blob: a00cf4756ad0e2f371742e760183882773a80243 [file] [log] [blame]
/*
* Copyright 2019 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include <linux/firmware.h>
#include <drm/drm_exec.h>
#include "amdgpu_mes.h"
#include "amdgpu.h"
#include "soc15_common.h"
#include "amdgpu_mes_ctx.h"
#define AMDGPU_MES_MAX_NUM_OF_QUEUES_PER_PROCESS 1024
#define AMDGPU_ONE_DOORBELL_SIZE 8
int amdgpu_mes_doorbell_process_slice(struct amdgpu_device *adev)
{
return roundup(AMDGPU_ONE_DOORBELL_SIZE *
AMDGPU_MES_MAX_NUM_OF_QUEUES_PER_PROCESS,
PAGE_SIZE);
}
static int amdgpu_mes_kernel_doorbell_get(struct amdgpu_device *adev,
struct amdgpu_mes_process *process,
int ip_type, uint64_t *doorbell_index)
{
unsigned int offset, found;
struct amdgpu_mes *mes = &adev->mes;
if (ip_type == AMDGPU_RING_TYPE_SDMA)
offset = adev->doorbell_index.sdma_engine[0];
else
offset = 0;
found = find_next_zero_bit(mes->doorbell_bitmap, mes->num_mes_dbs, offset);
if (found >= mes->num_mes_dbs) {
DRM_WARN("No doorbell available\n");
return -ENOSPC;
}
set_bit(found, mes->doorbell_bitmap);
/* Get the absolute doorbell index on BAR */
*doorbell_index = mes->db_start_dw_offset + found * 2;
return 0;
}
static void amdgpu_mes_kernel_doorbell_free(struct amdgpu_device *adev,
struct amdgpu_mes_process *process,
uint32_t doorbell_index)
{
unsigned int old, rel_index;
struct amdgpu_mes *mes = &adev->mes;
/* Find the relative index of the doorbell in this object */
rel_index = (doorbell_index - mes->db_start_dw_offset) / 2;
old = test_and_clear_bit(rel_index, mes->doorbell_bitmap);
WARN_ON(!old);
}
static int amdgpu_mes_doorbell_init(struct amdgpu_device *adev)
{
int i;
struct amdgpu_mes *mes = &adev->mes;
/* Bitmap for dynamic allocation of kernel doorbells */
mes->doorbell_bitmap = bitmap_zalloc(PAGE_SIZE / sizeof(u32), GFP_KERNEL);
if (!mes->doorbell_bitmap) {
DRM_ERROR("Failed to allocate MES doorbell bitmap\n");
return -ENOMEM;
}
mes->num_mes_dbs = PAGE_SIZE / AMDGPU_ONE_DOORBELL_SIZE;
for (i = 0; i < AMDGPU_MES_PRIORITY_NUM_LEVELS; i++) {
adev->mes.aggregated_doorbells[i] = mes->db_start_dw_offset + i * 2;
set_bit(i, mes->doorbell_bitmap);
}
return 0;
}
static int amdgpu_mes_event_log_init(struct amdgpu_device *adev)
{
int r;
if (!amdgpu_mes_log_enable)
return 0;
r = amdgpu_bo_create_kernel(adev, AMDGPU_MES_LOG_BUFFER_SIZE, PAGE_SIZE,
AMDGPU_GEM_DOMAIN_GTT,
&adev->mes.event_log_gpu_obj,
&adev->mes.event_log_gpu_addr,
&adev->mes.event_log_cpu_addr);
if (r) {
dev_warn(adev->dev, "failed to create MES event log buffer (%d)", r);
return r;
}
memset(adev->mes.event_log_cpu_addr, 0, PAGE_SIZE);
return 0;
}
static void amdgpu_mes_doorbell_free(struct amdgpu_device *adev)
{
bitmap_free(adev->mes.doorbell_bitmap);
}
int amdgpu_mes_init(struct amdgpu_device *adev)
{
int i, r;
adev->mes.adev = adev;
idr_init(&adev->mes.pasid_idr);
idr_init(&adev->mes.gang_id_idr);
idr_init(&adev->mes.queue_id_idr);
ida_init(&adev->mes.doorbell_ida);
spin_lock_init(&adev->mes.queue_id_lock);
spin_lock_init(&adev->mes.ring_lock);
mutex_init(&adev->mes.mutex_hidden);
adev->mes.total_max_queue = AMDGPU_FENCE_MES_QUEUE_ID_MASK;
adev->mes.vmid_mask_mmhub = 0xffffff00;
adev->mes.vmid_mask_gfxhub = 0xffffff00;
for (i = 0; i < AMDGPU_MES_MAX_COMPUTE_PIPES; i++) {
/* use only 1st MEC pipes */
if (i >= 4)
continue;
adev->mes.compute_hqd_mask[i] = 0xc;
}
for (i = 0; i < AMDGPU_MES_MAX_GFX_PIPES; i++)
adev->mes.gfx_hqd_mask[i] = i ? 0 : 0xfffffffe;
for (i = 0; i < AMDGPU_MES_MAX_SDMA_PIPES; i++) {
if (amdgpu_ip_version(adev, SDMA0_HWIP, 0) <
IP_VERSION(6, 0, 0))
adev->mes.sdma_hqd_mask[i] = i ? 0 : 0x3fc;
/* zero sdma_hqd_mask for non-existent engine */
else if (adev->sdma.num_instances == 1)
adev->mes.sdma_hqd_mask[i] = i ? 0 : 0xfc;
else
adev->mes.sdma_hqd_mask[i] = 0xfc;
}
r = amdgpu_device_wb_get(adev, &adev->mes.sch_ctx_offs);
if (r) {
dev_err(adev->dev,
"(%d) ring trail_fence_offs wb alloc failed\n", r);
goto error_ids;
}
adev->mes.sch_ctx_gpu_addr =
adev->wb.gpu_addr + (adev->mes.sch_ctx_offs * 4);
adev->mes.sch_ctx_ptr =
(uint64_t *)&adev->wb.wb[adev->mes.sch_ctx_offs];
r = amdgpu_device_wb_get(adev, &adev->mes.query_status_fence_offs);
if (r) {
amdgpu_device_wb_free(adev, adev->mes.sch_ctx_offs);
dev_err(adev->dev,
"(%d) query_status_fence_offs wb alloc failed\n", r);
goto error_ids;
}
adev->mes.query_status_fence_gpu_addr =
adev->wb.gpu_addr + (adev->mes.query_status_fence_offs * 4);
adev->mes.query_status_fence_ptr =
(uint64_t *)&adev->wb.wb[adev->mes.query_status_fence_offs];
r = amdgpu_device_wb_get(adev, &adev->mes.read_val_offs);
if (r) {
amdgpu_device_wb_free(adev, adev->mes.sch_ctx_offs);
amdgpu_device_wb_free(adev, adev->mes.query_status_fence_offs);
dev_err(adev->dev,
"(%d) read_val_offs alloc failed\n", r);
goto error_ids;
}
adev->mes.read_val_gpu_addr =
adev->wb.gpu_addr + (adev->mes.read_val_offs * 4);
adev->mes.read_val_ptr =
(uint32_t *)&adev->wb.wb[adev->mes.read_val_offs];
r = amdgpu_mes_doorbell_init(adev);
if (r)
goto error;
r = amdgpu_mes_event_log_init(adev);
if (r)
goto error_doorbell;
return 0;
error_doorbell:
amdgpu_mes_doorbell_free(adev);
error:
amdgpu_device_wb_free(adev, adev->mes.sch_ctx_offs);
amdgpu_device_wb_free(adev, adev->mes.query_status_fence_offs);
amdgpu_device_wb_free(adev, adev->mes.read_val_offs);
error_ids:
idr_destroy(&adev->mes.pasid_idr);
idr_destroy(&adev->mes.gang_id_idr);
idr_destroy(&adev->mes.queue_id_idr);
ida_destroy(&adev->mes.doorbell_ida);
mutex_destroy(&adev->mes.mutex_hidden);
return r;
}
void amdgpu_mes_fini(struct amdgpu_device *adev)
{
amdgpu_bo_free_kernel(&adev->mes.event_log_gpu_obj,
&adev->mes.event_log_gpu_addr,
&adev->mes.event_log_cpu_addr);
amdgpu_device_wb_free(adev, adev->mes.sch_ctx_offs);
amdgpu_device_wb_free(adev, adev->mes.query_status_fence_offs);
amdgpu_device_wb_free(adev, adev->mes.read_val_offs);
amdgpu_mes_doorbell_free(adev);
idr_destroy(&adev->mes.pasid_idr);
idr_destroy(&adev->mes.gang_id_idr);
idr_destroy(&adev->mes.queue_id_idr);
ida_destroy(&adev->mes.doorbell_ida);
mutex_destroy(&adev->mes.mutex_hidden);
}
static void amdgpu_mes_queue_free_mqd(struct amdgpu_mes_queue *q)
{
amdgpu_bo_free_kernel(&q->mqd_obj,
&q->mqd_gpu_addr,
&q->mqd_cpu_ptr);
}
int amdgpu_mes_create_process(struct amdgpu_device *adev, int pasid,
struct amdgpu_vm *vm)
{
struct amdgpu_mes_process *process;
int r;
/* allocate the mes process buffer */
process = kzalloc(sizeof(struct amdgpu_mes_process), GFP_KERNEL);
if (!process) {
DRM_ERROR("no more memory to create mes process\n");
return -ENOMEM;
}
/* allocate the process context bo and map it */
r = amdgpu_bo_create_kernel(adev, AMDGPU_MES_PROC_CTX_SIZE, PAGE_SIZE,
AMDGPU_GEM_DOMAIN_GTT,
&process->proc_ctx_bo,
&process->proc_ctx_gpu_addr,
&process->proc_ctx_cpu_ptr);
if (r) {
DRM_ERROR("failed to allocate process context bo\n");
goto clean_up_memory;
}
memset(process->proc_ctx_cpu_ptr, 0, AMDGPU_MES_PROC_CTX_SIZE);
/*
* Avoid taking any other locks under MES lock to avoid circular
* lock dependencies.
*/
amdgpu_mes_lock(&adev->mes);
/* add the mes process to idr list */
r = idr_alloc(&adev->mes.pasid_idr, process, pasid, pasid + 1,
GFP_KERNEL);
if (r < 0) {
DRM_ERROR("failed to lock pasid=%d\n", pasid);
goto clean_up_ctx;
}
INIT_LIST_HEAD(&process->gang_list);
process->vm = vm;
process->pasid = pasid;
process->process_quantum = adev->mes.default_process_quantum;
process->pd_gpu_addr = amdgpu_bo_gpu_offset(vm->root.bo);
amdgpu_mes_unlock(&adev->mes);
return 0;
clean_up_ctx:
amdgpu_mes_unlock(&adev->mes);
amdgpu_bo_free_kernel(&process->proc_ctx_bo,
&process->proc_ctx_gpu_addr,
&process->proc_ctx_cpu_ptr);
clean_up_memory:
kfree(process);
return r;
}
void amdgpu_mes_destroy_process(struct amdgpu_device *adev, int pasid)
{
struct amdgpu_mes_process *process;
struct amdgpu_mes_gang *gang, *tmp1;
struct amdgpu_mes_queue *queue, *tmp2;
struct mes_remove_queue_input queue_input;
unsigned long flags;
int r;
/*
* Avoid taking any other locks under MES lock to avoid circular
* lock dependencies.
*/
amdgpu_mes_lock(&adev->mes);
process = idr_find(&adev->mes.pasid_idr, pasid);
if (!process) {
DRM_WARN("pasid %d doesn't exist\n", pasid);
amdgpu_mes_unlock(&adev->mes);
return;
}
/* Remove all queues from hardware */
list_for_each_entry_safe(gang, tmp1, &process->gang_list, list) {
list_for_each_entry_safe(queue, tmp2, &gang->queue_list, list) {
spin_lock_irqsave(&adev->mes.queue_id_lock, flags);
idr_remove(&adev->mes.queue_id_idr, queue->queue_id);
spin_unlock_irqrestore(&adev->mes.queue_id_lock, flags);
queue_input.doorbell_offset = queue->doorbell_off;
queue_input.gang_context_addr = gang->gang_ctx_gpu_addr;
r = adev->mes.funcs->remove_hw_queue(&adev->mes,
&queue_input);
if (r)
DRM_WARN("failed to remove hardware queue\n");
}
idr_remove(&adev->mes.gang_id_idr, gang->gang_id);
}
idr_remove(&adev->mes.pasid_idr, pasid);
amdgpu_mes_unlock(&adev->mes);
/* free all memory allocated by the process */
list_for_each_entry_safe(gang, tmp1, &process->gang_list, list) {
/* free all queues in the gang */
list_for_each_entry_safe(queue, tmp2, &gang->queue_list, list) {
amdgpu_mes_queue_free_mqd(queue);
list_del(&queue->list);
kfree(queue);
}
amdgpu_bo_free_kernel(&gang->gang_ctx_bo,
&gang->gang_ctx_gpu_addr,
&gang->gang_ctx_cpu_ptr);
list_del(&gang->list);
kfree(gang);
}
amdgpu_bo_free_kernel(&process->proc_ctx_bo,
&process->proc_ctx_gpu_addr,
&process->proc_ctx_cpu_ptr);
kfree(process);
}
int amdgpu_mes_add_gang(struct amdgpu_device *adev, int pasid,
struct amdgpu_mes_gang_properties *gprops,
int *gang_id)
{
struct amdgpu_mes_process *process;
struct amdgpu_mes_gang *gang;
int r;
/* allocate the mes gang buffer */
gang = kzalloc(sizeof(struct amdgpu_mes_gang), GFP_KERNEL);
if (!gang) {
return -ENOMEM;
}
/* allocate the gang context bo and map it to cpu space */
r = amdgpu_bo_create_kernel(adev, AMDGPU_MES_GANG_CTX_SIZE, PAGE_SIZE,
AMDGPU_GEM_DOMAIN_GTT,
&gang->gang_ctx_bo,
&gang->gang_ctx_gpu_addr,
&gang->gang_ctx_cpu_ptr);
if (r) {
DRM_ERROR("failed to allocate process context bo\n");
goto clean_up_mem;
}
memset(gang->gang_ctx_cpu_ptr, 0, AMDGPU_MES_GANG_CTX_SIZE);
/*
* Avoid taking any other locks under MES lock to avoid circular
* lock dependencies.
*/
amdgpu_mes_lock(&adev->mes);
process = idr_find(&adev->mes.pasid_idr, pasid);
if (!process) {
DRM_ERROR("pasid %d doesn't exist\n", pasid);
r = -EINVAL;
goto clean_up_ctx;
}
/* add the mes gang to idr list */
r = idr_alloc(&adev->mes.gang_id_idr, gang, 1, 0,
GFP_KERNEL);
if (r < 0) {
DRM_ERROR("failed to allocate idr for gang\n");
goto clean_up_ctx;
}
gang->gang_id = r;
*gang_id = r;
INIT_LIST_HEAD(&gang->queue_list);
gang->process = process;
gang->priority = gprops->priority;
gang->gang_quantum = gprops->gang_quantum ?
gprops->gang_quantum : adev->mes.default_gang_quantum;
gang->global_priority_level = gprops->global_priority_level;
gang->inprocess_gang_priority = gprops->inprocess_gang_priority;
list_add_tail(&gang->list, &process->gang_list);
amdgpu_mes_unlock(&adev->mes);
return 0;
clean_up_ctx:
amdgpu_mes_unlock(&adev->mes);
amdgpu_bo_free_kernel(&gang->gang_ctx_bo,
&gang->gang_ctx_gpu_addr,
&gang->gang_ctx_cpu_ptr);
clean_up_mem:
kfree(gang);
return r;
}
int amdgpu_mes_remove_gang(struct amdgpu_device *adev, int gang_id)
{
struct amdgpu_mes_gang *gang;
/*
* Avoid taking any other locks under MES lock to avoid circular
* lock dependencies.
*/
amdgpu_mes_lock(&adev->mes);
gang = idr_find(&adev->mes.gang_id_idr, gang_id);
if (!gang) {
DRM_ERROR("gang id %d doesn't exist\n", gang_id);
amdgpu_mes_unlock(&adev->mes);
return -EINVAL;
}
if (!list_empty(&gang->queue_list)) {
DRM_ERROR("queue list is not empty\n");
amdgpu_mes_unlock(&adev->mes);
return -EBUSY;
}
idr_remove(&adev->mes.gang_id_idr, gang->gang_id);
list_del(&gang->list);
amdgpu_mes_unlock(&adev->mes);
amdgpu_bo_free_kernel(&gang->gang_ctx_bo,
&gang->gang_ctx_gpu_addr,
&gang->gang_ctx_cpu_ptr);
kfree(gang);
return 0;
}
int amdgpu_mes_suspend(struct amdgpu_device *adev)
{
struct idr *idp;
struct amdgpu_mes_process *process;
struct amdgpu_mes_gang *gang;
struct mes_suspend_gang_input input;
int r, pasid;
/*
* Avoid taking any other locks under MES lock to avoid circular
* lock dependencies.
*/
amdgpu_mes_lock(&adev->mes);
idp = &adev->mes.pasid_idr;
idr_for_each_entry(idp, process, pasid) {
list_for_each_entry(gang, &process->gang_list, list) {
r = adev->mes.funcs->suspend_gang(&adev->mes, &input);
if (r)
DRM_ERROR("failed to suspend pasid %d gangid %d",
pasid, gang->gang_id);
}
}
amdgpu_mes_unlock(&adev->mes);
return 0;
}
int amdgpu_mes_resume(struct amdgpu_device *adev)
{
struct idr *idp;
struct amdgpu_mes_process *process;
struct amdgpu_mes_gang *gang;
struct mes_resume_gang_input input;
int r, pasid;
/*
* Avoid taking any other locks under MES lock to avoid circular
* lock dependencies.
*/
amdgpu_mes_lock(&adev->mes);
idp = &adev->mes.pasid_idr;
idr_for_each_entry(idp, process, pasid) {
list_for_each_entry(gang, &process->gang_list, list) {
r = adev->mes.funcs->resume_gang(&adev->mes, &input);
if (r)
DRM_ERROR("failed to resume pasid %d gangid %d",
pasid, gang->gang_id);
}
}
amdgpu_mes_unlock(&adev->mes);
return 0;
}
static int amdgpu_mes_queue_alloc_mqd(struct amdgpu_device *adev,
struct amdgpu_mes_queue *q,
struct amdgpu_mes_queue_properties *p)
{
struct amdgpu_mqd *mqd_mgr = &adev->mqds[p->queue_type];
u32 mqd_size = mqd_mgr->mqd_size;
int r;
r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE,
AMDGPU_GEM_DOMAIN_GTT,
&q->mqd_obj,
&q->mqd_gpu_addr, &q->mqd_cpu_ptr);
if (r) {
dev_warn(adev->dev, "failed to create queue mqd bo (%d)", r);
return r;
}
memset(q->mqd_cpu_ptr, 0, mqd_size);
r = amdgpu_bo_reserve(q->mqd_obj, false);
if (unlikely(r != 0))
goto clean_up;
return 0;
clean_up:
amdgpu_bo_free_kernel(&q->mqd_obj,
&q->mqd_gpu_addr,
&q->mqd_cpu_ptr);
return r;
}
static void amdgpu_mes_queue_init_mqd(struct amdgpu_device *adev,
struct amdgpu_mes_queue *q,
struct amdgpu_mes_queue_properties *p)
{
struct amdgpu_mqd *mqd_mgr = &adev->mqds[p->queue_type];
struct amdgpu_mqd_prop mqd_prop = {0};
mqd_prop.mqd_gpu_addr = q->mqd_gpu_addr;
mqd_prop.hqd_base_gpu_addr = p->hqd_base_gpu_addr;
mqd_prop.rptr_gpu_addr = p->rptr_gpu_addr;
mqd_prop.wptr_gpu_addr = p->wptr_gpu_addr;
mqd_prop.queue_size = p->queue_size;
mqd_prop.use_doorbell = true;
mqd_prop.doorbell_index = p->doorbell_off;
mqd_prop.eop_gpu_addr = p->eop_gpu_addr;
mqd_prop.hqd_pipe_priority = p->hqd_pipe_priority;
mqd_prop.hqd_queue_priority = p->hqd_queue_priority;
mqd_prop.hqd_active = false;
if (p->queue_type == AMDGPU_RING_TYPE_GFX ||
p->queue_type == AMDGPU_RING_TYPE_COMPUTE) {
mutex_lock(&adev->srbm_mutex);
amdgpu_gfx_select_me_pipe_q(adev, p->ring->me, p->ring->pipe, 0, 0, 0);
}
mqd_mgr->init_mqd(adev, q->mqd_cpu_ptr, &mqd_prop);
if (p->queue_type == AMDGPU_RING_TYPE_GFX ||
p->queue_type == AMDGPU_RING_TYPE_COMPUTE) {
amdgpu_gfx_select_me_pipe_q(adev, 0, 0, 0, 0, 0);
mutex_unlock(&adev->srbm_mutex);
}
amdgpu_bo_unreserve(q->mqd_obj);
}
int amdgpu_mes_add_hw_queue(struct amdgpu_device *adev, int gang_id,
struct amdgpu_mes_queue_properties *qprops,
int *queue_id)
{
struct amdgpu_mes_queue *queue;
struct amdgpu_mes_gang *gang;
struct mes_add_queue_input queue_input;
unsigned long flags;
int r;
memset(&queue_input, 0, sizeof(struct mes_add_queue_input));
/* allocate the mes queue buffer */
queue = kzalloc(sizeof(struct amdgpu_mes_queue), GFP_KERNEL);
if (!queue) {
DRM_ERROR("Failed to allocate memory for queue\n");
return -ENOMEM;
}
/* Allocate the queue mqd */
r = amdgpu_mes_queue_alloc_mqd(adev, queue, qprops);
if (r)
goto clean_up_memory;
/*
* Avoid taking any other locks under MES lock to avoid circular
* lock dependencies.
*/
amdgpu_mes_lock(&adev->mes);
gang = idr_find(&adev->mes.gang_id_idr, gang_id);
if (!gang) {
DRM_ERROR("gang id %d doesn't exist\n", gang_id);
r = -EINVAL;
goto clean_up_mqd;
}
/* add the mes gang to idr list */
spin_lock_irqsave(&adev->mes.queue_id_lock, flags);
r = idr_alloc(&adev->mes.queue_id_idr, queue, 1, 0,
GFP_ATOMIC);
if (r < 0) {
spin_unlock_irqrestore(&adev->mes.queue_id_lock, flags);
goto clean_up_mqd;
}
spin_unlock_irqrestore(&adev->mes.queue_id_lock, flags);
*queue_id = queue->queue_id = r;
/* allocate a doorbell index for the queue */
r = amdgpu_mes_kernel_doorbell_get(adev, gang->process,
qprops->queue_type,
&qprops->doorbell_off);
if (r)
goto clean_up_queue_id;
/* initialize the queue mqd */
amdgpu_mes_queue_init_mqd(adev, queue, qprops);
/* add hw queue to mes */
queue_input.process_id = gang->process->pasid;
queue_input.page_table_base_addr =
adev->vm_manager.vram_base_offset + gang->process->pd_gpu_addr -
adev->gmc.vram_start;
queue_input.process_va_start = 0;
queue_input.process_va_end =
(adev->vm_manager.max_pfn - 1) << AMDGPU_GPU_PAGE_SHIFT;
queue_input.process_quantum = gang->process->process_quantum;
queue_input.process_context_addr = gang->process->proc_ctx_gpu_addr;
queue_input.gang_quantum = gang->gang_quantum;
queue_input.gang_context_addr = gang->gang_ctx_gpu_addr;
queue_input.inprocess_gang_priority = gang->inprocess_gang_priority;
queue_input.gang_global_priority_level = gang->global_priority_level;
queue_input.doorbell_offset = qprops->doorbell_off;
queue_input.mqd_addr = queue->mqd_gpu_addr;
queue_input.wptr_addr = qprops->wptr_gpu_addr;
queue_input.wptr_mc_addr = qprops->wptr_mc_addr;
queue_input.queue_type = qprops->queue_type;
queue_input.paging = qprops->paging;
queue_input.is_kfd_process = 0;
r = adev->mes.funcs->add_hw_queue(&adev->mes, &queue_input);
if (r) {
DRM_ERROR("failed to add hardware queue to MES, doorbell=0x%llx\n",
qprops->doorbell_off);
goto clean_up_doorbell;
}
DRM_DEBUG("MES hw queue was added, pasid=%d, gang id=%d, "
"queue type=%d, doorbell=0x%llx\n",
gang->process->pasid, gang_id, qprops->queue_type,
qprops->doorbell_off);
queue->ring = qprops->ring;
queue->doorbell_off = qprops->doorbell_off;
queue->wptr_gpu_addr = qprops->wptr_gpu_addr;
queue->queue_type = qprops->queue_type;
queue->paging = qprops->paging;
queue->gang = gang;
queue->ring->mqd_ptr = queue->mqd_cpu_ptr;
list_add_tail(&queue->list, &gang->queue_list);
amdgpu_mes_unlock(&adev->mes);
return 0;
clean_up_doorbell:
amdgpu_mes_kernel_doorbell_free(adev, gang->process,
qprops->doorbell_off);
clean_up_queue_id:
spin_lock_irqsave(&adev->mes.queue_id_lock, flags);
idr_remove(&adev->mes.queue_id_idr, queue->queue_id);
spin_unlock_irqrestore(&adev->mes.queue_id_lock, flags);
clean_up_mqd:
amdgpu_mes_unlock(&adev->mes);
amdgpu_mes_queue_free_mqd(queue);
clean_up_memory:
kfree(queue);
return r;
}
int amdgpu_mes_remove_hw_queue(struct amdgpu_device *adev, int queue_id)
{
unsigned long flags;
struct amdgpu_mes_queue *queue;
struct amdgpu_mes_gang *gang;
struct mes_remove_queue_input queue_input;
int r;
/*
* Avoid taking any other locks under MES lock to avoid circular
* lock dependencies.
*/
amdgpu_mes_lock(&adev->mes);
/* remove the mes gang from idr list */
spin_lock_irqsave(&adev->mes.queue_id_lock, flags);
queue = idr_find(&adev->mes.queue_id_idr, queue_id);
if (!queue) {
spin_unlock_irqrestore(&adev->mes.queue_id_lock, flags);
amdgpu_mes_unlock(&adev->mes);
DRM_ERROR("queue id %d doesn't exist\n", queue_id);
return -EINVAL;
}
idr_remove(&adev->mes.queue_id_idr, queue_id);
spin_unlock_irqrestore(&adev->mes.queue_id_lock, flags);
DRM_DEBUG("try to remove queue, doorbell off = 0x%llx\n",
queue->doorbell_off);
gang = queue->gang;
queue_input.doorbell_offset = queue->doorbell_off;
queue_input.gang_context_addr = gang->gang_ctx_gpu_addr;
r = adev->mes.funcs->remove_hw_queue(&adev->mes, &queue_input);
if (r)
DRM_ERROR("failed to remove hardware queue, queue id = %d\n",
queue_id);
list_del(&queue->list);
amdgpu_mes_kernel_doorbell_free(adev, gang->process,
queue->doorbell_off);
amdgpu_mes_unlock(&adev->mes);
amdgpu_mes_queue_free_mqd(queue);
kfree(queue);
return 0;
}
int amdgpu_mes_unmap_legacy_queue(struct amdgpu_device *adev,
struct amdgpu_ring *ring,
enum amdgpu_unmap_queues_action action,
u64 gpu_addr, u64 seq)
{
struct mes_unmap_legacy_queue_input queue_input;
int r;
queue_input.action = action;
queue_input.queue_type = ring->funcs->type;
queue_input.doorbell_offset = ring->doorbell_index;
queue_input.pipe_id = ring->pipe;
queue_input.queue_id = ring->queue;
queue_input.trail_fence_addr = gpu_addr;
queue_input.trail_fence_data = seq;
r = adev->mes.funcs->unmap_legacy_queue(&adev->mes, &queue_input);
if (r)
DRM_ERROR("failed to unmap legacy queue\n");
return r;
}
uint32_t amdgpu_mes_rreg(struct amdgpu_device *adev, uint32_t reg)
{
struct mes_misc_op_input op_input;
int r, val = 0;
op_input.op = MES_MISC_OP_READ_REG;
op_input.read_reg.reg_offset = reg;
op_input.read_reg.buffer_addr = adev->mes.read_val_gpu_addr;
if (!adev->mes.funcs->misc_op) {
DRM_ERROR("mes rreg is not supported!\n");
goto error;
}
r = adev->mes.funcs->misc_op(&adev->mes, &op_input);
if (r)
DRM_ERROR("failed to read reg (0x%x)\n", reg);
else
val = *(adev->mes.read_val_ptr);
error:
return val;
}
int amdgpu_mes_wreg(struct amdgpu_device *adev,
uint32_t reg, uint32_t val)
{
struct mes_misc_op_input op_input;
int r;
op_input.op = MES_MISC_OP_WRITE_REG;
op_input.write_reg.reg_offset = reg;
op_input.write_reg.reg_value = val;
if (!adev->mes.funcs->misc_op) {
DRM_ERROR("mes wreg is not supported!\n");
r = -EINVAL;
goto error;
}
r = adev->mes.funcs->misc_op(&adev->mes, &op_input);
if (r)
DRM_ERROR("failed to write reg (0x%x)\n", reg);
error:
return r;
}
int amdgpu_mes_reg_write_reg_wait(struct amdgpu_device *adev,
uint32_t reg0, uint32_t reg1,
uint32_t ref, uint32_t mask)
{
struct mes_misc_op_input op_input;
int r;
op_input.op = MES_MISC_OP_WRM_REG_WR_WAIT;
op_input.wrm_reg.reg0 = reg0;
op_input.wrm_reg.reg1 = reg1;
op_input.wrm_reg.ref = ref;
op_input.wrm_reg.mask = mask;
if (!adev->mes.funcs->misc_op) {
DRM_ERROR("mes reg_write_reg_wait is not supported!\n");
r = -EINVAL;
goto error;
}
r = adev->mes.funcs->misc_op(&adev->mes, &op_input);
if (r)
DRM_ERROR("failed to reg_write_reg_wait\n");
error:
return r;
}
int amdgpu_mes_reg_wait(struct amdgpu_device *adev, uint32_t reg,
uint32_t val, uint32_t mask)
{
struct mes_misc_op_input op_input;
int r;
op_input.op = MES_MISC_OP_WRM_REG_WAIT;
op_input.wrm_reg.reg0 = reg;
op_input.wrm_reg.ref = val;
op_input.wrm_reg.mask = mask;
if (!adev->mes.funcs->misc_op) {
DRM_ERROR("mes reg wait is not supported!\n");
r = -EINVAL;
goto error;
}
r = adev->mes.funcs->misc_op(&adev->mes, &op_input);
if (r)
DRM_ERROR("failed to reg_write_reg_wait\n");
error:
return r;
}
int amdgpu_mes_set_shader_debugger(struct amdgpu_device *adev,
uint64_t process_context_addr,
uint32_t spi_gdbg_per_vmid_cntl,
const uint32_t *tcp_watch_cntl,
uint32_t flags,
bool trap_en)
{
struct mes_misc_op_input op_input = {0};
int r;
if (!adev->mes.funcs->misc_op) {
DRM_ERROR("mes set shader debugger is not supported!\n");
return -EINVAL;
}
op_input.op = MES_MISC_OP_SET_SHADER_DEBUGGER;
op_input.set_shader_debugger.process_context_addr = process_context_addr;
op_input.set_shader_debugger.flags.u32all = flags;
/* use amdgpu mes_flush_shader_debugger instead */
if (op_input.set_shader_debugger.flags.process_ctx_flush)
return -EINVAL;
op_input.set_shader_debugger.spi_gdbg_per_vmid_cntl = spi_gdbg_per_vmid_cntl;
memcpy(op_input.set_shader_debugger.tcp_watch_cntl, tcp_watch_cntl,
sizeof(op_input.set_shader_debugger.tcp_watch_cntl));
if (((adev->mes.sched_version & AMDGPU_MES_API_VERSION_MASK) >>
AMDGPU_MES_API_VERSION_SHIFT) >= 14)
op_input.set_shader_debugger.trap_en = trap_en;
amdgpu_mes_lock(&adev->mes);
r = adev->mes.funcs->misc_op(&adev->mes, &op_input);
if (r)
DRM_ERROR("failed to set_shader_debugger\n");
amdgpu_mes_unlock(&adev->mes);
return r;
}
int amdgpu_mes_flush_shader_debugger(struct amdgpu_device *adev,
uint64_t process_context_addr)
{
struct mes_misc_op_input op_input = {0};
int r;
if (!adev->mes.funcs->misc_op) {
DRM_ERROR("mes flush shader debugger is not supported!\n");
return -EINVAL;
}
op_input.op = MES_MISC_OP_SET_SHADER_DEBUGGER;
op_input.set_shader_debugger.process_context_addr = process_context_addr;
op_input.set_shader_debugger.flags.process_ctx_flush = true;
amdgpu_mes_lock(&adev->mes);
r = adev->mes.funcs->misc_op(&adev->mes, &op_input);
if (r)
DRM_ERROR("failed to set_shader_debugger\n");
amdgpu_mes_unlock(&adev->mes);
return r;
}
static void
amdgpu_mes_ring_to_queue_props(struct amdgpu_device *adev,
struct amdgpu_ring *ring,
struct amdgpu_mes_queue_properties *props)
{
props->queue_type = ring->funcs->type;
props->hqd_base_gpu_addr = ring->gpu_addr;
props->rptr_gpu_addr = ring->rptr_gpu_addr;
props->wptr_gpu_addr = ring->wptr_gpu_addr;
props->wptr_mc_addr =
ring->mes_ctx->meta_data_mc_addr + ring->wptr_offs;
props->queue_size = ring->ring_size;
props->eop_gpu_addr = ring->eop_gpu_addr;
props->hqd_pipe_priority = AMDGPU_GFX_PIPE_PRIO_NORMAL;
props->hqd_queue_priority = AMDGPU_GFX_QUEUE_PRIORITY_MINIMUM;
props->paging = false;
props->ring = ring;
}
#define DEFINE_AMDGPU_MES_CTX_GET_OFFS_ENG(_eng) \
do { \
if (id_offs < AMDGPU_MES_CTX_MAX_OFFS) \
return offsetof(struct amdgpu_mes_ctx_meta_data, \
_eng[ring->idx].slots[id_offs]); \
else if (id_offs == AMDGPU_MES_CTX_RING_OFFS) \
return offsetof(struct amdgpu_mes_ctx_meta_data, \
_eng[ring->idx].ring); \
else if (id_offs == AMDGPU_MES_CTX_IB_OFFS) \
return offsetof(struct amdgpu_mes_ctx_meta_data, \
_eng[ring->idx].ib); \
else if (id_offs == AMDGPU_MES_CTX_PADDING_OFFS) \
return offsetof(struct amdgpu_mes_ctx_meta_data, \
_eng[ring->idx].padding); \
} while(0)
int amdgpu_mes_ctx_get_offs(struct amdgpu_ring *ring, unsigned int id_offs)
{
switch (ring->funcs->type) {
case AMDGPU_RING_TYPE_GFX:
DEFINE_AMDGPU_MES_CTX_GET_OFFS_ENG(gfx);
break;
case AMDGPU_RING_TYPE_COMPUTE:
DEFINE_AMDGPU_MES_CTX_GET_OFFS_ENG(compute);
break;
case AMDGPU_RING_TYPE_SDMA:
DEFINE_AMDGPU_MES_CTX_GET_OFFS_ENG(sdma);
break;
default:
break;
}
WARN_ON(1);
return -EINVAL;
}
int amdgpu_mes_add_ring(struct amdgpu_device *adev, int gang_id,
int queue_type, int idx,
struct amdgpu_mes_ctx_data *ctx_data,
struct amdgpu_ring **out)
{
struct amdgpu_ring *ring;
struct amdgpu_mes_gang *gang;
struct amdgpu_mes_queue_properties qprops = {0};
int r, queue_id, pasid;
/*
* Avoid taking any other locks under MES lock to avoid circular
* lock dependencies.
*/
amdgpu_mes_lock(&adev->mes);
gang = idr_find(&adev->mes.gang_id_idr, gang_id);
if (!gang) {
DRM_ERROR("gang id %d doesn't exist\n", gang_id);
amdgpu_mes_unlock(&adev->mes);
return -EINVAL;
}
pasid = gang->process->pasid;
ring = kzalloc(sizeof(struct amdgpu_ring), GFP_KERNEL);
if (!ring) {
amdgpu_mes_unlock(&adev->mes);
return -ENOMEM;
}
ring->ring_obj = NULL;
ring->use_doorbell = true;
ring->is_mes_queue = true;
ring->mes_ctx = ctx_data;
ring->idx = idx;
ring->no_scheduler = true;
if (queue_type == AMDGPU_RING_TYPE_COMPUTE) {
int offset = offsetof(struct amdgpu_mes_ctx_meta_data,
compute[ring->idx].mec_hpd);
ring->eop_gpu_addr =
amdgpu_mes_ctx_get_offs_gpu_addr(ring, offset);
}
switch (queue_type) {
case AMDGPU_RING_TYPE_GFX:
ring->funcs = adev->gfx.gfx_ring[0].funcs;
ring->me = adev->gfx.gfx_ring[0].me;
ring->pipe = adev->gfx.gfx_ring[0].pipe;
break;
case AMDGPU_RING_TYPE_COMPUTE:
ring->funcs = adev->gfx.compute_ring[0].funcs;
ring->me = adev->gfx.compute_ring[0].me;
ring->pipe = adev->gfx.compute_ring[0].pipe;
break;
case AMDGPU_RING_TYPE_SDMA:
ring->funcs = adev->sdma.instance[0].ring.funcs;
break;
default:
BUG();
}
r = amdgpu_ring_init(adev, ring, 1024, NULL, 0,
AMDGPU_RING_PRIO_DEFAULT, NULL);
if (r)
goto clean_up_memory;
amdgpu_mes_ring_to_queue_props(adev, ring, &qprops);
dma_fence_wait(gang->process->vm->last_update, false);
dma_fence_wait(ctx_data->meta_data_va->last_pt_update, false);
amdgpu_mes_unlock(&adev->mes);
r = amdgpu_mes_add_hw_queue(adev, gang_id, &qprops, &queue_id);
if (r)
goto clean_up_ring;
ring->hw_queue_id = queue_id;
ring->doorbell_index = qprops.doorbell_off;
if (queue_type == AMDGPU_RING_TYPE_GFX)
sprintf(ring->name, "gfx_%d.%d.%d", pasid, gang_id, queue_id);
else if (queue_type == AMDGPU_RING_TYPE_COMPUTE)
sprintf(ring->name, "compute_%d.%d.%d", pasid, gang_id,
queue_id);
else if (queue_type == AMDGPU_RING_TYPE_SDMA)
sprintf(ring->name, "sdma_%d.%d.%d", pasid, gang_id,
queue_id);
else
BUG();
*out = ring;
return 0;
clean_up_ring:
amdgpu_ring_fini(ring);
clean_up_memory:
kfree(ring);
amdgpu_mes_unlock(&adev->mes);
return r;
}
void amdgpu_mes_remove_ring(struct amdgpu_device *adev,
struct amdgpu_ring *ring)
{
if (!ring)
return;
amdgpu_mes_remove_hw_queue(adev, ring->hw_queue_id);
amdgpu_ring_fini(ring);
kfree(ring);
}
uint32_t amdgpu_mes_get_aggregated_doorbell_index(struct amdgpu_device *adev,
enum amdgpu_mes_priority_level prio)
{
return adev->mes.aggregated_doorbells[prio];
}
int amdgpu_mes_ctx_alloc_meta_data(struct amdgpu_device *adev,
struct amdgpu_mes_ctx_data *ctx_data)
{
int r;
r = amdgpu_bo_create_kernel(adev,
sizeof(struct amdgpu_mes_ctx_meta_data),
PAGE_SIZE, AMDGPU_GEM_DOMAIN_GTT,
&ctx_data->meta_data_obj,
&ctx_data->meta_data_mc_addr,
&ctx_data->meta_data_ptr);
if (r) {
dev_warn(adev->dev, "(%d) create CTX bo failed\n", r);
return r;
}
if (!ctx_data->meta_data_obj)
return -ENOMEM;
memset(ctx_data->meta_data_ptr, 0,
sizeof(struct amdgpu_mes_ctx_meta_data));
return 0;
}
void amdgpu_mes_ctx_free_meta_data(struct amdgpu_mes_ctx_data *ctx_data)
{
if (ctx_data->meta_data_obj)
amdgpu_bo_free_kernel(&ctx_data->meta_data_obj,
&ctx_data->meta_data_mc_addr,
&ctx_data->meta_data_ptr);
}
int amdgpu_mes_ctx_map_meta_data(struct amdgpu_device *adev,
struct amdgpu_vm *vm,
struct amdgpu_mes_ctx_data *ctx_data)
{
struct amdgpu_bo_va *bo_va;
struct amdgpu_sync sync;
struct drm_exec exec;
int r;
amdgpu_sync_create(&sync);
drm_exec_init(&exec, 0, 0);
drm_exec_until_all_locked(&exec) {
r = drm_exec_lock_obj(&exec,
&ctx_data->meta_data_obj->tbo.base);
drm_exec_retry_on_contention(&exec);
if (unlikely(r))
goto error_fini_exec;
r = amdgpu_vm_lock_pd(vm, &exec, 0);
drm_exec_retry_on_contention(&exec);
if (unlikely(r))
goto error_fini_exec;
}
bo_va = amdgpu_vm_bo_add(adev, vm, ctx_data->meta_data_obj);
if (!bo_va) {
DRM_ERROR("failed to create bo_va for meta data BO\n");
r = -ENOMEM;
goto error_fini_exec;
}
r = amdgpu_vm_bo_map(adev, bo_va, ctx_data->meta_data_gpu_addr, 0,
sizeof(struct amdgpu_mes_ctx_meta_data),
AMDGPU_PTE_READABLE | AMDGPU_PTE_WRITEABLE |
AMDGPU_PTE_EXECUTABLE);
if (r) {
DRM_ERROR("failed to do bo_map on meta data, err=%d\n", r);
goto error_del_bo_va;
}
r = amdgpu_vm_bo_update(adev, bo_va, false);
if (r) {
DRM_ERROR("failed to do vm_bo_update on meta data\n");
goto error_del_bo_va;
}
amdgpu_sync_fence(&sync, bo_va->last_pt_update);
r = amdgpu_vm_update_pdes(adev, vm, false);
if (r) {
DRM_ERROR("failed to update pdes on meta data\n");
goto error_del_bo_va;
}
amdgpu_sync_fence(&sync, vm->last_update);
amdgpu_sync_wait(&sync, false);
drm_exec_fini(&exec);
amdgpu_sync_free(&sync);
ctx_data->meta_data_va = bo_va;
return 0;
error_del_bo_va:
amdgpu_vm_bo_del(adev, bo_va);
error_fini_exec:
drm_exec_fini(&exec);
amdgpu_sync_free(&sync);
return r;
}
int amdgpu_mes_ctx_unmap_meta_data(struct amdgpu_device *adev,
struct amdgpu_mes_ctx_data *ctx_data)
{
struct amdgpu_bo_va *bo_va = ctx_data->meta_data_va;
struct amdgpu_bo *bo = ctx_data->meta_data_obj;
struct amdgpu_vm *vm = bo_va->base.vm;
struct dma_fence *fence;
struct drm_exec exec;
long r;
drm_exec_init(&exec, 0, 0);
drm_exec_until_all_locked(&exec) {
r = drm_exec_lock_obj(&exec,
&ctx_data->meta_data_obj->tbo.base);
drm_exec_retry_on_contention(&exec);
if (unlikely(r))
goto out_unlock;
r = amdgpu_vm_lock_pd(vm, &exec, 0);
drm_exec_retry_on_contention(&exec);
if (unlikely(r))
goto out_unlock;
}
amdgpu_vm_bo_del(adev, bo_va);
if (!amdgpu_vm_ready(vm))
goto out_unlock;
r = dma_resv_get_singleton(bo->tbo.base.resv, DMA_RESV_USAGE_BOOKKEEP,
&fence);
if (r)
goto out_unlock;
if (fence) {
amdgpu_bo_fence(bo, fence, true);
fence = NULL;
}
r = amdgpu_vm_clear_freed(adev, vm, &fence);
if (r || !fence)
goto out_unlock;
dma_fence_wait(fence, false);
amdgpu_bo_fence(bo, fence, true);
dma_fence_put(fence);
out_unlock:
if (unlikely(r < 0))
dev_err(adev->dev, "failed to clear page tables (%ld)\n", r);
drm_exec_fini(&exec);
return r;
}
static int amdgpu_mes_test_create_gang_and_queues(struct amdgpu_device *adev,
int pasid, int *gang_id,
int queue_type, int num_queue,
struct amdgpu_ring **added_rings,
struct amdgpu_mes_ctx_data *ctx_data)
{
struct amdgpu_ring *ring;
struct amdgpu_mes_gang_properties gprops = {0};
int r, j;
/* create a gang for the process */
gprops.priority = AMDGPU_MES_PRIORITY_LEVEL_NORMAL;
gprops.gang_quantum = adev->mes.default_gang_quantum;
gprops.inprocess_gang_priority = AMDGPU_MES_PRIORITY_LEVEL_NORMAL;
gprops.priority_level = AMDGPU_MES_PRIORITY_LEVEL_NORMAL;
gprops.global_priority_level = AMDGPU_MES_PRIORITY_LEVEL_NORMAL;
r = amdgpu_mes_add_gang(adev, pasid, &gprops, gang_id);
if (r) {
DRM_ERROR("failed to add gang\n");
return r;
}
/* create queues for the gang */
for (j = 0; j < num_queue; j++) {
r = amdgpu_mes_add_ring(adev, *gang_id, queue_type, j,
ctx_data, &ring);
if (r) {
DRM_ERROR("failed to add ring\n");
break;
}
DRM_INFO("ring %s was added\n", ring->name);
added_rings[j] = ring;
}
return 0;
}
static int amdgpu_mes_test_queues(struct amdgpu_ring **added_rings)
{
struct amdgpu_ring *ring;
int i, r;
for (i = 0; i < AMDGPU_MES_CTX_MAX_RINGS; i++) {
ring = added_rings[i];
if (!ring)
continue;
r = amdgpu_ring_test_helper(ring);
if (r)
return r;
r = amdgpu_ring_test_ib(ring, 1000 * 10);
if (r) {
DRM_DEV_ERROR(ring->adev->dev,
"ring %s ib test failed (%d)\n",
ring->name, r);
return r;
} else
DRM_INFO("ring %s ib test pass\n", ring->name);
}
return 0;
}
int amdgpu_mes_self_test(struct amdgpu_device *adev)
{
struct amdgpu_vm *vm = NULL;
struct amdgpu_mes_ctx_data ctx_data = {0};
struct amdgpu_ring *added_rings[AMDGPU_MES_CTX_MAX_RINGS] = { NULL };
int gang_ids[3] = {0};
int queue_types[][2] = { { AMDGPU_RING_TYPE_GFX, 1 },
{ AMDGPU_RING_TYPE_COMPUTE, 1 },
{ AMDGPU_RING_TYPE_SDMA, 1} };
int i, r, pasid, k = 0;
pasid = amdgpu_pasid_alloc(16);
if (pasid < 0) {
dev_warn(adev->dev, "No more PASIDs available!");
pasid = 0;
}
vm = kzalloc(sizeof(*vm), GFP_KERNEL);
if (!vm) {
r = -ENOMEM;
goto error_pasid;
}
r = amdgpu_vm_init(adev, vm, -1);
if (r) {
DRM_ERROR("failed to initialize vm\n");
goto error_pasid;
}
r = amdgpu_mes_ctx_alloc_meta_data(adev, &ctx_data);
if (r) {
DRM_ERROR("failed to alloc ctx meta data\n");
goto error_fini;
}
ctx_data.meta_data_gpu_addr = AMDGPU_VA_RESERVED_BOTTOM;
r = amdgpu_mes_ctx_map_meta_data(adev, vm, &ctx_data);
if (r) {
DRM_ERROR("failed to map ctx meta data\n");
goto error_vm;
}
r = amdgpu_mes_create_process(adev, pasid, vm);
if (r) {
DRM_ERROR("failed to create MES process\n");
goto error_vm;
}
for (i = 0; i < ARRAY_SIZE(queue_types); i++) {
/* On GFX v10.3, fw hasn't supported to map sdma queue. */
if (amdgpu_ip_version(adev, GC_HWIP, 0) >=
IP_VERSION(10, 3, 0) &&
amdgpu_ip_version(adev, GC_HWIP, 0) <
IP_VERSION(11, 0, 0) &&
queue_types[i][0] == AMDGPU_RING_TYPE_SDMA)
continue;
r = amdgpu_mes_test_create_gang_and_queues(adev, pasid,
&gang_ids[i],
queue_types[i][0],
queue_types[i][1],
&added_rings[k],
&ctx_data);
if (r)
goto error_queues;
k += queue_types[i][1];
}
/* start ring test and ib test for MES queues */
amdgpu_mes_test_queues(added_rings);
error_queues:
/* remove all queues */
for (i = 0; i < ARRAY_SIZE(added_rings); i++) {
if (!added_rings[i])
continue;
amdgpu_mes_remove_ring(adev, added_rings[i]);
}
for (i = 0; i < ARRAY_SIZE(gang_ids); i++) {
if (!gang_ids[i])
continue;
amdgpu_mes_remove_gang(adev, gang_ids[i]);
}
amdgpu_mes_destroy_process(adev, pasid);
error_vm:
amdgpu_mes_ctx_unmap_meta_data(adev, &ctx_data);
error_fini:
amdgpu_vm_fini(adev, vm);
error_pasid:
if (pasid)
amdgpu_pasid_free(pasid);
amdgpu_mes_ctx_free_meta_data(&ctx_data);
kfree(vm);
return 0;
}
int amdgpu_mes_init_microcode(struct amdgpu_device *adev, int pipe)
{
const struct mes_firmware_header_v1_0 *mes_hdr;
struct amdgpu_firmware_info *info;
char ucode_prefix[30];
char fw_name[40];
bool need_retry = false;
int r;
amdgpu_ucode_ip_version_decode(adev, GC_HWIP, ucode_prefix,
sizeof(ucode_prefix));
if (amdgpu_ip_version(adev, GC_HWIP, 0) >= IP_VERSION(11, 0, 0)) {
snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_mes%s.bin",
ucode_prefix,
pipe == AMDGPU_MES_SCHED_PIPE ? "_2" : "1");
need_retry = true;
} else {
snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_mes%s.bin",
ucode_prefix,
pipe == AMDGPU_MES_SCHED_PIPE ? "" : "1");
}
r = amdgpu_ucode_request(adev, &adev->mes.fw[pipe], fw_name);
if (r && need_retry && pipe == AMDGPU_MES_SCHED_PIPE) {
snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_mes.bin",
ucode_prefix);
DRM_INFO("try to fall back to %s\n", fw_name);
r = amdgpu_ucode_request(adev, &adev->mes.fw[pipe],
fw_name);
}
if (r)
goto out;
mes_hdr = (const struct mes_firmware_header_v1_0 *)
adev->mes.fw[pipe]->data;
adev->mes.uc_start_addr[pipe] =
le32_to_cpu(mes_hdr->mes_uc_start_addr_lo) |
((uint64_t)(le32_to_cpu(mes_hdr->mes_uc_start_addr_hi)) << 32);
adev->mes.data_start_addr[pipe] =
le32_to_cpu(mes_hdr->mes_data_start_addr_lo) |
((uint64_t)(le32_to_cpu(mes_hdr->mes_data_start_addr_hi)) << 32);
if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
int ucode, ucode_data;
if (pipe == AMDGPU_MES_SCHED_PIPE) {
ucode = AMDGPU_UCODE_ID_CP_MES;
ucode_data = AMDGPU_UCODE_ID_CP_MES_DATA;
} else {
ucode = AMDGPU_UCODE_ID_CP_MES1;
ucode_data = AMDGPU_UCODE_ID_CP_MES1_DATA;
}
info = &adev->firmware.ucode[ucode];
info->ucode_id = ucode;
info->fw = adev->mes.fw[pipe];
adev->firmware.fw_size +=
ALIGN(le32_to_cpu(mes_hdr->mes_ucode_size_bytes),
PAGE_SIZE);
info = &adev->firmware.ucode[ucode_data];
info->ucode_id = ucode_data;
info->fw = adev->mes.fw[pipe];
adev->firmware.fw_size +=
ALIGN(le32_to_cpu(mes_hdr->mes_ucode_data_size_bytes),
PAGE_SIZE);
}
return 0;
out:
amdgpu_ucode_release(&adev->mes.fw[pipe]);
return r;
}
#if defined(CONFIG_DEBUG_FS)
static int amdgpu_debugfs_mes_event_log_show(struct seq_file *m, void *unused)
{
struct amdgpu_device *adev = m->private;
uint32_t *mem = (uint32_t *)(adev->mes.event_log_cpu_addr);
seq_hex_dump(m, "", DUMP_PREFIX_OFFSET, 32, 4,
mem, AMDGPU_MES_LOG_BUFFER_SIZE, false);
return 0;
}
DEFINE_SHOW_ATTRIBUTE(amdgpu_debugfs_mes_event_log);
#endif
void amdgpu_debugfs_mes_event_log_init(struct amdgpu_device *adev)
{
#if defined(CONFIG_DEBUG_FS)
struct drm_minor *minor = adev_to_drm(adev)->primary;
struct dentry *root = minor->debugfs_root;
if (adev->enable_mes && amdgpu_mes_log_enable)
debugfs_create_file("amdgpu_mes_event_log", 0444, root,
adev, &amdgpu_debugfs_mes_event_log_fops);
#endif
}