blob: c58beaf8afbcd8313be23e08bda7cbbcd158bb31 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/mutex.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/pm_domain.h>
#include <linux/pm_opp.h>
#include <linux/pm_runtime.h>
#include <linux/slab.h>
#include <soc/tegra/common.h>
#include "clk.h"
/*
* This driver manages performance state of the core power domain for the
* independent PLLs and system clocks. We created a virtual clock device
* for such clocks, see tegra_clk_dev_register().
*/
struct tegra_clk_device {
struct notifier_block clk_nb;
struct device *dev;
struct clk_hw *hw;
struct mutex lock;
};
static int tegra_clock_set_pd_state(struct tegra_clk_device *clk_dev,
unsigned long rate)
{
struct device *dev = clk_dev->dev;
struct dev_pm_opp *opp;
unsigned int pstate;
opp = dev_pm_opp_find_freq_ceil(dev, &rate);
if (opp == ERR_PTR(-ERANGE)) {
/*
* Some clocks may be unused by a particular board and they
* may have uninitiated clock rate that is overly high. In
* this case clock is expected to be disabled, but still we
* need to set up performance state of the power domain and
* not error out clk initialization. A typical example is
* a PCIe clock on Android tablets.
*/
dev_dbg(dev, "failed to find ceil OPP for %luHz\n", rate);
opp = dev_pm_opp_find_freq_floor(dev, &rate);
}
if (IS_ERR(opp)) {
dev_err(dev, "failed to find OPP for %luHz: %pe\n", rate, opp);
return PTR_ERR(opp);
}
pstate = dev_pm_opp_get_required_pstate(opp, 0);
dev_pm_opp_put(opp);
return dev_pm_genpd_set_performance_state(dev, pstate);
}
static int tegra_clock_change_notify(struct notifier_block *nb,
unsigned long msg, void *data)
{
struct clk_notifier_data *cnd = data;
struct tegra_clk_device *clk_dev;
int err = 0;
clk_dev = container_of(nb, struct tegra_clk_device, clk_nb);
mutex_lock(&clk_dev->lock);
switch (msg) {
case PRE_RATE_CHANGE:
if (cnd->new_rate > cnd->old_rate)
err = tegra_clock_set_pd_state(clk_dev, cnd->new_rate);
break;
case ABORT_RATE_CHANGE:
err = tegra_clock_set_pd_state(clk_dev, cnd->old_rate);
break;
case POST_RATE_CHANGE:
if (cnd->new_rate < cnd->old_rate)
err = tegra_clock_set_pd_state(clk_dev, cnd->new_rate);
break;
default:
break;
}
mutex_unlock(&clk_dev->lock);
return notifier_from_errno(err);
}
static int tegra_clock_sync_pd_state(struct tegra_clk_device *clk_dev)
{
unsigned long rate;
int ret;
mutex_lock(&clk_dev->lock);
rate = clk_hw_get_rate(clk_dev->hw);
ret = tegra_clock_set_pd_state(clk_dev, rate);
mutex_unlock(&clk_dev->lock);
return ret;
}
static int tegra_clock_probe(struct platform_device *pdev)
{
struct tegra_core_opp_params opp_params = {};
struct tegra_clk_device *clk_dev;
struct device *dev = &pdev->dev;
struct clk *clk;
int err;
if (!dev->pm_domain)
return -EINVAL;
clk_dev = devm_kzalloc(dev, sizeof(*clk_dev), GFP_KERNEL);
if (!clk_dev)
return -ENOMEM;
clk = devm_clk_get(dev, NULL);
if (IS_ERR(clk))
return PTR_ERR(clk);
clk_dev->dev = dev;
clk_dev->hw = __clk_get_hw(clk);
clk_dev->clk_nb.notifier_call = tegra_clock_change_notify;
mutex_init(&clk_dev->lock);
platform_set_drvdata(pdev, clk_dev);
/*
* Runtime PM was already enabled for this device by the parent clk
* driver and power domain state should be synced under clk_dev lock,
* hence we don't use the common OPP helper that initializes OPP
* state. For some clocks common OPP helper may fail to find ceil
* rate, it's handled by this driver.
*/
err = devm_tegra_core_dev_init_opp_table(dev, &opp_params);
if (err)
return err;
err = clk_notifier_register(clk, &clk_dev->clk_nb);
if (err) {
dev_err(dev, "failed to register clk notifier: %d\n", err);
return err;
}
/*
* The driver is attaching to a potentially active/resumed clock, hence
* we need to sync the power domain performance state in a accordance to
* the clock rate if clock is resumed.
*/
err = tegra_clock_sync_pd_state(clk_dev);
if (err)
goto unreg_clk;
return 0;
unreg_clk:
clk_notifier_unregister(clk, &clk_dev->clk_nb);
return err;
}
/*
* Tegra GENPD driver enables clocks during NOIRQ phase. It can't be done
* for clocks served by this driver because runtime PM is unavailable in
* NOIRQ phase. We will keep clocks resumed during suspend to mitigate this
* problem. In practice this makes no difference from a power management
* perspective since voltage is kept at a nominal level during suspend anyways.
*/
static const struct dev_pm_ops tegra_clock_pm = {
SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_resume_and_get, pm_runtime_put)
};
static const struct of_device_id tegra_clock_match[] = {
{ .compatible = "nvidia,tegra20-sclk" },
{ .compatible = "nvidia,tegra30-sclk" },
{ .compatible = "nvidia,tegra30-pllc" },
{ .compatible = "nvidia,tegra30-plle" },
{ .compatible = "nvidia,tegra30-pllm" },
{ }
};
static struct platform_driver tegra_clock_driver = {
.driver = {
.name = "tegra-clock",
.of_match_table = tegra_clock_match,
.pm = &tegra_clock_pm,
.suppress_bind_attrs = true,
},
.probe = tegra_clock_probe,
};
builtin_platform_driver(tegra_clock_driver);