blob: b324dc2a5debe870f8e7edad1b0262d009f0be63 [file] [log] [blame]
// SPDX-License-Identifier: MIT
/*
* Copyright © 2022 Intel Corporation
*/
#include "xe_pcode.h"
#include <linux/delay.h>
#include <linux/errno.h>
#include <drm/drm_managed.h>
#include "xe_gt.h"
#include "xe_mmio.h"
#include "xe_pcode_api.h"
/**
* DOC: PCODE
*
* Xe PCODE is the component responsible for interfacing with the PCODE
* firmware.
* It shall provide a very simple ABI to other Xe components, but be the
* single and consolidated place that will communicate with PCODE. All read
* and write operations to PCODE will be internal and private to this component.
*
* What's next:
* - PCODE hw metrics
* - PCODE for display operations
*/
static int pcode_mailbox_status(struct xe_gt *gt)
{
u32 err;
static const struct pcode_err_decode err_decode[] = {
[PCODE_ILLEGAL_CMD] = {-ENXIO, "Illegal Command"},
[PCODE_TIMEOUT] = {-ETIMEDOUT, "Timed out"},
[PCODE_ILLEGAL_DATA] = {-EINVAL, "Illegal Data"},
[PCODE_ILLEGAL_SUBCOMMAND] = {-ENXIO, "Illegal Subcommand"},
[PCODE_LOCKED] = {-EBUSY, "PCODE Locked"},
[PCODE_GT_RATIO_OUT_OF_RANGE] = {-EOVERFLOW,
"GT ratio out of range"},
[PCODE_REJECTED] = {-EACCES, "PCODE Rejected"},
[PCODE_ERROR_MASK] = {-EPROTO, "Unknown"},
};
lockdep_assert_held(&gt->pcode.lock);
err = xe_mmio_read32(gt, PCODE_MAILBOX) & PCODE_ERROR_MASK;
if (err) {
drm_err(&gt_to_xe(gt)->drm, "PCODE Mailbox failed: %d %s", err,
err_decode[err].str ?: "Unknown");
return err_decode[err].errno ?: -EPROTO;
}
return 0;
}
static int pcode_mailbox_rw(struct xe_gt *gt, u32 mbox, u32 *data0, u32 *data1,
unsigned int timeout_ms, bool return_data,
bool atomic)
{
int err;
if (gt_to_xe(gt)->info.skip_pcode)
return 0;
lockdep_assert_held(&gt->pcode.lock);
if ((xe_mmio_read32(gt, PCODE_MAILBOX) & PCODE_READY) != 0)
return -EAGAIN;
xe_mmio_write32(gt, PCODE_DATA0, *data0);
xe_mmio_write32(gt, PCODE_DATA1, data1 ? *data1 : 0);
xe_mmio_write32(gt, PCODE_MAILBOX, PCODE_READY | mbox);
err = xe_mmio_wait32(gt, PCODE_MAILBOX, PCODE_READY, 0,
timeout_ms * 1000, NULL, atomic);
if (err)
return err;
if (return_data) {
*data0 = xe_mmio_read32(gt, PCODE_DATA0);
if (data1)
*data1 = xe_mmio_read32(gt, PCODE_DATA1);
}
return pcode_mailbox_status(gt);
}
int xe_pcode_write_timeout(struct xe_gt *gt, u32 mbox, u32 data, int timeout)
{
int err;
mutex_lock(&gt->pcode.lock);
err = pcode_mailbox_rw(gt, mbox, &data, NULL, timeout, false, false);
mutex_unlock(&gt->pcode.lock);
return err;
}
int xe_pcode_read(struct xe_gt *gt, u32 mbox, u32 *val, u32 *val1)
{
int err;
mutex_lock(&gt->pcode.lock);
err = pcode_mailbox_rw(gt, mbox, val, val1, 1, true, false);
mutex_unlock(&gt->pcode.lock);
return err;
}
static int xe_pcode_try_request(struct xe_gt *gt, u32 mbox,
u32 request, u32 reply_mask, u32 reply,
u32 *status, bool atomic, int timeout_us)
{
int slept, wait = 10;
for (slept = 0; slept < timeout_us; slept += wait) {
*status = pcode_mailbox_rw(gt, mbox, &request, NULL, 1, true,
atomic);
if ((*status == 0) && ((request & reply_mask) == reply))
return 0;
if (atomic)
udelay(wait);
else
usleep_range(wait, wait << 1);
wait <<= 1;
}
return -ETIMEDOUT;
}
/**
* xe_pcode_request - send PCODE request until acknowledgment
* @gt: gt
* @mbox: PCODE mailbox ID the request is targeted for
* @request: request ID
* @reply_mask: mask used to check for request acknowledgment
* @reply: value used to check for request acknowledgment
* @timeout_base_ms: timeout for polling with preemption enabled
*
* Keep resending the @request to @mbox until PCODE acknowledges it, PCODE
* reports an error or an overall timeout of @timeout_base_ms+50 ms expires.
* The request is acknowledged once the PCODE reply dword equals @reply after
* applying @reply_mask. Polling is first attempted with preemption enabled
* for @timeout_base_ms and if this times out for another 50 ms with
* preemption disabled.
*
* Returns 0 on success, %-ETIMEDOUT in case of a timeout, <0 in case of some
* other error as reported by PCODE.
*/
int xe_pcode_request(struct xe_gt *gt, u32 mbox, u32 request,
u32 reply_mask, u32 reply, int timeout_base_ms)
{
u32 status;
int ret;
mutex_lock(&gt->pcode.lock);
ret = xe_pcode_try_request(gt, mbox, request, reply_mask, reply, &status,
false, timeout_base_ms * 1000);
if (!ret)
goto out;
/*
* The above can time out if the number of requests was low (2 in the
* worst case) _and_ PCODE was busy for some reason even after a
* (queued) request and @timeout_base_ms delay. As a workaround retry
* the poll with preemption disabled to maximize the number of
* requests. Increase the timeout from @timeout_base_ms to 50ms to
* account for interrupts that could reduce the number of these
* requests, and for any quirks of the PCODE firmware that delays
* the request completion.
*/
drm_err(&gt_to_xe(gt)->drm,
"PCODE timeout, retrying with preemption disabled\n");
drm_WARN_ON_ONCE(&gt_to_xe(gt)->drm, timeout_base_ms > 1);
preempt_disable();
ret = xe_pcode_try_request(gt, mbox, request, reply_mask, reply, &status,
true, timeout_base_ms * 1000);
preempt_enable();
out:
mutex_unlock(&gt->pcode.lock);
return status ? status : ret;
}
/**
* xe_pcode_init_min_freq_table - Initialize PCODE's QOS frequency table
* @gt: gt instance
* @min_gt_freq: Minimal (RPn) GT frequency in units of 50MHz.
* @max_gt_freq: Maximal (RP0) GT frequency in units of 50MHz.
*
* This function initialize PCODE's QOS frequency table for a proper minimal
* frequency/power steering decision, depending on the current requested GT
* frequency. For older platforms this was a more complete table including
* the IA freq. However for the latest platforms this table become a simple
* 1-1 Ring vs GT frequency. Even though, without setting it, PCODE might
* not take the right decisions for some memory frequencies and affect latency.
*
* It returns 0 on success, and -ERROR number on failure, -EINVAL if max
* frequency is higher then the minimal, and other errors directly translated
* from the PCODE Error returs:
* - -ENXIO: "Illegal Command"
* - -ETIMEDOUT: "Timed out"
* - -EINVAL: "Illegal Data"
* - -ENXIO, "Illegal Subcommand"
* - -EBUSY: "PCODE Locked"
* - -EOVERFLOW, "GT ratio out of range"
* - -EACCES, "PCODE Rejected"
* - -EPROTO, "Unknown"
*/
int xe_pcode_init_min_freq_table(struct xe_gt *gt, u32 min_gt_freq,
u32 max_gt_freq)
{
int ret;
u32 freq;
if (!gt_to_xe(gt)->info.has_llc)
return 0;
if (max_gt_freq <= min_gt_freq)
return -EINVAL;
mutex_lock(&gt->pcode.lock);
for (freq = min_gt_freq; freq <= max_gt_freq; freq++) {
u32 data = freq << PCODE_FREQ_RING_RATIO_SHIFT | freq;
ret = pcode_mailbox_rw(gt, PCODE_WRITE_MIN_FREQ_TABLE,
&data, NULL, 1, false, false);
if (ret)
goto unlock;
}
unlock:
mutex_unlock(&gt->pcode.lock);
return ret;
}
/**
* xe_pcode_init - Ensure PCODE is initialized
* @gt: gt instance
*
* This function ensures that PCODE is properly initialized. To be called during
* probe and resume paths.
*
* It returns 0 on success, and -error number on failure.
*/
int xe_pcode_init(struct xe_gt *gt)
{
u32 status, request = DGFX_GET_INIT_STATUS;
int timeout_us = 180000000; /* 3 min */
int ret;
if (gt_to_xe(gt)->info.skip_pcode)
return 0;
if (!IS_DGFX(gt_to_xe(gt)))
return 0;
mutex_lock(&gt->pcode.lock);
ret = xe_pcode_try_request(gt, DGFX_PCODE_STATUS, request,
DGFX_INIT_STATUS_COMPLETE,
DGFX_INIT_STATUS_COMPLETE,
&status, false, timeout_us);
mutex_unlock(&gt->pcode.lock);
if (ret)
drm_err(&gt_to_xe(gt)->drm,
"PCODE initialization timedout after: 3 min\n");
return ret;
}
/**
* xe_pcode_probe - Prepare xe_pcode and also ensure PCODE is initialized.
* @gt: gt instance
*
* This function initializes the xe_pcode component, and when needed, it ensures
* that PCODE has properly performed its initialization and it is really ready
* to go. To be called once only during probe.
*
* It returns 0 on success, and -error number on failure.
*/
int xe_pcode_probe(struct xe_gt *gt)
{
drmm_mutex_init(&gt_to_xe(gt)->drm, &gt->pcode.lock);
if (gt_to_xe(gt)->info.skip_pcode)
return 0;
if (!IS_DGFX(gt_to_xe(gt)))
return 0;
return xe_pcode_init(gt);
}