| // SPDX-License-Identifier: GPL-2.0 | 
 | /* | 
 |  * Copyright (C) 2008 Red Hat.  All rights reserved. | 
 |  */ | 
 |  | 
 | #include <linux/pagemap.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/sched/signal.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/math64.h> | 
 | #include <linux/ratelimit.h> | 
 | #include <linux/error-injection.h> | 
 | #include <linux/sched/mm.h> | 
 | #include <linux/string_choices.h> | 
 | #include "extent-tree.h" | 
 | #include "fs.h" | 
 | #include "messages.h" | 
 | #include "misc.h" | 
 | #include "free-space-cache.h" | 
 | #include "transaction.h" | 
 | #include "disk-io.h" | 
 | #include "extent_io.h" | 
 | #include "space-info.h" | 
 | #include "block-group.h" | 
 | #include "discard.h" | 
 | #include "subpage.h" | 
 | #include "inode-item.h" | 
 | #include "accessors.h" | 
 | #include "file-item.h" | 
 | #include "file.h" | 
 | #include "super.h" | 
 |  | 
 | #define BITS_PER_BITMAP		(PAGE_SIZE * 8UL) | 
 | #define MAX_CACHE_BYTES_PER_GIG	SZ_64K | 
 | #define FORCE_EXTENT_THRESHOLD	SZ_1M | 
 |  | 
 | static struct kmem_cache *btrfs_free_space_cachep; | 
 | static struct kmem_cache *btrfs_free_space_bitmap_cachep; | 
 |  | 
 | struct btrfs_trim_range { | 
 | 	u64 start; | 
 | 	u64 bytes; | 
 | 	struct list_head list; | 
 | }; | 
 |  | 
 | static int link_free_space(struct btrfs_free_space_ctl *ctl, | 
 | 			   struct btrfs_free_space *info); | 
 | static void unlink_free_space(struct btrfs_free_space_ctl *ctl, | 
 | 			      struct btrfs_free_space *info, bool update_stat); | 
 | static int search_bitmap(struct btrfs_free_space_ctl *ctl, | 
 | 			 struct btrfs_free_space *bitmap_info, u64 *offset, | 
 | 			 u64 *bytes, bool for_alloc); | 
 | static void free_bitmap(struct btrfs_free_space_ctl *ctl, | 
 | 			struct btrfs_free_space *bitmap_info); | 
 | static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl, | 
 | 			      struct btrfs_free_space *info, u64 offset, | 
 | 			      u64 bytes, bool update_stats); | 
 |  | 
 | static void btrfs_crc32c_final(u32 crc, u8 *result) | 
 | { | 
 | 	put_unaligned_le32(~crc, result); | 
 | } | 
 |  | 
 | static void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl) | 
 | { | 
 | 	struct btrfs_free_space *info; | 
 | 	struct rb_node *node; | 
 |  | 
 | 	while ((node = rb_last(&ctl->free_space_offset)) != NULL) { | 
 | 		info = rb_entry(node, struct btrfs_free_space, offset_index); | 
 | 		if (!info->bitmap) { | 
 | 			unlink_free_space(ctl, info, true); | 
 | 			kmem_cache_free(btrfs_free_space_cachep, info); | 
 | 		} else { | 
 | 			free_bitmap(ctl, info); | 
 | 		} | 
 |  | 
 | 		cond_resched_lock(&ctl->tree_lock); | 
 | 	} | 
 | } | 
 |  | 
 | static struct inode *__lookup_free_space_inode(struct btrfs_root *root, | 
 | 					       struct btrfs_path *path, | 
 | 					       u64 offset) | 
 | { | 
 | 	struct btrfs_key key; | 
 | 	struct btrfs_key location; | 
 | 	struct btrfs_disk_key disk_key; | 
 | 	struct btrfs_free_space_header *header; | 
 | 	struct extent_buffer *leaf; | 
 | 	struct btrfs_inode *inode; | 
 | 	unsigned nofs_flag; | 
 | 	int ret; | 
 |  | 
 | 	key.objectid = BTRFS_FREE_SPACE_OBJECTID; | 
 | 	key.type = 0; | 
 | 	key.offset = offset; | 
 |  | 
 | 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
 | 	if (ret < 0) | 
 | 		return ERR_PTR(ret); | 
 | 	if (ret > 0) { | 
 | 		btrfs_release_path(path); | 
 | 		return ERR_PTR(-ENOENT); | 
 | 	} | 
 |  | 
 | 	leaf = path->nodes[0]; | 
 | 	header = btrfs_item_ptr(leaf, path->slots[0], | 
 | 				struct btrfs_free_space_header); | 
 | 	btrfs_free_space_key(leaf, header, &disk_key); | 
 | 	btrfs_disk_key_to_cpu(&location, &disk_key); | 
 | 	btrfs_release_path(path); | 
 |  | 
 | 	/* | 
 | 	 * We are often under a trans handle at this point, so we need to make | 
 | 	 * sure NOFS is set to keep us from deadlocking. | 
 | 	 */ | 
 | 	nofs_flag = memalloc_nofs_save(); | 
 | 	inode = btrfs_iget_path(location.objectid, root, path); | 
 | 	btrfs_release_path(path); | 
 | 	memalloc_nofs_restore(nofs_flag); | 
 | 	if (IS_ERR(inode)) | 
 | 		return ERR_CAST(inode); | 
 |  | 
 | 	mapping_set_gfp_mask(inode->vfs_inode.i_mapping, | 
 | 			mapping_gfp_constraint(inode->vfs_inode.i_mapping, | 
 | 			~(__GFP_FS | __GFP_HIGHMEM))); | 
 |  | 
 | 	return &inode->vfs_inode; | 
 | } | 
 |  | 
 | struct inode *lookup_free_space_inode(struct btrfs_block_group *block_group, | 
 | 		struct btrfs_path *path) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = block_group->fs_info; | 
 | 	struct inode *inode = NULL; | 
 | 	u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW; | 
 |  | 
 | 	spin_lock(&block_group->lock); | 
 | 	if (block_group->inode) | 
 | 		inode = igrab(&block_group->inode->vfs_inode); | 
 | 	spin_unlock(&block_group->lock); | 
 | 	if (inode) | 
 | 		return inode; | 
 |  | 
 | 	inode = __lookup_free_space_inode(fs_info->tree_root, path, | 
 | 					  block_group->start); | 
 | 	if (IS_ERR(inode)) | 
 | 		return inode; | 
 |  | 
 | 	spin_lock(&block_group->lock); | 
 | 	if (!((BTRFS_I(inode)->flags & flags) == flags)) { | 
 | 		btrfs_info(fs_info, "Old style space inode found, converting."); | 
 | 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM | | 
 | 			BTRFS_INODE_NODATACOW; | 
 | 		block_group->disk_cache_state = BTRFS_DC_CLEAR; | 
 | 	} | 
 |  | 
 | 	if (!test_and_set_bit(BLOCK_GROUP_FLAG_IREF, &block_group->runtime_flags)) | 
 | 		block_group->inode = BTRFS_I(igrab(inode)); | 
 | 	spin_unlock(&block_group->lock); | 
 |  | 
 | 	return inode; | 
 | } | 
 |  | 
 | static int __create_free_space_inode(struct btrfs_root *root, | 
 | 				     struct btrfs_trans_handle *trans, | 
 | 				     struct btrfs_path *path, | 
 | 				     u64 ino, u64 offset) | 
 | { | 
 | 	struct btrfs_key key; | 
 | 	struct btrfs_disk_key disk_key; | 
 | 	struct btrfs_free_space_header *header; | 
 | 	struct btrfs_inode_item *inode_item; | 
 | 	struct extent_buffer *leaf; | 
 | 	/* We inline CRCs for the free disk space cache */ | 
 | 	const u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC | | 
 | 			  BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW; | 
 | 	int ret; | 
 |  | 
 | 	ret = btrfs_insert_empty_inode(trans, root, path, ino); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	leaf = path->nodes[0]; | 
 | 	inode_item = btrfs_item_ptr(leaf, path->slots[0], | 
 | 				    struct btrfs_inode_item); | 
 | 	btrfs_item_key(leaf, &disk_key, path->slots[0]); | 
 | 	memzero_extent_buffer(leaf, (unsigned long)inode_item, | 
 | 			     sizeof(*inode_item)); | 
 | 	btrfs_set_inode_generation(leaf, inode_item, trans->transid); | 
 | 	btrfs_set_inode_size(leaf, inode_item, 0); | 
 | 	btrfs_set_inode_nbytes(leaf, inode_item, 0); | 
 | 	btrfs_set_inode_uid(leaf, inode_item, 0); | 
 | 	btrfs_set_inode_gid(leaf, inode_item, 0); | 
 | 	btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600); | 
 | 	btrfs_set_inode_flags(leaf, inode_item, flags); | 
 | 	btrfs_set_inode_nlink(leaf, inode_item, 1); | 
 | 	btrfs_set_inode_transid(leaf, inode_item, trans->transid); | 
 | 	btrfs_set_inode_block_group(leaf, inode_item, offset); | 
 | 	btrfs_release_path(path); | 
 |  | 
 | 	key.objectid = BTRFS_FREE_SPACE_OBJECTID; | 
 | 	key.type = 0; | 
 | 	key.offset = offset; | 
 | 	ret = btrfs_insert_empty_item(trans, root, path, &key, | 
 | 				      sizeof(struct btrfs_free_space_header)); | 
 | 	if (ret < 0) { | 
 | 		btrfs_release_path(path); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	leaf = path->nodes[0]; | 
 | 	header = btrfs_item_ptr(leaf, path->slots[0], | 
 | 				struct btrfs_free_space_header); | 
 | 	memzero_extent_buffer(leaf, (unsigned long)header, sizeof(*header)); | 
 | 	btrfs_set_free_space_key(leaf, header, &disk_key); | 
 | 	btrfs_release_path(path); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int create_free_space_inode(struct btrfs_trans_handle *trans, | 
 | 			    struct btrfs_block_group *block_group, | 
 | 			    struct btrfs_path *path) | 
 | { | 
 | 	int ret; | 
 | 	u64 ino; | 
 |  | 
 | 	ret = btrfs_get_free_objectid(trans->fs_info->tree_root, &ino); | 
 | 	if (ret < 0) | 
 | 		return ret; | 
 |  | 
 | 	return __create_free_space_inode(trans->fs_info->tree_root, trans, path, | 
 | 					 ino, block_group->start); | 
 | } | 
 |  | 
 | /* | 
 |  * inode is an optional sink: if it is NULL, btrfs_remove_free_space_inode | 
 |  * handles lookup, otherwise it takes ownership and iputs the inode. | 
 |  * Don't reuse an inode pointer after passing it into this function. | 
 |  */ | 
 | int btrfs_remove_free_space_inode(struct btrfs_trans_handle *trans, | 
 | 				  struct inode *inode, | 
 | 				  struct btrfs_block_group *block_group) | 
 | { | 
 | 	BTRFS_PATH_AUTO_FREE(path); | 
 | 	struct btrfs_key key; | 
 | 	int ret = 0; | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	if (!inode) | 
 | 		inode = lookup_free_space_inode(block_group, path); | 
 | 	if (IS_ERR(inode)) { | 
 | 		if (PTR_ERR(inode) != -ENOENT) | 
 | 			ret = PTR_ERR(inode); | 
 | 		return ret; | 
 | 	} | 
 | 	ret = btrfs_orphan_add(trans, BTRFS_I(inode)); | 
 | 	if (ret) { | 
 | 		btrfs_add_delayed_iput(BTRFS_I(inode)); | 
 | 		return ret; | 
 | 	} | 
 | 	clear_nlink(inode); | 
 | 	/* One for the block groups ref */ | 
 | 	spin_lock(&block_group->lock); | 
 | 	if (test_and_clear_bit(BLOCK_GROUP_FLAG_IREF, &block_group->runtime_flags)) { | 
 | 		block_group->inode = NULL; | 
 | 		spin_unlock(&block_group->lock); | 
 | 		iput(inode); | 
 | 	} else { | 
 | 		spin_unlock(&block_group->lock); | 
 | 	} | 
 | 	/* One for the lookup ref */ | 
 | 	btrfs_add_delayed_iput(BTRFS_I(inode)); | 
 |  | 
 | 	key.objectid = BTRFS_FREE_SPACE_OBJECTID; | 
 | 	key.type = 0; | 
 | 	key.offset = block_group->start; | 
 | 	ret = btrfs_search_slot(trans, trans->fs_info->tree_root, &key, path, | 
 | 				-1, 1); | 
 | 	if (ret) { | 
 | 		if (ret > 0) | 
 | 			ret = 0; | 
 | 		return ret; | 
 | 	} | 
 | 	return btrfs_del_item(trans, trans->fs_info->tree_root, path); | 
 | } | 
 |  | 
 | int btrfs_truncate_free_space_cache(struct btrfs_trans_handle *trans, | 
 | 				    struct btrfs_block_group *block_group, | 
 | 				    struct inode *vfs_inode) | 
 | { | 
 | 	struct btrfs_truncate_control control = { | 
 | 		.inode = BTRFS_I(vfs_inode), | 
 | 		.new_size = 0, | 
 | 		.ino = btrfs_ino(BTRFS_I(vfs_inode)), | 
 | 		.min_type = BTRFS_EXTENT_DATA_KEY, | 
 | 		.clear_extent_range = true, | 
 | 	}; | 
 | 	struct btrfs_inode *inode = BTRFS_I(vfs_inode); | 
 | 	struct btrfs_root *root = inode->root; | 
 | 	struct extent_state *cached_state = NULL; | 
 | 	int ret = 0; | 
 | 	bool locked = false; | 
 |  | 
 | 	if (block_group) { | 
 | 		BTRFS_PATH_AUTO_FREE(path); | 
 |  | 
 | 		path = btrfs_alloc_path(); | 
 | 		if (!path) { | 
 | 			ret = -ENOMEM; | 
 | 			goto fail; | 
 | 		} | 
 | 		locked = true; | 
 | 		mutex_lock(&trans->transaction->cache_write_mutex); | 
 | 		if (!list_empty(&block_group->io_list)) { | 
 | 			list_del_init(&block_group->io_list); | 
 |  | 
 | 			btrfs_wait_cache_io(trans, block_group, path); | 
 | 			btrfs_put_block_group(block_group); | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * now that we've truncated the cache away, its no longer | 
 | 		 * setup or written | 
 | 		 */ | 
 | 		spin_lock(&block_group->lock); | 
 | 		block_group->disk_cache_state = BTRFS_DC_CLEAR; | 
 | 		spin_unlock(&block_group->lock); | 
 | 	} | 
 |  | 
 | 	btrfs_i_size_write(inode, 0); | 
 | 	truncate_pagecache(vfs_inode, 0); | 
 |  | 
 | 	btrfs_lock_extent(&inode->io_tree, 0, (u64)-1, &cached_state); | 
 | 	btrfs_drop_extent_map_range(inode, 0, (u64)-1, false); | 
 |  | 
 | 	/* | 
 | 	 * We skip the throttling logic for free space cache inodes, so we don't | 
 | 	 * need to check for -EAGAIN. | 
 | 	 */ | 
 | 	ret = btrfs_truncate_inode_items(trans, root, &control); | 
 |  | 
 | 	inode_sub_bytes(&inode->vfs_inode, control.sub_bytes); | 
 | 	btrfs_inode_safe_disk_i_size_write(inode, control.last_size); | 
 |  | 
 | 	btrfs_unlock_extent(&inode->io_tree, 0, (u64)-1, &cached_state); | 
 | 	if (ret) | 
 | 		goto fail; | 
 |  | 
 | 	ret = btrfs_update_inode(trans, inode); | 
 |  | 
 | fail: | 
 | 	if (locked) | 
 | 		mutex_unlock(&trans->transaction->cache_write_mutex); | 
 | 	if (ret) | 
 | 		btrfs_abort_transaction(trans, ret); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void readahead_cache(struct inode *inode) | 
 | { | 
 | 	struct file_ra_state ra; | 
 | 	pgoff_t last_index; | 
 |  | 
 | 	file_ra_state_init(&ra, inode->i_mapping); | 
 | 	last_index = (i_size_read(inode) - 1) >> PAGE_SHIFT; | 
 |  | 
 | 	page_cache_sync_readahead(inode->i_mapping, &ra, NULL, 0, last_index); | 
 | } | 
 |  | 
 | static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode, | 
 | 		       int write) | 
 | { | 
 | 	int num_pages; | 
 |  | 
 | 	num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); | 
 |  | 
 | 	/* Make sure we can fit our crcs and generation into the first page */ | 
 | 	if (write && (num_pages * sizeof(u32) + sizeof(u64)) > PAGE_SIZE) | 
 | 		return -ENOSPC; | 
 |  | 
 | 	memset(io_ctl, 0, sizeof(struct btrfs_io_ctl)); | 
 |  | 
 | 	io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS); | 
 | 	if (!io_ctl->pages) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	io_ctl->num_pages = num_pages; | 
 | 	io_ctl->fs_info = inode_to_fs_info(inode); | 
 | 	io_ctl->inode = inode; | 
 |  | 
 | 	return 0; | 
 | } | 
 | ALLOW_ERROR_INJECTION(io_ctl_init, ERRNO); | 
 |  | 
 | static void io_ctl_free(struct btrfs_io_ctl *io_ctl) | 
 | { | 
 | 	kfree(io_ctl->pages); | 
 | 	io_ctl->pages = NULL; | 
 | } | 
 |  | 
 | static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl) | 
 | { | 
 | 	if (io_ctl->cur) { | 
 | 		io_ctl->cur = NULL; | 
 | 		io_ctl->orig = NULL; | 
 | 	} | 
 | } | 
 |  | 
 | static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear) | 
 | { | 
 | 	ASSERT(io_ctl->index < io_ctl->num_pages); | 
 | 	io_ctl->page = io_ctl->pages[io_ctl->index++]; | 
 | 	io_ctl->cur = page_address(io_ctl->page); | 
 | 	io_ctl->orig = io_ctl->cur; | 
 | 	io_ctl->size = PAGE_SIZE; | 
 | 	if (clear) | 
 | 		clear_page(io_ctl->cur); | 
 | } | 
 |  | 
 | static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	io_ctl_unmap_page(io_ctl); | 
 |  | 
 | 	for (i = 0; i < io_ctl->num_pages; i++) { | 
 | 		if (io_ctl->pages[i]) { | 
 | 			btrfs_folio_clear_checked(io_ctl->fs_info, | 
 | 					page_folio(io_ctl->pages[i]), | 
 | 					page_offset(io_ctl->pages[i]), | 
 | 					PAGE_SIZE); | 
 | 			unlock_page(io_ctl->pages[i]); | 
 | 			put_page(io_ctl->pages[i]); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, bool uptodate) | 
 | { | 
 | 	struct folio *folio; | 
 | 	struct inode *inode = io_ctl->inode; | 
 | 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < io_ctl->num_pages; i++) { | 
 | 		int ret; | 
 |  | 
 | 		folio = __filemap_get_folio(inode->i_mapping, i, | 
 | 					    FGP_LOCK | FGP_ACCESSED | FGP_CREAT, | 
 | 					    mask); | 
 | 		if (IS_ERR(folio)) { | 
 | 			io_ctl_drop_pages(io_ctl); | 
 | 			return PTR_ERR(folio); | 
 | 		} | 
 |  | 
 | 		ret = set_folio_extent_mapped(folio); | 
 | 		if (ret < 0) { | 
 | 			folio_unlock(folio); | 
 | 			folio_put(folio); | 
 | 			io_ctl_drop_pages(io_ctl); | 
 | 			return ret; | 
 | 		} | 
 |  | 
 | 		io_ctl->pages[i] = &folio->page; | 
 | 		if (uptodate && !folio_test_uptodate(folio)) { | 
 | 			btrfs_read_folio(NULL, folio); | 
 | 			folio_lock(folio); | 
 | 			if (folio->mapping != inode->i_mapping) { | 
 | 				btrfs_err(BTRFS_I(inode)->root->fs_info, | 
 | 					  "free space cache page truncated"); | 
 | 				io_ctl_drop_pages(io_ctl); | 
 | 				return -EIO; | 
 | 			} | 
 | 			if (!folio_test_uptodate(folio)) { | 
 | 				btrfs_err(BTRFS_I(inode)->root->fs_info, | 
 | 					   "error reading free space cache"); | 
 | 				io_ctl_drop_pages(io_ctl); | 
 | 				return -EIO; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < io_ctl->num_pages; i++) | 
 | 		clear_page_dirty_for_io(io_ctl->pages[i]); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation) | 
 | { | 
 | 	io_ctl_map_page(io_ctl, 1); | 
 |  | 
 | 	/* | 
 | 	 * Skip the csum areas.  If we don't check crcs then we just have a | 
 | 	 * 64bit chunk at the front of the first page. | 
 | 	 */ | 
 | 	io_ctl->cur += (sizeof(u32) * io_ctl->num_pages); | 
 | 	io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages); | 
 |  | 
 | 	put_unaligned_le64(generation, io_ctl->cur); | 
 | 	io_ctl->cur += sizeof(u64); | 
 | } | 
 |  | 
 | static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation) | 
 | { | 
 | 	u64 cache_gen; | 
 |  | 
 | 	/* | 
 | 	 * Skip the crc area.  If we don't check crcs then we just have a 64bit | 
 | 	 * chunk at the front of the first page. | 
 | 	 */ | 
 | 	io_ctl->cur += sizeof(u32) * io_ctl->num_pages; | 
 | 	io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages); | 
 |  | 
 | 	cache_gen = get_unaligned_le64(io_ctl->cur); | 
 | 	if (cache_gen != generation) { | 
 | 		btrfs_err_rl(io_ctl->fs_info, | 
 | 			"space cache generation (%llu) does not match inode (%llu)", | 
 | 				cache_gen, generation); | 
 | 		io_ctl_unmap_page(io_ctl); | 
 | 		return -EIO; | 
 | 	} | 
 | 	io_ctl->cur += sizeof(u64); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index) | 
 | { | 
 | 	u32 *tmp; | 
 | 	u32 crc = ~(u32)0; | 
 | 	unsigned offset = 0; | 
 |  | 
 | 	if (index == 0) | 
 | 		offset = sizeof(u32) * io_ctl->num_pages; | 
 |  | 
 | 	crc = crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset); | 
 | 	btrfs_crc32c_final(crc, (u8 *)&crc); | 
 | 	io_ctl_unmap_page(io_ctl); | 
 | 	tmp = page_address(io_ctl->pages[0]); | 
 | 	tmp += index; | 
 | 	*tmp = crc; | 
 | } | 
 |  | 
 | static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index) | 
 | { | 
 | 	u32 *tmp, val; | 
 | 	u32 crc = ~(u32)0; | 
 | 	unsigned offset = 0; | 
 |  | 
 | 	if (index == 0) | 
 | 		offset = sizeof(u32) * io_ctl->num_pages; | 
 |  | 
 | 	tmp = page_address(io_ctl->pages[0]); | 
 | 	tmp += index; | 
 | 	val = *tmp; | 
 |  | 
 | 	io_ctl_map_page(io_ctl, 0); | 
 | 	crc = crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset); | 
 | 	btrfs_crc32c_final(crc, (u8 *)&crc); | 
 | 	if (val != crc) { | 
 | 		btrfs_err_rl(io_ctl->fs_info, | 
 | 			"csum mismatch on free space cache"); | 
 | 		io_ctl_unmap_page(io_ctl); | 
 | 		return -EIO; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes, | 
 | 			    void *bitmap) | 
 | { | 
 | 	struct btrfs_free_space_entry *entry; | 
 |  | 
 | 	if (!io_ctl->cur) | 
 | 		return -ENOSPC; | 
 |  | 
 | 	entry = io_ctl->cur; | 
 | 	put_unaligned_le64(offset, &entry->offset); | 
 | 	put_unaligned_le64(bytes, &entry->bytes); | 
 | 	entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP : | 
 | 		BTRFS_FREE_SPACE_EXTENT; | 
 | 	io_ctl->cur += sizeof(struct btrfs_free_space_entry); | 
 | 	io_ctl->size -= sizeof(struct btrfs_free_space_entry); | 
 |  | 
 | 	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry)) | 
 | 		return 0; | 
 |  | 
 | 	io_ctl_set_crc(io_ctl, io_ctl->index - 1); | 
 |  | 
 | 	/* No more pages to map */ | 
 | 	if (io_ctl->index >= io_ctl->num_pages) | 
 | 		return 0; | 
 |  | 
 | 	/* map the next page */ | 
 | 	io_ctl_map_page(io_ctl, 1); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap) | 
 | { | 
 | 	if (!io_ctl->cur) | 
 | 		return -ENOSPC; | 
 |  | 
 | 	/* | 
 | 	 * If we aren't at the start of the current page, unmap this one and | 
 | 	 * map the next one if there is any left. | 
 | 	 */ | 
 | 	if (io_ctl->cur != io_ctl->orig) { | 
 | 		io_ctl_set_crc(io_ctl, io_ctl->index - 1); | 
 | 		if (io_ctl->index >= io_ctl->num_pages) | 
 | 			return -ENOSPC; | 
 | 		io_ctl_map_page(io_ctl, 0); | 
 | 	} | 
 |  | 
 | 	copy_page(io_ctl->cur, bitmap); | 
 | 	io_ctl_set_crc(io_ctl, io_ctl->index - 1); | 
 | 	if (io_ctl->index < io_ctl->num_pages) | 
 | 		io_ctl_map_page(io_ctl, 0); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl) | 
 | { | 
 | 	/* | 
 | 	 * If we're not on the boundary we know we've modified the page and we | 
 | 	 * need to crc the page. | 
 | 	 */ | 
 | 	if (io_ctl->cur != io_ctl->orig) | 
 | 		io_ctl_set_crc(io_ctl, io_ctl->index - 1); | 
 | 	else | 
 | 		io_ctl_unmap_page(io_ctl); | 
 |  | 
 | 	while (io_ctl->index < io_ctl->num_pages) { | 
 | 		io_ctl_map_page(io_ctl, 1); | 
 | 		io_ctl_set_crc(io_ctl, io_ctl->index - 1); | 
 | 	} | 
 | } | 
 |  | 
 | static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl, | 
 | 			    struct btrfs_free_space *entry, u8 *type) | 
 | { | 
 | 	struct btrfs_free_space_entry *e; | 
 | 	int ret; | 
 |  | 
 | 	if (!io_ctl->cur) { | 
 | 		ret = io_ctl_check_crc(io_ctl, io_ctl->index); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 	} | 
 |  | 
 | 	e = io_ctl->cur; | 
 | 	entry->offset = get_unaligned_le64(&e->offset); | 
 | 	entry->bytes = get_unaligned_le64(&e->bytes); | 
 | 	*type = e->type; | 
 | 	io_ctl->cur += sizeof(struct btrfs_free_space_entry); | 
 | 	io_ctl->size -= sizeof(struct btrfs_free_space_entry); | 
 |  | 
 | 	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry)) | 
 | 		return 0; | 
 |  | 
 | 	io_ctl_unmap_page(io_ctl); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl, | 
 | 			      struct btrfs_free_space *entry) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	ret = io_ctl_check_crc(io_ctl, io_ctl->index); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	copy_page(entry->bitmap, io_ctl->cur); | 
 | 	io_ctl_unmap_page(io_ctl); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl) | 
 | { | 
 | 	struct btrfs_block_group *block_group = ctl->block_group; | 
 | 	u64 max_bytes; | 
 | 	u64 bitmap_bytes; | 
 | 	u64 extent_bytes; | 
 | 	u64 size = block_group->length; | 
 | 	u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit; | 
 | 	u64 max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg); | 
 |  | 
 | 	max_bitmaps = max_t(u64, max_bitmaps, 1); | 
 |  | 
 | 	if (ctl->total_bitmaps > max_bitmaps) | 
 | 		btrfs_err(block_group->fs_info, | 
 | "invalid free space control: bg start=%llu len=%llu total_bitmaps=%u unit=%u max_bitmaps=%llu bytes_per_bg=%llu", | 
 | 			  block_group->start, block_group->length, | 
 | 			  ctl->total_bitmaps, ctl->unit, max_bitmaps, | 
 | 			  bytes_per_bg); | 
 | 	ASSERT(ctl->total_bitmaps <= max_bitmaps); | 
 |  | 
 | 	/* | 
 | 	 * We are trying to keep the total amount of memory used per 1GiB of | 
 | 	 * space to be MAX_CACHE_BYTES_PER_GIG.  However, with a reclamation | 
 | 	 * mechanism of pulling extents >= FORCE_EXTENT_THRESHOLD out of | 
 | 	 * bitmaps, we may end up using more memory than this. | 
 | 	 */ | 
 | 	if (size < SZ_1G) | 
 | 		max_bytes = MAX_CACHE_BYTES_PER_GIG; | 
 | 	else | 
 | 		max_bytes = MAX_CACHE_BYTES_PER_GIG * div_u64(size, SZ_1G); | 
 |  | 
 | 	bitmap_bytes = ctl->total_bitmaps * ctl->unit; | 
 |  | 
 | 	/* | 
 | 	 * we want the extent entry threshold to always be at most 1/2 the max | 
 | 	 * bytes we can have, or whatever is less than that. | 
 | 	 */ | 
 | 	extent_bytes = max_bytes - bitmap_bytes; | 
 | 	extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1); | 
 |  | 
 | 	ctl->extents_thresh = | 
 | 		div_u64(extent_bytes, sizeof(struct btrfs_free_space)); | 
 | } | 
 |  | 
 | static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode, | 
 | 				   struct btrfs_free_space_ctl *ctl, | 
 | 				   struct btrfs_path *path, u64 offset) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = root->fs_info; | 
 | 	struct btrfs_free_space_header *header; | 
 | 	struct extent_buffer *leaf; | 
 | 	struct btrfs_io_ctl io_ctl; | 
 | 	struct btrfs_key key; | 
 | 	struct btrfs_free_space *e, *n; | 
 | 	LIST_HEAD(bitmaps); | 
 | 	u64 num_entries; | 
 | 	u64 num_bitmaps; | 
 | 	u64 generation; | 
 | 	u8 type; | 
 | 	int ret = 0; | 
 |  | 
 | 	/* Nothing in the space cache, goodbye */ | 
 | 	if (!i_size_read(inode)) | 
 | 		return 0; | 
 |  | 
 | 	key.objectid = BTRFS_FREE_SPACE_OBJECTID; | 
 | 	key.type = 0; | 
 | 	key.offset = offset; | 
 |  | 
 | 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
 | 	if (ret < 0) | 
 | 		return 0; | 
 | 	else if (ret > 0) { | 
 | 		btrfs_release_path(path); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	ret = -1; | 
 |  | 
 | 	leaf = path->nodes[0]; | 
 | 	header = btrfs_item_ptr(leaf, path->slots[0], | 
 | 				struct btrfs_free_space_header); | 
 | 	num_entries = btrfs_free_space_entries(leaf, header); | 
 | 	num_bitmaps = btrfs_free_space_bitmaps(leaf, header); | 
 | 	generation = btrfs_free_space_generation(leaf, header); | 
 | 	btrfs_release_path(path); | 
 |  | 
 | 	if (!BTRFS_I(inode)->generation) { | 
 | 		btrfs_info(fs_info, | 
 | 			   "the free space cache file (%llu) is invalid, skip it", | 
 | 			   offset); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (BTRFS_I(inode)->generation != generation) { | 
 | 		btrfs_err(fs_info, | 
 | 			  "free space inode generation (%llu) did not match free space cache generation (%llu)", | 
 | 			  BTRFS_I(inode)->generation, generation); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (!num_entries) | 
 | 		return 0; | 
 |  | 
 | 	ret = io_ctl_init(&io_ctl, inode, 0); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	readahead_cache(inode); | 
 |  | 
 | 	ret = io_ctl_prepare_pages(&io_ctl, true); | 
 | 	if (ret) | 
 | 		goto out; | 
 |  | 
 | 	ret = io_ctl_check_crc(&io_ctl, 0); | 
 | 	if (ret) | 
 | 		goto free_cache; | 
 |  | 
 | 	ret = io_ctl_check_generation(&io_ctl, generation); | 
 | 	if (ret) | 
 | 		goto free_cache; | 
 |  | 
 | 	while (num_entries) { | 
 | 		e = kmem_cache_zalloc(btrfs_free_space_cachep, | 
 | 				      GFP_NOFS); | 
 | 		if (!e) { | 
 | 			ret = -ENOMEM; | 
 | 			goto free_cache; | 
 | 		} | 
 |  | 
 | 		ret = io_ctl_read_entry(&io_ctl, e, &type); | 
 | 		if (ret) { | 
 | 			kmem_cache_free(btrfs_free_space_cachep, e); | 
 | 			goto free_cache; | 
 | 		} | 
 |  | 
 | 		if (!e->bytes) { | 
 | 			ret = -1; | 
 | 			kmem_cache_free(btrfs_free_space_cachep, e); | 
 | 			goto free_cache; | 
 | 		} | 
 |  | 
 | 		if (type == BTRFS_FREE_SPACE_EXTENT) { | 
 | 			spin_lock(&ctl->tree_lock); | 
 | 			ret = link_free_space(ctl, e); | 
 | 			spin_unlock(&ctl->tree_lock); | 
 | 			if (ret) { | 
 | 				btrfs_err(fs_info, | 
 | 					"Duplicate entries in free space cache, dumping"); | 
 | 				kmem_cache_free(btrfs_free_space_cachep, e); | 
 | 				goto free_cache; | 
 | 			} | 
 | 		} else { | 
 | 			ASSERT(num_bitmaps); | 
 | 			num_bitmaps--; | 
 | 			e->bitmap = kmem_cache_zalloc( | 
 | 					btrfs_free_space_bitmap_cachep, GFP_NOFS); | 
 | 			if (!e->bitmap) { | 
 | 				ret = -ENOMEM; | 
 | 				kmem_cache_free( | 
 | 					btrfs_free_space_cachep, e); | 
 | 				goto free_cache; | 
 | 			} | 
 | 			spin_lock(&ctl->tree_lock); | 
 | 			ret = link_free_space(ctl, e); | 
 | 			if (ret) { | 
 | 				spin_unlock(&ctl->tree_lock); | 
 | 				btrfs_err(fs_info, | 
 | 					"Duplicate entries in free space cache, dumping"); | 
 | 				kmem_cache_free(btrfs_free_space_bitmap_cachep, e->bitmap); | 
 | 				kmem_cache_free(btrfs_free_space_cachep, e); | 
 | 				goto free_cache; | 
 | 			} | 
 | 			ctl->total_bitmaps++; | 
 | 			recalculate_thresholds(ctl); | 
 | 			spin_unlock(&ctl->tree_lock); | 
 | 			list_add_tail(&e->list, &bitmaps); | 
 | 		} | 
 |  | 
 | 		num_entries--; | 
 | 	} | 
 |  | 
 | 	io_ctl_unmap_page(&io_ctl); | 
 |  | 
 | 	/* | 
 | 	 * We add the bitmaps at the end of the entries in order that | 
 | 	 * the bitmap entries are added to the cache. | 
 | 	 */ | 
 | 	list_for_each_entry_safe(e, n, &bitmaps, list) { | 
 | 		list_del_init(&e->list); | 
 | 		ret = io_ctl_read_bitmap(&io_ctl, e); | 
 | 		if (ret) | 
 | 			goto free_cache; | 
 | 	} | 
 |  | 
 | 	io_ctl_drop_pages(&io_ctl); | 
 | 	ret = 1; | 
 | out: | 
 | 	io_ctl_free(&io_ctl); | 
 | 	return ret; | 
 | free_cache: | 
 | 	io_ctl_drop_pages(&io_ctl); | 
 |  | 
 | 	spin_lock(&ctl->tree_lock); | 
 | 	__btrfs_remove_free_space_cache(ctl); | 
 | 	spin_unlock(&ctl->tree_lock); | 
 | 	goto out; | 
 | } | 
 |  | 
 | static int copy_free_space_cache(struct btrfs_block_group *block_group, | 
 | 				 struct btrfs_free_space_ctl *ctl) | 
 | { | 
 | 	struct btrfs_free_space *info; | 
 | 	struct rb_node *n; | 
 | 	int ret = 0; | 
 |  | 
 | 	while (!ret && (n = rb_first(&ctl->free_space_offset)) != NULL) { | 
 | 		info = rb_entry(n, struct btrfs_free_space, offset_index); | 
 | 		if (!info->bitmap) { | 
 | 			const u64 offset = info->offset; | 
 | 			const u64 bytes = info->bytes; | 
 |  | 
 | 			unlink_free_space(ctl, info, true); | 
 | 			spin_unlock(&ctl->tree_lock); | 
 | 			kmem_cache_free(btrfs_free_space_cachep, info); | 
 | 			ret = btrfs_add_free_space(block_group, offset, bytes); | 
 | 			spin_lock(&ctl->tree_lock); | 
 | 		} else { | 
 | 			u64 offset = info->offset; | 
 | 			u64 bytes = ctl->unit; | 
 |  | 
 | 			ret = search_bitmap(ctl, info, &offset, &bytes, false); | 
 | 			if (ret == 0) { | 
 | 				bitmap_clear_bits(ctl, info, offset, bytes, true); | 
 | 				spin_unlock(&ctl->tree_lock); | 
 | 				ret = btrfs_add_free_space(block_group, offset, | 
 | 							   bytes); | 
 | 				spin_lock(&ctl->tree_lock); | 
 | 			} else { | 
 | 				free_bitmap(ctl, info); | 
 | 				ret = 0; | 
 | 			} | 
 | 		} | 
 | 		cond_resched_lock(&ctl->tree_lock); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | static struct lock_class_key btrfs_free_space_inode_key; | 
 |  | 
 | int load_free_space_cache(struct btrfs_block_group *block_group) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = block_group->fs_info; | 
 | 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; | 
 | 	struct btrfs_free_space_ctl tmp_ctl = {}; | 
 | 	struct inode *inode; | 
 | 	struct btrfs_path *path; | 
 | 	int ret = 0; | 
 | 	bool matched; | 
 | 	u64 used = block_group->used; | 
 |  | 
 | 	/* | 
 | 	 * Because we could potentially discard our loaded free space, we want | 
 | 	 * to load everything into a temporary structure first, and then if it's | 
 | 	 * valid copy it all into the actual free space ctl. | 
 | 	 */ | 
 | 	btrfs_init_free_space_ctl(block_group, &tmp_ctl); | 
 |  | 
 | 	/* | 
 | 	 * If this block group has been marked to be cleared for one reason or | 
 | 	 * another then we can't trust the on disk cache, so just return. | 
 | 	 */ | 
 | 	spin_lock(&block_group->lock); | 
 | 	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) { | 
 | 		spin_unlock(&block_group->lock); | 
 | 		return 0; | 
 | 	} | 
 | 	spin_unlock(&block_group->lock); | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) | 
 | 		return 0; | 
 | 	path->search_commit_root = 1; | 
 | 	path->skip_locking = 1; | 
 |  | 
 | 	/* | 
 | 	 * We must pass a path with search_commit_root set to btrfs_iget in | 
 | 	 * order to avoid a deadlock when allocating extents for the tree root. | 
 | 	 * | 
 | 	 * When we are COWing an extent buffer from the tree root, when looking | 
 | 	 * for a free extent, at extent-tree.c:find_free_extent(), we can find | 
 | 	 * block group without its free space cache loaded. When we find one | 
 | 	 * we must load its space cache which requires reading its free space | 
 | 	 * cache's inode item from the root tree. If this inode item is located | 
 | 	 * in the same leaf that we started COWing before, then we end up in | 
 | 	 * deadlock on the extent buffer (trying to read lock it when we | 
 | 	 * previously write locked it). | 
 | 	 * | 
 | 	 * It's safe to read the inode item using the commit root because | 
 | 	 * block groups, once loaded, stay in memory forever (until they are | 
 | 	 * removed) as well as their space caches once loaded. New block groups | 
 | 	 * once created get their ->cached field set to BTRFS_CACHE_FINISHED so | 
 | 	 * we will never try to read their inode item while the fs is mounted. | 
 | 	 */ | 
 | 	inode = lookup_free_space_inode(block_group, path); | 
 | 	if (IS_ERR(inode)) { | 
 | 		btrfs_free_path(path); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* We may have converted the inode and made the cache invalid. */ | 
 | 	spin_lock(&block_group->lock); | 
 | 	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) { | 
 | 		spin_unlock(&block_group->lock); | 
 | 		btrfs_free_path(path); | 
 | 		goto out; | 
 | 	} | 
 | 	spin_unlock(&block_group->lock); | 
 |  | 
 | 	/* | 
 | 	 * Reinitialize the class of struct inode's mapping->invalidate_lock for | 
 | 	 * free space inodes to prevent false positives related to locks for normal | 
 | 	 * inodes. | 
 | 	 */ | 
 | 	lockdep_set_class(&(&inode->i_data)->invalidate_lock, | 
 | 			  &btrfs_free_space_inode_key); | 
 |  | 
 | 	ret = __load_free_space_cache(fs_info->tree_root, inode, &tmp_ctl, | 
 | 				      path, block_group->start); | 
 | 	btrfs_free_path(path); | 
 | 	if (ret <= 0) | 
 | 		goto out; | 
 |  | 
 | 	matched = (tmp_ctl.free_space == (block_group->length - used - | 
 | 					  block_group->bytes_super)); | 
 |  | 
 | 	if (matched) { | 
 | 		spin_lock(&tmp_ctl.tree_lock); | 
 | 		ret = copy_free_space_cache(block_group, &tmp_ctl); | 
 | 		spin_unlock(&tmp_ctl.tree_lock); | 
 | 		/* | 
 | 		 * ret == 1 means we successfully loaded the free space cache, | 
 | 		 * so we need to re-set it here. | 
 | 		 */ | 
 | 		if (ret == 0) | 
 | 			ret = 1; | 
 | 	} else { | 
 | 		/* | 
 | 		 * We need to call the _locked variant so we don't try to update | 
 | 		 * the discard counters. | 
 | 		 */ | 
 | 		spin_lock(&tmp_ctl.tree_lock); | 
 | 		__btrfs_remove_free_space_cache(&tmp_ctl); | 
 | 		spin_unlock(&tmp_ctl.tree_lock); | 
 | 		btrfs_warn(fs_info, | 
 | 			   "block group %llu has wrong amount of free space", | 
 | 			   block_group->start); | 
 | 		ret = -1; | 
 | 	} | 
 | out: | 
 | 	if (ret < 0) { | 
 | 		/* This cache is bogus, make sure it gets cleared */ | 
 | 		spin_lock(&block_group->lock); | 
 | 		block_group->disk_cache_state = BTRFS_DC_CLEAR; | 
 | 		spin_unlock(&block_group->lock); | 
 | 		ret = 0; | 
 |  | 
 | 		btrfs_warn(fs_info, | 
 | 			   "failed to load free space cache for block group %llu, rebuilding it now", | 
 | 			   block_group->start); | 
 | 	} | 
 |  | 
 | 	spin_lock(&ctl->tree_lock); | 
 | 	btrfs_discard_update_discardable(block_group); | 
 | 	spin_unlock(&ctl->tree_lock); | 
 | 	iput(inode); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static noinline_for_stack | 
 | int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl, | 
 | 			      struct btrfs_free_space_ctl *ctl, | 
 | 			      struct btrfs_block_group *block_group, | 
 | 			      int *entries, int *bitmaps, | 
 | 			      struct list_head *bitmap_list) | 
 | { | 
 | 	int ret; | 
 | 	struct btrfs_free_cluster *cluster = NULL; | 
 | 	struct btrfs_free_cluster *cluster_locked = NULL; | 
 | 	struct rb_node *node = rb_first(&ctl->free_space_offset); | 
 | 	struct btrfs_trim_range *trim_entry; | 
 |  | 
 | 	/* Get the cluster for this block_group if it exists */ | 
 | 	if (block_group && !list_empty(&block_group->cluster_list)) { | 
 | 		cluster = list_first_entry(&block_group->cluster_list, | 
 | 					   struct btrfs_free_cluster, block_group_list); | 
 | 	} | 
 |  | 
 | 	if (!node && cluster) { | 
 | 		cluster_locked = cluster; | 
 | 		spin_lock(&cluster_locked->lock); | 
 | 		node = rb_first(&cluster->root); | 
 | 		cluster = NULL; | 
 | 	} | 
 |  | 
 | 	/* Write out the extent entries */ | 
 | 	while (node) { | 
 | 		struct btrfs_free_space *e; | 
 |  | 
 | 		e = rb_entry(node, struct btrfs_free_space, offset_index); | 
 | 		*entries += 1; | 
 |  | 
 | 		ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes, | 
 | 				       e->bitmap); | 
 | 		if (ret) | 
 | 			goto fail; | 
 |  | 
 | 		if (e->bitmap) { | 
 | 			list_add_tail(&e->list, bitmap_list); | 
 | 			*bitmaps += 1; | 
 | 		} | 
 | 		node = rb_next(node); | 
 | 		if (!node && cluster) { | 
 | 			node = rb_first(&cluster->root); | 
 | 			cluster_locked = cluster; | 
 | 			spin_lock(&cluster_locked->lock); | 
 | 			cluster = NULL; | 
 | 		} | 
 | 	} | 
 | 	if (cluster_locked) { | 
 | 		spin_unlock(&cluster_locked->lock); | 
 | 		cluster_locked = NULL; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Make sure we don't miss any range that was removed from our rbtree | 
 | 	 * because trimming is running. Otherwise after a umount+mount (or crash | 
 | 	 * after committing the transaction) we would leak free space and get | 
 | 	 * an inconsistent free space cache report from fsck. | 
 | 	 */ | 
 | 	list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) { | 
 | 		ret = io_ctl_add_entry(io_ctl, trim_entry->start, | 
 | 				       trim_entry->bytes, NULL); | 
 | 		if (ret) | 
 | 			goto fail; | 
 | 		*entries += 1; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | fail: | 
 | 	if (cluster_locked) | 
 | 		spin_unlock(&cluster_locked->lock); | 
 | 	return -ENOSPC; | 
 | } | 
 |  | 
 | static noinline_for_stack int | 
 | update_cache_item(struct btrfs_trans_handle *trans, | 
 | 		  struct btrfs_root *root, | 
 | 		  struct inode *inode, | 
 | 		  struct btrfs_path *path, u64 offset, | 
 | 		  int entries, int bitmaps) | 
 | { | 
 | 	struct btrfs_key key; | 
 | 	struct btrfs_free_space_header *header; | 
 | 	struct extent_buffer *leaf; | 
 | 	int ret; | 
 |  | 
 | 	key.objectid = BTRFS_FREE_SPACE_OBJECTID; | 
 | 	key.type = 0; | 
 | 	key.offset = offset; | 
 |  | 
 | 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1); | 
 | 	if (ret < 0) { | 
 | 		btrfs_clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1, | 
 | 				       EXTENT_DELALLOC, NULL); | 
 | 		goto fail; | 
 | 	} | 
 | 	leaf = path->nodes[0]; | 
 | 	if (ret > 0) { | 
 | 		struct btrfs_key found_key; | 
 | 		ASSERT(path->slots[0]); | 
 | 		path->slots[0]--; | 
 | 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); | 
 | 		if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID || | 
 | 		    found_key.offset != offset) { | 
 | 			btrfs_clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, | 
 | 					       inode->i_size - 1, EXTENT_DELALLOC, | 
 | 					       NULL); | 
 | 			btrfs_release_path(path); | 
 | 			goto fail; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	BTRFS_I(inode)->generation = trans->transid; | 
 | 	header = btrfs_item_ptr(leaf, path->slots[0], | 
 | 				struct btrfs_free_space_header); | 
 | 	btrfs_set_free_space_entries(leaf, header, entries); | 
 | 	btrfs_set_free_space_bitmaps(leaf, header, bitmaps); | 
 | 	btrfs_set_free_space_generation(leaf, header, trans->transid); | 
 | 	btrfs_release_path(path); | 
 |  | 
 | 	return 0; | 
 |  | 
 | fail: | 
 | 	return -1; | 
 | } | 
 |  | 
 | static noinline_for_stack int write_pinned_extent_entries( | 
 | 			    struct btrfs_trans_handle *trans, | 
 | 			    struct btrfs_block_group *block_group, | 
 | 			    struct btrfs_io_ctl *io_ctl, | 
 | 			    int *entries) | 
 | { | 
 | 	u64 start, extent_start, extent_end, len; | 
 | 	struct extent_io_tree *unpin = NULL; | 
 | 	int ret; | 
 |  | 
 | 	if (!block_group) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * We want to add any pinned extents to our free space cache | 
 | 	 * so we don't leak the space | 
 | 	 * | 
 | 	 * We shouldn't have switched the pinned extents yet so this is the | 
 | 	 * right one | 
 | 	 */ | 
 | 	unpin = &trans->transaction->pinned_extents; | 
 |  | 
 | 	start = block_group->start; | 
 |  | 
 | 	while (start < block_group->start + block_group->length) { | 
 | 		if (!btrfs_find_first_extent_bit(unpin, start, | 
 | 						 &extent_start, &extent_end, | 
 | 						 EXTENT_DIRTY, NULL)) | 
 | 			return 0; | 
 |  | 
 | 		/* This pinned extent is out of our range */ | 
 | 		if (extent_start >= block_group->start + block_group->length) | 
 | 			return 0; | 
 |  | 
 | 		extent_start = max(extent_start, start); | 
 | 		extent_end = min(block_group->start + block_group->length, | 
 | 				 extent_end + 1); | 
 | 		len = extent_end - extent_start; | 
 |  | 
 | 		*entries += 1; | 
 | 		ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL); | 
 | 		if (ret) | 
 | 			return -ENOSPC; | 
 |  | 
 | 		start = extent_end; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static noinline_for_stack int | 
 | write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list) | 
 | { | 
 | 	struct btrfs_free_space *entry, *next; | 
 | 	int ret; | 
 |  | 
 | 	/* Write out the bitmaps */ | 
 | 	list_for_each_entry_safe(entry, next, bitmap_list, list) { | 
 | 		ret = io_ctl_add_bitmap(io_ctl, entry->bitmap); | 
 | 		if (ret) | 
 | 			return -ENOSPC; | 
 | 		list_del_init(&entry->list); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int flush_dirty_cache(struct inode *inode) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	ret = btrfs_wait_ordered_range(BTRFS_I(inode), 0, (u64)-1); | 
 | 	if (ret) | 
 | 		btrfs_clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1, | 
 | 				       EXTENT_DELALLOC, NULL); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void noinline_for_stack | 
 | cleanup_bitmap_list(struct list_head *bitmap_list) | 
 | { | 
 | 	struct btrfs_free_space *entry, *next; | 
 |  | 
 | 	list_for_each_entry_safe(entry, next, bitmap_list, list) | 
 | 		list_del_init(&entry->list); | 
 | } | 
 |  | 
 | static void noinline_for_stack | 
 | cleanup_write_cache_enospc(struct inode *inode, | 
 | 			   struct btrfs_io_ctl *io_ctl, | 
 | 			   struct extent_state **cached_state) | 
 | { | 
 | 	io_ctl_drop_pages(io_ctl); | 
 | 	btrfs_unlock_extent(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1, | 
 | 			    cached_state); | 
 | } | 
 |  | 
 | static int __btrfs_wait_cache_io(struct btrfs_root *root, | 
 | 				 struct btrfs_trans_handle *trans, | 
 | 				 struct btrfs_block_group *block_group, | 
 | 				 struct btrfs_io_ctl *io_ctl, | 
 | 				 struct btrfs_path *path, u64 offset) | 
 | { | 
 | 	int ret; | 
 | 	struct inode *inode = io_ctl->inode; | 
 |  | 
 | 	if (!inode) | 
 | 		return 0; | 
 |  | 
 | 	/* Flush the dirty pages in the cache file. */ | 
 | 	ret = flush_dirty_cache(inode); | 
 | 	if (ret) | 
 | 		goto out; | 
 |  | 
 | 	/* Update the cache item to tell everyone this cache file is valid. */ | 
 | 	ret = update_cache_item(trans, root, inode, path, offset, | 
 | 				io_ctl->entries, io_ctl->bitmaps); | 
 | out: | 
 | 	if (ret) { | 
 | 		invalidate_inode_pages2(inode->i_mapping); | 
 | 		BTRFS_I(inode)->generation = 0; | 
 | 		if (block_group) | 
 | 			btrfs_debug(root->fs_info, | 
 | 	  "failed to write free space cache for block group %llu error %d", | 
 | 				  block_group->start, ret); | 
 | 	} | 
 | 	btrfs_update_inode(trans, BTRFS_I(inode)); | 
 |  | 
 | 	if (block_group) { | 
 | 		/* the dirty list is protected by the dirty_bgs_lock */ | 
 | 		spin_lock(&trans->transaction->dirty_bgs_lock); | 
 |  | 
 | 		/* the disk_cache_state is protected by the block group lock */ | 
 | 		spin_lock(&block_group->lock); | 
 |  | 
 | 		/* | 
 | 		 * only mark this as written if we didn't get put back on | 
 | 		 * the dirty list while waiting for IO.   Otherwise our | 
 | 		 * cache state won't be right, and we won't get written again | 
 | 		 */ | 
 | 		if (!ret && list_empty(&block_group->dirty_list)) | 
 | 			block_group->disk_cache_state = BTRFS_DC_WRITTEN; | 
 | 		else if (ret) | 
 | 			block_group->disk_cache_state = BTRFS_DC_ERROR; | 
 |  | 
 | 		spin_unlock(&block_group->lock); | 
 | 		spin_unlock(&trans->transaction->dirty_bgs_lock); | 
 | 		io_ctl->inode = NULL; | 
 | 		iput(inode); | 
 | 	} | 
 |  | 
 | 	return ret; | 
 |  | 
 | } | 
 |  | 
 | int btrfs_wait_cache_io(struct btrfs_trans_handle *trans, | 
 | 			struct btrfs_block_group *block_group, | 
 | 			struct btrfs_path *path) | 
 | { | 
 | 	return __btrfs_wait_cache_io(block_group->fs_info->tree_root, trans, | 
 | 				     block_group, &block_group->io_ctl, | 
 | 				     path, block_group->start); | 
 | } | 
 |  | 
 | /* | 
 |  * Write out cached info to an inode. | 
 |  * | 
 |  * @inode:       freespace inode we are writing out | 
 |  * @ctl:         free space cache we are going to write out | 
 |  * @block_group: block_group for this cache if it belongs to a block_group | 
 |  * @io_ctl:      holds context for the io | 
 |  * @trans:       the trans handle | 
 |  * | 
 |  * This function writes out a free space cache struct to disk for quick recovery | 
 |  * on mount.  This will return 0 if it was successful in writing the cache out, | 
 |  * or an errno if it was not. | 
 |  */ | 
 | static int __btrfs_write_out_cache(struct inode *inode, | 
 | 				   struct btrfs_free_space_ctl *ctl, | 
 | 				   struct btrfs_block_group *block_group, | 
 | 				   struct btrfs_io_ctl *io_ctl, | 
 | 				   struct btrfs_trans_handle *trans) | 
 | { | 
 | 	struct extent_state *cached_state = NULL; | 
 | 	LIST_HEAD(bitmap_list); | 
 | 	int entries = 0; | 
 | 	int bitmaps = 0; | 
 | 	int ret; | 
 | 	int must_iput = 0; | 
 | 	int i_size; | 
 |  | 
 | 	if (!i_size_read(inode)) | 
 | 		return -EIO; | 
 |  | 
 | 	WARN_ON(io_ctl->pages); | 
 | 	ret = io_ctl_init(io_ctl, inode, 1); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) { | 
 | 		down_write(&block_group->data_rwsem); | 
 | 		spin_lock(&block_group->lock); | 
 | 		if (block_group->delalloc_bytes) { | 
 | 			block_group->disk_cache_state = BTRFS_DC_WRITTEN; | 
 | 			spin_unlock(&block_group->lock); | 
 | 			up_write(&block_group->data_rwsem); | 
 | 			BTRFS_I(inode)->generation = 0; | 
 | 			ret = 0; | 
 | 			must_iput = 1; | 
 | 			goto out; | 
 | 		} | 
 | 		spin_unlock(&block_group->lock); | 
 | 	} | 
 |  | 
 | 	/* Lock all pages first so we can lock the extent safely. */ | 
 | 	ret = io_ctl_prepare_pages(io_ctl, false); | 
 | 	if (ret) | 
 | 		goto out_unlock; | 
 |  | 
 | 	btrfs_lock_extent(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1, | 
 | 			  &cached_state); | 
 |  | 
 | 	io_ctl_set_generation(io_ctl, trans->transid); | 
 |  | 
 | 	mutex_lock(&ctl->cache_writeout_mutex); | 
 | 	/* Write out the extent entries in the free space cache */ | 
 | 	spin_lock(&ctl->tree_lock); | 
 | 	ret = write_cache_extent_entries(io_ctl, ctl, | 
 | 					 block_group, &entries, &bitmaps, | 
 | 					 &bitmap_list); | 
 | 	if (ret) | 
 | 		goto out_nospc_locked; | 
 |  | 
 | 	/* | 
 | 	 * Some spaces that are freed in the current transaction are pinned, | 
 | 	 * they will be added into free space cache after the transaction is | 
 | 	 * committed, we shouldn't lose them. | 
 | 	 * | 
 | 	 * If this changes while we are working we'll get added back to | 
 | 	 * the dirty list and redo it.  No locking needed | 
 | 	 */ | 
 | 	ret = write_pinned_extent_entries(trans, block_group, io_ctl, &entries); | 
 | 	if (ret) | 
 | 		goto out_nospc_locked; | 
 |  | 
 | 	/* | 
 | 	 * At last, we write out all the bitmaps and keep cache_writeout_mutex | 
 | 	 * locked while doing it because a concurrent trim can be manipulating | 
 | 	 * or freeing the bitmap. | 
 | 	 */ | 
 | 	ret = write_bitmap_entries(io_ctl, &bitmap_list); | 
 | 	spin_unlock(&ctl->tree_lock); | 
 | 	mutex_unlock(&ctl->cache_writeout_mutex); | 
 | 	if (ret) | 
 | 		goto out_nospc; | 
 |  | 
 | 	/* Zero out the rest of the pages just to make sure */ | 
 | 	io_ctl_zero_remaining_pages(io_ctl); | 
 |  | 
 | 	/* Everything is written out, now we dirty the pages in the file. */ | 
 | 	i_size = i_size_read(inode); | 
 | 	for (int i = 0; i < round_up(i_size, PAGE_SIZE) / PAGE_SIZE; i++) { | 
 | 		u64 dirty_start = i * PAGE_SIZE; | 
 | 		u64 dirty_len = min_t(u64, dirty_start + PAGE_SIZE, i_size) - dirty_start; | 
 |  | 
 | 		ret = btrfs_dirty_folio(BTRFS_I(inode), page_folio(io_ctl->pages[i]), | 
 | 					dirty_start, dirty_len, &cached_state, false); | 
 | 		if (ret < 0) | 
 | 			goto out_nospc; | 
 | 	} | 
 |  | 
 | 	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) | 
 | 		up_write(&block_group->data_rwsem); | 
 | 	/* | 
 | 	 * Release the pages and unlock the extent, we will flush | 
 | 	 * them out later | 
 | 	 */ | 
 | 	io_ctl_drop_pages(io_ctl); | 
 | 	io_ctl_free(io_ctl); | 
 |  | 
 | 	btrfs_unlock_extent(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1, | 
 | 			    &cached_state); | 
 |  | 
 | 	/* | 
 | 	 * at this point the pages are under IO and we're happy, | 
 | 	 * The caller is responsible for waiting on them and updating | 
 | 	 * the cache and the inode | 
 | 	 */ | 
 | 	io_ctl->entries = entries; | 
 | 	io_ctl->bitmaps = bitmaps; | 
 |  | 
 | 	ret = btrfs_fdatawrite_range(BTRFS_I(inode), 0, (u64)-1); | 
 | 	if (ret) | 
 | 		goto out; | 
 |  | 
 | 	return 0; | 
 |  | 
 | out_nospc_locked: | 
 | 	cleanup_bitmap_list(&bitmap_list); | 
 | 	spin_unlock(&ctl->tree_lock); | 
 | 	mutex_unlock(&ctl->cache_writeout_mutex); | 
 |  | 
 | out_nospc: | 
 | 	cleanup_write_cache_enospc(inode, io_ctl, &cached_state); | 
 |  | 
 | out_unlock: | 
 | 	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) | 
 | 		up_write(&block_group->data_rwsem); | 
 |  | 
 | out: | 
 | 	io_ctl->inode = NULL; | 
 | 	io_ctl_free(io_ctl); | 
 | 	if (ret) { | 
 | 		invalidate_inode_pages2(inode->i_mapping); | 
 | 		BTRFS_I(inode)->generation = 0; | 
 | 	} | 
 | 	btrfs_update_inode(trans, BTRFS_I(inode)); | 
 | 	if (must_iput) | 
 | 		iput(inode); | 
 | 	return ret; | 
 | } | 
 |  | 
 | int btrfs_write_out_cache(struct btrfs_trans_handle *trans, | 
 | 			  struct btrfs_block_group *block_group, | 
 | 			  struct btrfs_path *path) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = trans->fs_info; | 
 | 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; | 
 | 	struct inode *inode; | 
 | 	int ret = 0; | 
 |  | 
 | 	spin_lock(&block_group->lock); | 
 | 	if (block_group->disk_cache_state < BTRFS_DC_SETUP) { | 
 | 		spin_unlock(&block_group->lock); | 
 | 		return 0; | 
 | 	} | 
 | 	spin_unlock(&block_group->lock); | 
 |  | 
 | 	inode = lookup_free_space_inode(block_group, path); | 
 | 	if (IS_ERR(inode)) | 
 | 		return 0; | 
 |  | 
 | 	ret = __btrfs_write_out_cache(inode, ctl, block_group, | 
 | 				      &block_group->io_ctl, trans); | 
 | 	if (ret) { | 
 | 		btrfs_debug(fs_info, | 
 | 	  "failed to write free space cache for block group %llu error %d", | 
 | 			  block_group->start, ret); | 
 | 		spin_lock(&block_group->lock); | 
 | 		block_group->disk_cache_state = BTRFS_DC_ERROR; | 
 | 		spin_unlock(&block_group->lock); | 
 |  | 
 | 		block_group->io_ctl.inode = NULL; | 
 | 		iput(inode); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * if ret == 0 the caller is expected to call btrfs_wait_cache_io | 
 | 	 * to wait for IO and put the inode | 
 | 	 */ | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit, | 
 | 					  u64 offset) | 
 | { | 
 | 	ASSERT(offset >= bitmap_start); | 
 | 	offset -= bitmap_start; | 
 | 	return (unsigned long)(div_u64(offset, unit)); | 
 | } | 
 |  | 
 | static inline unsigned long bytes_to_bits(u64 bytes, u32 unit) | 
 | { | 
 | 	return (unsigned long)(div_u64(bytes, unit)); | 
 | } | 
 |  | 
 | static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl, | 
 | 				   u64 offset) | 
 | { | 
 | 	u64 bitmap_start; | 
 | 	u64 bytes_per_bitmap; | 
 |  | 
 | 	bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit; | 
 | 	bitmap_start = offset - ctl->start; | 
 | 	bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap); | 
 | 	bitmap_start *= bytes_per_bitmap; | 
 | 	bitmap_start += ctl->start; | 
 |  | 
 | 	return bitmap_start; | 
 | } | 
 |  | 
 | static int tree_insert_offset(struct btrfs_free_space_ctl *ctl, | 
 | 			      struct btrfs_free_cluster *cluster, | 
 | 			      struct btrfs_free_space *new_entry) | 
 | { | 
 | 	struct rb_root *root; | 
 | 	struct rb_node **p; | 
 | 	struct rb_node *parent = NULL; | 
 |  | 
 | 	lockdep_assert_held(&ctl->tree_lock); | 
 |  | 
 | 	if (cluster) { | 
 | 		lockdep_assert_held(&cluster->lock); | 
 | 		root = &cluster->root; | 
 | 	} else { | 
 | 		root = &ctl->free_space_offset; | 
 | 	} | 
 |  | 
 | 	p = &root->rb_node; | 
 |  | 
 | 	while (*p) { | 
 | 		struct btrfs_free_space *info; | 
 |  | 
 | 		parent = *p; | 
 | 		info = rb_entry(parent, struct btrfs_free_space, offset_index); | 
 |  | 
 | 		if (new_entry->offset < info->offset) { | 
 | 			p = &(*p)->rb_left; | 
 | 		} else if (new_entry->offset > info->offset) { | 
 | 			p = &(*p)->rb_right; | 
 | 		} else { | 
 | 			/* | 
 | 			 * we could have a bitmap entry and an extent entry | 
 | 			 * share the same offset.  If this is the case, we want | 
 | 			 * the extent entry to always be found first if we do a | 
 | 			 * linear search through the tree, since we want to have | 
 | 			 * the quickest allocation time, and allocating from an | 
 | 			 * extent is faster than allocating from a bitmap.  So | 
 | 			 * if we're inserting a bitmap and we find an entry at | 
 | 			 * this offset, we want to go right, or after this entry | 
 | 			 * logically.  If we are inserting an extent and we've | 
 | 			 * found a bitmap, we want to go left, or before | 
 | 			 * logically. | 
 | 			 */ | 
 | 			if (new_entry->bitmap) { | 
 | 				if (info->bitmap) { | 
 | 					WARN_ON_ONCE(1); | 
 | 					return -EEXIST; | 
 | 				} | 
 | 				p = &(*p)->rb_right; | 
 | 			} else { | 
 | 				if (!info->bitmap) { | 
 | 					WARN_ON_ONCE(1); | 
 | 					return -EEXIST; | 
 | 				} | 
 | 				p = &(*p)->rb_left; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	rb_link_node(&new_entry->offset_index, parent, p); | 
 | 	rb_insert_color(&new_entry->offset_index, root); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * This is a little subtle.  We *only* have ->max_extent_size set if we actually | 
 |  * searched through the bitmap and figured out the largest ->max_extent_size, | 
 |  * otherwise it's 0.  In the case that it's 0 we don't want to tell the | 
 |  * allocator the wrong thing, we want to use the actual real max_extent_size | 
 |  * we've found already if it's larger, or we want to use ->bytes. | 
 |  * | 
 |  * This matters because find_free_space() will skip entries who's ->bytes is | 
 |  * less than the required bytes.  So if we didn't search down this bitmap, we | 
 |  * may pick some previous entry that has a smaller ->max_extent_size than we | 
 |  * have.  For example, assume we have two entries, one that has | 
 |  * ->max_extent_size set to 4K and ->bytes set to 1M.  A second entry hasn't set | 
 |  * ->max_extent_size yet, has ->bytes set to 8K and it's contiguous.  We will | 
 |  *  call into find_free_space(), and return with max_extent_size == 4K, because | 
 |  *  that first bitmap entry had ->max_extent_size set, but the second one did | 
 |  *  not.  If instead we returned 8K we'd come in searching for 8K, and find the | 
 |  *  8K contiguous range. | 
 |  * | 
 |  *  Consider the other case, we have 2 8K chunks in that second entry and still | 
 |  *  don't have ->max_extent_size set.  We'll return 16K, and the next time the | 
 |  *  allocator comes in it'll fully search our second bitmap, and this time it'll | 
 |  *  get an uptodate value of 8K as the maximum chunk size.  Then we'll get the | 
 |  *  right allocation the next loop through. | 
 |  */ | 
 | static inline u64 get_max_extent_size(const struct btrfs_free_space *entry) | 
 | { | 
 | 	if (entry->bitmap && entry->max_extent_size) | 
 | 		return entry->max_extent_size; | 
 | 	return entry->bytes; | 
 | } | 
 |  | 
 | /* | 
 |  * We want the largest entry to be leftmost, so this is inverted from what you'd | 
 |  * normally expect. | 
 |  */ | 
 | static bool entry_less(struct rb_node *node, const struct rb_node *parent) | 
 | { | 
 | 	const struct btrfs_free_space *entry, *exist; | 
 |  | 
 | 	entry = rb_entry(node, struct btrfs_free_space, bytes_index); | 
 | 	exist = rb_entry(parent, struct btrfs_free_space, bytes_index); | 
 | 	return get_max_extent_size(exist) < get_max_extent_size(entry); | 
 | } | 
 |  | 
 | /* | 
 |  * searches the tree for the given offset. | 
 |  * | 
 |  * fuzzy - If this is set, then we are trying to make an allocation, and we just | 
 |  * want a section that has at least bytes size and comes at or after the given | 
 |  * offset. | 
 |  */ | 
 | static struct btrfs_free_space * | 
 | tree_search_offset(struct btrfs_free_space_ctl *ctl, | 
 | 		   u64 offset, int bitmap_only, int fuzzy) | 
 | { | 
 | 	struct rb_node *n = ctl->free_space_offset.rb_node; | 
 | 	struct btrfs_free_space *entry = NULL, *prev = NULL; | 
 |  | 
 | 	lockdep_assert_held(&ctl->tree_lock); | 
 |  | 
 | 	/* find entry that is closest to the 'offset' */ | 
 | 	while (n) { | 
 | 		entry = rb_entry(n, struct btrfs_free_space, offset_index); | 
 | 		prev = entry; | 
 |  | 
 | 		if (offset < entry->offset) | 
 | 			n = n->rb_left; | 
 | 		else if (offset > entry->offset) | 
 | 			n = n->rb_right; | 
 | 		else | 
 | 			break; | 
 |  | 
 | 		entry = NULL; | 
 | 	} | 
 |  | 
 | 	if (bitmap_only) { | 
 | 		if (!entry) | 
 | 			return NULL; | 
 | 		if (entry->bitmap) | 
 | 			return entry; | 
 |  | 
 | 		/* | 
 | 		 * bitmap entry and extent entry may share same offset, | 
 | 		 * in that case, bitmap entry comes after extent entry. | 
 | 		 */ | 
 | 		n = rb_next(n); | 
 | 		if (!n) | 
 | 			return NULL; | 
 | 		entry = rb_entry(n, struct btrfs_free_space, offset_index); | 
 | 		if (entry->offset != offset) | 
 | 			return NULL; | 
 |  | 
 | 		WARN_ON(!entry->bitmap); | 
 | 		return entry; | 
 | 	} else if (entry) { | 
 | 		if (entry->bitmap) { | 
 | 			/* | 
 | 			 * if previous extent entry covers the offset, | 
 | 			 * we should return it instead of the bitmap entry | 
 | 			 */ | 
 | 			n = rb_prev(&entry->offset_index); | 
 | 			if (n) { | 
 | 				prev = rb_entry(n, struct btrfs_free_space, | 
 | 						offset_index); | 
 | 				if (!prev->bitmap && | 
 | 				    prev->offset + prev->bytes > offset) | 
 | 					entry = prev; | 
 | 			} | 
 | 		} | 
 | 		return entry; | 
 | 	} | 
 |  | 
 | 	if (!prev) | 
 | 		return NULL; | 
 |  | 
 | 	/* find last entry before the 'offset' */ | 
 | 	entry = prev; | 
 | 	if (entry->offset > offset) { | 
 | 		n = rb_prev(&entry->offset_index); | 
 | 		if (n) { | 
 | 			entry = rb_entry(n, struct btrfs_free_space, | 
 | 					offset_index); | 
 | 			ASSERT(entry->offset <= offset); | 
 | 		} else { | 
 | 			if (fuzzy) | 
 | 				return entry; | 
 | 			else | 
 | 				return NULL; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (entry->bitmap) { | 
 | 		n = rb_prev(&entry->offset_index); | 
 | 		if (n) { | 
 | 			prev = rb_entry(n, struct btrfs_free_space, | 
 | 					offset_index); | 
 | 			if (!prev->bitmap && | 
 | 			    prev->offset + prev->bytes > offset) | 
 | 				return prev; | 
 | 		} | 
 | 		if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset) | 
 | 			return entry; | 
 | 	} else if (entry->offset + entry->bytes > offset) | 
 | 		return entry; | 
 |  | 
 | 	if (!fuzzy) | 
 | 		return NULL; | 
 |  | 
 | 	while (1) { | 
 | 		n = rb_next(&entry->offset_index); | 
 | 		if (!n) | 
 | 			return NULL; | 
 | 		entry = rb_entry(n, struct btrfs_free_space, offset_index); | 
 | 		if (entry->bitmap) { | 
 | 			if (entry->offset + BITS_PER_BITMAP * | 
 | 			    ctl->unit > offset) | 
 | 				break; | 
 | 		} else { | 
 | 			if (entry->offset + entry->bytes > offset) | 
 | 				break; | 
 | 		} | 
 | 	} | 
 | 	return entry; | 
 | } | 
 |  | 
 | static inline void unlink_free_space(struct btrfs_free_space_ctl *ctl, | 
 | 				     struct btrfs_free_space *info, | 
 | 				     bool update_stat) | 
 | { | 
 | 	lockdep_assert_held(&ctl->tree_lock); | 
 |  | 
 | 	rb_erase(&info->offset_index, &ctl->free_space_offset); | 
 | 	rb_erase_cached(&info->bytes_index, &ctl->free_space_bytes); | 
 | 	ctl->free_extents--; | 
 |  | 
 | 	if (!info->bitmap && !btrfs_free_space_trimmed(info)) { | 
 | 		ctl->discardable_extents[BTRFS_STAT_CURR]--; | 
 | 		ctl->discardable_bytes[BTRFS_STAT_CURR] -= info->bytes; | 
 | 	} | 
 |  | 
 | 	if (update_stat) | 
 | 		ctl->free_space -= info->bytes; | 
 | } | 
 |  | 
 | static int link_free_space(struct btrfs_free_space_ctl *ctl, | 
 | 			   struct btrfs_free_space *info) | 
 | { | 
 | 	int ret = 0; | 
 |  | 
 | 	lockdep_assert_held(&ctl->tree_lock); | 
 |  | 
 | 	ASSERT(info->bytes || info->bitmap); | 
 | 	ret = tree_insert_offset(ctl, NULL, info); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	rb_add_cached(&info->bytes_index, &ctl->free_space_bytes, entry_less); | 
 |  | 
 | 	if (!info->bitmap && !btrfs_free_space_trimmed(info)) { | 
 | 		ctl->discardable_extents[BTRFS_STAT_CURR]++; | 
 | 		ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes; | 
 | 	} | 
 |  | 
 | 	ctl->free_space += info->bytes; | 
 | 	ctl->free_extents++; | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void relink_bitmap_entry(struct btrfs_free_space_ctl *ctl, | 
 | 				struct btrfs_free_space *info) | 
 | { | 
 | 	ASSERT(info->bitmap); | 
 |  | 
 | 	/* | 
 | 	 * If our entry is empty it's because we're on a cluster and we don't | 
 | 	 * want to re-link it into our ctl bytes index. | 
 | 	 */ | 
 | 	if (RB_EMPTY_NODE(&info->bytes_index)) | 
 | 		return; | 
 |  | 
 | 	lockdep_assert_held(&ctl->tree_lock); | 
 |  | 
 | 	rb_erase_cached(&info->bytes_index, &ctl->free_space_bytes); | 
 | 	rb_add_cached(&info->bytes_index, &ctl->free_space_bytes, entry_less); | 
 | } | 
 |  | 
 | static inline void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl, | 
 | 				     struct btrfs_free_space *info, | 
 | 				     u64 offset, u64 bytes, bool update_stat) | 
 | { | 
 | 	unsigned long start, count, end; | 
 | 	int extent_delta = -1; | 
 |  | 
 | 	start = offset_to_bit(info->offset, ctl->unit, offset); | 
 | 	count = bytes_to_bits(bytes, ctl->unit); | 
 | 	end = start + count; | 
 | 	ASSERT(end <= BITS_PER_BITMAP); | 
 |  | 
 | 	bitmap_clear(info->bitmap, start, count); | 
 |  | 
 | 	info->bytes -= bytes; | 
 | 	if (info->max_extent_size > ctl->unit) | 
 | 		info->max_extent_size = 0; | 
 |  | 
 | 	relink_bitmap_entry(ctl, info); | 
 |  | 
 | 	if (start && test_bit(start - 1, info->bitmap)) | 
 | 		extent_delta++; | 
 |  | 
 | 	if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap)) | 
 | 		extent_delta++; | 
 |  | 
 | 	info->bitmap_extents += extent_delta; | 
 | 	if (!btrfs_free_space_trimmed(info)) { | 
 | 		ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta; | 
 | 		ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes; | 
 | 	} | 
 |  | 
 | 	if (update_stat) | 
 | 		ctl->free_space -= bytes; | 
 | } | 
 |  | 
 | static void btrfs_bitmap_set_bits(struct btrfs_free_space_ctl *ctl, | 
 | 				  struct btrfs_free_space *info, u64 offset, | 
 | 				  u64 bytes) | 
 | { | 
 | 	unsigned long start, count, end; | 
 | 	int extent_delta = 1; | 
 |  | 
 | 	start = offset_to_bit(info->offset, ctl->unit, offset); | 
 | 	count = bytes_to_bits(bytes, ctl->unit); | 
 | 	end = start + count; | 
 | 	ASSERT(end <= BITS_PER_BITMAP); | 
 |  | 
 | 	bitmap_set(info->bitmap, start, count); | 
 |  | 
 | 	/* | 
 | 	 * We set some bytes, we have no idea what the max extent size is | 
 | 	 * anymore. | 
 | 	 */ | 
 | 	info->max_extent_size = 0; | 
 | 	info->bytes += bytes; | 
 | 	ctl->free_space += bytes; | 
 |  | 
 | 	relink_bitmap_entry(ctl, info); | 
 |  | 
 | 	if (start && test_bit(start - 1, info->bitmap)) | 
 | 		extent_delta--; | 
 |  | 
 | 	if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap)) | 
 | 		extent_delta--; | 
 |  | 
 | 	info->bitmap_extents += extent_delta; | 
 | 	if (!btrfs_free_space_trimmed(info)) { | 
 | 		ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta; | 
 | 		ctl->discardable_bytes[BTRFS_STAT_CURR] += bytes; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * If we can not find suitable extent, we will use bytes to record | 
 |  * the size of the max extent. | 
 |  */ | 
 | static int search_bitmap(struct btrfs_free_space_ctl *ctl, | 
 | 			 struct btrfs_free_space *bitmap_info, u64 *offset, | 
 | 			 u64 *bytes, bool for_alloc) | 
 | { | 
 | 	unsigned long found_bits = 0; | 
 | 	unsigned long max_bits = 0; | 
 | 	unsigned long bits, i; | 
 | 	unsigned long next_zero; | 
 | 	unsigned long extent_bits; | 
 |  | 
 | 	/* | 
 | 	 * Skip searching the bitmap if we don't have a contiguous section that | 
 | 	 * is large enough for this allocation. | 
 | 	 */ | 
 | 	if (for_alloc && | 
 | 	    bitmap_info->max_extent_size && | 
 | 	    bitmap_info->max_extent_size < *bytes) { | 
 | 		*bytes = bitmap_info->max_extent_size; | 
 | 		return -1; | 
 | 	} | 
 |  | 
 | 	i = offset_to_bit(bitmap_info->offset, ctl->unit, | 
 | 			  max_t(u64, *offset, bitmap_info->offset)); | 
 | 	bits = bytes_to_bits(*bytes, ctl->unit); | 
 |  | 
 | 	for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) { | 
 | 		if (for_alloc && bits == 1) { | 
 | 			found_bits = 1; | 
 | 			break; | 
 | 		} | 
 | 		next_zero = find_next_zero_bit(bitmap_info->bitmap, | 
 | 					       BITS_PER_BITMAP, i); | 
 | 		extent_bits = next_zero - i; | 
 | 		if (extent_bits >= bits) { | 
 | 			found_bits = extent_bits; | 
 | 			break; | 
 | 		} else if (extent_bits > max_bits) { | 
 | 			max_bits = extent_bits; | 
 | 		} | 
 | 		i = next_zero; | 
 | 	} | 
 |  | 
 | 	if (found_bits) { | 
 | 		*offset = (u64)(i * ctl->unit) + bitmap_info->offset; | 
 | 		*bytes = (u64)(found_bits) * ctl->unit; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	*bytes = (u64)(max_bits) * ctl->unit; | 
 | 	bitmap_info->max_extent_size = *bytes; | 
 | 	relink_bitmap_entry(ctl, bitmap_info); | 
 | 	return -1; | 
 | } | 
 |  | 
 | /* Cache the size of the max extent in bytes */ | 
 | static struct btrfs_free_space * | 
 | find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes, | 
 | 		unsigned long align, u64 *max_extent_size, bool use_bytes_index) | 
 | { | 
 | 	struct btrfs_free_space *entry; | 
 | 	struct rb_node *node; | 
 | 	u64 tmp; | 
 | 	u64 align_off; | 
 | 	int ret; | 
 |  | 
 | 	if (!ctl->free_space_offset.rb_node) | 
 | 		goto out; | 
 | again: | 
 | 	if (use_bytes_index) { | 
 | 		node = rb_first_cached(&ctl->free_space_bytes); | 
 | 	} else { | 
 | 		entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), | 
 | 					   0, 1); | 
 | 		if (!entry) | 
 | 			goto out; | 
 | 		node = &entry->offset_index; | 
 | 	} | 
 |  | 
 | 	for (; node; node = rb_next(node)) { | 
 | 		if (use_bytes_index) | 
 | 			entry = rb_entry(node, struct btrfs_free_space, | 
 | 					 bytes_index); | 
 | 		else | 
 | 			entry = rb_entry(node, struct btrfs_free_space, | 
 | 					 offset_index); | 
 |  | 
 | 		/* | 
 | 		 * If we are using the bytes index then all subsequent entries | 
 | 		 * in this tree are going to be < bytes, so simply set the max | 
 | 		 * extent size and exit the loop. | 
 | 		 * | 
 | 		 * If we're using the offset index then we need to keep going | 
 | 		 * through the rest of the tree. | 
 | 		 */ | 
 | 		if (entry->bytes < *bytes) { | 
 | 			*max_extent_size = max(get_max_extent_size(entry), | 
 | 					       *max_extent_size); | 
 | 			if (use_bytes_index) | 
 | 				break; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* make sure the space returned is big enough | 
 | 		 * to match our requested alignment | 
 | 		 */ | 
 | 		if (*bytes >= align) { | 
 | 			tmp = entry->offset - ctl->start + align - 1; | 
 | 			tmp = div64_u64(tmp, align); | 
 | 			tmp = tmp * align + ctl->start; | 
 | 			align_off = tmp - entry->offset; | 
 | 		} else { | 
 | 			align_off = 0; | 
 | 			tmp = entry->offset; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * We don't break here if we're using the bytes index because we | 
 | 		 * may have another entry that has the correct alignment that is | 
 | 		 * the right size, so we don't want to miss that possibility. | 
 | 		 * At worst this adds another loop through the logic, but if we | 
 | 		 * broke here we could prematurely ENOSPC. | 
 | 		 */ | 
 | 		if (entry->bytes < *bytes + align_off) { | 
 | 			*max_extent_size = max(get_max_extent_size(entry), | 
 | 					       *max_extent_size); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		if (entry->bitmap) { | 
 | 			struct rb_node *old_next = rb_next(node); | 
 | 			u64 size = *bytes; | 
 |  | 
 | 			ret = search_bitmap(ctl, entry, &tmp, &size, true); | 
 | 			if (!ret) { | 
 | 				*offset = tmp; | 
 | 				*bytes = size; | 
 | 				return entry; | 
 | 			} else { | 
 | 				*max_extent_size = | 
 | 					max(get_max_extent_size(entry), | 
 | 					    *max_extent_size); | 
 | 			} | 
 |  | 
 | 			/* | 
 | 			 * The bitmap may have gotten re-arranged in the space | 
 | 			 * index here because the max_extent_size may have been | 
 | 			 * updated.  Start from the beginning again if this | 
 | 			 * happened. | 
 | 			 */ | 
 | 			if (use_bytes_index && old_next != rb_next(node)) | 
 | 				goto again; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		*offset = tmp; | 
 | 		*bytes = entry->bytes - align_off; | 
 | 		return entry; | 
 | 	} | 
 | out: | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static void add_new_bitmap(struct btrfs_free_space_ctl *ctl, | 
 | 			   struct btrfs_free_space *info, u64 offset) | 
 | { | 
 | 	info->offset = offset_to_bitmap(ctl, offset); | 
 | 	info->bytes = 0; | 
 | 	info->bitmap_extents = 0; | 
 | 	INIT_LIST_HEAD(&info->list); | 
 | 	link_free_space(ctl, info); | 
 | 	ctl->total_bitmaps++; | 
 | 	recalculate_thresholds(ctl); | 
 | } | 
 |  | 
 | static void free_bitmap(struct btrfs_free_space_ctl *ctl, | 
 | 			struct btrfs_free_space *bitmap_info) | 
 | { | 
 | 	/* | 
 | 	 * Normally when this is called, the bitmap is completely empty. However, | 
 | 	 * if we are blowing up the free space cache for one reason or another | 
 | 	 * via __btrfs_remove_free_space_cache(), then it may not be freed and | 
 | 	 * we may leave stats on the table. | 
 | 	 */ | 
 | 	if (bitmap_info->bytes && !btrfs_free_space_trimmed(bitmap_info)) { | 
 | 		ctl->discardable_extents[BTRFS_STAT_CURR] -= | 
 | 			bitmap_info->bitmap_extents; | 
 | 		ctl->discardable_bytes[BTRFS_STAT_CURR] -= bitmap_info->bytes; | 
 |  | 
 | 	} | 
 | 	unlink_free_space(ctl, bitmap_info, true); | 
 | 	kmem_cache_free(btrfs_free_space_bitmap_cachep, bitmap_info->bitmap); | 
 | 	kmem_cache_free(btrfs_free_space_cachep, bitmap_info); | 
 | 	ctl->total_bitmaps--; | 
 | 	recalculate_thresholds(ctl); | 
 | } | 
 |  | 
 | static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl, | 
 | 			      struct btrfs_free_space *bitmap_info, | 
 | 			      u64 *offset, u64 *bytes) | 
 | { | 
 | 	u64 end; | 
 | 	u64 search_start, search_bytes; | 
 | 	int ret; | 
 |  | 
 | again: | 
 | 	end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1; | 
 |  | 
 | 	/* | 
 | 	 * We need to search for bits in this bitmap.  We could only cover some | 
 | 	 * of the extent in this bitmap thanks to how we add space, so we need | 
 | 	 * to search for as much as it as we can and clear that amount, and then | 
 | 	 * go searching for the next bit. | 
 | 	 */ | 
 | 	search_start = *offset; | 
 | 	search_bytes = ctl->unit; | 
 | 	search_bytes = min(search_bytes, end - search_start + 1); | 
 | 	ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes, | 
 | 			    false); | 
 | 	if (ret < 0 || search_start != *offset) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* We may have found more bits than what we need */ | 
 | 	search_bytes = min(search_bytes, *bytes); | 
 |  | 
 | 	/* Cannot clear past the end of the bitmap */ | 
 | 	search_bytes = min(search_bytes, end - search_start + 1); | 
 |  | 
 | 	bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes, true); | 
 | 	*offset += search_bytes; | 
 | 	*bytes -= search_bytes; | 
 |  | 
 | 	if (*bytes) { | 
 | 		struct rb_node *next = rb_next(&bitmap_info->offset_index); | 
 | 		if (!bitmap_info->bytes) | 
 | 			free_bitmap(ctl, bitmap_info); | 
 |  | 
 | 		/* | 
 | 		 * no entry after this bitmap, but we still have bytes to | 
 | 		 * remove, so something has gone wrong. | 
 | 		 */ | 
 | 		if (!next) | 
 | 			return -EINVAL; | 
 |  | 
 | 		bitmap_info = rb_entry(next, struct btrfs_free_space, | 
 | 				       offset_index); | 
 |  | 
 | 		/* | 
 | 		 * if the next entry isn't a bitmap we need to return to let the | 
 | 		 * extent stuff do its work. | 
 | 		 */ | 
 | 		if (!bitmap_info->bitmap) | 
 | 			return -EAGAIN; | 
 |  | 
 | 		/* | 
 | 		 * Ok the next item is a bitmap, but it may not actually hold | 
 | 		 * the information for the rest of this free space stuff, so | 
 | 		 * look for it, and if we don't find it return so we can try | 
 | 		 * everything over again. | 
 | 		 */ | 
 | 		search_start = *offset; | 
 | 		search_bytes = ctl->unit; | 
 | 		ret = search_bitmap(ctl, bitmap_info, &search_start, | 
 | 				    &search_bytes, false); | 
 | 		if (ret < 0 || search_start != *offset) | 
 | 			return -EAGAIN; | 
 |  | 
 | 		goto again; | 
 | 	} else if (!bitmap_info->bytes) | 
 | 		free_bitmap(ctl, bitmap_info); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl, | 
 | 			       struct btrfs_free_space *info, u64 offset, | 
 | 			       u64 bytes, enum btrfs_trim_state trim_state) | 
 | { | 
 | 	u64 bytes_to_set = 0; | 
 | 	u64 end; | 
 |  | 
 | 	/* | 
 | 	 * This is a tradeoff to make bitmap trim state minimal.  We mark the | 
 | 	 * whole bitmap untrimmed if at any point we add untrimmed regions. | 
 | 	 */ | 
 | 	if (trim_state == BTRFS_TRIM_STATE_UNTRIMMED) { | 
 | 		if (btrfs_free_space_trimmed(info)) { | 
 | 			ctl->discardable_extents[BTRFS_STAT_CURR] += | 
 | 				info->bitmap_extents; | 
 | 			ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes; | 
 | 		} | 
 | 		info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED; | 
 | 	} | 
 |  | 
 | 	end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit); | 
 |  | 
 | 	bytes_to_set = min(end - offset, bytes); | 
 |  | 
 | 	btrfs_bitmap_set_bits(ctl, info, offset, bytes_to_set); | 
 |  | 
 | 	return bytes_to_set; | 
 |  | 
 | } | 
 |  | 
 | static bool use_bitmap(struct btrfs_free_space_ctl *ctl, | 
 | 		      struct btrfs_free_space *info) | 
 | { | 
 | 	struct btrfs_block_group *block_group = ctl->block_group; | 
 | 	struct btrfs_fs_info *fs_info = block_group->fs_info; | 
 | 	bool forced = false; | 
 |  | 
 | #ifdef CONFIG_BTRFS_DEBUG | 
 | 	if (btrfs_should_fragment_free_space(block_group)) | 
 | 		forced = true; | 
 | #endif | 
 |  | 
 | 	/* This is a way to reclaim large regions from the bitmaps. */ | 
 | 	if (!forced && info->bytes >= FORCE_EXTENT_THRESHOLD) | 
 | 		return false; | 
 |  | 
 | 	/* | 
 | 	 * If we are below the extents threshold then we can add this as an | 
 | 	 * extent, and don't have to deal with the bitmap | 
 | 	 */ | 
 | 	if (!forced && ctl->free_extents < ctl->extents_thresh) { | 
 | 		/* | 
 | 		 * If this block group has some small extents we don't want to | 
 | 		 * use up all of our free slots in the cache with them, we want | 
 | 		 * to reserve them to larger extents, however if we have plenty | 
 | 		 * of cache left then go ahead and add them, no sense in adding | 
 | 		 * the overhead of a bitmap if we don't have to. | 
 | 		 */ | 
 | 		if (info->bytes <= fs_info->sectorsize * 8) { | 
 | 			if (ctl->free_extents * 3 <= ctl->extents_thresh) | 
 | 				return false; | 
 | 		} else { | 
 | 			return false; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * The original block groups from mkfs can be really small, like 8 | 
 | 	 * megabytes, so don't bother with a bitmap for those entries.  However | 
 | 	 * some block groups can be smaller than what a bitmap would cover but | 
 | 	 * are still large enough that they could overflow the 32k memory limit, | 
 | 	 * so allow those block groups to still be allowed to have a bitmap | 
 | 	 * entry. | 
 | 	 */ | 
 | 	if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->length) | 
 | 		return false; | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static const struct btrfs_free_space_op free_space_op = { | 
 | 	.use_bitmap		= use_bitmap, | 
 | }; | 
 |  | 
 | static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl, | 
 | 			      struct btrfs_free_space *info) | 
 | { | 
 | 	struct btrfs_free_space *bitmap_info; | 
 | 	struct btrfs_block_group *block_group = NULL; | 
 | 	int added = 0; | 
 | 	u64 bytes, offset, bytes_added; | 
 | 	enum btrfs_trim_state trim_state; | 
 | 	int ret; | 
 |  | 
 | 	bytes = info->bytes; | 
 | 	offset = info->offset; | 
 | 	trim_state = info->trim_state; | 
 |  | 
 | 	if (!ctl->op->use_bitmap(ctl, info)) | 
 | 		return 0; | 
 |  | 
 | 	if (ctl->op == &free_space_op) | 
 | 		block_group = ctl->block_group; | 
 | again: | 
 | 	/* | 
 | 	 * Since we link bitmaps right into the cluster we need to see if we | 
 | 	 * have a cluster here, and if so and it has our bitmap we need to add | 
 | 	 * the free space to that bitmap. | 
 | 	 */ | 
 | 	if (block_group && !list_empty(&block_group->cluster_list)) { | 
 | 		struct btrfs_free_cluster *cluster; | 
 | 		struct rb_node *node; | 
 | 		struct btrfs_free_space *entry; | 
 |  | 
 | 		cluster = list_first_entry(&block_group->cluster_list, | 
 | 					   struct btrfs_free_cluster, block_group_list); | 
 | 		spin_lock(&cluster->lock); | 
 | 		node = rb_first(&cluster->root); | 
 | 		if (!node) { | 
 | 			spin_unlock(&cluster->lock); | 
 | 			goto no_cluster_bitmap; | 
 | 		} | 
 |  | 
 | 		entry = rb_entry(node, struct btrfs_free_space, offset_index); | 
 | 		if (!entry->bitmap) { | 
 | 			spin_unlock(&cluster->lock); | 
 | 			goto no_cluster_bitmap; | 
 | 		} | 
 |  | 
 | 		if (entry->offset == offset_to_bitmap(ctl, offset)) { | 
 | 			bytes_added = add_bytes_to_bitmap(ctl, entry, offset, | 
 | 							  bytes, trim_state); | 
 | 			bytes -= bytes_added; | 
 | 			offset += bytes_added; | 
 | 		} | 
 | 		spin_unlock(&cluster->lock); | 
 | 		if (!bytes) { | 
 | 			ret = 1; | 
 | 			goto out; | 
 | 		} | 
 | 	} | 
 |  | 
 | no_cluster_bitmap: | 
 | 	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset), | 
 | 					 1, 0); | 
 | 	if (!bitmap_info) { | 
 | 		ASSERT(added == 0); | 
 | 		goto new_bitmap; | 
 | 	} | 
 |  | 
 | 	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes, | 
 | 					  trim_state); | 
 | 	bytes -= bytes_added; | 
 | 	offset += bytes_added; | 
 | 	added = 0; | 
 |  | 
 | 	if (!bytes) { | 
 | 		ret = 1; | 
 | 		goto out; | 
 | 	} else | 
 | 		goto again; | 
 |  | 
 | new_bitmap: | 
 | 	if (info && info->bitmap) { | 
 | 		add_new_bitmap(ctl, info, offset); | 
 | 		added = 1; | 
 | 		info = NULL; | 
 | 		goto again; | 
 | 	} else { | 
 | 		spin_unlock(&ctl->tree_lock); | 
 |  | 
 | 		/* no pre-allocated info, allocate a new one */ | 
 | 		if (!info) { | 
 | 			info = kmem_cache_zalloc(btrfs_free_space_cachep, | 
 | 						 GFP_NOFS); | 
 | 			if (!info) { | 
 | 				spin_lock(&ctl->tree_lock); | 
 | 				ret = -ENOMEM; | 
 | 				goto out; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		/* allocate the bitmap */ | 
 | 		info->bitmap = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep, | 
 | 						 GFP_NOFS); | 
 | 		info->trim_state = BTRFS_TRIM_STATE_TRIMMED; | 
 | 		spin_lock(&ctl->tree_lock); | 
 | 		if (!info->bitmap) { | 
 | 			ret = -ENOMEM; | 
 | 			goto out; | 
 | 		} | 
 | 		goto again; | 
 | 	} | 
 |  | 
 | out: | 
 | 	if (info) { | 
 | 		if (info->bitmap) | 
 | 			kmem_cache_free(btrfs_free_space_bitmap_cachep, | 
 | 					info->bitmap); | 
 | 		kmem_cache_free(btrfs_free_space_cachep, info); | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Free space merging rules: | 
 |  *  1) Merge trimmed areas together | 
 |  *  2) Let untrimmed areas coalesce with trimmed areas | 
 |  *  3) Always pull neighboring regions from bitmaps | 
 |  * | 
 |  * The above rules are for when we merge free space based on btrfs_trim_state. | 
 |  * Rules 2 and 3 are subtle because they are suboptimal, but are done for the | 
 |  * same reason: to promote larger extent regions which makes life easier for | 
 |  * find_free_extent().  Rule 2 enables coalescing based on the common path | 
 |  * being returning free space from btrfs_finish_extent_commit().  So when free | 
 |  * space is trimmed, it will prevent aggregating trimmed new region and | 
 |  * untrimmed regions in the rb_tree.  Rule 3 is purely to obtain larger extents | 
 |  * and provide find_free_extent() with the largest extents possible hoping for | 
 |  * the reuse path. | 
 |  */ | 
 | static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl, | 
 | 			  struct btrfs_free_space *info, bool update_stat) | 
 | { | 
 | 	struct btrfs_free_space *left_info = NULL; | 
 | 	struct btrfs_free_space *right_info; | 
 | 	bool merged = false; | 
 | 	u64 offset = info->offset; | 
 | 	u64 bytes = info->bytes; | 
 | 	const bool is_trimmed = btrfs_free_space_trimmed(info); | 
 | 	struct rb_node *right_prev = NULL; | 
 |  | 
 | 	/* | 
 | 	 * first we want to see if there is free space adjacent to the range we | 
 | 	 * are adding, if there is remove that struct and add a new one to | 
 | 	 * cover the entire range | 
 | 	 */ | 
 | 	right_info = tree_search_offset(ctl, offset + bytes, 0, 0); | 
 | 	if (right_info) | 
 | 		right_prev = rb_prev(&right_info->offset_index); | 
 |  | 
 | 	if (right_prev) | 
 | 		left_info = rb_entry(right_prev, struct btrfs_free_space, offset_index); | 
 | 	else if (!right_info) | 
 | 		left_info = tree_search_offset(ctl, offset - 1, 0, 0); | 
 |  | 
 | 	/* See try_merge_free_space() comment. */ | 
 | 	if (right_info && !right_info->bitmap && | 
 | 	    (!is_trimmed || btrfs_free_space_trimmed(right_info))) { | 
 | 		unlink_free_space(ctl, right_info, update_stat); | 
 | 		info->bytes += right_info->bytes; | 
 | 		kmem_cache_free(btrfs_free_space_cachep, right_info); | 
 | 		merged = true; | 
 | 	} | 
 |  | 
 | 	/* See try_merge_free_space() comment. */ | 
 | 	if (left_info && !left_info->bitmap && | 
 | 	    left_info->offset + left_info->bytes == offset && | 
 | 	    (!is_trimmed || btrfs_free_space_trimmed(left_info))) { | 
 | 		unlink_free_space(ctl, left_info, update_stat); | 
 | 		info->offset = left_info->offset; | 
 | 		info->bytes += left_info->bytes; | 
 | 		kmem_cache_free(btrfs_free_space_cachep, left_info); | 
 | 		merged = true; | 
 | 	} | 
 |  | 
 | 	return merged; | 
 | } | 
 |  | 
 | static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl, | 
 | 				     struct btrfs_free_space *info, | 
 | 				     bool update_stat) | 
 | { | 
 | 	struct btrfs_free_space *bitmap; | 
 | 	unsigned long i; | 
 | 	unsigned long j; | 
 | 	const u64 end = info->offset + info->bytes; | 
 | 	const u64 bitmap_offset = offset_to_bitmap(ctl, end); | 
 | 	u64 bytes; | 
 |  | 
 | 	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0); | 
 | 	if (!bitmap) | 
 | 		return false; | 
 |  | 
 | 	i = offset_to_bit(bitmap->offset, ctl->unit, end); | 
 | 	j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i); | 
 | 	if (j == i) | 
 | 		return false; | 
 | 	bytes = (j - i) * ctl->unit; | 
 | 	info->bytes += bytes; | 
 |  | 
 | 	/* See try_merge_free_space() comment. */ | 
 | 	if (!btrfs_free_space_trimmed(bitmap)) | 
 | 		info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED; | 
 |  | 
 | 	bitmap_clear_bits(ctl, bitmap, end, bytes, update_stat); | 
 |  | 
 | 	if (!bitmap->bytes) | 
 | 		free_bitmap(ctl, bitmap); | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl, | 
 | 				       struct btrfs_free_space *info, | 
 | 				       bool update_stat) | 
 | { | 
 | 	struct btrfs_free_space *bitmap; | 
 | 	u64 bitmap_offset; | 
 | 	unsigned long i; | 
 | 	unsigned long j; | 
 | 	unsigned long prev_j; | 
 | 	u64 bytes; | 
 |  | 
 | 	bitmap_offset = offset_to_bitmap(ctl, info->offset); | 
 | 	/* If we're on a boundary, try the previous logical bitmap. */ | 
 | 	if (bitmap_offset == info->offset) { | 
 | 		if (info->offset == 0) | 
 | 			return false; | 
 | 		bitmap_offset = offset_to_bitmap(ctl, info->offset - 1); | 
 | 	} | 
 |  | 
 | 	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0); | 
 | 	if (!bitmap) | 
 | 		return false; | 
 |  | 
 | 	i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1; | 
 | 	j = 0; | 
 | 	prev_j = (unsigned long)-1; | 
 | 	for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) { | 
 | 		if (j > i) | 
 | 			break; | 
 | 		prev_j = j; | 
 | 	} | 
 | 	if (prev_j == i) | 
 | 		return false; | 
 |  | 
 | 	if (prev_j == (unsigned long)-1) | 
 | 		bytes = (i + 1) * ctl->unit; | 
 | 	else | 
 | 		bytes = (i - prev_j) * ctl->unit; | 
 |  | 
 | 	info->offset -= bytes; | 
 | 	info->bytes += bytes; | 
 |  | 
 | 	/* See try_merge_free_space() comment. */ | 
 | 	if (!btrfs_free_space_trimmed(bitmap)) | 
 | 		info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED; | 
 |  | 
 | 	bitmap_clear_bits(ctl, bitmap, info->offset, bytes, update_stat); | 
 |  | 
 | 	if (!bitmap->bytes) | 
 | 		free_bitmap(ctl, bitmap); | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | /* | 
 |  * We prefer always to allocate from extent entries, both for clustered and | 
 |  * non-clustered allocation requests. So when attempting to add a new extent | 
 |  * entry, try to see if there's adjacent free space in bitmap entries, and if | 
 |  * there is, migrate that space from the bitmaps to the extent. | 
 |  * Like this we get better chances of satisfying space allocation requests | 
 |  * because we attempt to satisfy them based on a single cache entry, and never | 
 |  * on 2 or more entries - even if the entries represent a contiguous free space | 
 |  * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry | 
 |  * ends). | 
 |  */ | 
 | static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl, | 
 | 			      struct btrfs_free_space *info, | 
 | 			      bool update_stat) | 
 | { | 
 | 	/* | 
 | 	 * Only work with disconnected entries, as we can change their offset, | 
 | 	 * and must be extent entries. | 
 | 	 */ | 
 | 	ASSERT(!info->bitmap); | 
 | 	ASSERT(RB_EMPTY_NODE(&info->offset_index)); | 
 |  | 
 | 	if (ctl->total_bitmaps > 0) { | 
 | 		bool stole_end; | 
 | 		bool stole_front = false; | 
 |  | 
 | 		stole_end = steal_from_bitmap_to_end(ctl, info, update_stat); | 
 | 		if (ctl->total_bitmaps > 0) | 
 | 			stole_front = steal_from_bitmap_to_front(ctl, info, | 
 | 								 update_stat); | 
 |  | 
 | 		if (stole_end || stole_front) | 
 | 			try_merge_free_space(ctl, info, update_stat); | 
 | 	} | 
 | } | 
 |  | 
 | static int __btrfs_add_free_space(struct btrfs_block_group *block_group, | 
 | 			   u64 offset, u64 bytes, | 
 | 			   enum btrfs_trim_state trim_state) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = block_group->fs_info; | 
 | 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; | 
 | 	struct btrfs_free_space *info; | 
 | 	int ret = 0; | 
 | 	u64 filter_bytes = bytes; | 
 |  | 
 | 	ASSERT(!btrfs_is_zoned(fs_info)); | 
 |  | 
 | 	info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS); | 
 | 	if (!info) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	info->offset = offset; | 
 | 	info->bytes = bytes; | 
 | 	info->trim_state = trim_state; | 
 | 	RB_CLEAR_NODE(&info->offset_index); | 
 | 	RB_CLEAR_NODE(&info->bytes_index); | 
 |  | 
 | 	spin_lock(&ctl->tree_lock); | 
 |  | 
 | 	if (try_merge_free_space(ctl, info, true)) | 
 | 		goto link; | 
 |  | 
 | 	/* | 
 | 	 * There was no extent directly to the left or right of this new | 
 | 	 * extent then we know we're going to have to allocate a new extent, so | 
 | 	 * before we do that see if we need to drop this into a bitmap | 
 | 	 */ | 
 | 	ret = insert_into_bitmap(ctl, info); | 
 | 	if (ret < 0) { | 
 | 		goto out; | 
 | 	} else if (ret) { | 
 | 		ret = 0; | 
 | 		goto out; | 
 | 	} | 
 | link: | 
 | 	/* | 
 | 	 * Only steal free space from adjacent bitmaps if we're sure we're not | 
 | 	 * going to add the new free space to existing bitmap entries - because | 
 | 	 * that would mean unnecessary work that would be reverted. Therefore | 
 | 	 * attempt to steal space from bitmaps if we're adding an extent entry. | 
 | 	 */ | 
 | 	steal_from_bitmap(ctl, info, true); | 
 |  | 
 | 	filter_bytes = max(filter_bytes, info->bytes); | 
 |  | 
 | 	ret = link_free_space(ctl, info); | 
 | 	if (ret) | 
 | 		kmem_cache_free(btrfs_free_space_cachep, info); | 
 | out: | 
 | 	btrfs_discard_update_discardable(block_group); | 
 | 	spin_unlock(&ctl->tree_lock); | 
 |  | 
 | 	if (ret) { | 
 | 		btrfs_crit(fs_info, "unable to add free space :%d", ret); | 
 | 		ASSERT(ret != -EEXIST); | 
 | 	} | 
 |  | 
 | 	if (trim_state != BTRFS_TRIM_STATE_TRIMMED) { | 
 | 		btrfs_discard_check_filter(block_group, filter_bytes); | 
 | 		btrfs_discard_queue_work(&fs_info->discard_ctl, block_group); | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int __btrfs_add_free_space_zoned(struct btrfs_block_group *block_group, | 
 | 					u64 bytenr, u64 size, bool used) | 
 | { | 
 | 	struct btrfs_space_info *sinfo = block_group->space_info; | 
 | 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; | 
 | 	u64 offset = bytenr - block_group->start; | 
 | 	u64 to_free, to_unusable; | 
 | 	int bg_reclaim_threshold = 0; | 
 | 	bool initial; | 
 | 	u64 reclaimable_unusable; | 
 |  | 
 | 	spin_lock(&block_group->lock); | 
 |  | 
 | 	initial = ((size == block_group->length) && (block_group->alloc_offset == 0)); | 
 | 	WARN_ON(!initial && offset + size > block_group->zone_capacity); | 
 | 	if (!initial) | 
 | 		bg_reclaim_threshold = READ_ONCE(sinfo->bg_reclaim_threshold); | 
 |  | 
 | 	if (!used) | 
 | 		to_free = size; | 
 | 	else if (initial) | 
 | 		to_free = block_group->zone_capacity; | 
 | 	else if (offset >= block_group->alloc_offset) | 
 | 		to_free = size; | 
 | 	else if (offset + size <= block_group->alloc_offset) | 
 | 		to_free = 0; | 
 | 	else | 
 | 		to_free = offset + size - block_group->alloc_offset; | 
 | 	to_unusable = size - to_free; | 
 |  | 
 | 	spin_lock(&ctl->tree_lock); | 
 | 	ctl->free_space += to_free; | 
 | 	spin_unlock(&ctl->tree_lock); | 
 | 	/* | 
 | 	 * If the block group is read-only, we should account freed space into | 
 | 	 * bytes_readonly. | 
 | 	 */ | 
 | 	if (!block_group->ro) { | 
 | 		block_group->zone_unusable += to_unusable; | 
 | 		WARN_ON(block_group->zone_unusable > block_group->length); | 
 | 	} | 
 | 	if (!used) { | 
 | 		block_group->alloc_offset -= size; | 
 | 	} | 
 |  | 
 | 	reclaimable_unusable = block_group->zone_unusable - | 
 | 			       (block_group->length - block_group->zone_capacity); | 
 | 	/* All the region is now unusable. Mark it as unused and reclaim */ | 
 | 	if (block_group->zone_unusable == block_group->length) { | 
 | 		btrfs_mark_bg_unused(block_group); | 
 | 	} else if (bg_reclaim_threshold && | 
 | 		   reclaimable_unusable >= | 
 | 		   mult_perc(block_group->zone_capacity, bg_reclaim_threshold)) { | 
 | 		btrfs_mark_bg_to_reclaim(block_group); | 
 | 	} | 
 |  | 
 | 	spin_unlock(&block_group->lock); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int btrfs_add_free_space(struct btrfs_block_group *block_group, | 
 | 			 u64 bytenr, u64 size) | 
 | { | 
 | 	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED; | 
 |  | 
 | 	if (btrfs_is_zoned(block_group->fs_info)) | 
 | 		return __btrfs_add_free_space_zoned(block_group, bytenr, size, | 
 | 						    true); | 
 |  | 
 | 	if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC)) | 
 | 		trim_state = BTRFS_TRIM_STATE_TRIMMED; | 
 |  | 
 | 	return __btrfs_add_free_space(block_group, bytenr, size, trim_state); | 
 | } | 
 |  | 
 | int btrfs_add_free_space_unused(struct btrfs_block_group *block_group, | 
 | 				u64 bytenr, u64 size) | 
 | { | 
 | 	if (btrfs_is_zoned(block_group->fs_info)) | 
 | 		return __btrfs_add_free_space_zoned(block_group, bytenr, size, | 
 | 						    false); | 
 |  | 
 | 	return btrfs_add_free_space(block_group, bytenr, size); | 
 | } | 
 |  | 
 | /* | 
 |  * This is a subtle distinction because when adding free space back in general, | 
 |  * we want it to be added as untrimmed for async. But in the case where we add | 
 |  * it on loading of a block group, we want to consider it trimmed. | 
 |  */ | 
 | int btrfs_add_free_space_async_trimmed(struct btrfs_block_group *block_group, | 
 | 				       u64 bytenr, u64 size) | 
 | { | 
 | 	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED; | 
 |  | 
 | 	if (btrfs_is_zoned(block_group->fs_info)) | 
 | 		return __btrfs_add_free_space_zoned(block_group, bytenr, size, | 
 | 						    true); | 
 |  | 
 | 	if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC) || | 
 | 	    btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC)) | 
 | 		trim_state = BTRFS_TRIM_STATE_TRIMMED; | 
 |  | 
 | 	return __btrfs_add_free_space(block_group, bytenr, size, trim_state); | 
 | } | 
 |  | 
 | int btrfs_remove_free_space(struct btrfs_block_group *block_group, | 
 | 			    u64 offset, u64 bytes) | 
 | { | 
 | 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; | 
 | 	struct btrfs_free_space *info; | 
 | 	int ret; | 
 | 	bool re_search = false; | 
 |  | 
 | 	if (btrfs_is_zoned(block_group->fs_info)) { | 
 | 		/* | 
 | 		 * This can happen with conventional zones when replaying log. | 
 | 		 * Since the allocation info of tree-log nodes are not recorded | 
 | 		 * to the extent-tree, calculate_alloc_pointer() failed to | 
 | 		 * advance the allocation pointer after last allocated tree log | 
 | 		 * node blocks. | 
 | 		 * | 
 | 		 * This function is called from | 
 | 		 * btrfs_pin_extent_for_log_replay() when replaying the log. | 
 | 		 * Advance the pointer not to overwrite the tree-log nodes. | 
 | 		 */ | 
 | 		if (block_group->start + block_group->alloc_offset < | 
 | 		    offset + bytes) { | 
 | 			block_group->alloc_offset = | 
 | 				offset + bytes - block_group->start; | 
 | 		} | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	spin_lock(&ctl->tree_lock); | 
 |  | 
 | again: | 
 | 	ret = 0; | 
 | 	if (!bytes) | 
 | 		goto out_lock; | 
 |  | 
 | 	info = tree_search_offset(ctl, offset, 0, 0); | 
 | 	if (!info) { | 
 | 		/* | 
 | 		 * oops didn't find an extent that matched the space we wanted | 
 | 		 * to remove, look for a bitmap instead | 
 | 		 */ | 
 | 		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset), | 
 | 					  1, 0); | 
 | 		if (!info) { | 
 | 			/* | 
 | 			 * If we found a partial bit of our free space in a | 
 | 			 * bitmap but then couldn't find the other part this may | 
 | 			 * be a problem, so WARN about it. | 
 | 			 */ | 
 | 			WARN_ON(re_search); | 
 | 			goto out_lock; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	re_search = false; | 
 | 	if (!info->bitmap) { | 
 | 		unlink_free_space(ctl, info, true); | 
 | 		if (offset == info->offset) { | 
 | 			u64 to_free = min(bytes, info->bytes); | 
 |  | 
 | 			info->bytes -= to_free; | 
 | 			info->offset += to_free; | 
 | 			if (info->bytes) { | 
 | 				ret = link_free_space(ctl, info); | 
 | 				WARN_ON(ret); | 
 | 			} else { | 
 | 				kmem_cache_free(btrfs_free_space_cachep, info); | 
 | 			} | 
 |  | 
 | 			offset += to_free; | 
 | 			bytes -= to_free; | 
 | 			goto again; | 
 | 		} else { | 
 | 			u64 old_end = info->bytes + info->offset; | 
 |  | 
 | 			info->bytes = offset - info->offset; | 
 | 			ret = link_free_space(ctl, info); | 
 | 			WARN_ON(ret); | 
 | 			if (ret) | 
 | 				goto out_lock; | 
 |  | 
 | 			/* Not enough bytes in this entry to satisfy us */ | 
 | 			if (old_end < offset + bytes) { | 
 | 				bytes -= old_end - offset; | 
 | 				offset = old_end; | 
 | 				goto again; | 
 | 			} else if (old_end == offset + bytes) { | 
 | 				/* all done */ | 
 | 				goto out_lock; | 
 | 			} | 
 | 			spin_unlock(&ctl->tree_lock); | 
 |  | 
 | 			ret = __btrfs_add_free_space(block_group, | 
 | 						     offset + bytes, | 
 | 						     old_end - (offset + bytes), | 
 | 						     info->trim_state); | 
 | 			WARN_ON(ret); | 
 | 			goto out; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	ret = remove_from_bitmap(ctl, info, &offset, &bytes); | 
 | 	if (ret == -EAGAIN) { | 
 | 		re_search = true; | 
 | 		goto again; | 
 | 	} | 
 | out_lock: | 
 | 	btrfs_discard_update_discardable(block_group); | 
 | 	spin_unlock(&ctl->tree_lock); | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | void btrfs_dump_free_space(struct btrfs_block_group *block_group, | 
 | 			   u64 bytes) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = block_group->fs_info; | 
 | 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; | 
 | 	struct btrfs_free_space *info; | 
 | 	struct rb_node *n; | 
 | 	int count = 0; | 
 |  | 
 | 	/* | 
 | 	 * Zoned btrfs does not use free space tree and cluster. Just print | 
 | 	 * out the free space after the allocation offset. | 
 | 	 */ | 
 | 	if (btrfs_is_zoned(fs_info)) { | 
 | 		btrfs_info(fs_info, "free space %llu active %d", | 
 | 			   block_group->zone_capacity - block_group->alloc_offset, | 
 | 			   test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, | 
 | 				    &block_group->runtime_flags)); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	spin_lock(&ctl->tree_lock); | 
 | 	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) { | 
 | 		info = rb_entry(n, struct btrfs_free_space, offset_index); | 
 | 		if (info->bytes >= bytes && !block_group->ro) | 
 | 			count++; | 
 | 		btrfs_crit(fs_info, "entry offset %llu, bytes %llu, bitmap %s", | 
 | 			   info->offset, info->bytes, str_yes_no(info->bitmap)); | 
 | 	} | 
 | 	spin_unlock(&ctl->tree_lock); | 
 | 	btrfs_info(fs_info, "block group has cluster?: %s", | 
 | 	       str_no_yes(list_empty(&block_group->cluster_list))); | 
 | 	btrfs_info(fs_info, | 
 | 		   "%d free space entries at or bigger than %llu bytes", | 
 | 		   count, bytes); | 
 | } | 
 |  | 
 | void btrfs_init_free_space_ctl(struct btrfs_block_group *block_group, | 
 | 			       struct btrfs_free_space_ctl *ctl) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = block_group->fs_info; | 
 |  | 
 | 	spin_lock_init(&ctl->tree_lock); | 
 | 	ctl->unit = fs_info->sectorsize; | 
 | 	ctl->start = block_group->start; | 
 | 	ctl->block_group = block_group; | 
 | 	ctl->op = &free_space_op; | 
 | 	ctl->free_space_bytes = RB_ROOT_CACHED; | 
 | 	INIT_LIST_HEAD(&ctl->trimming_ranges); | 
 | 	mutex_init(&ctl->cache_writeout_mutex); | 
 |  | 
 | 	/* | 
 | 	 * we only want to have 32k of ram per block group for keeping | 
 | 	 * track of free space, and if we pass 1/2 of that we want to | 
 | 	 * start converting things over to using bitmaps | 
 | 	 */ | 
 | 	ctl->extents_thresh = (SZ_32K / 2) / sizeof(struct btrfs_free_space); | 
 | } | 
 |  | 
 | /* | 
 |  * for a given cluster, put all of its extents back into the free | 
 |  * space cache.  If the block group passed doesn't match the block group | 
 |  * pointed to by the cluster, someone else raced in and freed the | 
 |  * cluster already.  In that case, we just return without changing anything | 
 |  */ | 
 | static void __btrfs_return_cluster_to_free_space( | 
 | 			     struct btrfs_block_group *block_group, | 
 | 			     struct btrfs_free_cluster *cluster) | 
 | { | 
 | 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; | 
 | 	struct rb_node *node; | 
 |  | 
 | 	lockdep_assert_held(&ctl->tree_lock); | 
 |  | 
 | 	spin_lock(&cluster->lock); | 
 | 	if (cluster->block_group != block_group) { | 
 | 		spin_unlock(&cluster->lock); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	cluster->block_group = NULL; | 
 | 	cluster->window_start = 0; | 
 | 	list_del_init(&cluster->block_group_list); | 
 |  | 
 | 	node = rb_first(&cluster->root); | 
 | 	while (node) { | 
 | 		struct btrfs_free_space *entry; | 
 |  | 
 | 		entry = rb_entry(node, struct btrfs_free_space, offset_index); | 
 | 		node = rb_next(&entry->offset_index); | 
 | 		rb_erase(&entry->offset_index, &cluster->root); | 
 | 		RB_CLEAR_NODE(&entry->offset_index); | 
 |  | 
 | 		if (!entry->bitmap) { | 
 | 			/* Merging treats extents as if they were new */ | 
 | 			if (!btrfs_free_space_trimmed(entry)) { | 
 | 				ctl->discardable_extents[BTRFS_STAT_CURR]--; | 
 | 				ctl->discardable_bytes[BTRFS_STAT_CURR] -= | 
 | 					entry->bytes; | 
 | 			} | 
 |  | 
 | 			try_merge_free_space(ctl, entry, false); | 
 | 			steal_from_bitmap(ctl, entry, false); | 
 |  | 
 | 			/* As we insert directly, update these statistics */ | 
 | 			if (!btrfs_free_space_trimmed(entry)) { | 
 | 				ctl->discardable_extents[BTRFS_STAT_CURR]++; | 
 | 				ctl->discardable_bytes[BTRFS_STAT_CURR] += | 
 | 					entry->bytes; | 
 | 			} | 
 | 		} | 
 | 		tree_insert_offset(ctl, NULL, entry); | 
 | 		rb_add_cached(&entry->bytes_index, &ctl->free_space_bytes, | 
 | 			      entry_less); | 
 | 	} | 
 | 	cluster->root = RB_ROOT; | 
 | 	spin_unlock(&cluster->lock); | 
 | 	btrfs_put_block_group(block_group); | 
 | } | 
 |  | 
 | void btrfs_remove_free_space_cache(struct btrfs_block_group *block_group) | 
 | { | 
 | 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; | 
 | 	struct btrfs_free_cluster *cluster; | 
 | 	struct list_head *head; | 
 |  | 
 | 	spin_lock(&ctl->tree_lock); | 
 | 	while ((head = block_group->cluster_list.next) != | 
 | 	       &block_group->cluster_list) { | 
 | 		cluster = list_entry(head, struct btrfs_free_cluster, | 
 | 				     block_group_list); | 
 |  | 
 | 		WARN_ON(cluster->block_group != block_group); | 
 | 		__btrfs_return_cluster_to_free_space(block_group, cluster); | 
 |  | 
 | 		cond_resched_lock(&ctl->tree_lock); | 
 | 	} | 
 | 	__btrfs_remove_free_space_cache(ctl); | 
 | 	btrfs_discard_update_discardable(block_group); | 
 | 	spin_unlock(&ctl->tree_lock); | 
 |  | 
 | } | 
 |  | 
 | /* | 
 |  * Walk @block_group's free space rb_tree to determine if everything is trimmed. | 
 |  */ | 
 | bool btrfs_is_free_space_trimmed(struct btrfs_block_group *block_group) | 
 | { | 
 | 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; | 
 | 	struct btrfs_free_space *info; | 
 | 	struct rb_node *node; | 
 | 	bool ret = true; | 
 |  | 
 | 	spin_lock(&ctl->tree_lock); | 
 | 	node = rb_first(&ctl->free_space_offset); | 
 |  | 
 | 	while (node) { | 
 | 		info = rb_entry(node, struct btrfs_free_space, offset_index); | 
 |  | 
 | 		if (!btrfs_free_space_trimmed(info)) { | 
 | 			ret = false; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		node = rb_next(node); | 
 | 	} | 
 |  | 
 | 	spin_unlock(&ctl->tree_lock); | 
 | 	return ret; | 
 | } | 
 |  | 
 | u64 btrfs_find_space_for_alloc(struct btrfs_block_group *block_group, | 
 | 			       u64 offset, u64 bytes, u64 empty_size, | 
 | 			       u64 *max_extent_size) | 
 | { | 
 | 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; | 
 | 	struct btrfs_discard_ctl *discard_ctl = | 
 | 					&block_group->fs_info->discard_ctl; | 
 | 	struct btrfs_free_space *entry = NULL; | 
 | 	u64 bytes_search = bytes + empty_size; | 
 | 	u64 ret = 0; | 
 | 	u64 align_gap = 0; | 
 | 	u64 align_gap_len = 0; | 
 | 	enum btrfs_trim_state align_gap_trim_state = BTRFS_TRIM_STATE_UNTRIMMED; | 
 | 	bool use_bytes_index = (offset == block_group->start); | 
 |  | 
 | 	ASSERT(!btrfs_is_zoned(block_group->fs_info)); | 
 |  | 
 | 	spin_lock(&ctl->tree_lock); | 
 | 	entry = find_free_space(ctl, &offset, &bytes_search, | 
 | 				block_group->full_stripe_len, max_extent_size, | 
 | 				use_bytes_index); | 
 | 	if (!entry) | 
 | 		goto out; | 
 |  | 
 | 	ret = offset; | 
 | 	if (entry->bitmap) { | 
 | 		bitmap_clear_bits(ctl, entry, offset, bytes, true); | 
 |  | 
 | 		if (!btrfs_free_space_trimmed(entry)) | 
 | 			atomic64_add(bytes, &discard_ctl->discard_bytes_saved); | 
 |  | 
 | 		if (!entry->bytes) | 
 | 			free_bitmap(ctl, entry); | 
 | 	} else { | 
 | 		unlink_free_space(ctl, entry, true); | 
 | 		align_gap_len = offset - entry->offset; | 
 | 		align_gap = entry->offset; | 
 | 		align_gap_trim_state = entry->trim_state; | 
 |  | 
 | 		if (!btrfs_free_space_trimmed(entry)) | 
 | 			atomic64_add(bytes, &discard_ctl->discard_bytes_saved); | 
 |  | 
 | 		entry->offset = offset + bytes; | 
 | 		WARN_ON(entry->bytes < bytes + align_gap_len); | 
 |  | 
 | 		entry->bytes -= bytes + align_gap_len; | 
 | 		if (!entry->bytes) | 
 | 			kmem_cache_free(btrfs_free_space_cachep, entry); | 
 | 		else | 
 | 			link_free_space(ctl, entry); | 
 | 	} | 
 | out: | 
 | 	btrfs_discard_update_discardable(block_group); | 
 | 	spin_unlock(&ctl->tree_lock); | 
 |  | 
 | 	if (align_gap_len) | 
 | 		__btrfs_add_free_space(block_group, align_gap, align_gap_len, | 
 | 				       align_gap_trim_state); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * given a cluster, put all of its extents back into the free space | 
 |  * cache.  If a block group is passed, this function will only free | 
 |  * a cluster that belongs to the passed block group. | 
 |  * | 
 |  * Otherwise, it'll get a reference on the block group pointed to by the | 
 |  * cluster and remove the cluster from it. | 
 |  */ | 
 | void btrfs_return_cluster_to_free_space( | 
 | 			       struct btrfs_block_group *block_group, | 
 | 			       struct btrfs_free_cluster *cluster) | 
 | { | 
 | 	struct btrfs_free_space_ctl *ctl; | 
 |  | 
 | 	/* first, get a safe pointer to the block group */ | 
 | 	spin_lock(&cluster->lock); | 
 | 	if (!block_group) { | 
 | 		block_group = cluster->block_group; | 
 | 		if (!block_group) { | 
 | 			spin_unlock(&cluster->lock); | 
 | 			return; | 
 | 		} | 
 | 	} else if (cluster->block_group != block_group) { | 
 | 		/* someone else has already freed it don't redo their work */ | 
 | 		spin_unlock(&cluster->lock); | 
 | 		return; | 
 | 	} | 
 | 	btrfs_get_block_group(block_group); | 
 | 	spin_unlock(&cluster->lock); | 
 |  | 
 | 	ctl = block_group->free_space_ctl; | 
 |  | 
 | 	/* now return any extents the cluster had on it */ | 
 | 	spin_lock(&ctl->tree_lock); | 
 | 	__btrfs_return_cluster_to_free_space(block_group, cluster); | 
 | 	spin_unlock(&ctl->tree_lock); | 
 |  | 
 | 	btrfs_discard_queue_work(&block_group->fs_info->discard_ctl, block_group); | 
 |  | 
 | 	/* finally drop our ref */ | 
 | 	btrfs_put_block_group(block_group); | 
 | } | 
 |  | 
 | static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group *block_group, | 
 | 				   struct btrfs_free_cluster *cluster, | 
 | 				   struct btrfs_free_space *entry, | 
 | 				   u64 bytes, u64 min_start, | 
 | 				   u64 *max_extent_size) | 
 | { | 
 | 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; | 
 | 	int ret2; | 
 | 	u64 search_start = cluster->window_start; | 
 | 	u64 search_bytes = bytes; | 
 | 	u64 ret = 0; | 
 |  | 
 | 	search_start = min_start; | 
 | 	search_bytes = bytes; | 
 |  | 
 | 	ret2 = search_bitmap(ctl, entry, &search_start, &search_bytes, true); | 
 | 	if (ret2) { | 
 | 		*max_extent_size = max(get_max_extent_size(entry), | 
 | 				       *max_extent_size); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	ret = search_start; | 
 | 	bitmap_clear_bits(ctl, entry, ret, bytes, false); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * given a cluster, try to allocate 'bytes' from it, returns 0 | 
 |  * if it couldn't find anything suitably large, or a logical disk offset | 
 |  * if things worked out | 
 |  */ | 
 | u64 btrfs_alloc_from_cluster(struct btrfs_block_group *block_group, | 
 | 			     struct btrfs_free_cluster *cluster, u64 bytes, | 
 | 			     u64 min_start, u64 *max_extent_size) | 
 | { | 
 | 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; | 
 | 	struct btrfs_discard_ctl *discard_ctl = | 
 | 					&block_group->fs_info->discard_ctl; | 
 | 	struct btrfs_free_space *entry = NULL; | 
 | 	struct rb_node *node; | 
 | 	u64 ret = 0; | 
 |  | 
 | 	ASSERT(!btrfs_is_zoned(block_group->fs_info)); | 
 |  | 
 | 	spin_lock(&cluster->lock); | 
 | 	if (bytes > cluster->max_size) | 
 | 		goto out; | 
 |  | 
 | 	if (cluster->block_group != block_group) | 
 | 		goto out; | 
 |  | 
 | 	node = rb_first(&cluster->root); | 
 | 	if (!node) | 
 | 		goto out; | 
 |  | 
 | 	entry = rb_entry(node, struct btrfs_free_space, offset_index); | 
 | 	while (1) { | 
 | 		if (entry->bytes < bytes) | 
 | 			*max_extent_size = max(get_max_extent_size(entry), | 
 | 					       *max_extent_size); | 
 |  | 
 | 		if (entry->bytes < bytes || | 
 | 		    (!entry->bitmap && entry->offset < min_start)) { | 
 | 			node = rb_next(&entry->offset_index); | 
 | 			if (!node) | 
 | 				break; | 
 | 			entry = rb_entry(node, struct btrfs_free_space, | 
 | 					 offset_index); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		if (entry->bitmap) { | 
 | 			ret = btrfs_alloc_from_bitmap(block_group, | 
 | 						      cluster, entry, bytes, | 
 | 						      cluster->window_start, | 
 | 						      max_extent_size); | 
 | 			if (ret == 0) { | 
 | 				node = rb_next(&entry->offset_index); | 
 | 				if (!node) | 
 | 					break; | 
 | 				entry = rb_entry(node, struct btrfs_free_space, | 
 | 						 offset_index); | 
 | 				continue; | 
 | 			} | 
 | 			cluster->window_start += bytes; | 
 | 		} else { | 
 | 			ret = entry->offset; | 
 |  | 
 | 			entry->offset += bytes; | 
 | 			entry->bytes -= bytes; | 
 | 		} | 
 |  | 
 | 		break; | 
 | 	} | 
 | out: | 
 | 	spin_unlock(&cluster->lock); | 
 |  | 
 | 	if (!ret) | 
 | 		return 0; | 
 |  | 
 | 	spin_lock(&ctl->tree_lock); | 
 |  | 
 | 	if (!btrfs_free_space_trimmed(entry)) | 
 | 		atomic64_add(bytes, &discard_ctl->discard_bytes_saved); | 
 |  | 
 | 	ctl->free_space -= bytes; | 
 | 	if (!entry->bitmap && !btrfs_free_space_trimmed(entry)) | 
 | 		ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes; | 
 |  | 
 | 	spin_lock(&cluster->lock); | 
 | 	if (entry->bytes == 0) { | 
 | 		rb_erase(&entry->offset_index, &cluster->root); | 
 | 		ctl->free_extents--; | 
 | 		if (entry->bitmap) { | 
 | 			kmem_cache_free(btrfs_free_space_bitmap_cachep, | 
 | 					entry->bitmap); | 
 | 			ctl->total_bitmaps--; | 
 | 			recalculate_thresholds(ctl); | 
 | 		} else if (!btrfs_free_space_trimmed(entry)) { | 
 | 			ctl->discardable_extents[BTRFS_STAT_CURR]--; | 
 | 		} | 
 | 		kmem_cache_free(btrfs_free_space_cachep, entry); | 
 | 	} | 
 |  | 
 | 	spin_unlock(&cluster->lock); | 
 | 	spin_unlock(&ctl->tree_lock); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int btrfs_bitmap_cluster(struct btrfs_block_group *block_group, | 
 | 				struct btrfs_free_space *entry, | 
 | 				struct btrfs_free_cluster *cluster, | 
 | 				u64 offset, u64 bytes, | 
 | 				u64 cont1_bytes, u64 min_bytes) | 
 | { | 
 | 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; | 
 | 	unsigned long next_zero; | 
 | 	unsigned long i; | 
 | 	unsigned long want_bits; | 
 | 	unsigned long min_bits; | 
 | 	unsigned long found_bits; | 
 | 	unsigned long max_bits = 0; | 
 | 	unsigned long start = 0; | 
 | 	unsigned long total_found = 0; | 
 | 	int ret; | 
 |  | 
 | 	lockdep_assert_held(&ctl->tree_lock); | 
 |  | 
 | 	i = offset_to_bit(entry->offset, ctl->unit, | 
 | 			  max_t(u64, offset, entry->offset)); | 
 | 	want_bits = bytes_to_bits(bytes, ctl->unit); | 
 | 	min_bits = bytes_to_bits(min_bytes, ctl->unit); | 
 |  | 
 | 	/* | 
 | 	 * Don't bother looking for a cluster in this bitmap if it's heavily | 
 | 	 * fragmented. | 
 | 	 */ | 
 | 	if (entry->max_extent_size && | 
 | 	    entry->max_extent_size < cont1_bytes) | 
 | 		return -ENOSPC; | 
 | again: | 
 | 	found_bits = 0; | 
 | 	for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) { | 
 | 		next_zero = find_next_zero_bit(entry->bitmap, | 
 | 					       BITS_PER_BITMAP, i); | 
 | 		if (next_zero - i >= min_bits) { | 
 | 			found_bits = next_zero - i; | 
 | 			if (found_bits > max_bits) | 
 | 				max_bits = found_bits; | 
 | 			break; | 
 | 		} | 
 | 		if (next_zero - i > max_bits) | 
 | 			max_bits = next_zero - i; | 
 | 		i = next_zero; | 
 | 	} | 
 |  | 
 | 	if (!found_bits) { | 
 | 		entry->max_extent_size = (u64)max_bits * ctl->unit; | 
 | 		return -ENOSPC; | 
 | 	} | 
 |  | 
 | 	if (!total_found) { | 
 | 		start = i; | 
 | 		cluster->max_size = 0; | 
 | 	} | 
 |  | 
 | 	total_found += found_bits; | 
 |  | 
 | 	if (cluster->max_size < found_bits * ctl->unit) | 
 | 		cluster->max_size = found_bits * ctl->unit; | 
 |  | 
 | 	if (total_found < want_bits || cluster->max_size < cont1_bytes) { | 
 | 		i = next_zero + 1; | 
 | 		goto again; | 
 | 	} | 
 |  | 
 | 	cluster->window_start = start * ctl->unit + entry->offset; | 
 | 	rb_erase(&entry->offset_index, &ctl->free_space_offset); | 
 | 	rb_erase_cached(&entry->bytes_index, &ctl->free_space_bytes); | 
 |  | 
 | 	/* | 
 | 	 * We need to know if we're currently on the normal space index when we | 
 | 	 * manipulate the bitmap so that we know we need to remove and re-insert | 
 | 	 * it into the space_index tree.  Clear the bytes_index node here so the | 
 | 	 * bitmap manipulation helpers know not to mess with the space_index | 
 | 	 * until this bitmap entry is added back into the normal cache. | 
 | 	 */ | 
 | 	RB_CLEAR_NODE(&entry->bytes_index); | 
 |  | 
 | 	ret = tree_insert_offset(ctl, cluster, entry); | 
 | 	ASSERT(!ret); /* -EEXIST; Logic error */ | 
 |  | 
 | 	trace_btrfs_setup_cluster(block_group, cluster, | 
 | 				  total_found * ctl->unit, 1); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * This searches the block group for just extents to fill the cluster with. | 
 |  * Try to find a cluster with at least bytes total bytes, at least one | 
 |  * extent of cont1_bytes, and other clusters of at least min_bytes. | 
 |  */ | 
 | static noinline int | 
 | setup_cluster_no_bitmap(struct btrfs_block_group *block_group, | 
 | 			struct btrfs_free_cluster *cluster, | 
 | 			struct list_head *bitmaps, u64 offset, u64 bytes, | 
 | 			u64 cont1_bytes, u64 min_bytes) | 
 | { | 
 | 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; | 
 | 	struct btrfs_free_space *first = NULL; | 
 | 	struct btrfs_free_space *entry = NULL; | 
 | 	struct btrfs_free_space *last; | 
 | 	struct rb_node *node; | 
 | 	u64 window_free; | 
 | 	u64 max_extent; | 
 | 	u64 total_size = 0; | 
 |  | 
 | 	lockdep_assert_held(&ctl->tree_lock); | 
 |  | 
 | 	entry = tree_search_offset(ctl, offset, 0, 1); | 
 | 	if (!entry) | 
 | 		return -ENOSPC; | 
 |  | 
 | 	/* | 
 | 	 * We don't want bitmaps, so just move along until we find a normal | 
 | 	 * extent entry. | 
 | 	 */ | 
 | 	while (entry->bitmap || entry->bytes < min_bytes) { | 
 | 		if (entry->bitmap && list_empty(&entry->list)) | 
 | 			list_add_tail(&entry->list, bitmaps); | 
 | 		node = rb_next(&entry->offset_index); | 
 | 		if (!node) | 
 | 			return -ENOSPC; | 
 | 		entry = rb_entry(node, struct btrfs_free_space, offset_index); | 
 | 	} | 
 |  | 
 | 	window_free = entry->bytes; | 
 | 	max_extent = entry->bytes; | 
 | 	first = entry; | 
 | 	last = entry; | 
 |  | 
 | 	for (node = rb_next(&entry->offset_index); node; | 
 | 	     node = rb_next(&entry->offset_index)) { | 
 | 		entry = rb_entry(node, struct btrfs_free_space, offset_index); | 
 |  | 
 | 		if (entry->bitmap) { | 
 | 			if (list_empty(&entry->list)) | 
 | 				list_add_tail(&entry->list, bitmaps); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		if (entry->bytes < min_bytes) | 
 | 			continue; | 
 |  | 
 | 		last = entry; | 
 | 		window_free += entry->bytes; | 
 | 		if (entry->bytes > max_extent) | 
 | 			max_extent = entry->bytes; | 
 | 	} | 
 |  | 
 | 	if (window_free < bytes || max_extent < cont1_bytes) | 
 | 		return -ENOSPC; | 
 |  | 
 | 	cluster->window_start = first->offset; | 
 |  | 
 | 	node = &first->offset_index; | 
 |  | 
 | 	/* | 
 | 	 * now we've found our entries, pull them out of the free space | 
 | 	 * cache and put them into the cluster rbtree | 
 | 	 */ | 
 | 	do { | 
 | 		int ret; | 
 |  | 
 | 		entry = rb_entry(node, struct btrfs_free_space, offset_index); | 
 | 		node = rb_next(&entry->offset_index); | 
 | 		if (entry->bitmap || entry->bytes < min_bytes) | 
 | 			continue; | 
 |  | 
 | 		rb_erase(&entry->offset_index, &ctl->free_space_offset); | 
 | 		rb_erase_cached(&entry->bytes_index, &ctl->free_space_bytes); | 
 | 		ret = tree_insert_offset(ctl, cluster, entry); | 
 | 		total_size += entry->bytes; | 
 | 		ASSERT(!ret); /* -EEXIST; Logic error */ | 
 | 	} while (node && entry != last); | 
 |  | 
 | 	cluster->max_size = max_extent; | 
 | 	trace_btrfs_setup_cluster(block_group, cluster, total_size, 0); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * This specifically looks for bitmaps that may work in the cluster, we assume | 
 |  * that we have already failed to find extents that will work. | 
 |  */ | 
 | static noinline int | 
 | setup_cluster_bitmap(struct btrfs_block_group *block_group, | 
 | 		     struct btrfs_free_cluster *cluster, | 
 | 		     struct list_head *bitmaps, u64 offset, u64 bytes, | 
 | 		     u64 cont1_bytes, u64 min_bytes) | 
 | { | 
 | 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; | 
 | 	struct btrfs_free_space *entry = NULL; | 
 | 	int ret = -ENOSPC; | 
 | 	u64 bitmap_offset = offset_to_bitmap(ctl, offset); | 
 |  | 
 | 	if (ctl->total_bitmaps == 0) | 
 | 		return -ENOSPC; | 
 |  | 
 | 	/* | 
 | 	 * The bitmap that covers offset won't be in the list unless offset | 
 | 	 * is just its start offset. | 
 | 	 */ | 
 | 	if (!list_empty(bitmaps)) | 
 | 		entry = list_first_entry(bitmaps, struct btrfs_free_space, list); | 
 |  | 
 | 	if (!entry || entry->offset != bitmap_offset) { | 
 | 		entry = tree_search_offset(ctl, bitmap_offset, 1, 0); | 
 | 		if (entry && list_empty(&entry->list)) | 
 | 			list_add(&entry->list, bitmaps); | 
 | 	} | 
 |  | 
 | 	list_for_each_entry(entry, bitmaps, list) { | 
 | 		if (entry->bytes < bytes) | 
 | 			continue; | 
 | 		ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset, | 
 | 					   bytes, cont1_bytes, min_bytes); | 
 | 		if (!ret) | 
 | 			return 0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * The bitmaps list has all the bitmaps that record free space | 
 | 	 * starting after offset, so no more search is required. | 
 | 	 */ | 
 | 	return -ENOSPC; | 
 | } | 
 |  | 
 | /* | 
 |  * here we try to find a cluster of blocks in a block group.  The goal | 
 |  * is to find at least bytes+empty_size. | 
 |  * We might not find them all in one contiguous area. | 
 |  * | 
 |  * returns zero and sets up cluster if things worked out, otherwise | 
 |  * it returns -enospc | 
 |  */ | 
 | int btrfs_find_space_cluster(struct btrfs_block_group *block_group, | 
 | 			     struct btrfs_free_cluster *cluster, | 
 | 			     u64 offset, u64 bytes, u64 empty_size) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = block_group->fs_info; | 
 | 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; | 
 | 	struct btrfs_free_space *entry, *tmp; | 
 | 	LIST_HEAD(bitmaps); | 
 | 	u64 min_bytes; | 
 | 	u64 cont1_bytes; | 
 | 	int ret; | 
 |  | 
 | 	/* | 
 | 	 * Choose the minimum extent size we'll require for this | 
 | 	 * cluster.  For SSD_SPREAD, don't allow any fragmentation. | 
 | 	 * For metadata, allow allocates with smaller extents.  For | 
 | 	 * data, keep it dense. | 
 | 	 */ | 
 | 	if (btrfs_test_opt(fs_info, SSD_SPREAD)) { | 
 | 		cont1_bytes = bytes + empty_size; | 
 | 		min_bytes = cont1_bytes; | 
 | 	} else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) { | 
 | 		cont1_bytes = bytes; | 
 | 		min_bytes = fs_info->sectorsize; | 
 | 	} else { | 
 | 		cont1_bytes = max(bytes, (bytes + empty_size) >> 2); | 
 | 		min_bytes = fs_info->sectorsize; | 
 | 	} | 
 |  | 
 | 	spin_lock(&ctl->tree_lock); | 
 |  | 
 | 	/* | 
 | 	 * If we know we don't have enough space to make a cluster don't even | 
 | 	 * bother doing all the work to try and find one. | 
 | 	 */ | 
 | 	if (ctl->free_space < bytes) { | 
 | 		spin_unlock(&ctl->tree_lock); | 
 | 		return -ENOSPC; | 
 | 	} | 
 |  | 
 | 	spin_lock(&cluster->lock); | 
 |  | 
 | 	/* someone already found a cluster, hooray */ | 
 | 	if (cluster->block_group) { | 
 | 		ret = 0; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	trace_btrfs_find_cluster(block_group, offset, bytes, empty_size, | 
 | 				 min_bytes); | 
 |  | 
 | 	ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset, | 
 | 				      bytes + empty_size, | 
 | 				      cont1_bytes, min_bytes); | 
 | 	if (ret) | 
 | 		ret = setup_cluster_bitmap(block_group, cluster, &bitmaps, | 
 | 					   offset, bytes + empty_size, | 
 | 					   cont1_bytes, min_bytes); | 
 |  | 
 | 	/* Clear our temporary list */ | 
 | 	list_for_each_entry_safe(entry, tmp, &bitmaps, list) | 
 | 		list_del_init(&entry->list); | 
 |  | 
 | 	if (!ret) { | 
 | 		btrfs_get_block_group(block_group); | 
 | 		list_add_tail(&cluster->block_group_list, | 
 | 			      &block_group->cluster_list); | 
 | 		cluster->block_group = block_group; | 
 | 	} else { | 
 | 		trace_btrfs_failed_cluster_setup(block_group); | 
 | 	} | 
 | out: | 
 | 	spin_unlock(&cluster->lock); | 
 | 	spin_unlock(&ctl->tree_lock); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * simple code to zero out a cluster | 
 |  */ | 
 | void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster) | 
 | { | 
 | 	spin_lock_init(&cluster->lock); | 
 | 	spin_lock_init(&cluster->refill_lock); | 
 | 	cluster->root = RB_ROOT; | 
 | 	cluster->max_size = 0; | 
 | 	cluster->fragmented = false; | 
 | 	INIT_LIST_HEAD(&cluster->block_group_list); | 
 | 	cluster->block_group = NULL; | 
 | } | 
 |  | 
 | static int do_trimming(struct btrfs_block_group *block_group, | 
 | 		       u64 *total_trimmed, u64 start, u64 bytes, | 
 | 		       u64 reserved_start, u64 reserved_bytes, | 
 | 		       enum btrfs_trim_state reserved_trim_state, | 
 | 		       struct btrfs_trim_range *trim_entry) | 
 | { | 
 | 	struct btrfs_space_info *space_info = block_group->space_info; | 
 | 	struct btrfs_fs_info *fs_info = block_group->fs_info; | 
 | 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; | 
 | 	int ret; | 
 | 	int update = 0; | 
 | 	const u64 end = start + bytes; | 
 | 	const u64 reserved_end = reserved_start + reserved_bytes; | 
 | 	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED; | 
 | 	u64 trimmed = 0; | 
 |  | 
 | 	spin_lock(&space_info->lock); | 
 | 	spin_lock(&block_group->lock); | 
 | 	if (!block_group->ro) { | 
 | 		block_group->reserved += reserved_bytes; | 
 | 		space_info->bytes_reserved += reserved_bytes; | 
 | 		update = 1; | 
 | 	} | 
 | 	spin_unlock(&block_group->lock); | 
 | 	spin_unlock(&space_info->lock); | 
 |  | 
 | 	ret = btrfs_discard_extent(fs_info, start, bytes, &trimmed); | 
 | 	if (!ret) { | 
 | 		*total_trimmed += trimmed; | 
 | 		trim_state = BTRFS_TRIM_STATE_TRIMMED; | 
 | 	} | 
 |  | 
 | 	mutex_lock(&ctl->cache_writeout_mutex); | 
 | 	if (reserved_start < start) | 
 | 		__btrfs_add_free_space(block_group, reserved_start, | 
 | 				       start - reserved_start, | 
 | 				       reserved_trim_state); | 
 | 	if (end < reserved_end) | 
 | 		__btrfs_add_free_space(block_group, end, reserved_end - end, | 
 | 				       reserved_trim_state); | 
 | 	__btrfs_add_free_space(block_group, start, bytes, trim_state); | 
 | 	list_del(&trim_entry->list); | 
 | 	mutex_unlock(&ctl->cache_writeout_mutex); | 
 |  | 
 | 	if (update) { | 
 | 		spin_lock(&space_info->lock); | 
 | 		spin_lock(&block_group->lock); | 
 | 		if (block_group->ro) | 
 | 			space_info->bytes_readonly += reserved_bytes; | 
 | 		block_group->reserved -= reserved_bytes; | 
 | 		space_info->bytes_reserved -= reserved_bytes; | 
 | 		spin_unlock(&block_group->lock); | 
 | 		spin_unlock(&space_info->lock); | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * If @async is set, then we will trim 1 region and return. | 
 |  */ | 
 | static int trim_no_bitmap(struct btrfs_block_group *block_group, | 
 | 			  u64 *total_trimmed, u64 start, u64 end, u64 minlen, | 
 | 			  bool async) | 
 | { | 
 | 	struct btrfs_discard_ctl *discard_ctl = | 
 | 					&block_group->fs_info->discard_ctl; | 
 | 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; | 
 | 	struct btrfs_free_space *entry; | 
 | 	struct rb_node *node; | 
 | 	int ret = 0; | 
 | 	u64 extent_start; | 
 | 	u64 extent_bytes; | 
 | 	enum btrfs_trim_state extent_trim_state; | 
 | 	u64 bytes; | 
 | 	const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size); | 
 |  | 
 | 	while (start < end) { | 
 | 		struct btrfs_trim_range trim_entry; | 
 |  | 
 | 		mutex_lock(&ctl->cache_writeout_mutex); | 
 | 		spin_lock(&ctl->tree_lock); | 
 |  | 
 | 		if (ctl->free_space < minlen) | 
 | 			goto out_unlock; | 
 |  | 
 | 		entry = tree_search_offset(ctl, start, 0, 1); | 
 | 		if (!entry) | 
 | 			goto out_unlock; | 
 |  | 
 | 		/* Skip bitmaps and if async, already trimmed entries */ | 
 | 		while (entry->bitmap || | 
 | 		       (async && btrfs_free_space_trimmed(entry))) { | 
 | 			node = rb_next(&entry->offset_index); | 
 | 			if (!node) | 
 | 				goto out_unlock; | 
 | 			entry = rb_entry(node, struct btrfs_free_space, | 
 | 					 offset_index); | 
 | 		} | 
 |  | 
 | 		if (entry->offset >= end) | 
 | 			goto out_unlock; | 
 |  | 
 | 		extent_start = entry->offset; | 
 | 		extent_bytes = entry->bytes; | 
 | 		extent_trim_state = entry->trim_state; | 
 | 		if (async) { | 
 | 			start = entry->offset; | 
 | 			bytes = entry->bytes; | 
 | 			if (bytes < minlen) { | 
 | 				spin_unlock(&ctl->tree_lock); | 
 | 				mutex_unlock(&ctl->cache_writeout_mutex); | 
 | 				goto next; | 
 | 			} | 
 | 			unlink_free_space(ctl, entry, true); | 
 | 			/* | 
 | 			 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X. | 
 | 			 * If X < BTRFS_ASYNC_DISCARD_MIN_FILTER, we won't trim | 
 | 			 * X when we come back around.  So trim it now. | 
 | 			 */ | 
 | 			if (max_discard_size && | 
 | 			    bytes >= (max_discard_size + | 
 | 				      BTRFS_ASYNC_DISCARD_MIN_FILTER)) { | 
 | 				bytes = max_discard_size; | 
 | 				extent_bytes = max_discard_size; | 
 | 				entry->offset += max_discard_size; | 
 | 				entry->bytes -= max_discard_size; | 
 | 				link_free_space(ctl, entry); | 
 | 			} else { | 
 | 				kmem_cache_free(btrfs_free_space_cachep, entry); | 
 | 			} | 
 | 		} else { | 
 | 			start = max(start, extent_start); | 
 | 			bytes = min(extent_start + extent_bytes, end) - start; | 
 | 			if (bytes < minlen) { | 
 | 				spin_unlock(&ctl->tree_lock); | 
 | 				mutex_unlock(&ctl->cache_writeout_mutex); | 
 | 				goto next; | 
 | 			} | 
 |  | 
 | 			unlink_free_space(ctl, entry, true); | 
 | 			kmem_cache_free(btrfs_free_space_cachep, entry); | 
 | 		} | 
 |  | 
 | 		spin_unlock(&ctl->tree_lock); | 
 | 		trim_entry.start = extent_start; | 
 | 		trim_entry.bytes = extent_bytes; | 
 | 		list_add_tail(&trim_entry.list, &ctl->trimming_ranges); | 
 | 		mutex_unlock(&ctl->cache_writeout_mutex); | 
 |  | 
 | 		ret = do_trimming(block_group, total_trimmed, start, bytes, | 
 | 				  extent_start, extent_bytes, extent_trim_state, | 
 | 				  &trim_entry); | 
 | 		if (ret) { | 
 | 			block_group->discard_cursor = start + bytes; | 
 | 			break; | 
 | 		} | 
 | next: | 
 | 		start += bytes; | 
 | 		block_group->discard_cursor = start; | 
 | 		if (async && *total_trimmed) | 
 | 			break; | 
 |  | 
 | 		if (btrfs_trim_interrupted()) { | 
 | 			ret = -ERESTARTSYS; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		cond_resched(); | 
 | 	} | 
 |  | 
 | 	return ret; | 
 |  | 
 | out_unlock: | 
 | 	block_group->discard_cursor = btrfs_block_group_end(block_group); | 
 | 	spin_unlock(&ctl->tree_lock); | 
 | 	mutex_unlock(&ctl->cache_writeout_mutex); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * If we break out of trimming a bitmap prematurely, we should reset the | 
 |  * trimming bit.  In a rather contrived case, it's possible to race here so | 
 |  * reset the state to BTRFS_TRIM_STATE_UNTRIMMED. | 
 |  * | 
 |  * start = start of bitmap | 
 |  * end = near end of bitmap | 
 |  * | 
 |  * Thread 1:			Thread 2: | 
 |  * trim_bitmaps(start) | 
 |  *				trim_bitmaps(end) | 
 |  *				end_trimming_bitmap() | 
 |  * reset_trimming_bitmap() | 
 |  */ | 
 | static void reset_trimming_bitmap(struct btrfs_free_space_ctl *ctl, u64 offset) | 
 | { | 
 | 	struct btrfs_free_space *entry; | 
 |  | 
 | 	spin_lock(&ctl->tree_lock); | 
 | 	entry = tree_search_offset(ctl, offset, 1, 0); | 
 | 	if (entry) { | 
 | 		if (btrfs_free_space_trimmed(entry)) { | 
 | 			ctl->discardable_extents[BTRFS_STAT_CURR] += | 
 | 				entry->bitmap_extents; | 
 | 			ctl->discardable_bytes[BTRFS_STAT_CURR] += entry->bytes; | 
 | 		} | 
 | 		entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED; | 
 | 	} | 
 |  | 
 | 	spin_unlock(&ctl->tree_lock); | 
 | } | 
 |  | 
 | static void end_trimming_bitmap(struct btrfs_free_space_ctl *ctl, | 
 | 				struct btrfs_free_space *entry) | 
 | { | 
 | 	if (btrfs_free_space_trimming_bitmap(entry)) { | 
 | 		entry->trim_state = BTRFS_TRIM_STATE_TRIMMED; | 
 | 		ctl->discardable_extents[BTRFS_STAT_CURR] -= | 
 | 			entry->bitmap_extents; | 
 | 		ctl->discardable_bytes[BTRFS_STAT_CURR] -= entry->bytes; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * If @async is set, then we will trim 1 region and return. | 
 |  */ | 
 | static int trim_bitmaps(struct btrfs_block_group *block_group, | 
 | 			u64 *total_trimmed, u64 start, u64 end, u64 minlen, | 
 | 			u64 maxlen, bool async) | 
 | { | 
 | 	struct btrfs_discard_ctl *discard_ctl = | 
 | 					&block_group->fs_info->discard_ctl; | 
 | 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; | 
 | 	struct btrfs_free_space *entry; | 
 | 	int ret = 0; | 
 | 	int ret2; | 
 | 	u64 bytes; | 
 | 	u64 offset = offset_to_bitmap(ctl, start); | 
 | 	const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size); | 
 |  | 
 | 	while (offset < end) { | 
 | 		bool next_bitmap = false; | 
 | 		struct btrfs_trim_range trim_entry; | 
 |  | 
 | 		mutex_lock(&ctl->cache_writeout_mutex); | 
 | 		spin_lock(&ctl->tree_lock); | 
 |  | 
 | 		if (ctl->free_space < minlen) { | 
 | 			block_group->discard_cursor = | 
 | 				btrfs_block_group_end(block_group); | 
 | 			spin_unlock(&ctl->tree_lock); | 
 | 			mutex_unlock(&ctl->cache_writeout_mutex); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		entry = tree_search_offset(ctl, offset, 1, 0); | 
 | 		/* | 
 | 		 * Bitmaps are marked trimmed lossily now to prevent constant | 
 | 		 * discarding of the same bitmap (the reason why we are bound | 
 | 		 * by the filters).  So, retrim the block group bitmaps when we | 
 | 		 * are preparing to punt to the unused_bgs list.  This uses | 
 | 		 * @minlen to determine if we are in BTRFS_DISCARD_INDEX_UNUSED | 
 | 		 * which is the only discard index which sets minlen to 0. | 
 | 		 */ | 
 | 		if (!entry || (async && minlen && start == offset && | 
 | 			       btrfs_free_space_trimmed(entry))) { | 
 | 			spin_unlock(&ctl->tree_lock); | 
 | 			mutex_unlock(&ctl->cache_writeout_mutex); | 
 | 			next_bitmap = true; | 
 | 			goto next; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Async discard bitmap trimming begins at by setting the start | 
 | 		 * to be key.objectid and the offset_to_bitmap() aligns to the | 
 | 		 * start of the bitmap.  This lets us know we are fully | 
 | 		 * scanning the bitmap rather than only some portion of it. | 
 | 		 */ | 
 | 		if (start == offset) | 
 | 			entry->trim_state = BTRFS_TRIM_STATE_TRIMMING; | 
 |  | 
 | 		bytes = minlen; | 
 | 		ret2 = search_bitmap(ctl, entry, &start, &bytes, false); | 
 | 		if (ret2 || start >= end) { | 
 | 			/* | 
 | 			 * We lossily consider a bitmap trimmed if we only skip | 
 | 			 * over regions <= BTRFS_ASYNC_DISCARD_MIN_FILTER. | 
 | 			 */ | 
 | 			if (ret2 && minlen <= BTRFS_ASYNC_DISCARD_MIN_FILTER) | 
 | 				end_trimming_bitmap(ctl, entry); | 
 | 			else | 
 | 				entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED; | 
 | 			spin_unlock(&ctl->tree_lock); | 
 | 			mutex_unlock(&ctl->cache_writeout_mutex); | 
 | 			next_bitmap = true; | 
 | 			goto next; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * We already trimmed a region, but are using the locking above | 
 | 		 * to reset the trim_state. | 
 | 		 */ | 
 | 		if (async && *total_trimmed) { | 
 | 			spin_unlock(&ctl->tree_lock); | 
 | 			mutex_unlock(&ctl->cache_writeout_mutex); | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		bytes = min(bytes, end - start); | 
 | 		if (bytes < minlen || (async && maxlen && bytes > maxlen)) { | 
 | 			spin_unlock(&ctl->tree_lock); | 
 | 			mutex_unlock(&ctl->cache_writeout_mutex); | 
 | 			goto next; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X. | 
 | 		 * If X < @minlen, we won't trim X when we come back around. | 
 | 		 * So trim it now.  We differ here from trimming extents as we | 
 | 		 * don't keep individual state per bit. | 
 | 		 */ | 
 | 		if (async && | 
 | 		    max_discard_size && | 
 | 		    bytes > (max_discard_size + minlen)) | 
 | 			bytes = max_discard_size; | 
 |  | 
 | 		bitmap_clear_bits(ctl, entry, start, bytes, true); | 
 | 		if (entry->bytes == 0) | 
 | 			free_bitmap(ctl, entry); | 
 |  | 
 | 		spin_unlock(&ctl->tree_lock); | 
 | 		trim_entry.start = start; | 
 | 		trim_entry.bytes = bytes; | 
 | 		list_add_tail(&trim_entry.list, &ctl->trimming_ranges); | 
 | 		mutex_unlock(&ctl->cache_writeout_mutex); | 
 |  | 
 | 		ret = do_trimming(block_group, total_trimmed, start, bytes, | 
 | 				  start, bytes, 0, &trim_entry); | 
 | 		if (ret) { | 
 | 			reset_trimming_bitmap(ctl, offset); | 
 | 			block_group->discard_cursor = | 
 | 				btrfs_block_group_end(block_group); | 
 | 			break; | 
 | 		} | 
 | next: | 
 | 		if (next_bitmap) { | 
 | 			offset += BITS_PER_BITMAP * ctl->unit; | 
 | 			start = offset; | 
 | 		} else { | 
 | 			start += bytes; | 
 | 		} | 
 | 		block_group->discard_cursor = start; | 
 |  | 
 | 		if (btrfs_trim_interrupted()) { | 
 | 			if (start != offset) | 
 | 				reset_trimming_bitmap(ctl, offset); | 
 | 			ret = -ERESTARTSYS; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		cond_resched(); | 
 | 	} | 
 |  | 
 | 	if (offset >= end) | 
 | 		block_group->discard_cursor = end; | 
 |  | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | int btrfs_trim_block_group(struct btrfs_block_group *block_group, | 
 | 			   u64 *trimmed, u64 start, u64 end, u64 minlen) | 
 | { | 
 | 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; | 
 | 	int ret; | 
 | 	u64 rem = 0; | 
 |  | 
 | 	ASSERT(!btrfs_is_zoned(block_group->fs_info)); | 
 |  | 
 | 	*trimmed = 0; | 
 |  | 
 | 	spin_lock(&block_group->lock); | 
 | 	if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)) { | 
 | 		spin_unlock(&block_group->lock); | 
 | 		return 0; | 
 | 	} | 
 | 	btrfs_freeze_block_group(block_group); | 
 | 	spin_unlock(&block_group->lock); | 
 |  | 
 | 	ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, false); | 
 | 	if (ret) | 
 | 		goto out; | 
 |  | 
 | 	ret = trim_bitmaps(block_group, trimmed, start, end, minlen, 0, false); | 
 | 	div64_u64_rem(end, BITS_PER_BITMAP * ctl->unit, &rem); | 
 | 	/* If we ended in the middle of a bitmap, reset the trimming flag */ | 
 | 	if (rem) | 
 | 		reset_trimming_bitmap(ctl, offset_to_bitmap(ctl, end)); | 
 | out: | 
 | 	btrfs_unfreeze_block_group(block_group); | 
 | 	return ret; | 
 | } | 
 |  | 
 | int btrfs_trim_block_group_extents(struct btrfs_block_group *block_group, | 
 | 				   u64 *trimmed, u64 start, u64 end, u64 minlen, | 
 | 				   bool async) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	*trimmed = 0; | 
 |  | 
 | 	spin_lock(&block_group->lock); | 
 | 	if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)) { | 
 | 		spin_unlock(&block_group->lock); | 
 | 		return 0; | 
 | 	} | 
 | 	btrfs_freeze_block_group(block_group); | 
 | 	spin_unlock(&block_group->lock); | 
 |  | 
 | 	ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, async); | 
 | 	btrfs_unfreeze_block_group(block_group); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | int btrfs_trim_block_group_bitmaps(struct btrfs_block_group *block_group, | 
 | 				   u64 *trimmed, u64 start, u64 end, u64 minlen, | 
 | 				   u64 maxlen, bool async) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	*trimmed = 0; | 
 |  | 
 | 	spin_lock(&block_group->lock); | 
 | 	if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)) { | 
 | 		spin_unlock(&block_group->lock); | 
 | 		return 0; | 
 | 	} | 
 | 	btrfs_freeze_block_group(block_group); | 
 | 	spin_unlock(&block_group->lock); | 
 |  | 
 | 	ret = trim_bitmaps(block_group, trimmed, start, end, minlen, maxlen, | 
 | 			   async); | 
 |  | 
 | 	btrfs_unfreeze_block_group(block_group); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | bool btrfs_free_space_cache_v1_active(struct btrfs_fs_info *fs_info) | 
 | { | 
 | 	return btrfs_super_cache_generation(fs_info->super_copy); | 
 | } | 
 |  | 
 | static int cleanup_free_space_cache_v1(struct btrfs_fs_info *fs_info, | 
 | 				       struct btrfs_trans_handle *trans) | 
 | { | 
 | 	struct btrfs_block_group *block_group; | 
 | 	struct rb_node *node; | 
 | 	int ret = 0; | 
 |  | 
 | 	btrfs_info(fs_info, "cleaning free space cache v1"); | 
 |  | 
 | 	node = rb_first_cached(&fs_info->block_group_cache_tree); | 
 | 	while (node) { | 
 | 		block_group = rb_entry(node, struct btrfs_block_group, cache_node); | 
 | 		ret = btrfs_remove_free_space_inode(trans, NULL, block_group); | 
 | 		if (ret) | 
 | 			goto out; | 
 | 		node = rb_next(node); | 
 | 	} | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | int btrfs_set_free_space_cache_v1_active(struct btrfs_fs_info *fs_info, bool active) | 
 | { | 
 | 	struct btrfs_trans_handle *trans; | 
 | 	int ret; | 
 |  | 
 | 	/* | 
 | 	 * update_super_roots will appropriately set or unset | 
 | 	 * super_copy->cache_generation based on SPACE_CACHE and | 
 | 	 * BTRFS_FS_CLEANUP_SPACE_CACHE_V1. For this reason, we need a | 
 | 	 * transaction commit whether we are enabling space cache v1 and don't | 
 | 	 * have any other work to do, or are disabling it and removing free | 
 | 	 * space inodes. | 
 | 	 */ | 
 | 	trans = btrfs_start_transaction(fs_info->tree_root, 0); | 
 | 	if (IS_ERR(trans)) | 
 | 		return PTR_ERR(trans); | 
 |  | 
 | 	if (!active) { | 
 | 		set_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags); | 
 | 		ret = cleanup_free_space_cache_v1(fs_info, trans); | 
 | 		if (unlikely(ret)) { | 
 | 			btrfs_abort_transaction(trans, ret); | 
 | 			btrfs_end_transaction(trans); | 
 | 			goto out; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	ret = btrfs_commit_transaction(trans); | 
 | out: | 
 | 	clear_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | int __init btrfs_free_space_init(void) | 
 | { | 
 | 	btrfs_free_space_cachep = KMEM_CACHE(btrfs_free_space, 0); | 
 | 	if (!btrfs_free_space_cachep) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap", | 
 | 							PAGE_SIZE, PAGE_SIZE, | 
 | 							0, NULL); | 
 | 	if (!btrfs_free_space_bitmap_cachep) { | 
 | 		kmem_cache_destroy(btrfs_free_space_cachep); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | void __cold btrfs_free_space_exit(void) | 
 | { | 
 | 	kmem_cache_destroy(btrfs_free_space_cachep); | 
 | 	kmem_cache_destroy(btrfs_free_space_bitmap_cachep); | 
 | } | 
 |  | 
 | #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS | 
 | /* | 
 |  * Use this if you need to make a bitmap or extent entry specifically, it | 
 |  * doesn't do any of the merging that add_free_space does, this acts a lot like | 
 |  * how the free space cache loading stuff works, so you can get really weird | 
 |  * configurations. | 
 |  */ | 
 | int test_add_free_space_entry(struct btrfs_block_group *cache, | 
 | 			      u64 offset, u64 bytes, bool bitmap) | 
 | { | 
 | 	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl; | 
 | 	struct btrfs_free_space *info = NULL, *bitmap_info; | 
 | 	void *map = NULL; | 
 | 	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_TRIMMED; | 
 | 	u64 bytes_added; | 
 | 	int ret; | 
 |  | 
 | again: | 
 | 	if (!info) { | 
 | 		info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS); | 
 | 		if (!info) | 
 | 			return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	if (!bitmap) { | 
 | 		spin_lock(&ctl->tree_lock); | 
 | 		info->offset = offset; | 
 | 		info->bytes = bytes; | 
 | 		info->max_extent_size = 0; | 
 | 		ret = link_free_space(ctl, info); | 
 | 		spin_unlock(&ctl->tree_lock); | 
 | 		if (ret) | 
 | 			kmem_cache_free(btrfs_free_space_cachep, info); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	if (!map) { | 
 | 		map = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep, GFP_NOFS); | 
 | 		if (!map) { | 
 | 			kmem_cache_free(btrfs_free_space_cachep, info); | 
 | 			return -ENOMEM; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	spin_lock(&ctl->tree_lock); | 
 | 	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset), | 
 | 					 1, 0); | 
 | 	if (!bitmap_info) { | 
 | 		info->bitmap = map; | 
 | 		map = NULL; | 
 | 		add_new_bitmap(ctl, info, offset); | 
 | 		bitmap_info = info; | 
 | 		info = NULL; | 
 | 	} | 
 |  | 
 | 	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes, | 
 | 					  trim_state); | 
 |  | 
 | 	bytes -= bytes_added; | 
 | 	offset += bytes_added; | 
 | 	spin_unlock(&ctl->tree_lock); | 
 |  | 
 | 	if (bytes) | 
 | 		goto again; | 
 |  | 
 | 	if (info) | 
 | 		kmem_cache_free(btrfs_free_space_cachep, info); | 
 | 	if (map) | 
 | 		kmem_cache_free(btrfs_free_space_bitmap_cachep, map); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Checks to see if the given range is in the free space cache.  This is really | 
 |  * just used to check the absence of space, so if there is free space in the | 
 |  * range at all we will return 1. | 
 |  */ | 
 | int test_check_exists(struct btrfs_block_group *cache, | 
 | 		      u64 offset, u64 bytes) | 
 | { | 
 | 	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl; | 
 | 	struct btrfs_free_space *info; | 
 | 	int ret = 0; | 
 |  | 
 | 	spin_lock(&ctl->tree_lock); | 
 | 	info = tree_search_offset(ctl, offset, 0, 0); | 
 | 	if (!info) { | 
 | 		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset), | 
 | 					  1, 0); | 
 | 		if (!info) | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | have_info: | 
 | 	if (info->bitmap) { | 
 | 		u64 bit_off, bit_bytes; | 
 | 		struct rb_node *n; | 
 | 		struct btrfs_free_space *tmp; | 
 |  | 
 | 		bit_off = offset; | 
 | 		bit_bytes = ctl->unit; | 
 | 		ret = search_bitmap(ctl, info, &bit_off, &bit_bytes, false); | 
 | 		if (!ret) { | 
 | 			if (bit_off == offset) { | 
 | 				ret = 1; | 
 | 				goto out; | 
 | 			} else if (bit_off > offset && | 
 | 				   offset + bytes > bit_off) { | 
 | 				ret = 1; | 
 | 				goto out; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		n = rb_prev(&info->offset_index); | 
 | 		while (n) { | 
 | 			tmp = rb_entry(n, struct btrfs_free_space, | 
 | 				       offset_index); | 
 | 			if (tmp->offset + tmp->bytes < offset) | 
 | 				break; | 
 | 			if (offset + bytes < tmp->offset) { | 
 | 				n = rb_prev(&tmp->offset_index); | 
 | 				continue; | 
 | 			} | 
 | 			info = tmp; | 
 | 			goto have_info; | 
 | 		} | 
 |  | 
 | 		n = rb_next(&info->offset_index); | 
 | 		while (n) { | 
 | 			tmp = rb_entry(n, struct btrfs_free_space, | 
 | 				       offset_index); | 
 | 			if (offset + bytes < tmp->offset) | 
 | 				break; | 
 | 			if (tmp->offset + tmp->bytes < offset) { | 
 | 				n = rb_next(&tmp->offset_index); | 
 | 				continue; | 
 | 			} | 
 | 			info = tmp; | 
 | 			goto have_info; | 
 | 		} | 
 |  | 
 | 		ret = 0; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (info->offset == offset) { | 
 | 		ret = 1; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (offset > info->offset && offset < info->offset + info->bytes) | 
 | 		ret = 1; | 
 | out: | 
 | 	spin_unlock(&ctl->tree_lock); | 
 | 	return ret; | 
 | } | 
 | #endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */ |