|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | // | 
|  | // Copyright 2011 Freescale Semiconductor, Inc. All Rights Reserved. | 
|  | // | 
|  | // Refer to drivers/dma/imx-sdma.c | 
|  |  | 
|  | #include <linux/init.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/clk.h> | 
|  | #include <linux/wait.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/semaphore.h> | 
|  | #include <linux/device.h> | 
|  | #include <linux/dma-mapping.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/platform_device.h> | 
|  | #include <linux/dmaengine.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/stmp_device.h> | 
|  | #include <linux/of.h> | 
|  | #include <linux/of_dma.h> | 
|  | #include <linux/list.h> | 
|  | #include <linux/dma/mxs-dma.h> | 
|  |  | 
|  | #include <asm/irq.h> | 
|  |  | 
|  | #include "dmaengine.h" | 
|  |  | 
|  | /* | 
|  | * NOTE: The term "PIO" throughout the mxs-dma implementation means | 
|  | * PIO mode of mxs apbh-dma and apbx-dma.  With this working mode, | 
|  | * dma can program the controller registers of peripheral devices. | 
|  | */ | 
|  |  | 
|  | #define dma_is_apbh(mxs_dma)	((mxs_dma)->type == MXS_DMA_APBH) | 
|  | #define apbh_is_old(mxs_dma)	((mxs_dma)->dev_id == IMX23_DMA) | 
|  |  | 
|  | #define HW_APBHX_CTRL0				0x000 | 
|  | #define BM_APBH_CTRL0_APB_BURST8_EN		(1 << 29) | 
|  | #define BM_APBH_CTRL0_APB_BURST_EN		(1 << 28) | 
|  | #define BP_APBH_CTRL0_RESET_CHANNEL		16 | 
|  | #define HW_APBHX_CTRL1				0x010 | 
|  | #define HW_APBHX_CTRL2				0x020 | 
|  | #define HW_APBHX_CHANNEL_CTRL			0x030 | 
|  | #define BP_APBHX_CHANNEL_CTRL_RESET_CHANNEL	16 | 
|  | /* | 
|  | * The offset of NXTCMDAR register is different per both dma type and version, | 
|  | * while stride for each channel is all the same 0x70. | 
|  | */ | 
|  | #define HW_APBHX_CHn_NXTCMDAR(d, n) \ | 
|  | (((dma_is_apbh(d) && apbh_is_old(d)) ? 0x050 : 0x110) + (n) * 0x70) | 
|  | #define HW_APBHX_CHn_SEMA(d, n) \ | 
|  | (((dma_is_apbh(d) && apbh_is_old(d)) ? 0x080 : 0x140) + (n) * 0x70) | 
|  | #define HW_APBHX_CHn_BAR(d, n) \ | 
|  | (((dma_is_apbh(d) && apbh_is_old(d)) ? 0x070 : 0x130) + (n) * 0x70) | 
|  | #define HW_APBX_CHn_DEBUG1(d, n) (0x150 + (n) * 0x70) | 
|  |  | 
|  | /* | 
|  | * ccw bits definitions | 
|  | * | 
|  | * COMMAND:		0..1	(2) | 
|  | * CHAIN:		2	(1) | 
|  | * IRQ:			3	(1) | 
|  | * NAND_LOCK:		4	(1) - not implemented | 
|  | * NAND_WAIT4READY:	5	(1) - not implemented | 
|  | * DEC_SEM:		6	(1) | 
|  | * WAIT4END:		7	(1) | 
|  | * HALT_ON_TERMINATE:	8	(1) | 
|  | * TERMINATE_FLUSH:	9	(1) | 
|  | * RESERVED:		10..11	(2) | 
|  | * PIO_NUM:		12..15	(4) | 
|  | */ | 
|  | #define BP_CCW_COMMAND		0 | 
|  | #define BM_CCW_COMMAND		(3 << 0) | 
|  | #define CCW_CHAIN		(1 << 2) | 
|  | #define CCW_IRQ			(1 << 3) | 
|  | #define CCW_WAIT4RDY		(1 << 5) | 
|  | #define CCW_DEC_SEM		(1 << 6) | 
|  | #define CCW_WAIT4END		(1 << 7) | 
|  | #define CCW_HALT_ON_TERM	(1 << 8) | 
|  | #define CCW_TERM_FLUSH		(1 << 9) | 
|  | #define BP_CCW_PIO_NUM		12 | 
|  | #define BM_CCW_PIO_NUM		(0xf << 12) | 
|  |  | 
|  | #define BF_CCW(value, field)	(((value) << BP_CCW_##field) & BM_CCW_##field) | 
|  |  | 
|  | #define MXS_DMA_CMD_NO_XFER	0 | 
|  | #define MXS_DMA_CMD_WRITE	1 | 
|  | #define MXS_DMA_CMD_READ	2 | 
|  | #define MXS_DMA_CMD_DMA_SENSE	3	/* not implemented */ | 
|  |  | 
|  | struct mxs_dma_ccw { | 
|  | u32		next; | 
|  | u16		bits; | 
|  | u16		xfer_bytes; | 
|  | #define MAX_XFER_BYTES	0xff00 | 
|  | u32		bufaddr; | 
|  | #define MXS_PIO_WORDS	16 | 
|  | u32		pio_words[MXS_PIO_WORDS]; | 
|  | }; | 
|  |  | 
|  | #define CCW_BLOCK_SIZE	(4 * PAGE_SIZE) | 
|  | #define NUM_CCW	(int)(CCW_BLOCK_SIZE / sizeof(struct mxs_dma_ccw)) | 
|  |  | 
|  | struct mxs_dma_chan { | 
|  | struct mxs_dma_engine		*mxs_dma; | 
|  | struct dma_chan			chan; | 
|  | struct dma_async_tx_descriptor	desc; | 
|  | struct tasklet_struct		tasklet; | 
|  | unsigned int			chan_irq; | 
|  | struct mxs_dma_ccw		*ccw; | 
|  | dma_addr_t			ccw_phys; | 
|  | int				desc_count; | 
|  | enum dma_status			status; | 
|  | unsigned int			flags; | 
|  | bool				reset; | 
|  | #define MXS_DMA_SG_LOOP			(1 << 0) | 
|  | #define MXS_DMA_USE_SEMAPHORE		(1 << 1) | 
|  | }; | 
|  |  | 
|  | #define MXS_DMA_CHANNELS		16 | 
|  | #define MXS_DMA_CHANNELS_MASK		0xffff | 
|  |  | 
|  | enum mxs_dma_devtype { | 
|  | MXS_DMA_APBH, | 
|  | MXS_DMA_APBX, | 
|  | }; | 
|  |  | 
|  | enum mxs_dma_id { | 
|  | IMX23_DMA, | 
|  | IMX28_DMA, | 
|  | }; | 
|  |  | 
|  | struct mxs_dma_engine { | 
|  | enum mxs_dma_id			dev_id; | 
|  | enum mxs_dma_devtype		type; | 
|  | void __iomem			*base; | 
|  | struct clk			*clk; | 
|  | struct dma_device		dma_device; | 
|  | struct mxs_dma_chan		mxs_chans[MXS_DMA_CHANNELS]; | 
|  | struct platform_device		*pdev; | 
|  | unsigned int			nr_channels; | 
|  | }; | 
|  |  | 
|  | struct mxs_dma_type { | 
|  | enum mxs_dma_id id; | 
|  | enum mxs_dma_devtype type; | 
|  | }; | 
|  |  | 
|  | static struct mxs_dma_type mxs_dma_types[] = { | 
|  | { | 
|  | .id = IMX23_DMA, | 
|  | .type = MXS_DMA_APBH, | 
|  | }, { | 
|  | .id = IMX23_DMA, | 
|  | .type = MXS_DMA_APBX, | 
|  | }, { | 
|  | .id = IMX28_DMA, | 
|  | .type = MXS_DMA_APBH, | 
|  | }, { | 
|  | .id = IMX28_DMA, | 
|  | .type = MXS_DMA_APBX, | 
|  | } | 
|  | }; | 
|  |  | 
|  | static const struct of_device_id mxs_dma_dt_ids[] = { | 
|  | { .compatible = "fsl,imx23-dma-apbh", .data = &mxs_dma_types[0], }, | 
|  | { .compatible = "fsl,imx23-dma-apbx", .data = &mxs_dma_types[1], }, | 
|  | { .compatible = "fsl,imx28-dma-apbh", .data = &mxs_dma_types[2], }, | 
|  | { .compatible = "fsl,imx28-dma-apbx", .data = &mxs_dma_types[3], }, | 
|  | { /* sentinel */ } | 
|  | }; | 
|  | MODULE_DEVICE_TABLE(of, mxs_dma_dt_ids); | 
|  |  | 
|  | static struct mxs_dma_chan *to_mxs_dma_chan(struct dma_chan *chan) | 
|  | { | 
|  | return container_of(chan, struct mxs_dma_chan, chan); | 
|  | } | 
|  |  | 
|  | static void mxs_dma_reset_chan(struct dma_chan *chan) | 
|  | { | 
|  | struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan); | 
|  | struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma; | 
|  | int chan_id = mxs_chan->chan.chan_id; | 
|  |  | 
|  | /* | 
|  | * mxs dma channel resets can cause a channel stall. To recover from a | 
|  | * channel stall, we have to reset the whole DMA engine. To avoid this, | 
|  | * we use cyclic DMA with semaphores, that are enhanced in | 
|  | * mxs_dma_int_handler. To reset the channel, we can simply stop writing | 
|  | * into the semaphore counter. | 
|  | */ | 
|  | if (mxs_chan->flags & MXS_DMA_USE_SEMAPHORE && | 
|  | mxs_chan->flags & MXS_DMA_SG_LOOP) { | 
|  | mxs_chan->reset = true; | 
|  | } else if (dma_is_apbh(mxs_dma) && apbh_is_old(mxs_dma)) { | 
|  | writel(1 << (chan_id + BP_APBH_CTRL0_RESET_CHANNEL), | 
|  | mxs_dma->base + HW_APBHX_CTRL0 + STMP_OFFSET_REG_SET); | 
|  | } else { | 
|  | unsigned long elapsed = 0; | 
|  | const unsigned long max_wait = 50000; /* 50ms */ | 
|  | void __iomem *reg_dbg1 = mxs_dma->base + | 
|  | HW_APBX_CHn_DEBUG1(mxs_dma, chan_id); | 
|  |  | 
|  | /* | 
|  | * On i.MX28 APBX, the DMA channel can stop working if we reset | 
|  | * the channel while it is in READ_FLUSH (0x08) state. | 
|  | * We wait here until we leave the state. Then we trigger the | 
|  | * reset. Waiting a maximum of 50ms, the kernel shouldn't crash | 
|  | * because of this. | 
|  | */ | 
|  | while ((readl(reg_dbg1) & 0xf) == 0x8 && elapsed < max_wait) { | 
|  | udelay(100); | 
|  | elapsed += 100; | 
|  | } | 
|  |  | 
|  | if (elapsed >= max_wait) | 
|  | dev_err(&mxs_chan->mxs_dma->pdev->dev, | 
|  | "Failed waiting for the DMA channel %d to leave state READ_FLUSH, trying to reset channel in READ_FLUSH state now\n", | 
|  | chan_id); | 
|  |  | 
|  | writel(1 << (chan_id + BP_APBHX_CHANNEL_CTRL_RESET_CHANNEL), | 
|  | mxs_dma->base + HW_APBHX_CHANNEL_CTRL + STMP_OFFSET_REG_SET); | 
|  | } | 
|  |  | 
|  | mxs_chan->status = DMA_COMPLETE; | 
|  | } | 
|  |  | 
|  | static void mxs_dma_enable_chan(struct dma_chan *chan) | 
|  | { | 
|  | struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan); | 
|  | struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma; | 
|  | int chan_id = mxs_chan->chan.chan_id; | 
|  |  | 
|  | /* set cmd_addr up */ | 
|  | writel(mxs_chan->ccw_phys, | 
|  | mxs_dma->base + HW_APBHX_CHn_NXTCMDAR(mxs_dma, chan_id)); | 
|  |  | 
|  | /* write 1 to SEMA to kick off the channel */ | 
|  | if (mxs_chan->flags & MXS_DMA_USE_SEMAPHORE && | 
|  | mxs_chan->flags & MXS_DMA_SG_LOOP) { | 
|  | /* A cyclic DMA consists of at least 2 segments, so initialize | 
|  | * the semaphore with 2 so we have enough time to add 1 to the | 
|  | * semaphore if we need to */ | 
|  | writel(2, mxs_dma->base + HW_APBHX_CHn_SEMA(mxs_dma, chan_id)); | 
|  | } else { | 
|  | writel(1, mxs_dma->base + HW_APBHX_CHn_SEMA(mxs_dma, chan_id)); | 
|  | } | 
|  | mxs_chan->reset = false; | 
|  | } | 
|  |  | 
|  | static void mxs_dma_disable_chan(struct dma_chan *chan) | 
|  | { | 
|  | struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan); | 
|  |  | 
|  | mxs_chan->status = DMA_COMPLETE; | 
|  | } | 
|  |  | 
|  | static int mxs_dma_pause_chan(struct dma_chan *chan) | 
|  | { | 
|  | struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan); | 
|  | struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma; | 
|  | int chan_id = mxs_chan->chan.chan_id; | 
|  |  | 
|  | /* freeze the channel */ | 
|  | if (dma_is_apbh(mxs_dma) && apbh_is_old(mxs_dma)) | 
|  | writel(1 << chan_id, | 
|  | mxs_dma->base + HW_APBHX_CTRL0 + STMP_OFFSET_REG_SET); | 
|  | else | 
|  | writel(1 << chan_id, | 
|  | mxs_dma->base + HW_APBHX_CHANNEL_CTRL + STMP_OFFSET_REG_SET); | 
|  |  | 
|  | mxs_chan->status = DMA_PAUSED; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int mxs_dma_resume_chan(struct dma_chan *chan) | 
|  | { | 
|  | struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan); | 
|  | struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma; | 
|  | int chan_id = mxs_chan->chan.chan_id; | 
|  |  | 
|  | /* unfreeze the channel */ | 
|  | if (dma_is_apbh(mxs_dma) && apbh_is_old(mxs_dma)) | 
|  | writel(1 << chan_id, | 
|  | mxs_dma->base + HW_APBHX_CTRL0 + STMP_OFFSET_REG_CLR); | 
|  | else | 
|  | writel(1 << chan_id, | 
|  | mxs_dma->base + HW_APBHX_CHANNEL_CTRL + STMP_OFFSET_REG_CLR); | 
|  |  | 
|  | mxs_chan->status = DMA_IN_PROGRESS; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static dma_cookie_t mxs_dma_tx_submit(struct dma_async_tx_descriptor *tx) | 
|  | { | 
|  | return dma_cookie_assign(tx); | 
|  | } | 
|  |  | 
|  | static void mxs_dma_tasklet(struct tasklet_struct *t) | 
|  | { | 
|  | struct mxs_dma_chan *mxs_chan = from_tasklet(mxs_chan, t, tasklet); | 
|  |  | 
|  | dmaengine_desc_get_callback_invoke(&mxs_chan->desc, NULL); | 
|  | } | 
|  |  | 
|  | static int mxs_dma_irq_to_chan(struct mxs_dma_engine *mxs_dma, int irq) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i != mxs_dma->nr_channels; ++i) | 
|  | if (mxs_dma->mxs_chans[i].chan_irq == irq) | 
|  | return i; | 
|  |  | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | static irqreturn_t mxs_dma_int_handler(int irq, void *dev_id) | 
|  | { | 
|  | struct mxs_dma_engine *mxs_dma = dev_id; | 
|  | struct mxs_dma_chan *mxs_chan; | 
|  | u32 completed; | 
|  | u32 err; | 
|  | int chan = mxs_dma_irq_to_chan(mxs_dma, irq); | 
|  |  | 
|  | if (chan < 0) | 
|  | return IRQ_NONE; | 
|  |  | 
|  | /* completion status */ | 
|  | completed = readl(mxs_dma->base + HW_APBHX_CTRL1); | 
|  | completed = (completed >> chan) & 0x1; | 
|  |  | 
|  | /* Clear interrupt */ | 
|  | writel((1 << chan), | 
|  | mxs_dma->base + HW_APBHX_CTRL1 + STMP_OFFSET_REG_CLR); | 
|  |  | 
|  | /* error status */ | 
|  | err = readl(mxs_dma->base + HW_APBHX_CTRL2); | 
|  | err &= (1 << (MXS_DMA_CHANNELS + chan)) | (1 << chan); | 
|  |  | 
|  | /* | 
|  | * error status bit is in the upper 16 bits, error irq bit in the lower | 
|  | * 16 bits. We transform it into a simpler error code: | 
|  | * err: 0x00 = no error, 0x01 = TERMINATION, 0x02 = BUS_ERROR | 
|  | */ | 
|  | err = (err >> (MXS_DMA_CHANNELS + chan)) + (err >> chan); | 
|  |  | 
|  | /* Clear error irq */ | 
|  | writel((1 << chan), | 
|  | mxs_dma->base + HW_APBHX_CTRL2 + STMP_OFFSET_REG_CLR); | 
|  |  | 
|  | /* | 
|  | * When both completion and error of termination bits set at the | 
|  | * same time, we do not take it as an error.  IOW, it only becomes | 
|  | * an error we need to handle here in case of either it's a bus | 
|  | * error or a termination error with no completion. 0x01 is termination | 
|  | * error, so we can subtract err & completed to get the real error case. | 
|  | */ | 
|  | err -= err & completed; | 
|  |  | 
|  | mxs_chan = &mxs_dma->mxs_chans[chan]; | 
|  |  | 
|  | if (err) { | 
|  | dev_dbg(mxs_dma->dma_device.dev, | 
|  | "%s: error in channel %d\n", __func__, | 
|  | chan); | 
|  | mxs_chan->status = DMA_ERROR; | 
|  | mxs_dma_reset_chan(&mxs_chan->chan); | 
|  | } else if (mxs_chan->status != DMA_COMPLETE) { | 
|  | if (mxs_chan->flags & MXS_DMA_SG_LOOP) { | 
|  | mxs_chan->status = DMA_IN_PROGRESS; | 
|  | if (mxs_chan->flags & MXS_DMA_USE_SEMAPHORE) | 
|  | writel(1, mxs_dma->base + | 
|  | HW_APBHX_CHn_SEMA(mxs_dma, chan)); | 
|  | } else { | 
|  | mxs_chan->status = DMA_COMPLETE; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (mxs_chan->status == DMA_COMPLETE) { | 
|  | if (mxs_chan->reset) | 
|  | return IRQ_HANDLED; | 
|  | dma_cookie_complete(&mxs_chan->desc); | 
|  | } | 
|  |  | 
|  | /* schedule tasklet on this channel */ | 
|  | tasklet_schedule(&mxs_chan->tasklet); | 
|  |  | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | static int mxs_dma_alloc_chan_resources(struct dma_chan *chan) | 
|  | { | 
|  | struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan); | 
|  | struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma; | 
|  | int ret; | 
|  |  | 
|  | mxs_chan->ccw = dma_alloc_coherent(mxs_dma->dma_device.dev, | 
|  | CCW_BLOCK_SIZE, | 
|  | &mxs_chan->ccw_phys, GFP_KERNEL); | 
|  | if (!mxs_chan->ccw) { | 
|  | ret = -ENOMEM; | 
|  | goto err_alloc; | 
|  | } | 
|  |  | 
|  | ret = request_irq(mxs_chan->chan_irq, mxs_dma_int_handler, | 
|  | 0, "mxs-dma", mxs_dma); | 
|  | if (ret) | 
|  | goto err_irq; | 
|  |  | 
|  | ret = clk_prepare_enable(mxs_dma->clk); | 
|  | if (ret) | 
|  | goto err_clk; | 
|  |  | 
|  | mxs_dma_reset_chan(chan); | 
|  |  | 
|  | dma_async_tx_descriptor_init(&mxs_chan->desc, chan); | 
|  | mxs_chan->desc.tx_submit = mxs_dma_tx_submit; | 
|  |  | 
|  | /* the descriptor is ready */ | 
|  | async_tx_ack(&mxs_chan->desc); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err_clk: | 
|  | free_irq(mxs_chan->chan_irq, mxs_dma); | 
|  | err_irq: | 
|  | dma_free_coherent(mxs_dma->dma_device.dev, CCW_BLOCK_SIZE, | 
|  | mxs_chan->ccw, mxs_chan->ccw_phys); | 
|  | err_alloc: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void mxs_dma_free_chan_resources(struct dma_chan *chan) | 
|  | { | 
|  | struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan); | 
|  | struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma; | 
|  |  | 
|  | mxs_dma_disable_chan(chan); | 
|  |  | 
|  | free_irq(mxs_chan->chan_irq, mxs_dma); | 
|  |  | 
|  | dma_free_coherent(mxs_dma->dma_device.dev, CCW_BLOCK_SIZE, | 
|  | mxs_chan->ccw, mxs_chan->ccw_phys); | 
|  |  | 
|  | clk_disable_unprepare(mxs_dma->clk); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * How to use the flags for ->device_prep_slave_sg() : | 
|  | *    [1] If there is only one DMA command in the DMA chain, the code should be: | 
|  | *            ...... | 
|  | *            ->device_prep_slave_sg(DMA_CTRL_ACK); | 
|  | *            ...... | 
|  | *    [2] If there are two DMA commands in the DMA chain, the code should be | 
|  | *            ...... | 
|  | *            ->device_prep_slave_sg(0); | 
|  | *            ...... | 
|  | *            ->device_prep_slave_sg(DMA_CTRL_ACK); | 
|  | *            ...... | 
|  | *    [3] If there are more than two DMA commands in the DMA chain, the code | 
|  | *        should be: | 
|  | *            ...... | 
|  | *            ->device_prep_slave_sg(0);                                // First | 
|  | *            ...... | 
|  | *            ->device_prep_slave_sg(DMA_CTRL_ACK]); | 
|  | *            ...... | 
|  | *            ->device_prep_slave_sg(DMA_CTRL_ACK); // Last | 
|  | *            ...... | 
|  | */ | 
|  | static struct dma_async_tx_descriptor *mxs_dma_prep_slave_sg( | 
|  | struct dma_chan *chan, struct scatterlist *sgl, | 
|  | unsigned int sg_len, enum dma_transfer_direction direction, | 
|  | unsigned long flags, void *context) | 
|  | { | 
|  | struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan); | 
|  | struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma; | 
|  | struct mxs_dma_ccw *ccw; | 
|  | struct scatterlist *sg; | 
|  | u32 i, j; | 
|  | u32 *pio; | 
|  | int idx = 0; | 
|  |  | 
|  | if (mxs_chan->status == DMA_IN_PROGRESS) | 
|  | idx = mxs_chan->desc_count; | 
|  |  | 
|  | if (sg_len + idx > NUM_CCW) { | 
|  | dev_err(mxs_dma->dma_device.dev, | 
|  | "maximum number of sg exceeded: %d > %d\n", | 
|  | sg_len, NUM_CCW); | 
|  | goto err_out; | 
|  | } | 
|  |  | 
|  | mxs_chan->status = DMA_IN_PROGRESS; | 
|  | mxs_chan->flags = 0; | 
|  |  | 
|  | /* | 
|  | * If the sg is prepared with append flag set, the sg | 
|  | * will be appended to the last prepared sg. | 
|  | */ | 
|  | if (idx) { | 
|  | BUG_ON(idx < 1); | 
|  | ccw = &mxs_chan->ccw[idx - 1]; | 
|  | ccw->next = mxs_chan->ccw_phys + sizeof(*ccw) * idx; | 
|  | ccw->bits |= CCW_CHAIN; | 
|  | ccw->bits &= ~CCW_IRQ; | 
|  | ccw->bits &= ~CCW_DEC_SEM; | 
|  | } else { | 
|  | idx = 0; | 
|  | } | 
|  |  | 
|  | if (direction == DMA_TRANS_NONE) { | 
|  | ccw = &mxs_chan->ccw[idx++]; | 
|  | pio = (u32 *) sgl; | 
|  |  | 
|  | for (j = 0; j < sg_len;) | 
|  | ccw->pio_words[j++] = *pio++; | 
|  |  | 
|  | ccw->bits = 0; | 
|  | ccw->bits |= CCW_IRQ; | 
|  | ccw->bits |= CCW_DEC_SEM; | 
|  | if (flags & MXS_DMA_CTRL_WAIT4END) | 
|  | ccw->bits |= CCW_WAIT4END; | 
|  | ccw->bits |= CCW_HALT_ON_TERM; | 
|  | ccw->bits |= CCW_TERM_FLUSH; | 
|  | ccw->bits |= BF_CCW(sg_len, PIO_NUM); | 
|  | ccw->bits |= BF_CCW(MXS_DMA_CMD_NO_XFER, COMMAND); | 
|  | if (flags & MXS_DMA_CTRL_WAIT4RDY) | 
|  | ccw->bits |= CCW_WAIT4RDY; | 
|  | } else { | 
|  | for_each_sg(sgl, sg, sg_len, i) { | 
|  | if (sg_dma_len(sg) > MAX_XFER_BYTES) { | 
|  | dev_err(mxs_dma->dma_device.dev, "maximum bytes for sg entry exceeded: %d > %d\n", | 
|  | sg_dma_len(sg), MAX_XFER_BYTES); | 
|  | goto err_out; | 
|  | } | 
|  |  | 
|  | ccw = &mxs_chan->ccw[idx++]; | 
|  |  | 
|  | ccw->next = mxs_chan->ccw_phys + sizeof(*ccw) * idx; | 
|  | ccw->bufaddr = sg->dma_address; | 
|  | ccw->xfer_bytes = sg_dma_len(sg); | 
|  |  | 
|  | ccw->bits = 0; | 
|  | ccw->bits |= CCW_CHAIN; | 
|  | ccw->bits |= CCW_HALT_ON_TERM; | 
|  | ccw->bits |= CCW_TERM_FLUSH; | 
|  | ccw->bits |= BF_CCW(direction == DMA_DEV_TO_MEM ? | 
|  | MXS_DMA_CMD_WRITE : MXS_DMA_CMD_READ, | 
|  | COMMAND); | 
|  |  | 
|  | if (i + 1 == sg_len) { | 
|  | ccw->bits &= ~CCW_CHAIN; | 
|  | ccw->bits |= CCW_IRQ; | 
|  | ccw->bits |= CCW_DEC_SEM; | 
|  | if (flags & MXS_DMA_CTRL_WAIT4END) | 
|  | ccw->bits |= CCW_WAIT4END; | 
|  | } | 
|  | } | 
|  | } | 
|  | mxs_chan->desc_count = idx; | 
|  |  | 
|  | return &mxs_chan->desc; | 
|  |  | 
|  | err_out: | 
|  | mxs_chan->status = DMA_ERROR; | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static struct dma_async_tx_descriptor *mxs_dma_prep_dma_cyclic( | 
|  | struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len, | 
|  | size_t period_len, enum dma_transfer_direction direction, | 
|  | unsigned long flags) | 
|  | { | 
|  | struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan); | 
|  | struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma; | 
|  | u32 num_periods = buf_len / period_len; | 
|  | u32 i = 0, buf = 0; | 
|  |  | 
|  | if (mxs_chan->status == DMA_IN_PROGRESS) | 
|  | return NULL; | 
|  |  | 
|  | mxs_chan->status = DMA_IN_PROGRESS; | 
|  | mxs_chan->flags |= MXS_DMA_SG_LOOP; | 
|  | mxs_chan->flags |= MXS_DMA_USE_SEMAPHORE; | 
|  |  | 
|  | if (num_periods > NUM_CCW) { | 
|  | dev_err(mxs_dma->dma_device.dev, | 
|  | "maximum number of sg exceeded: %d > %d\n", | 
|  | num_periods, NUM_CCW); | 
|  | goto err_out; | 
|  | } | 
|  |  | 
|  | if (period_len > MAX_XFER_BYTES) { | 
|  | dev_err(mxs_dma->dma_device.dev, | 
|  | "maximum period size exceeded: %zu > %d\n", | 
|  | period_len, MAX_XFER_BYTES); | 
|  | goto err_out; | 
|  | } | 
|  |  | 
|  | while (buf < buf_len) { | 
|  | struct mxs_dma_ccw *ccw = &mxs_chan->ccw[i]; | 
|  |  | 
|  | if (i + 1 == num_periods) | 
|  | ccw->next = mxs_chan->ccw_phys; | 
|  | else | 
|  | ccw->next = mxs_chan->ccw_phys + sizeof(*ccw) * (i + 1); | 
|  |  | 
|  | ccw->bufaddr = dma_addr; | 
|  | ccw->xfer_bytes = period_len; | 
|  |  | 
|  | ccw->bits = 0; | 
|  | ccw->bits |= CCW_CHAIN; | 
|  | ccw->bits |= CCW_IRQ; | 
|  | ccw->bits |= CCW_HALT_ON_TERM; | 
|  | ccw->bits |= CCW_TERM_FLUSH; | 
|  | ccw->bits |= CCW_DEC_SEM; | 
|  | ccw->bits |= BF_CCW(direction == DMA_DEV_TO_MEM ? | 
|  | MXS_DMA_CMD_WRITE : MXS_DMA_CMD_READ, COMMAND); | 
|  |  | 
|  | dma_addr += period_len; | 
|  | buf += period_len; | 
|  |  | 
|  | i++; | 
|  | } | 
|  | mxs_chan->desc_count = i; | 
|  |  | 
|  | return &mxs_chan->desc; | 
|  |  | 
|  | err_out: | 
|  | mxs_chan->status = DMA_ERROR; | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static int mxs_dma_terminate_all(struct dma_chan *chan) | 
|  | { | 
|  | mxs_dma_reset_chan(chan); | 
|  | mxs_dma_disable_chan(chan); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static enum dma_status mxs_dma_tx_status(struct dma_chan *chan, | 
|  | dma_cookie_t cookie, struct dma_tx_state *txstate) | 
|  | { | 
|  | struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan); | 
|  | struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma; | 
|  | u32 residue = 0; | 
|  |  | 
|  | if (mxs_chan->status == DMA_IN_PROGRESS && | 
|  | mxs_chan->flags & MXS_DMA_SG_LOOP) { | 
|  | struct mxs_dma_ccw *last_ccw; | 
|  | u32 bar; | 
|  |  | 
|  | last_ccw = &mxs_chan->ccw[mxs_chan->desc_count - 1]; | 
|  | residue = last_ccw->xfer_bytes + last_ccw->bufaddr; | 
|  |  | 
|  | bar = readl(mxs_dma->base + | 
|  | HW_APBHX_CHn_BAR(mxs_dma, chan->chan_id)); | 
|  | residue -= bar; | 
|  | } | 
|  |  | 
|  | dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie, | 
|  | residue); | 
|  |  | 
|  | return mxs_chan->status; | 
|  | } | 
|  |  | 
|  | static int mxs_dma_init(struct mxs_dma_engine *mxs_dma) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = clk_prepare_enable(mxs_dma->clk); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = stmp_reset_block(mxs_dma->base); | 
|  | if (ret) | 
|  | goto err_out; | 
|  |  | 
|  | /* enable apbh burst */ | 
|  | if (dma_is_apbh(mxs_dma)) { | 
|  | writel(BM_APBH_CTRL0_APB_BURST_EN, | 
|  | mxs_dma->base + HW_APBHX_CTRL0 + STMP_OFFSET_REG_SET); | 
|  | writel(BM_APBH_CTRL0_APB_BURST8_EN, | 
|  | mxs_dma->base + HW_APBHX_CTRL0 + STMP_OFFSET_REG_SET); | 
|  | } | 
|  |  | 
|  | /* enable irq for all the channels */ | 
|  | writel(MXS_DMA_CHANNELS_MASK << MXS_DMA_CHANNELS, | 
|  | mxs_dma->base + HW_APBHX_CTRL1 + STMP_OFFSET_REG_SET); | 
|  |  | 
|  | err_out: | 
|  | clk_disable_unprepare(mxs_dma->clk); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | struct mxs_dma_filter_param { | 
|  | unsigned int chan_id; | 
|  | }; | 
|  |  | 
|  | static bool mxs_dma_filter_fn(struct dma_chan *chan, void *fn_param) | 
|  | { | 
|  | struct mxs_dma_filter_param *param = fn_param; | 
|  | struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan); | 
|  | struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma; | 
|  | int chan_irq; | 
|  |  | 
|  | if (chan->chan_id != param->chan_id) | 
|  | return false; | 
|  |  | 
|  | chan_irq = platform_get_irq(mxs_dma->pdev, param->chan_id); | 
|  | if (chan_irq < 0) | 
|  | return false; | 
|  |  | 
|  | mxs_chan->chan_irq = chan_irq; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static struct dma_chan *mxs_dma_xlate(struct of_phandle_args *dma_spec, | 
|  | struct of_dma *ofdma) | 
|  | { | 
|  | struct mxs_dma_engine *mxs_dma = ofdma->of_dma_data; | 
|  | dma_cap_mask_t mask = mxs_dma->dma_device.cap_mask; | 
|  | struct mxs_dma_filter_param param; | 
|  |  | 
|  | if (dma_spec->args_count != 1) | 
|  | return NULL; | 
|  |  | 
|  | param.chan_id = dma_spec->args[0]; | 
|  |  | 
|  | if (param.chan_id >= mxs_dma->nr_channels) | 
|  | return NULL; | 
|  |  | 
|  | return __dma_request_channel(&mask, mxs_dma_filter_fn, ¶m, | 
|  | ofdma->of_node); | 
|  | } | 
|  |  | 
|  | static int mxs_dma_probe(struct platform_device *pdev) | 
|  | { | 
|  | struct device_node *np = pdev->dev.of_node; | 
|  | const struct mxs_dma_type *dma_type; | 
|  | struct mxs_dma_engine *mxs_dma; | 
|  | int ret, i; | 
|  |  | 
|  | mxs_dma = devm_kzalloc(&pdev->dev, sizeof(*mxs_dma), GFP_KERNEL); | 
|  | if (!mxs_dma) | 
|  | return -ENOMEM; | 
|  |  | 
|  | ret = of_property_read_u32(np, "dma-channels", &mxs_dma->nr_channels); | 
|  | if (ret) { | 
|  | dev_err(&pdev->dev, "failed to read dma-channels\n"); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | dma_type = (struct mxs_dma_type *)of_device_get_match_data(&pdev->dev); | 
|  | mxs_dma->type = dma_type->type; | 
|  | mxs_dma->dev_id = dma_type->id; | 
|  |  | 
|  | mxs_dma->base = devm_platform_ioremap_resource(pdev, 0); | 
|  | if (IS_ERR(mxs_dma->base)) | 
|  | return PTR_ERR(mxs_dma->base); | 
|  |  | 
|  | mxs_dma->clk = devm_clk_get(&pdev->dev, NULL); | 
|  | if (IS_ERR(mxs_dma->clk)) | 
|  | return PTR_ERR(mxs_dma->clk); | 
|  |  | 
|  | dma_cap_set(DMA_SLAVE, mxs_dma->dma_device.cap_mask); | 
|  | dma_cap_set(DMA_CYCLIC, mxs_dma->dma_device.cap_mask); | 
|  |  | 
|  | INIT_LIST_HEAD(&mxs_dma->dma_device.channels); | 
|  |  | 
|  | /* Initialize channel parameters */ | 
|  | for (i = 0; i < MXS_DMA_CHANNELS; i++) { | 
|  | struct mxs_dma_chan *mxs_chan = &mxs_dma->mxs_chans[i]; | 
|  |  | 
|  | mxs_chan->mxs_dma = mxs_dma; | 
|  | mxs_chan->chan.device = &mxs_dma->dma_device; | 
|  | dma_cookie_init(&mxs_chan->chan); | 
|  |  | 
|  | tasklet_setup(&mxs_chan->tasklet, mxs_dma_tasklet); | 
|  |  | 
|  |  | 
|  | /* Add the channel to mxs_chan list */ | 
|  | list_add_tail(&mxs_chan->chan.device_node, | 
|  | &mxs_dma->dma_device.channels); | 
|  | } | 
|  |  | 
|  | ret = mxs_dma_init(mxs_dma); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | mxs_dma->pdev = pdev; | 
|  | mxs_dma->dma_device.dev = &pdev->dev; | 
|  |  | 
|  | /* mxs_dma gets 65535 bytes maximum sg size */ | 
|  | dma_set_max_seg_size(mxs_dma->dma_device.dev, MAX_XFER_BYTES); | 
|  |  | 
|  | mxs_dma->dma_device.device_alloc_chan_resources = mxs_dma_alloc_chan_resources; | 
|  | mxs_dma->dma_device.device_free_chan_resources = mxs_dma_free_chan_resources; | 
|  | mxs_dma->dma_device.device_tx_status = mxs_dma_tx_status; | 
|  | mxs_dma->dma_device.device_prep_slave_sg = mxs_dma_prep_slave_sg; | 
|  | mxs_dma->dma_device.device_prep_dma_cyclic = mxs_dma_prep_dma_cyclic; | 
|  | mxs_dma->dma_device.device_pause = mxs_dma_pause_chan; | 
|  | mxs_dma->dma_device.device_resume = mxs_dma_resume_chan; | 
|  | mxs_dma->dma_device.device_terminate_all = mxs_dma_terminate_all; | 
|  | mxs_dma->dma_device.src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES); | 
|  | mxs_dma->dma_device.dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES); | 
|  | mxs_dma->dma_device.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); | 
|  | mxs_dma->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; | 
|  | mxs_dma->dma_device.device_issue_pending = mxs_dma_enable_chan; | 
|  |  | 
|  | ret = dmaenginem_async_device_register(&mxs_dma->dma_device); | 
|  | if (ret) { | 
|  | dev_err(mxs_dma->dma_device.dev, "unable to register\n"); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | ret = of_dma_controller_register(np, mxs_dma_xlate, mxs_dma); | 
|  | if (ret) { | 
|  | dev_err(mxs_dma->dma_device.dev, | 
|  | "failed to register controller\n"); | 
|  | } | 
|  |  | 
|  | dev_info(mxs_dma->dma_device.dev, "initialized\n"); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct platform_driver mxs_dma_driver = { | 
|  | .driver		= { | 
|  | .name	= "mxs-dma", | 
|  | .of_match_table = mxs_dma_dt_ids, | 
|  | }, | 
|  | .probe = mxs_dma_probe, | 
|  | }; | 
|  |  | 
|  | builtin_platform_driver(mxs_dma_driver); |