|  | /* | 
|  | * ECC algorithm for M-systems disk on chip. We use the excellent Reed | 
|  | * Solmon code of Phil Karn (karn@ka9q.ampr.org) available under the | 
|  | * GNU GPL License. The rest is simply to convert the disk on chip | 
|  | * syndrom into a standard syndom. | 
|  | * | 
|  | * Author: Fabrice Bellard (fabrice.bellard@netgem.com) | 
|  | * Copyright (C) 2000 Netgem S.A. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License as published by | 
|  | * the Free Software Foundation; either version 2 of the License, or | 
|  | * (at your option) any later version. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | * GNU General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * along with this program; if not, write to the Free Software | 
|  | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA | 
|  | */ | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/module.h> | 
|  | #include <asm/errno.h> | 
|  | #include <asm/io.h> | 
|  | #include <asm/uaccess.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/types.h> | 
|  |  | 
|  | #include <linux/mtd/mtd.h> | 
|  | #include <linux/mtd/doc2000.h> | 
|  |  | 
|  | #define DEBUG_ECC 0 | 
|  | /* need to undef it (from asm/termbits.h) */ | 
|  | #undef B0 | 
|  |  | 
|  | #define MM 10 /* Symbol size in bits */ | 
|  | #define KK (1023-4) /* Number of data symbols per block */ | 
|  | #define B0 510 /* First root of generator polynomial, alpha form */ | 
|  | #define PRIM 1 /* power of alpha used to generate roots of generator poly */ | 
|  | #define	NN ((1 << MM) - 1) | 
|  |  | 
|  | typedef unsigned short dtype; | 
|  |  | 
|  | /* 1+x^3+x^10 */ | 
|  | static const int Pp[MM+1] = { 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1 }; | 
|  |  | 
|  | /* This defines the type used to store an element of the Galois Field | 
|  | * used by the code. Make sure this is something larger than a char if | 
|  | * if anything larger than GF(256) is used. | 
|  | * | 
|  | * Note: unsigned char will work up to GF(256) but int seems to run | 
|  | * faster on the Pentium. | 
|  | */ | 
|  | typedef int gf; | 
|  |  | 
|  | /* No legal value in index form represents zero, so | 
|  | * we need a special value for this purpose | 
|  | */ | 
|  | #define A0	(NN) | 
|  |  | 
|  | /* Compute x % NN, where NN is 2**MM - 1, | 
|  | * without a slow divide | 
|  | */ | 
|  | static inline gf | 
|  | modnn(int x) | 
|  | { | 
|  | while (x >= NN) { | 
|  | x -= NN; | 
|  | x = (x >> MM) + (x & NN); | 
|  | } | 
|  | return x; | 
|  | } | 
|  |  | 
|  | #define	CLEAR(a,n) {\ | 
|  | int ci;\ | 
|  | for(ci=(n)-1;ci >=0;ci--)\ | 
|  | (a)[ci] = 0;\ | 
|  | } | 
|  |  | 
|  | #define	COPY(a,b,n) {\ | 
|  | int ci;\ | 
|  | for(ci=(n)-1;ci >=0;ci--)\ | 
|  | (a)[ci] = (b)[ci];\ | 
|  | } | 
|  |  | 
|  | #define	COPYDOWN(a,b,n) {\ | 
|  | int ci;\ | 
|  | for(ci=(n)-1;ci >=0;ci--)\ | 
|  | (a)[ci] = (b)[ci];\ | 
|  | } | 
|  |  | 
|  | #define Ldec 1 | 
|  |  | 
|  | /* generate GF(2**m) from the irreducible polynomial p(X) in Pp[0]..Pp[m] | 
|  | lookup tables:  index->polynomial form   alpha_to[] contains j=alpha**i; | 
|  | polynomial form -> index form  index_of[j=alpha**i] = i | 
|  | alpha=2 is the primitive element of GF(2**m) | 
|  | HARI's COMMENT: (4/13/94) alpha_to[] can be used as follows: | 
|  | Let @ represent the primitive element commonly called "alpha" that | 
|  | is the root of the primitive polynomial p(x). Then in GF(2^m), for any | 
|  | 0 <= i <= 2^m-2, | 
|  | @^i = a(0) + a(1) @ + a(2) @^2 + ... + a(m-1) @^(m-1) | 
|  | where the binary vector (a(0),a(1),a(2),...,a(m-1)) is the representation | 
|  | of the integer "alpha_to[i]" with a(0) being the LSB and a(m-1) the MSB. Thus for | 
|  | example the polynomial representation of @^5 would be given by the binary | 
|  | representation of the integer "alpha_to[5]". | 
|  | Similarly, index_of[] can be used as follows: | 
|  | As above, let @ represent the primitive element of GF(2^m) that is | 
|  | the root of the primitive polynomial p(x). In order to find the power | 
|  | of @ (alpha) that has the polynomial representation | 
|  | a(0) + a(1) @ + a(2) @^2 + ... + a(m-1) @^(m-1) | 
|  | we consider the integer "i" whose binary representation with a(0) being LSB | 
|  | and a(m-1) MSB is (a(0),a(1),...,a(m-1)) and locate the entry | 
|  | "index_of[i]". Now, @^index_of[i] is that element whose polynomial | 
|  | representation is (a(0),a(1),a(2),...,a(m-1)). | 
|  | NOTE: | 
|  | The element alpha_to[2^m-1] = 0 always signifying that the | 
|  | representation of "@^infinity" = 0 is (0,0,0,...,0). | 
|  | Similarly, the element index_of[0] = A0 always signifying | 
|  | that the power of alpha which has the polynomial representation | 
|  | (0,0,...,0) is "infinity". | 
|  |  | 
|  | */ | 
|  |  | 
|  | static void | 
|  | generate_gf(dtype Alpha_to[NN + 1], dtype Index_of[NN + 1]) | 
|  | { | 
|  | register int i, mask; | 
|  |  | 
|  | mask = 1; | 
|  | Alpha_to[MM] = 0; | 
|  | for (i = 0; i < MM; i++) { | 
|  | Alpha_to[i] = mask; | 
|  | Index_of[Alpha_to[i]] = i; | 
|  | /* If Pp[i] == 1 then, term @^i occurs in poly-repr of @^MM */ | 
|  | if (Pp[i] != 0) | 
|  | Alpha_to[MM] ^= mask;	/* Bit-wise EXOR operation */ | 
|  | mask <<= 1;	/* single left-shift */ | 
|  | } | 
|  | Index_of[Alpha_to[MM]] = MM; | 
|  | /* | 
|  | * Have obtained poly-repr of @^MM. Poly-repr of @^(i+1) is given by | 
|  | * poly-repr of @^i shifted left one-bit and accounting for any @^MM | 
|  | * term that may occur when poly-repr of @^i is shifted. | 
|  | */ | 
|  | mask >>= 1; | 
|  | for (i = MM + 1; i < NN; i++) { | 
|  | if (Alpha_to[i - 1] >= mask) | 
|  | Alpha_to[i] = Alpha_to[MM] ^ ((Alpha_to[i - 1] ^ mask) << 1); | 
|  | else | 
|  | Alpha_to[i] = Alpha_to[i - 1] << 1; | 
|  | Index_of[Alpha_to[i]] = i; | 
|  | } | 
|  | Index_of[0] = A0; | 
|  | Alpha_to[NN] = 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Performs ERRORS+ERASURES decoding of RS codes. bb[] is the content | 
|  | * of the feedback shift register after having processed the data and | 
|  | * the ECC. | 
|  | * | 
|  | * Return number of symbols corrected, or -1 if codeword is illegal | 
|  | * or uncorrectable. If eras_pos is non-null, the detected error locations | 
|  | * are written back. NOTE! This array must be at least NN-KK elements long. | 
|  | * The corrected data are written in eras_val[]. They must be xor with the data | 
|  | * to retrieve the correct data : data[erase_pos[i]] ^= erase_val[i] . | 
|  | * | 
|  | * First "no_eras" erasures are declared by the calling program. Then, the | 
|  | * maximum # of errors correctable is t_after_eras = floor((NN-KK-no_eras)/2). | 
|  | * If the number of channel errors is not greater than "t_after_eras" the | 
|  | * transmitted codeword will be recovered. Details of algorithm can be found | 
|  | * in R. Blahut's "Theory ... of Error-Correcting Codes". | 
|  |  | 
|  | * Warning: the eras_pos[] array must not contain duplicate entries; decoder failure | 
|  | * will result. The decoder *could* check for this condition, but it would involve | 
|  | * extra time on every decoding operation. | 
|  | * */ | 
|  | static int | 
|  | eras_dec_rs(dtype Alpha_to[NN + 1], dtype Index_of[NN + 1], | 
|  | gf bb[NN - KK + 1], gf eras_val[NN-KK], int eras_pos[NN-KK], | 
|  | int no_eras) | 
|  | { | 
|  | int deg_lambda, el, deg_omega; | 
|  | int i, j, r,k; | 
|  | gf u,q,tmp,num1,num2,den,discr_r; | 
|  | gf lambda[NN-KK + 1], s[NN-KK + 1];	/* Err+Eras Locator poly | 
|  | * and syndrome poly */ | 
|  | gf b[NN-KK + 1], t[NN-KK + 1], omega[NN-KK + 1]; | 
|  | gf root[NN-KK], reg[NN-KK + 1], loc[NN-KK]; | 
|  | int syn_error, count; | 
|  |  | 
|  | syn_error = 0; | 
|  | for(i=0;i<NN-KK;i++) | 
|  | syn_error |= bb[i]; | 
|  |  | 
|  | if (!syn_error) { | 
|  | /* if remainder is zero, data[] is a codeword and there are no | 
|  | * errors to correct. So return data[] unmodified | 
|  | */ | 
|  | count = 0; | 
|  | goto finish; | 
|  | } | 
|  |  | 
|  | for(i=1;i<=NN-KK;i++){ | 
|  | s[i] = bb[0]; | 
|  | } | 
|  | for(j=1;j<NN-KK;j++){ | 
|  | if(bb[j] == 0) | 
|  | continue; | 
|  | tmp = Index_of[bb[j]]; | 
|  |  | 
|  | for(i=1;i<=NN-KK;i++) | 
|  | s[i] ^= Alpha_to[modnn(tmp + (B0+i-1)*PRIM*j)]; | 
|  | } | 
|  |  | 
|  | /* undo the feedback register implicit multiplication and convert | 
|  | syndromes to index form */ | 
|  |  | 
|  | for(i=1;i<=NN-KK;i++) { | 
|  | tmp = Index_of[s[i]]; | 
|  | if (tmp != A0) | 
|  | tmp = modnn(tmp + 2 * KK * (B0+i-1)*PRIM); | 
|  | s[i] = tmp; | 
|  | } | 
|  |  | 
|  | CLEAR(&lambda[1],NN-KK); | 
|  | lambda[0] = 1; | 
|  |  | 
|  | if (no_eras > 0) { | 
|  | /* Init lambda to be the erasure locator polynomial */ | 
|  | lambda[1] = Alpha_to[modnn(PRIM * eras_pos[0])]; | 
|  | for (i = 1; i < no_eras; i++) { | 
|  | u = modnn(PRIM*eras_pos[i]); | 
|  | for (j = i+1; j > 0; j--) { | 
|  | tmp = Index_of[lambda[j - 1]]; | 
|  | if(tmp != A0) | 
|  | lambda[j] ^= Alpha_to[modnn(u + tmp)]; | 
|  | } | 
|  | } | 
|  | #if DEBUG_ECC >= 1 | 
|  | /* Test code that verifies the erasure locator polynomial just constructed | 
|  | Needed only for decoder debugging. */ | 
|  |  | 
|  | /* find roots of the erasure location polynomial */ | 
|  | for(i=1;i<=no_eras;i++) | 
|  | reg[i] = Index_of[lambda[i]]; | 
|  | count = 0; | 
|  | for (i = 1,k=NN-Ldec; i <= NN; i++,k = modnn(NN+k-Ldec)) { | 
|  | q = 1; | 
|  | for (j = 1; j <= no_eras; j++) | 
|  | if (reg[j] != A0) { | 
|  | reg[j] = modnn(reg[j] + j); | 
|  | q ^= Alpha_to[reg[j]]; | 
|  | } | 
|  | if (q != 0) | 
|  | continue; | 
|  | /* store root and error location number indices */ | 
|  | root[count] = i; | 
|  | loc[count] = k; | 
|  | count++; | 
|  | } | 
|  | if (count != no_eras) { | 
|  | printf("\n lambda(x) is WRONG\n"); | 
|  | count = -1; | 
|  | goto finish; | 
|  | } | 
|  | #if DEBUG_ECC >= 2 | 
|  | printf("\n Erasure positions as determined by roots of Eras Loc Poly:\n"); | 
|  | for (i = 0; i < count; i++) | 
|  | printf("%d ", loc[i]); | 
|  | printf("\n"); | 
|  | #endif | 
|  | #endif | 
|  | } | 
|  | for(i=0;i<NN-KK+1;i++) | 
|  | b[i] = Index_of[lambda[i]]; | 
|  |  | 
|  | /* | 
|  | * Begin Berlekamp-Massey algorithm to determine error+erasure | 
|  | * locator polynomial | 
|  | */ | 
|  | r = no_eras; | 
|  | el = no_eras; | 
|  | while (++r <= NN-KK) {	/* r is the step number */ | 
|  | /* Compute discrepancy at the r-th step in poly-form */ | 
|  | discr_r = 0; | 
|  | for (i = 0; i < r; i++){ | 
|  | if ((lambda[i] != 0) && (s[r - i] != A0)) { | 
|  | discr_r ^= Alpha_to[modnn(Index_of[lambda[i]] + s[r - i])]; | 
|  | } | 
|  | } | 
|  | discr_r = Index_of[discr_r];	/* Index form */ | 
|  | if (discr_r == A0) { | 
|  | /* 2 lines below: B(x) <-- x*B(x) */ | 
|  | COPYDOWN(&b[1],b,NN-KK); | 
|  | b[0] = A0; | 
|  | } else { | 
|  | /* 7 lines below: T(x) <-- lambda(x) - discr_r*x*b(x) */ | 
|  | t[0] = lambda[0]; | 
|  | for (i = 0 ; i < NN-KK; i++) { | 
|  | if(b[i] != A0) | 
|  | t[i+1] = lambda[i+1] ^ Alpha_to[modnn(discr_r + b[i])]; | 
|  | else | 
|  | t[i+1] = lambda[i+1]; | 
|  | } | 
|  | if (2 * el <= r + no_eras - 1) { | 
|  | el = r + no_eras - el; | 
|  | /* | 
|  | * 2 lines below: B(x) <-- inv(discr_r) * | 
|  | * lambda(x) | 
|  | */ | 
|  | for (i = 0; i <= NN-KK; i++) | 
|  | b[i] = (lambda[i] == 0) ? A0 : modnn(Index_of[lambda[i]] - discr_r + NN); | 
|  | } else { | 
|  | /* 2 lines below: B(x) <-- x*B(x) */ | 
|  | COPYDOWN(&b[1],b,NN-KK); | 
|  | b[0] = A0; | 
|  | } | 
|  | COPY(lambda,t,NN-KK+1); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Convert lambda to index form and compute deg(lambda(x)) */ | 
|  | deg_lambda = 0; | 
|  | for(i=0;i<NN-KK+1;i++){ | 
|  | lambda[i] = Index_of[lambda[i]]; | 
|  | if(lambda[i] != A0) | 
|  | deg_lambda = i; | 
|  | } | 
|  | /* | 
|  | * Find roots of the error+erasure locator polynomial by Chien | 
|  | * Search | 
|  | */ | 
|  | COPY(®[1],&lambda[1],NN-KK); | 
|  | count = 0;		/* Number of roots of lambda(x) */ | 
|  | for (i = 1,k=NN-Ldec; i <= NN; i++,k = modnn(NN+k-Ldec)) { | 
|  | q = 1; | 
|  | for (j = deg_lambda; j > 0; j--){ | 
|  | if (reg[j] != A0) { | 
|  | reg[j] = modnn(reg[j] + j); | 
|  | q ^= Alpha_to[reg[j]]; | 
|  | } | 
|  | } | 
|  | if (q != 0) | 
|  | continue; | 
|  | /* store root (index-form) and error location number */ | 
|  | root[count] = i; | 
|  | loc[count] = k; | 
|  | /* If we've already found max possible roots, | 
|  | * abort the search to save time | 
|  | */ | 
|  | if(++count == deg_lambda) | 
|  | break; | 
|  | } | 
|  | if (deg_lambda != count) { | 
|  | /* | 
|  | * deg(lambda) unequal to number of roots => uncorrectable | 
|  | * error detected | 
|  | */ | 
|  | count = -1; | 
|  | goto finish; | 
|  | } | 
|  | /* | 
|  | * Compute err+eras evaluator poly omega(x) = s(x)*lambda(x) (modulo | 
|  | * x**(NN-KK)). in index form. Also find deg(omega). | 
|  | */ | 
|  | deg_omega = 0; | 
|  | for (i = 0; i < NN-KK;i++){ | 
|  | tmp = 0; | 
|  | j = (deg_lambda < i) ? deg_lambda : i; | 
|  | for(;j >= 0; j--){ | 
|  | if ((s[i + 1 - j] != A0) && (lambda[j] != A0)) | 
|  | tmp ^= Alpha_to[modnn(s[i + 1 - j] + lambda[j])]; | 
|  | } | 
|  | if(tmp != 0) | 
|  | deg_omega = i; | 
|  | omega[i] = Index_of[tmp]; | 
|  | } | 
|  | omega[NN-KK] = A0; | 
|  |  | 
|  | /* | 
|  | * Compute error values in poly-form. num1 = omega(inv(X(l))), num2 = | 
|  | * inv(X(l))**(B0-1) and den = lambda_pr(inv(X(l))) all in poly-form | 
|  | */ | 
|  | for (j = count-1; j >=0; j--) { | 
|  | num1 = 0; | 
|  | for (i = deg_omega; i >= 0; i--) { | 
|  | if (omega[i] != A0) | 
|  | num1  ^= Alpha_to[modnn(omega[i] + i * root[j])]; | 
|  | } | 
|  | num2 = Alpha_to[modnn(root[j] * (B0 - 1) + NN)]; | 
|  | den = 0; | 
|  |  | 
|  | /* lambda[i+1] for i even is the formal derivative lambda_pr of lambda[i] */ | 
|  | for (i = min(deg_lambda,NN-KK-1) & ~1; i >= 0; i -=2) { | 
|  | if(lambda[i+1] != A0) | 
|  | den ^= Alpha_to[modnn(lambda[i+1] + i * root[j])]; | 
|  | } | 
|  | if (den == 0) { | 
|  | #if DEBUG_ECC >= 1 | 
|  | printf("\n ERROR: denominator = 0\n"); | 
|  | #endif | 
|  | /* Convert to dual- basis */ | 
|  | count = -1; | 
|  | goto finish; | 
|  | } | 
|  | /* Apply error to data */ | 
|  | if (num1 != 0) { | 
|  | eras_val[j] = Alpha_to[modnn(Index_of[num1] + Index_of[num2] + NN - Index_of[den])]; | 
|  | } else { | 
|  | eras_val[j] = 0; | 
|  | } | 
|  | } | 
|  | finish: | 
|  | for(i=0;i<count;i++) | 
|  | eras_pos[i] = loc[i]; | 
|  | return count; | 
|  | } | 
|  |  | 
|  | /***************************************************************************/ | 
|  | /* The DOC specific code begins here */ | 
|  |  | 
|  | #define SECTOR_SIZE 512 | 
|  | /* The sector bytes are packed into NB_DATA MM bits words */ | 
|  | #define NB_DATA (((SECTOR_SIZE + 1) * 8 + 6) / MM) | 
|  |  | 
|  | /* | 
|  | * Correct the errors in 'sector[]' by using 'ecc1[]' which is the | 
|  | * content of the feedback shift register applyied to the sector and | 
|  | * the ECC. Return the number of errors corrected (and correct them in | 
|  | * sector), or -1 if error | 
|  | */ | 
|  | int doc_decode_ecc(unsigned char sector[SECTOR_SIZE], unsigned char ecc1[6]) | 
|  | { | 
|  | int parity, i, nb_errors; | 
|  | gf bb[NN - KK + 1]; | 
|  | gf error_val[NN-KK]; | 
|  | int error_pos[NN-KK], pos, bitpos, index, val; | 
|  | dtype *Alpha_to, *Index_of; | 
|  |  | 
|  | /* init log and exp tables here to save memory. However, it is slower */ | 
|  | Alpha_to = kmalloc((NN + 1) * sizeof(dtype), GFP_KERNEL); | 
|  | if (!Alpha_to) | 
|  | return -1; | 
|  |  | 
|  | Index_of = kmalloc((NN + 1) * sizeof(dtype), GFP_KERNEL); | 
|  | if (!Index_of) { | 
|  | kfree(Alpha_to); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | generate_gf(Alpha_to, Index_of); | 
|  |  | 
|  | parity = ecc1[1]; | 
|  |  | 
|  | bb[0] =  (ecc1[4] & 0xff) | ((ecc1[5] & 0x03) << 8); | 
|  | bb[1] = ((ecc1[5] & 0xfc) >> 2) | ((ecc1[2] & 0x0f) << 6); | 
|  | bb[2] = ((ecc1[2] & 0xf0) >> 4) | ((ecc1[3] & 0x3f) << 4); | 
|  | bb[3] = ((ecc1[3] & 0xc0) >> 6) | ((ecc1[0] & 0xff) << 2); | 
|  |  | 
|  | nb_errors = eras_dec_rs(Alpha_to, Index_of, bb, | 
|  | error_val, error_pos, 0); | 
|  | if (nb_errors <= 0) | 
|  | goto the_end; | 
|  |  | 
|  | /* correct the errors */ | 
|  | for(i=0;i<nb_errors;i++) { | 
|  | pos = error_pos[i]; | 
|  | if (pos >= NB_DATA && pos < KK) { | 
|  | nb_errors = -1; | 
|  | goto the_end; | 
|  | } | 
|  | if (pos < NB_DATA) { | 
|  | /* extract bit position (MSB first) */ | 
|  | pos = 10 * (NB_DATA - 1 - pos) - 6; | 
|  | /* now correct the following 10 bits. At most two bytes | 
|  | can be modified since pos is even */ | 
|  | index = (pos >> 3) ^ 1; | 
|  | bitpos = pos & 7; | 
|  | if ((index >= 0 && index < SECTOR_SIZE) || | 
|  | index == (SECTOR_SIZE + 1)) { | 
|  | val = error_val[i] >> (2 + bitpos); | 
|  | parity ^= val; | 
|  | if (index < SECTOR_SIZE) | 
|  | sector[index] ^= val; | 
|  | } | 
|  | index = ((pos >> 3) + 1) ^ 1; | 
|  | bitpos = (bitpos + 10) & 7; | 
|  | if (bitpos == 0) | 
|  | bitpos = 8; | 
|  | if ((index >= 0 && index < SECTOR_SIZE) || | 
|  | index == (SECTOR_SIZE + 1)) { | 
|  | val = error_val[i] << (8 - bitpos); | 
|  | parity ^= val; | 
|  | if (index < SECTOR_SIZE) | 
|  | sector[index] ^= val; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* use parity to test extra errors */ | 
|  | if ((parity & 0xff) != 0) | 
|  | nb_errors = -1; | 
|  |  | 
|  | the_end: | 
|  | kfree(Alpha_to); | 
|  | kfree(Index_of); | 
|  | return nb_errors; | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL_GPL(doc_decode_ecc); | 
|  |  | 
|  | MODULE_LICENSE("GPL"); | 
|  | MODULE_AUTHOR("Fabrice Bellard <fabrice.bellard@netgem.com>"); | 
|  | MODULE_DESCRIPTION("ECC code for correcting errors detected by DiskOnChip 2000 and Millennium ECC hardware"); |