.  We try to have source and destination | 
|  | * on separate ports, but always respect the allowable settings. | 
|  | */ | 
|  | static u32 pl08x_select_bus(struct pl08x_driver_data *pl08x, u8 src, u8 dst) | 
|  | { | 
|  | u32 cctl = 0; | 
|  |  | 
|  | if (!(dst & PL08X_AHB1) || ((dst & PL08X_AHB2) && (src & PL08X_AHB1))) | 
|  | cctl |= PL080_CONTROL_DST_AHB2; | 
|  | if (!(src & PL08X_AHB1) || ((src & PL08X_AHB2) && !(dst & PL08X_AHB2))) | 
|  | cctl |= PL080_CONTROL_SRC_AHB2; | 
|  |  | 
|  | return cctl; | 
|  | } | 
|  |  | 
|  | static struct pl08x_txd *pl08x_get_txd(struct pl08x_dma_chan *plchan, | 
|  | unsigned long flags) | 
|  | { | 
|  | struct pl08x_txd *txd = kzalloc(sizeof(struct pl08x_txd), GFP_NOWAIT); | 
|  |  | 
|  | if (txd) { | 
|  | dma_async_tx_descriptor_init(&txd->tx, &plchan->chan); | 
|  | txd->tx.flags = flags; | 
|  | txd->tx.tx_submit = pl08x_tx_submit; | 
|  | INIT_LIST_HEAD(&txd->node); | 
|  |  | 
|  | /* Always enable error and terminal interrupts */ | 
|  | txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK | | 
|  | PL080_CONFIG_TC_IRQ_MASK; | 
|  | } | 
|  | return txd; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialize a descriptor to be used by memcpy submit | 
|  | */ | 
|  | static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy( | 
|  | struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, | 
|  | size_t len, unsigned long flags) | 
|  | { | 
|  | struct pl08x_dma_chan *plchan = to_pl08x_chan(chan); | 
|  | struct pl08x_driver_data *pl08x = plchan->host; | 
|  | struct pl08x_txd *txd; | 
|  | int ret; | 
|  |  | 
|  | txd = pl08x_get_txd(plchan, flags); | 
|  | if (!txd) { | 
|  | dev_err(&pl08x->adev->dev, | 
|  | "%s no memory for descriptor\n", __func__); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | txd->direction = DMA_NONE; | 
|  | txd->src_addr = src; | 
|  | txd->dst_addr = dest; | 
|  | txd->len = len; | 
|  |  | 
|  | /* Set platform data for m2m */ | 
|  | txd->ccfg |= PL080_FLOW_MEM2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT; | 
|  | txd->cctl = pl08x->pd->memcpy_channel.cctl & | 
|  | ~(PL080_CONTROL_DST_AHB2 | PL080_CONTROL_SRC_AHB2); | 
|  |  | 
|  | /* Both to be incremented or the code will break */ | 
|  | txd->cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR; | 
|  |  | 
|  | if (pl08x->vd->dualmaster) | 
|  | txd->cctl |= pl08x_select_bus(pl08x, | 
|  | pl08x->mem_buses, pl08x->mem_buses); | 
|  |  | 
|  | ret = pl08x_prep_channel_resources(plchan, txd); | 
|  | if (ret) | 
|  | return NULL; | 
|  |  | 
|  | return &txd->tx; | 
|  | } | 
|  |  | 
|  | static struct dma_async_tx_descriptor *pl08x_prep_slave_sg( | 
|  | struct dma_chan *chan, struct scatterlist *sgl, | 
|  | unsigned int sg_len, enum dma_data_direction direction, | 
|  | unsigned long flags) | 
|  | { | 
|  | struct pl08x_dma_chan *plchan = to_pl08x_chan(chan); | 
|  | struct pl08x_driver_data *pl08x = plchan->host; | 
|  | struct pl08x_txd *txd; | 
|  | u8 src_buses, dst_buses; | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * Current implementation ASSUMES only one sg | 
|  | */ | 
|  | if (sg_len != 1) { | 
|  | dev_err(&pl08x->adev->dev, "%s prepared too long sglist\n", | 
|  | __func__); | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n", | 
|  | __func__, sgl->length, plchan->name); | 
|  |  | 
|  | txd = pl08x_get_txd(plchan, flags); | 
|  | if (!txd) { | 
|  | dev_err(&pl08x->adev->dev, "%s no txd\n", __func__); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | if (direction != plchan->runtime_direction) | 
|  | dev_err(&pl08x->adev->dev, "%s DMA setup does not match " | 
|  | "the direction configured for the PrimeCell\n", | 
|  | __func__); | 
|  |  | 
|  | /* | 
|  | * Set up addresses, the PrimeCell configured address | 
|  | * will take precedence since this may configure the | 
|  | * channel target address dynamically at runtime. | 
|  | */ | 
|  | txd->direction = direction; | 
|  | txd->len = sgl->length; | 
|  |  | 
|  | txd->cctl = plchan->cd->cctl & | 
|  | ~(PL080_CONTROL_SRC_AHB2 | PL080_CONTROL_DST_AHB2 | | 
|  | PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR | | 
|  | PL080_CONTROL_PROT_MASK); | 
|  |  | 
|  | /* Access the cell in privileged mode, non-bufferable, non-cacheable */ | 
|  | txd->cctl |= PL080_CONTROL_PROT_SYS; | 
|  |  | 
|  | if (direction == DMA_TO_DEVICE) { | 
|  | txd->ccfg |= PL080_FLOW_MEM2PER << PL080_CONFIG_FLOW_CONTROL_SHIFT; | 
|  | txd->cctl |= PL080_CONTROL_SRC_INCR; | 
|  | txd->src_addr = sgl->dma_address; | 
|  | if (plchan->runtime_addr) | 
|  | txd->dst_addr = plchan->runtime_addr; | 
|  | else | 
|  | txd->dst_addr = plchan->cd->addr; | 
|  | src_buses = pl08x->mem_buses; | 
|  | dst_buses = plchan->cd->periph_buses; | 
|  | } else if (direction == DMA_FROM_DEVICE) { | 
|  | txd->ccfg |= PL080_FLOW_PER2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT; | 
|  | txd->cctl |= PL080_CONTROL_DST_INCR; | 
|  | if (plchan->runtime_addr) | 
|  | txd->src_addr = plchan->runtime_addr; | 
|  | else | 
|  | txd->src_addr = plchan->cd->addr; | 
|  | txd->dst_addr = sgl->dma_address; | 
|  | src_buses = plchan->cd->periph_buses; | 
|  | dst_buses = pl08x->mem_buses; | 
|  | } else { | 
|  | dev_err(&pl08x->adev->dev, | 
|  | "%s direction unsupported\n", __func__); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | txd->cctl |= pl08x_select_bus(pl08x, src_buses, dst_buses); | 
|  |  | 
|  | ret = pl08x_prep_channel_resources(plchan, txd); | 
|  | if (ret) | 
|  | return NULL; | 
|  |  | 
|  | return &txd->tx; | 
|  | } | 
|  |  | 
|  | static int pl08x_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd, | 
|  | unsigned long arg) | 
|  | { | 
|  | struct pl08x_dma_chan *plchan = to_pl08x_chan(chan); | 
|  | struct pl08x_driver_data *pl08x = plchan->host; | 
|  | unsigned long flags; | 
|  | int ret = 0; | 
|  |  | 
|  | /* Controls applicable to inactive channels */ | 
|  | if (cmd == DMA_SLAVE_CONFIG) { | 
|  | return dma_set_runtime_config(chan, | 
|  | (struct dma_slave_config *)arg); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Anything succeeds on channels with no physical allocation and | 
|  | * no queued transfers. | 
|  | */ | 
|  | spin_lock_irqsave(&plchan->lock, flags); | 
|  | if (!plchan->phychan && !plchan->at) { | 
|  | spin_unlock_irqrestore(&plchan->lock, flags); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | switch (cmd) { | 
|  | case DMA_TERMINATE_ALL: | 
|  | plchan->state = PL08X_CHAN_IDLE; | 
|  |  | 
|  | if (plchan->phychan) { | 
|  | pl08x_terminate_phy_chan(pl08x, plchan->phychan); | 
|  |  | 
|  | /* | 
|  | * Mark physical channel as free and free any slave | 
|  | * signal | 
|  | */ | 
|  | release_phy_channel(plchan); | 
|  | } | 
|  | /* Dequeue jobs and free LLIs */ | 
|  | if (plchan->at) { | 
|  | pl08x_free_txd(pl08x, plchan->at); | 
|  | plchan->at = NULL; | 
|  | } | 
|  | /* Dequeue jobs not yet fired as well */ | 
|  | pl08x_free_txd_list(pl08x, plchan); | 
|  | break; | 
|  | case DMA_PAUSE: | 
|  | pl08x_pause_phy_chan(plchan->phychan); | 
|  | plchan->state = PL08X_CHAN_PAUSED; | 
|  | break; | 
|  | case DMA_RESUME: | 
|  | pl08x_resume_phy_chan(plchan->phychan); | 
|  | plchan->state = PL08X_CHAN_RUNNING; | 
|  | break; | 
|  | default: | 
|  | /* Unknown command */ | 
|  | ret = -ENXIO; | 
|  | break; | 
|  | } | 
|  |  | 
|  | spin_unlock_irqrestore(&plchan->lock, flags); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | bool pl08x_filter_id(struct dma_chan *chan, void *chan_id) | 
|  | { | 
|  | struct pl08x_dma_chan *plchan = to_pl08x_chan(chan); | 
|  | char *name = chan_id; | 
|  |  | 
|  | /* Check that the channel is not taken! */ | 
|  | if (!strcmp(plchan->name, name)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Just check that the device is there and active | 
|  | * TODO: turn this bit on/off depending on the number of physical channels | 
|  | * actually used, if it is zero... well shut it off. That will save some | 
|  | * power. Cut the clock at the same time. | 
|  | */ | 
|  | static void pl08x_ensure_on(struct pl08x_driver_data *pl08x) | 
|  | { | 
|  | u32 val; | 
|  |  | 
|  | val = readl(pl08x->base + PL080_CONFIG); | 
|  | val &= ~(PL080_CONFIG_M2_BE | PL080_CONFIG_M1_BE | PL080_CONFIG_ENABLE); | 
|  | /* We implicitly clear bit 1 and that means little-endian mode */ | 
|  | val |= PL080_CONFIG_ENABLE; | 
|  | writel(val, pl08x->base + PL080_CONFIG); | 
|  | } | 
|  |  | 
|  | static void pl08x_unmap_buffers(struct pl08x_txd *txd) | 
|  | { | 
|  | struct device *dev = txd->tx.chan->device->dev; | 
|  |  | 
|  | if (!(txd->tx.flags & DMA_COMPL_SKIP_SRC_UNMAP)) { | 
|  | if (txd->tx.flags & DMA_COMPL_SRC_UNMAP_SINGLE) | 
|  | dma_unmap_single(dev, txd->src_addr, txd->len, | 
|  | DMA_TO_DEVICE); | 
|  | else | 
|  | dma_unmap_page(dev, txd->src_addr, txd->len, | 
|  | DMA_TO_DEVICE); | 
|  | } | 
|  | if (!(txd->tx.flags & DMA_COMPL_SKIP_DEST_UNMAP)) { | 
|  | if (txd->tx.flags & DMA_COMPL_DEST_UNMAP_SINGLE) | 
|  | dma_unmap_single(dev, txd->dst_addr, txd->len, | 
|  | DMA_FROM_DEVICE); | 
|  | else | 
|  | dma_unmap_page(dev, txd->dst_addr, txd->len, | 
|  | DMA_FROM_DEVICE); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void pl08x_tasklet(unsigned long data) | 
|  | { | 
|  | struct pl08x_dma_chan *plchan = (struct pl08x_dma_chan *) data; | 
|  | struct pl08x_driver_data *pl08x = plchan->host; | 
|  | struct pl08x_txd *txd; | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&plchan->lock, flags); | 
|  |  | 
|  | txd = plchan->at; | 
|  | plchan->at = NULL; | 
|  |  | 
|  | if (txd) { | 
|  | /* Update last completed */ | 
|  | plchan->lc = txd->tx.cookie; | 
|  | } | 
|  |  | 
|  | /* If a new descriptor is queued, set it up plchan->at is NULL here */ | 
|  | if (!list_empty(&plchan->pend_list)) { | 
|  | struct pl08x_txd *next; | 
|  |  | 
|  | next = list_first_entry(&plchan->pend_list, | 
|  | struct pl08x_txd, | 
|  | node); | 
|  | list_del(&next->node); | 
|  |  | 
|  | pl08x_start_txd(plchan, next); | 
|  | } else if (plchan->phychan_hold) { | 
|  | /* | 
|  | * This channel is still in use - we have a new txd being | 
|  | * prepared and will soon be queued.  Don't give up the | 
|  | * physical channel. | 
|  | */ | 
|  | } else { | 
|  | struct pl08x_dma_chan *waiting = NULL; | 
|  |  | 
|  | /* | 
|  | * No more jobs, so free up the physical channel | 
|  | * Free any allocated signal on slave transfers too | 
|  | */ | 
|  | release_phy_channel(plchan); | 
|  | plchan->state = PL08X_CHAN_IDLE; | 
|  |  | 
|  | /* | 
|  | * And NOW before anyone else can grab that free:d up | 
|  | * physical channel, see if there is some memcpy pending | 
|  | * that seriously needs to start because of being stacked | 
|  | * up while we were choking the physical channels with data. | 
|  | */ | 
|  | list_for_each_entry(waiting, &pl08x->memcpy.channels, | 
|  | chan.device_node) { | 
|  | if (waiting->state == PL08X_CHAN_WAITING && | 
|  | waiting->waiting != NULL) { | 
|  | int ret; | 
|  |  | 
|  | /* This should REALLY not fail now */ | 
|  | ret = prep_phy_channel(waiting, | 
|  | waiting->waiting); | 
|  | BUG_ON(ret); | 
|  | waiting->phychan_hold--; | 
|  | waiting->state = PL08X_CHAN_RUNNING; | 
|  | waiting->waiting = NULL; | 
|  | pl08x_issue_pending(&waiting->chan); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | spin_unlock_irqrestore(&plchan->lock, flags); | 
|  |  | 
|  | if (txd) { | 
|  | dma_async_tx_callback callback = txd->tx.callback; | 
|  | void *callback_param = txd->tx.callback_param; | 
|  |  | 
|  | /* Don't try to unmap buffers on slave channels */ | 
|  | if (!plchan->slave) | 
|  | pl08x_unmap_buffers(txd); | 
|  |  | 
|  | /* Free the descriptor */ | 
|  | spin_lock_irqsave(&plchan->lock, flags); | 
|  | pl08x_free_txd(pl08x, txd); | 
|  | spin_unlock_irqrestore(&plchan->lock, flags); | 
|  |  | 
|  | /* Callback to signal completion */ | 
|  | if (callback) | 
|  | callback(callback_param); | 
|  | } | 
|  | } | 
|  |  | 
|  | static irqreturn_t pl08x_irq(int irq, void *dev) | 
|  | { | 
|  | struct pl08x_driver_data *pl08x = dev; | 
|  | u32 mask = 0; | 
|  | u32 val; | 
|  | int i; | 
|  |  | 
|  | val = readl(pl08x->base + PL080_ERR_STATUS); | 
|  | if (val) { | 
|  | /* An error interrupt (on one or more channels) */ | 
|  | dev_err(&pl08x->adev->dev, | 
|  | "%s error interrupt, register value 0x%08x\n", | 
|  | __func__, val); | 
|  | /* | 
|  | * Simply clear ALL PL08X error interrupts, | 
|  | * regardless of channel and cause | 
|  | * FIXME: should be 0x00000003 on PL081 really. | 
|  | */ | 
|  | writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR); | 
|  | } | 
|  | val = readl(pl08x->base + PL080_INT_STATUS); | 
|  | for (i = 0; i < pl08x->vd->channels; i++) { | 
|  | if ((1 << i) & val) { | 
|  | /* Locate physical channel */ | 
|  | struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i]; | 
|  | struct pl08x_dma_chan *plchan = phychan->serving; | 
|  |  | 
|  | /* Schedule tasklet on this channel */ | 
|  | tasklet_schedule(&plchan->tasklet); | 
|  |  | 
|  | mask |= (1 << i); | 
|  | } | 
|  | } | 
|  | /* Clear only the terminal interrupts on channels we processed */ | 
|  | writel(mask, pl08x->base + PL080_TC_CLEAR); | 
|  |  | 
|  | return mask ? IRQ_HANDLED : IRQ_NONE; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialise the DMAC memcpy/slave channels. | 
|  | * Make a local wrapper to hold required data | 
|  | */ | 
|  | static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x, | 
|  | struct dma_device *dmadev, | 
|  | unsigned int channels, | 
|  | bool slave) | 
|  | { | 
|  | struct pl08x_dma_chan *chan; | 
|  | int i; | 
|  |  | 
|  | INIT_LIST_HEAD(&dmadev->channels); | 
|  |  | 
|  | /* | 
|  | * Register as many many memcpy as we have physical channels, | 
|  | * we won't always be able to use all but the code will have | 
|  | * to cope with that situation. | 
|  | */ | 
|  | for (i = 0; i < channels; i++) { | 
|  | chan = kzalloc(sizeof(struct pl08x_dma_chan), GFP_KERNEL); | 
|  | if (!chan) { | 
|  | dev_err(&pl08x->adev->dev, | 
|  | "%s no memory for channel\n", __func__); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | chan->host = pl08x; | 
|  | chan->state = PL08X_CHAN_IDLE; | 
|  |  | 
|  | if (slave) { | 
|  | chan->slave = true; | 
|  | chan->name = pl08x->pd->slave_channels[i].bus_id; | 
|  | chan->cd = &pl08x->pd->slave_channels[i]; | 
|  | } else { | 
|  | chan->cd = &pl08x->pd->memcpy_channel; | 
|  | chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i); | 
|  | if (!chan->name) { | 
|  | kfree(chan); | 
|  | return -ENOMEM; | 
|  | } | 
|  | } | 
|  | if (chan->cd->circular_buffer) { | 
|  | dev_err(&pl08x->adev->dev, | 
|  | "channel %s: circular buffers not supported\n", | 
|  | chan->name); | 
|  | kfree(chan); | 
|  | continue; | 
|  | } | 
|  | dev_info(&pl08x->adev->dev, | 
|  | "initialize virtual channel \"%s\"\n", | 
|  | chan->name); | 
|  |  | 
|  | chan->chan.device = dmadev; | 
|  | chan->chan.cookie = 0; | 
|  | chan->lc = 0; | 
|  |  | 
|  | spin_lock_init(&chan->lock); | 
|  | INIT_LIST_HEAD(&chan->pend_list); | 
|  | tasklet_init(&chan->tasklet, pl08x_tasklet, | 
|  | (unsigned long) chan); | 
|  |  | 
|  | list_add_tail(&chan->chan.device_node, &dmadev->channels); | 
|  | } | 
|  | dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n", | 
|  | i, slave ? "slave" : "memcpy"); | 
|  | return i; | 
|  | } | 
|  |  | 
|  | static void pl08x_free_virtual_channels(struct dma_device *dmadev) | 
|  | { | 
|  | struct pl08x_dma_chan *chan = NULL; | 
|  | struct pl08x_dma_chan *next; | 
|  |  | 
|  | list_for_each_entry_safe(chan, | 
|  | next, &dmadev->channels, chan.device_node) { | 
|  | list_del(&chan->chan.device_node); | 
|  | kfree(chan); | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_FS | 
|  | static const char *pl08x_state_str(enum pl08x_dma_chan_state state) | 
|  | { | 
|  | switch (state) { | 
|  | case PL08X_CHAN_IDLE: | 
|  | return "idle"; | 
|  | case PL08X_CHAN_RUNNING: | 
|  | return "running"; | 
|  | case PL08X_CHAN_PAUSED: | 
|  | return "paused"; | 
|  | case PL08X_CHAN_WAITING: | 
|  | return "waiting"; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | return "UNKNOWN STATE"; | 
|  | } | 
|  |  | 
|  | static int pl08x_debugfs_show(struct seq_file *s, void *data) | 
|  | { | 
|  | struct pl08x_driver_data *pl08x = s->private; | 
|  | struct pl08x_dma_chan *chan; | 
|  | struct pl08x_phy_chan *ch; | 
|  | unsigned long flags; | 
|  | int i; | 
|  |  | 
|  | seq_printf(s, "PL08x physical channels:\n"); | 
|  | seq_printf(s, "CHANNEL:\tUSER:\n"); | 
|  | seq_printf(s, "--------\t-----\n"); | 
|  | for (i = 0; i < pl08x->vd->channels; i++) { | 
|  | struct pl08x_dma_chan *virt_chan; | 
|  |  | 
|  | ch = &pl08x->phy_chans[i]; | 
|  |  | 
|  | spin_lock_irqsave(&ch->lock, flags); | 
|  | virt_chan = ch->serving; | 
|  |  | 
|  | seq_printf(s, "%d\t\t%s\n", | 
|  | ch->id, virt_chan ? virt_chan->name : "(none)"); | 
|  |  | 
|  | spin_unlock_irqrestore(&ch->lock, flags); | 
|  | } | 
|  |  | 
|  | seq_printf(s, "\nPL08x virtual memcpy channels:\n"); | 
|  | seq_printf(s, "CHANNEL:\tSTATE:\n"); | 
|  | seq_printf(s, "--------\t------\n"); | 
|  | list_for_each_entry(chan, &pl08x->memcpy.channels, chan.device_node) { | 
|  | seq_printf(s, "%s\t\t%s\n", chan->name, | 
|  | pl08x_state_str(chan->state)); | 
|  | } | 
|  |  | 
|  | seq_printf(s, "\nPL08x virtual slave channels:\n"); | 
|  | seq_printf(s, "CHANNEL:\tSTATE:\n"); | 
|  | seq_printf(s, "--------\t------\n"); | 
|  | list_for_each_entry(chan, &pl08x->slave.channels, chan.device_node) { | 
|  | seq_printf(s, "%s\t\t%s\n", chan->name, | 
|  | pl08x_state_str(chan->state)); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int pl08x_debugfs_open(struct inode *inode, struct file *file) | 
|  | { | 
|  | return single_open(file, pl08x_debugfs_show, inode->i_private); | 
|  | } | 
|  |  | 
|  | static const struct file_operations pl08x_debugfs_operations = { | 
|  | .open		= pl08x_debugfs_open, | 
|  | .read		= seq_read, | 
|  | .llseek		= seq_lseek, | 
|  | .release	= single_release, | 
|  | }; | 
|  |  | 
|  | static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x) | 
|  | { | 
|  | /* Expose a simple debugfs interface to view all clocks */ | 
|  | (void) debugfs_create_file(dev_name(&pl08x->adev->dev), S_IFREG | S_IRUGO, | 
|  | NULL, pl08x, | 
|  | &pl08x_debugfs_operations); | 
|  | } | 
|  |  | 
|  | #else | 
|  | static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x) | 
|  | { | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static int pl08x_probe(struct amba_device *adev, const struct amba_id *id) | 
|  | { | 
|  | struct pl08x_driver_data *pl08x; | 
|  | const struct vendor_data *vd = id->data; | 
|  | int ret = 0; | 
|  | int i; | 
|  |  | 
|  | ret = amba_request_regions(adev, NULL); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* Create the driver state holder */ | 
|  | pl08x = kzalloc(sizeof(struct pl08x_driver_data), GFP_KERNEL); | 
|  | if (!pl08x) { | 
|  | ret = -ENOMEM; | 
|  | goto out_no_pl08x; | 
|  | } | 
|  |  | 
|  | /* Initialize memcpy engine */ | 
|  | dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask); | 
|  | pl08x->memcpy.dev = &adev->dev; | 
|  | pl08x->memcpy.device_alloc_chan_resources = pl08x_alloc_chan_resources; | 
|  | pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources; | 
|  | pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy; | 
|  | pl08x->memcpy.device_prep_dma_interrupt = pl08x_prep_dma_interrupt; | 
|  | pl08x->memcpy.device_tx_status = pl08x_dma_tx_status; | 
|  | pl08x->memcpy.device_issue_pending = pl08x_issue_pending; | 
|  | pl08x->memcpy.device_control = pl08x_control; | 
|  |  | 
|  | /* Initialize slave engine */ | 
|  | dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask); | 
|  | pl08x->slave.dev = &adev->dev; | 
|  | pl08x->slave.device_alloc_chan_resources = pl08x_alloc_chan_resources; | 
|  | pl08x->slave.device_free_chan_resources = pl08x_free_chan_resources; | 
|  | pl08x->slave.device_prep_dma_interrupt = pl08x_prep_dma_interrupt; | 
|  | pl08x->slave.device_tx_status = pl08x_dma_tx_status; | 
|  | pl08x->slave.device_issue_pending = pl08x_issue_pending; | 
|  | pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg; | 
|  | pl08x->slave.device_control = pl08x_control; | 
|  |  | 
|  | /* Get the platform data */ | 
|  | pl08x->pd = dev_get_platdata(&adev->dev); | 
|  | if (!pl08x->pd) { | 
|  | dev_err(&adev->dev, "no platform data supplied\n"); | 
|  | goto out_no_platdata; | 
|  | } | 
|  |  | 
|  | /* Assign useful pointers to the driver state */ | 
|  | pl08x->adev = adev; | 
|  | pl08x->vd = vd; | 
|  |  | 
|  | /* By default, AHB1 only.  If dualmaster, from platform */ | 
|  | pl08x->lli_buses = PL08X_AHB1; | 
|  | pl08x->mem_buses = PL08X_AHB1; | 
|  | if (pl08x->vd->dualmaster) { | 
|  | pl08x->lli_buses = pl08x->pd->lli_buses; | 
|  | pl08x->mem_buses = pl08x->pd->mem_buses; | 
|  | } | 
|  |  | 
|  | /* A DMA memory pool for LLIs, align on 1-byte boundary */ | 
|  | pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev, | 
|  | PL08X_LLI_TSFR_SIZE, PL08X_ALIGN, 0); | 
|  | if (!pl08x->pool) { | 
|  | ret = -ENOMEM; | 
|  | goto out_no_lli_pool; | 
|  | } | 
|  |  | 
|  | spin_lock_init(&pl08x->lock); | 
|  |  | 
|  | pl08x->base = ioremap(adev->res.start, resource_size(&adev->res)); | 
|  | if (!pl08x->base) { | 
|  | ret = -ENOMEM; | 
|  | goto out_no_ioremap; | 
|  | } | 
|  |  | 
|  | /* Turn on the PL08x */ | 
|  | pl08x_ensure_on(pl08x); | 
|  |  | 
|  | /* Attach the interrupt handler */ | 
|  | writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR); | 
|  | writel(0x000000FF, pl08x->base + PL080_TC_CLEAR); | 
|  |  | 
|  | ret = request_irq(adev->irq[0], pl08x_irq, IRQF_DISABLED, | 
|  | DRIVER_NAME, pl08x); | 
|  | if (ret) { | 
|  | dev_err(&adev->dev, "%s failed to request interrupt %d\n", | 
|  | __func__, adev->irq[0]); | 
|  | goto out_no_irq; | 
|  | } | 
|  |  | 
|  | /* Initialize physical channels */ | 
|  | pl08x->phy_chans = kmalloc((vd->channels * sizeof(struct pl08x_phy_chan)), | 
|  | GFP_KERNEL); | 
|  | if (!pl08x->phy_chans) { | 
|  | dev_err(&adev->dev, "%s failed to allocate " | 
|  | "physical channel holders\n", | 
|  | __func__); | 
|  | goto out_no_phychans; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < vd->channels; i++) { | 
|  | struct pl08x_phy_chan *ch = &pl08x->phy_chans[i]; | 
|  |  | 
|  | ch->id = i; | 
|  | ch->base = pl08x->base + PL080_Cx_BASE(i); | 
|  | spin_lock_init(&ch->lock); | 
|  | ch->serving = NULL; | 
|  | ch->signal = -1; | 
|  | dev_info(&adev->dev, | 
|  | "physical channel %d is %s\n", i, | 
|  | pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE"); | 
|  | } | 
|  |  | 
|  | /* Register as many memcpy channels as there are physical channels */ | 
|  | ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy, | 
|  | pl08x->vd->channels, false); | 
|  | if (ret <= 0) { | 
|  | dev_warn(&pl08x->adev->dev, | 
|  | "%s failed to enumerate memcpy channels - %d\n", | 
|  | __func__, ret); | 
|  | goto out_no_memcpy; | 
|  | } | 
|  | pl08x->memcpy.chancnt = ret; | 
|  |  | 
|  | /* Register slave channels */ | 
|  | ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave, | 
|  | pl08x->pd->num_slave_channels, | 
|  | true); | 
|  | if (ret <= 0) { | 
|  | dev_warn(&pl08x->adev->dev, | 
|  | "%s failed to enumerate slave channels - %d\n", | 
|  | __func__, ret); | 
|  | goto out_no_slave; | 
|  | } | 
|  | pl08x->slave.chancnt = ret; | 
|  |  | 
|  | ret = dma_async_device_register(&pl08x->memcpy); | 
|  | if (ret) { | 
|  | dev_warn(&pl08x->adev->dev, | 
|  | "%s failed to register memcpy as an async device - %d\n", | 
|  | __func__, ret); | 
|  | goto out_no_memcpy_reg; | 
|  | } | 
|  |  | 
|  | ret = dma_async_device_register(&pl08x->slave); | 
|  | if (ret) { | 
|  | dev_warn(&pl08x->adev->dev, | 
|  | "%s failed to register slave as an async device - %d\n", | 
|  | __func__, ret); | 
|  | goto out_no_slave_reg; | 
|  | } | 
|  |  | 
|  | amba_set_drvdata(adev, pl08x); | 
|  | init_pl08x_debugfs(pl08x); | 
|  | dev_info(&pl08x->adev->dev, "DMA: PL%03x rev%u at 0x%08llx irq %d\n", | 
|  | amba_part(adev), amba_rev(adev), | 
|  | (unsigned long long)adev->res.start, adev->irq[0]); | 
|  | return 0; | 
|  |  | 
|  | out_no_slave_reg: | 
|  | dma_async_device_unregister(&pl08x->memcpy); | 
|  | out_no_memcpy_reg: | 
|  | pl08x_free_virtual_channels(&pl08x->slave); | 
|  | out_no_slave: | 
|  | pl08x_free_virtual_channels(&pl08x->memcpy); | 
|  | out_no_memcpy: | 
|  | kfree(pl08x->phy_chans); | 
|  | out_no_phychans: | 
|  | free_irq(adev->irq[0], pl08x); | 
|  | out_no_irq: | 
|  | iounmap(pl08x->base); | 
|  | out_no_ioremap: | 
|  | dma_pool_destroy(pl08x->pool); | 
|  | out_no_lli_pool: | 
|  | out_no_platdata: | 
|  | kfree(pl08x); | 
|  | out_no_pl08x: | 
|  | amba_release_regions(adev); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* PL080 has 8 channels and the PL080 have just 2 */ | 
|  | static struct vendor_data vendor_pl080 = { | 
|  | .channels = 8, | 
|  | .dualmaster = true, | 
|  | }; | 
|  |  | 
|  | static struct vendor_data vendor_pl081 = { | 
|  | .channels = 2, | 
|  | .dualmaster = false, | 
|  | }; | 
|  |  | 
|  | static struct amba_id pl08x_ids[] = { | 
|  | /* PL080 */ | 
|  | { | 
|  | .id	= 0x00041080, | 
|  | .mask	= 0x000fffff, | 
|  | .data	= &vendor_pl080, | 
|  | }, | 
|  | /* PL081 */ | 
|  | { | 
|  | .id	= 0x00041081, | 
|  | .mask	= 0x000fffff, | 
|  | .data	= &vendor_pl081, | 
|  | }, | 
|  | /* Nomadik 8815 PL080 variant */ | 
|  | { | 
|  | .id	= 0x00280880, | 
|  | .mask	= 0x00ffffff, | 
|  | .data	= &vendor_pl080, | 
|  | }, | 
|  | { 0, 0 }, | 
|  | }; | 
|  |  | 
|  | static struct amba_driver pl08x_amba_driver = { | 
|  | .drv.name	= DRIVER_NAME, | 
|  | .id_table	= pl08x_ids, | 
|  | .probe		= pl08x_probe, | 
|  | }; | 
|  |  | 
|  | static int __init pl08x_init(void) | 
|  | { | 
|  | int retval; | 
|  | retval = amba_driver_register(&pl08x_amba_driver); | 
|  | if (retval) | 
|  | printk(KERN_WARNING DRIVER_NAME | 
|  | "failed to register as an AMBA device (%d)\n", | 
|  | retval); | 
|  | return retval; | 
|  | } | 
|  | subsys_initcall(pl08x_init); |