|  | // SPDX-License-Identifier: GPL-2.0 | 
|  |  | 
|  | #include <linux/init.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/rwsem.h> | 
|  | #include <linux/xattr.h> | 
|  | #include <linux/security.h> | 
|  | #include <linux/posix_acl_xattr.h> | 
|  | #include <linux/iversion.h> | 
|  | #include <linux/fsverity.h> | 
|  | #include <linux/sched/mm.h> | 
|  | #include "messages.h" | 
|  | #include "ctree.h" | 
|  | #include "btrfs_inode.h" | 
|  | #include "transaction.h" | 
|  | #include "locking.h" | 
|  | #include "fs.h" | 
|  | #include "accessors.h" | 
|  | #include "ioctl.h" | 
|  | #include "verity.h" | 
|  | #include "orphan.h" | 
|  |  | 
|  | /* | 
|  | * Implementation of the interface defined in struct fsverity_operations. | 
|  | * | 
|  | * The main question is how and where to store the verity descriptor and the | 
|  | * Merkle tree. We store both in dedicated btree items in the filesystem tree, | 
|  | * together with the rest of the inode metadata. This means we'll need to do | 
|  | * extra work to encrypt them once encryption is supported in btrfs, but btrfs | 
|  | * has a lot of careful code around i_size and it seems better to make a new key | 
|  | * type than try and adjust all of our expectations for i_size. | 
|  | * | 
|  | * Note that this differs from the implementation in ext4 and f2fs, where | 
|  | * this data is stored as if it were in the file, but past EOF. However, btrfs | 
|  | * does not have a widespread mechanism for caching opaque metadata pages, so we | 
|  | * do pretend that the Merkle tree pages themselves are past EOF for the | 
|  | * purposes of caching them (as opposed to creating a virtual inode). | 
|  | * | 
|  | * fs verity items are stored under two different key types on disk. | 
|  | * The descriptor items: | 
|  | * [ inode objectid, BTRFS_VERITY_DESC_ITEM_KEY, offset ] | 
|  | * | 
|  | * At offset 0, we store a btrfs_verity_descriptor_item which tracks the | 
|  | * size of the descriptor item and some extra data for encryption. | 
|  | * Starting at offset 1, these hold the generic fs verity descriptor. | 
|  | * The latter are opaque to btrfs, we just read and write them as a blob for | 
|  | * the higher level verity code.  The most common descriptor size is 256 bytes. | 
|  | * | 
|  | * The merkle tree items: | 
|  | * [ inode objectid, BTRFS_VERITY_MERKLE_ITEM_KEY, offset ] | 
|  | * | 
|  | * These also start at offset 0, and correspond to the merkle tree bytes. | 
|  | * So when fsverity asks for page 0 of the merkle tree, we pull up one page | 
|  | * starting at offset 0 for this key type.  These are also opaque to btrfs, | 
|  | * we're blindly storing whatever fsverity sends down. | 
|  | * | 
|  | * Another important consideration is the fact that the Merkle tree data scales | 
|  | * linearly with the size of the file (with 4K pages/blocks and SHA-256, it's | 
|  | * ~1/127th the size) so for large files, writing the tree can be a lengthy | 
|  | * operation. For that reason, we guard the whole enable verity operation | 
|  | * (between begin_enable_verity and end_enable_verity) with an orphan item. | 
|  | * Again, because the data can be pretty large, it's quite possible that we | 
|  | * could run out of space writing it, so we try our best to handle errors by | 
|  | * stopping and rolling back rather than aborting the victim transaction. | 
|  | */ | 
|  |  | 
|  | #define MERKLE_START_ALIGN			65536 | 
|  |  | 
|  | /* | 
|  | * Compute the logical file offset where we cache the Merkle tree. | 
|  | * | 
|  | * @inode:  inode of the verity file | 
|  | * | 
|  | * For the purposes of caching the Merkle tree pages, as required by | 
|  | * fs-verity, it is convenient to do size computations in terms of a file | 
|  | * offset, rather than in terms of page indices. | 
|  | * | 
|  | * Use 64K to be sure it's past the last page in the file, even with 64K pages. | 
|  | * That rounding operation itself can overflow loff_t, so we do it in u64 and | 
|  | * check. | 
|  | * | 
|  | * Returns the file offset on success, negative error code on failure. | 
|  | */ | 
|  | static loff_t merkle_file_pos(const struct inode *inode) | 
|  | { | 
|  | u64 sz = inode->i_size; | 
|  | u64 rounded = round_up(sz, MERKLE_START_ALIGN); | 
|  |  | 
|  | if (rounded > inode->i_sb->s_maxbytes) | 
|  | return -EFBIG; | 
|  |  | 
|  | return rounded; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Drop all the items for this inode with this key_type. | 
|  | * | 
|  | * @inode:     inode to drop items for | 
|  | * @key_type:  type of items to drop (BTRFS_VERITY_DESC_ITEM or | 
|  | *             BTRFS_VERITY_MERKLE_ITEM) | 
|  | * | 
|  | * Before doing a verity enable we cleanup any existing verity items. | 
|  | * This is also used to clean up if a verity enable failed half way through. | 
|  | * | 
|  | * Returns number of dropped items on success, negative error code on failure. | 
|  | */ | 
|  | static int drop_verity_items(struct btrfs_inode *inode, u8 key_type) | 
|  | { | 
|  | struct btrfs_trans_handle *trans; | 
|  | struct btrfs_root *root = inode->root; | 
|  | struct btrfs_path *path; | 
|  | struct btrfs_key key; | 
|  | int count = 0; | 
|  | int ret; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | while (1) { | 
|  | /* 1 for the item being dropped */ | 
|  | trans = btrfs_start_transaction(root, 1); | 
|  | if (IS_ERR(trans)) { | 
|  | ret = PTR_ERR(trans); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Walk backwards through all the items until we find one that | 
|  | * isn't from our key type or objectid | 
|  | */ | 
|  | key.objectid = btrfs_ino(inode); | 
|  | key.type = key_type; | 
|  | key.offset = (u64)-1; | 
|  |  | 
|  | ret = btrfs_search_slot(trans, root, &key, path, -1, 1); | 
|  | if (ret > 0) { | 
|  | ret = 0; | 
|  | /* No more keys of this type, we're done */ | 
|  | if (path->slots[0] == 0) | 
|  | break; | 
|  | path->slots[0]--; | 
|  | } else if (ret < 0) { | 
|  | btrfs_end_transaction(trans); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); | 
|  |  | 
|  | /* No more keys of this type, we're done */ | 
|  | if (key.objectid != btrfs_ino(inode) || key.type != key_type) | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * This shouldn't be a performance sensitive function because | 
|  | * it's not used as part of truncate.  If it ever becomes | 
|  | * perf sensitive, change this to walk forward and bulk delete | 
|  | * items | 
|  | */ | 
|  | ret = btrfs_del_items(trans, root, path, path->slots[0], 1); | 
|  | if (ret) { | 
|  | btrfs_end_transaction(trans); | 
|  | goto out; | 
|  | } | 
|  | count++; | 
|  | btrfs_release_path(path); | 
|  | btrfs_end_transaction(trans); | 
|  | } | 
|  | ret = count; | 
|  | btrfs_end_transaction(trans); | 
|  | out: | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Drop all verity items | 
|  | * | 
|  | * @inode:  inode to drop verity items for | 
|  | * | 
|  | * In most contexts where we are dropping verity items, we want to do it for all | 
|  | * the types of verity items, not a particular one. | 
|  | * | 
|  | * Returns: 0 on success, negative error code on failure. | 
|  | */ | 
|  | int btrfs_drop_verity_items(struct btrfs_inode *inode) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = drop_verity_items(inode, BTRFS_VERITY_DESC_ITEM_KEY); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | ret = drop_verity_items(inode, BTRFS_VERITY_MERKLE_ITEM_KEY); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Insert and write inode items with a given key type and offset. | 
|  | * | 
|  | * @inode:     inode to insert for | 
|  | * @key_type:  key type to insert | 
|  | * @offset:    item offset to insert at | 
|  | * @src:       source data to write | 
|  | * @len:       length of source data to write | 
|  | * | 
|  | * Write len bytes from src into items of up to 2K length. | 
|  | * The inserted items will have key (ino, key_type, offset + off) where off is | 
|  | * consecutively increasing from 0 up to the last item ending at offset + len. | 
|  | * | 
|  | * Returns 0 on success and a negative error code on failure. | 
|  | */ | 
|  | static int write_key_bytes(struct btrfs_inode *inode, u8 key_type, u64 offset, | 
|  | const char *src, u64 len) | 
|  | { | 
|  | struct btrfs_trans_handle *trans; | 
|  | struct btrfs_path *path; | 
|  | struct btrfs_root *root = inode->root; | 
|  | struct extent_buffer *leaf; | 
|  | struct btrfs_key key; | 
|  | unsigned long copy_bytes; | 
|  | unsigned long src_offset = 0; | 
|  | void *data; | 
|  | int ret = 0; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | while (len > 0) { | 
|  | /* 1 for the new item being inserted */ | 
|  | trans = btrfs_start_transaction(root, 1); | 
|  | if (IS_ERR(trans)) { | 
|  | ret = PTR_ERR(trans); | 
|  | break; | 
|  | } | 
|  |  | 
|  | key.objectid = btrfs_ino(inode); | 
|  | key.type = key_type; | 
|  | key.offset = offset; | 
|  |  | 
|  | /* | 
|  | * Insert 2K at a time mostly to be friendly for smaller leaf | 
|  | * size filesystems | 
|  | */ | 
|  | copy_bytes = min_t(u64, len, 2048); | 
|  |  | 
|  | ret = btrfs_insert_empty_item(trans, root, path, &key, copy_bytes); | 
|  | if (ret) { | 
|  | btrfs_end_transaction(trans); | 
|  | break; | 
|  | } | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  |  | 
|  | data = btrfs_item_ptr(leaf, path->slots[0], void); | 
|  | write_extent_buffer(leaf, src + src_offset, | 
|  | (unsigned long)data, copy_bytes); | 
|  | offset += copy_bytes; | 
|  | src_offset += copy_bytes; | 
|  | len -= copy_bytes; | 
|  |  | 
|  | btrfs_release_path(path); | 
|  | btrfs_end_transaction(trans); | 
|  | } | 
|  |  | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Read inode items of the given key type and offset from the btree. | 
|  | * | 
|  | * @inode:      inode to read items of | 
|  | * @key_type:   key type to read | 
|  | * @offset:     item offset to read from | 
|  | * @dest:       Buffer to read into. This parameter has slightly tricky | 
|  | *              semantics.  If it is NULL, the function will not do any copying | 
|  | *              and will just return the size of all the items up to len bytes. | 
|  | *              If dest_page is passed, then the function will kmap_local the | 
|  | *              page and ignore dest, but it must still be non-NULL to avoid the | 
|  | *              counting-only behavior. | 
|  | * @len:        length in bytes to read | 
|  | * @dest_folio: copy into this folio instead of the dest buffer | 
|  | * | 
|  | * Helper function to read items from the btree.  This returns the number of | 
|  | * bytes read or < 0 for errors.  We can return short reads if the items don't | 
|  | * exist on disk or aren't big enough to fill the desired length.  Supports | 
|  | * reading into a provided buffer (dest) or into the page cache | 
|  | * | 
|  | * Returns number of bytes read or a negative error code on failure. | 
|  | */ | 
|  | static int read_key_bytes(struct btrfs_inode *inode, u8 key_type, u64 offset, | 
|  | char *dest, u64 len, struct folio *dest_folio) | 
|  | { | 
|  | struct btrfs_path *path; | 
|  | struct btrfs_root *root = inode->root; | 
|  | struct extent_buffer *leaf; | 
|  | struct btrfs_key key; | 
|  | u64 item_end; | 
|  | u64 copy_end; | 
|  | int copied = 0; | 
|  | u32 copy_offset; | 
|  | unsigned long copy_bytes; | 
|  | unsigned long dest_offset = 0; | 
|  | void *data; | 
|  | char *kaddr = dest; | 
|  | int ret; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (dest_folio) | 
|  | path->reada = READA_FORWARD; | 
|  |  | 
|  | key.objectid = btrfs_ino(inode); | 
|  | key.type = key_type; | 
|  | key.offset = offset; | 
|  |  | 
|  | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
|  | if (ret < 0) { | 
|  | goto out; | 
|  | } else if (ret > 0) { | 
|  | ret = 0; | 
|  | if (path->slots[0] == 0) | 
|  | goto out; | 
|  | path->slots[0]--; | 
|  | } | 
|  |  | 
|  | while (len > 0) { | 
|  | leaf = path->nodes[0]; | 
|  | btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); | 
|  |  | 
|  | if (key.objectid != btrfs_ino(inode) || key.type != key_type) | 
|  | break; | 
|  |  | 
|  | item_end = btrfs_item_size(leaf, path->slots[0]) + key.offset; | 
|  |  | 
|  | if (copied > 0) { | 
|  | /* | 
|  | * Once we've copied something, we want all of the items | 
|  | * to be sequential | 
|  | */ | 
|  | if (key.offset != offset) | 
|  | break; | 
|  | } else { | 
|  | /* | 
|  | * Our initial offset might be in the middle of an | 
|  | * item.  Make sure it all makes sense. | 
|  | */ | 
|  | if (key.offset > offset) | 
|  | break; | 
|  | if (item_end <= offset) | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* desc = NULL to just sum all the item lengths */ | 
|  | if (!dest) | 
|  | copy_end = item_end; | 
|  | else | 
|  | copy_end = min(offset + len, item_end); | 
|  |  | 
|  | /* Number of bytes in this item we want to copy */ | 
|  | copy_bytes = copy_end - offset; | 
|  |  | 
|  | /* Offset from the start of item for copying */ | 
|  | copy_offset = offset - key.offset; | 
|  |  | 
|  | if (dest) { | 
|  | if (dest_folio) | 
|  | kaddr = kmap_local_folio(dest_folio, 0); | 
|  |  | 
|  | data = btrfs_item_ptr(leaf, path->slots[0], void); | 
|  | read_extent_buffer(leaf, kaddr + dest_offset, | 
|  | (unsigned long)data + copy_offset, | 
|  | copy_bytes); | 
|  |  | 
|  | if (dest_folio) | 
|  | kunmap_local(kaddr); | 
|  | } | 
|  |  | 
|  | offset += copy_bytes; | 
|  | dest_offset += copy_bytes; | 
|  | len -= copy_bytes; | 
|  | copied += copy_bytes; | 
|  |  | 
|  | path->slots[0]++; | 
|  | if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { | 
|  | /* | 
|  | * We've reached the last slot in this leaf and we need | 
|  | * to go to the next leaf. | 
|  | */ | 
|  | ret = btrfs_next_leaf(root, path); | 
|  | if (ret < 0) { | 
|  | break; | 
|  | } else if (ret > 0) { | 
|  | ret = 0; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | out: | 
|  | btrfs_free_path(path); | 
|  | if (!ret) | 
|  | ret = copied; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Delete an fsverity orphan | 
|  | * | 
|  | * @trans:  transaction to do the delete in | 
|  | * @inode:  inode to orphan | 
|  | * | 
|  | * Capture verity orphan specific logic that is repeated in the couple places | 
|  | * we delete verity orphans. Specifically, handling ENOENT and ignoring inodes | 
|  | * with 0 links. | 
|  | * | 
|  | * Returns zero on success or a negative error code on failure. | 
|  | */ | 
|  | static int del_orphan(struct btrfs_trans_handle *trans, struct btrfs_inode *inode) | 
|  | { | 
|  | struct btrfs_root *root = inode->root; | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * If the inode has no links, it is either already unlinked, or was | 
|  | * created with O_TMPFILE. In either case, it should have an orphan from | 
|  | * that other operation. Rather than reference count the orphans, we | 
|  | * simply ignore them here, because we only invoke the verity path in | 
|  | * the orphan logic when i_nlink is 1. | 
|  | */ | 
|  | if (!inode->vfs_inode.i_nlink) | 
|  | return 0; | 
|  |  | 
|  | ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode)); | 
|  | if (ret == -ENOENT) | 
|  | ret = 0; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Rollback in-progress verity if we encounter an error. | 
|  | * | 
|  | * @inode:  inode verity had an error for | 
|  | * | 
|  | * We try to handle recoverable errors while enabling verity by rolling it back | 
|  | * and just failing the operation, rather than having an fs level error no | 
|  | * matter what. However, any error in rollback is unrecoverable. | 
|  | * | 
|  | * Returns 0 on success, negative error code on failure. | 
|  | */ | 
|  | static int rollback_verity(struct btrfs_inode *inode) | 
|  | { | 
|  | struct btrfs_trans_handle *trans = NULL; | 
|  | struct btrfs_root *root = inode->root; | 
|  | int ret; | 
|  |  | 
|  | btrfs_assert_inode_locked(inode); | 
|  | truncate_inode_pages(inode->vfs_inode.i_mapping, inode->vfs_inode.i_size); | 
|  | clear_bit(BTRFS_INODE_VERITY_IN_PROGRESS, &inode->runtime_flags); | 
|  | ret = btrfs_drop_verity_items(inode); | 
|  | if (ret) { | 
|  | btrfs_handle_fs_error(root->fs_info, ret, | 
|  | "failed to drop verity items in rollback %llu", | 
|  | (u64)inode->vfs_inode.i_ino); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * 1 for updating the inode flag | 
|  | * 1 for deleting the orphan | 
|  | */ | 
|  | trans = btrfs_start_transaction(root, 2); | 
|  | if (IS_ERR(trans)) { | 
|  | ret = PTR_ERR(trans); | 
|  | trans = NULL; | 
|  | btrfs_handle_fs_error(root->fs_info, ret, | 
|  | "failed to start transaction in verity rollback %llu", | 
|  | (u64)inode->vfs_inode.i_ino); | 
|  | goto out; | 
|  | } | 
|  | inode->ro_flags &= ~BTRFS_INODE_RO_VERITY; | 
|  | btrfs_sync_inode_flags_to_i_flags(inode); | 
|  | ret = btrfs_update_inode(trans, inode); | 
|  | if (unlikely(ret)) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto out; | 
|  | } | 
|  | ret = del_orphan(trans, inode); | 
|  | if (unlikely(ret)) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto out; | 
|  | } | 
|  | out: | 
|  | if (trans) | 
|  | btrfs_end_transaction(trans); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Finalize making the file a valid verity file | 
|  | * | 
|  | * @inode:      inode to be marked as verity | 
|  | * @desc:       contents of the verity descriptor to write (not NULL) | 
|  | * @desc_size:  size of the verity descriptor | 
|  | * | 
|  | * Do the actual work of finalizing verity after successfully writing the Merkle | 
|  | * tree: | 
|  | * | 
|  | * - write out the descriptor items | 
|  | * - mark the inode with the verity flag | 
|  | * - delete the orphan item | 
|  | * - mark the ro compat bit | 
|  | * - clear the in progress bit | 
|  | * | 
|  | * Returns 0 on success, negative error code on failure. | 
|  | */ | 
|  | static int finish_verity(struct btrfs_inode *inode, const void *desc, | 
|  | size_t desc_size) | 
|  | { | 
|  | struct btrfs_trans_handle *trans = NULL; | 
|  | struct btrfs_root *root = inode->root; | 
|  | struct btrfs_verity_descriptor_item item; | 
|  | int ret; | 
|  |  | 
|  | /* Write out the descriptor item */ | 
|  | memset(&item, 0, sizeof(item)); | 
|  | btrfs_set_stack_verity_descriptor_size(&item, desc_size); | 
|  | ret = write_key_bytes(inode, BTRFS_VERITY_DESC_ITEM_KEY, 0, | 
|  | (const char *)&item, sizeof(item)); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | /* Write out the descriptor itself */ | 
|  | ret = write_key_bytes(inode, BTRFS_VERITY_DESC_ITEM_KEY, 1, | 
|  | desc, desc_size); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * 1 for updating the inode flag | 
|  | * 1 for deleting the orphan | 
|  | */ | 
|  | trans = btrfs_start_transaction(root, 2); | 
|  | if (IS_ERR(trans)) { | 
|  | ret = PTR_ERR(trans); | 
|  | goto out; | 
|  | } | 
|  | inode->ro_flags |= BTRFS_INODE_RO_VERITY; | 
|  | btrfs_sync_inode_flags_to_i_flags(inode); | 
|  | ret = btrfs_update_inode(trans, inode); | 
|  | if (ret) | 
|  | goto end_trans; | 
|  | ret = del_orphan(trans, inode); | 
|  | if (ret) | 
|  | goto end_trans; | 
|  | clear_bit(BTRFS_INODE_VERITY_IN_PROGRESS, &inode->runtime_flags); | 
|  | btrfs_set_fs_compat_ro(root->fs_info, VERITY); | 
|  | end_trans: | 
|  | btrfs_end_transaction(trans); | 
|  | out: | 
|  | return ret; | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | * fsverity op that begins enabling verity. | 
|  | * | 
|  | * @filp:  file to enable verity on | 
|  | * | 
|  | * Begin enabling fsverity for the file. We drop any existing verity items, add | 
|  | * an orphan and set the in progress bit. | 
|  | * | 
|  | * Returns 0 on success, negative error code on failure. | 
|  | */ | 
|  | static int btrfs_begin_enable_verity(struct file *filp) | 
|  | { | 
|  | struct btrfs_inode *inode = BTRFS_I(file_inode(filp)); | 
|  | struct btrfs_root *root = inode->root; | 
|  | struct btrfs_trans_handle *trans; | 
|  | int ret; | 
|  |  | 
|  | btrfs_assert_inode_locked(inode); | 
|  |  | 
|  | if (test_bit(BTRFS_INODE_VERITY_IN_PROGRESS, &inode->runtime_flags)) | 
|  | return -EBUSY; | 
|  |  | 
|  | /* | 
|  | * This should almost never do anything, but theoretically, it's | 
|  | * possible that we failed to enable verity on a file, then were | 
|  | * interrupted or failed while rolling back, failed to cleanup the | 
|  | * orphan, and finally attempt to enable verity again. | 
|  | */ | 
|  | ret = btrfs_drop_verity_items(inode); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* 1 for the orphan item */ | 
|  | trans = btrfs_start_transaction(root, 1); | 
|  | if (IS_ERR(trans)) | 
|  | return PTR_ERR(trans); | 
|  |  | 
|  | ret = btrfs_orphan_add(trans, inode); | 
|  | if (!ret) | 
|  | set_bit(BTRFS_INODE_VERITY_IN_PROGRESS, &inode->runtime_flags); | 
|  | btrfs_end_transaction(trans); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * fsverity op that ends enabling verity. | 
|  | * | 
|  | * @filp:              file we are finishing enabling verity on | 
|  | * @desc:              verity descriptor to write out (NULL in error conditions) | 
|  | * @desc_size:         size of the verity descriptor (variable with signatures) | 
|  | * @merkle_tree_size:  size of the merkle tree in bytes | 
|  | * | 
|  | * If desc is null, then VFS is signaling an error occurred during verity | 
|  | * enable, and we should try to rollback. Otherwise, attempt to finish verity. | 
|  | * | 
|  | * Returns 0 on success, negative error code on error. | 
|  | */ | 
|  | static int btrfs_end_enable_verity(struct file *filp, const void *desc, | 
|  | size_t desc_size, u64 merkle_tree_size) | 
|  | { | 
|  | struct btrfs_inode *inode = BTRFS_I(file_inode(filp)); | 
|  | int ret = 0; | 
|  | int rollback_ret; | 
|  |  | 
|  | btrfs_assert_inode_locked(inode); | 
|  |  | 
|  | if (desc == NULL) | 
|  | goto rollback; | 
|  |  | 
|  | ret = finish_verity(inode, desc, desc_size); | 
|  | if (ret) | 
|  | goto rollback; | 
|  | return ret; | 
|  |  | 
|  | rollback: | 
|  | rollback_ret = rollback_verity(inode); | 
|  | if (rollback_ret) | 
|  | btrfs_err(inode->root->fs_info, | 
|  | "failed to rollback verity items: %d", rollback_ret); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * fsverity op that gets the struct fsverity_descriptor. | 
|  | * | 
|  | * @inode:     inode to get the descriptor of | 
|  | * @buf:       output buffer for the descriptor contents | 
|  | * @buf_size:  size of the output buffer. 0 to query the size | 
|  | * | 
|  | * fsverity does a two pass setup for reading the descriptor, in the first pass | 
|  | * it calls with buf_size = 0 to query the size of the descriptor, and then in | 
|  | * the second pass it actually reads the descriptor off disk. | 
|  | * | 
|  | * Returns the size on success or a negative error code on failure. | 
|  | */ | 
|  | int btrfs_get_verity_descriptor(struct inode *inode, void *buf, size_t buf_size) | 
|  | { | 
|  | u64 true_size; | 
|  | int ret = 0; | 
|  | struct btrfs_verity_descriptor_item item; | 
|  |  | 
|  | memset(&item, 0, sizeof(item)); | 
|  | ret = read_key_bytes(BTRFS_I(inode), BTRFS_VERITY_DESC_ITEM_KEY, 0, | 
|  | (char *)&item, sizeof(item), NULL); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | if (unlikely(item.reserved[0] != 0 || item.reserved[1] != 0)) | 
|  | return -EUCLEAN; | 
|  |  | 
|  | true_size = btrfs_stack_verity_descriptor_size(&item); | 
|  | if (unlikely(true_size > INT_MAX)) | 
|  | return -EUCLEAN; | 
|  |  | 
|  | if (buf_size == 0) | 
|  | return true_size; | 
|  | if (buf_size < true_size) | 
|  | return -ERANGE; | 
|  |  | 
|  | ret = read_key_bytes(BTRFS_I(inode), BTRFS_VERITY_DESC_ITEM_KEY, 1, | 
|  | buf, buf_size, NULL); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | if (ret != true_size) | 
|  | return -EIO; | 
|  |  | 
|  | return true_size; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * fsverity op that reads and caches a merkle tree page. | 
|  | * | 
|  | * @inode:         inode to read a merkle tree page for | 
|  | * @index:         page index relative to the start of the merkle tree | 
|  | * @num_ra_pages:  number of pages to readahead. Optional, we ignore it | 
|  | * | 
|  | * The Merkle tree is stored in the filesystem btree, but its pages are cached | 
|  | * with a logical position past EOF in the inode's mapping. | 
|  | * | 
|  | * Returns the page we read, or an ERR_PTR on error. | 
|  | */ | 
|  | static struct page *btrfs_read_merkle_tree_page(struct inode *inode, | 
|  | pgoff_t index, | 
|  | unsigned long num_ra_pages) | 
|  | { | 
|  | struct folio *folio; | 
|  | u64 off = (u64)index << PAGE_SHIFT; | 
|  | loff_t merkle_pos = merkle_file_pos(inode); | 
|  | int ret; | 
|  |  | 
|  | if (merkle_pos < 0) | 
|  | return ERR_PTR(merkle_pos); | 
|  | if (merkle_pos > inode->i_sb->s_maxbytes - off - PAGE_SIZE) | 
|  | return ERR_PTR(-EFBIG); | 
|  | index += merkle_pos >> PAGE_SHIFT; | 
|  | again: | 
|  | folio = __filemap_get_folio(inode->i_mapping, index, FGP_ACCESSED, 0); | 
|  | if (!IS_ERR(folio)) { | 
|  | if (folio_test_uptodate(folio)) | 
|  | goto out; | 
|  |  | 
|  | folio_lock(folio); | 
|  | /* If it's not uptodate after we have the lock, we got a read error. */ | 
|  | if (!folio_test_uptodate(folio)) { | 
|  | folio_unlock(folio); | 
|  | folio_put(folio); | 
|  | return ERR_PTR(-EIO); | 
|  | } | 
|  | folio_unlock(folio); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | folio = filemap_alloc_folio(mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS), | 
|  | 0); | 
|  | if (!folio) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | ret = filemap_add_folio(inode->i_mapping, folio, index, GFP_NOFS); | 
|  | if (ret) { | 
|  | folio_put(folio); | 
|  | /* Did someone else insert a folio here? */ | 
|  | if (ret == -EEXIST) | 
|  | goto again; | 
|  | return ERR_PTR(ret); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Merkle item keys are indexed from byte 0 in the merkle tree. | 
|  | * They have the form: | 
|  | * | 
|  | * [ inode objectid, BTRFS_MERKLE_ITEM_KEY, offset in bytes ] | 
|  | */ | 
|  | ret = read_key_bytes(BTRFS_I(inode), BTRFS_VERITY_MERKLE_ITEM_KEY, off, | 
|  | folio_address(folio), PAGE_SIZE, folio); | 
|  | if (ret < 0) { | 
|  | folio_put(folio); | 
|  | return ERR_PTR(ret); | 
|  | } | 
|  | if (ret < PAGE_SIZE) | 
|  | folio_zero_segment(folio, ret, PAGE_SIZE); | 
|  |  | 
|  | folio_mark_uptodate(folio); | 
|  | folio_unlock(folio); | 
|  |  | 
|  | out: | 
|  | return folio_file_page(folio, index); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * fsverity op that writes a Merkle tree block into the btree. | 
|  | * | 
|  | * @inode:	inode to write a Merkle tree block for | 
|  | * @buf:	Merkle tree block to write | 
|  | * @pos:	the position of the block in the Merkle tree (in bytes) | 
|  | * @size:	the Merkle tree block size (in bytes) | 
|  | * | 
|  | * Returns 0 on success or negative error code on failure | 
|  | */ | 
|  | static int btrfs_write_merkle_tree_block(struct inode *inode, const void *buf, | 
|  | u64 pos, unsigned int size) | 
|  | { | 
|  | loff_t merkle_pos = merkle_file_pos(inode); | 
|  |  | 
|  | if (merkle_pos < 0) | 
|  | return merkle_pos; | 
|  | if (merkle_pos > inode->i_sb->s_maxbytes - pos - size) | 
|  | return -EFBIG; | 
|  |  | 
|  | return write_key_bytes(BTRFS_I(inode), BTRFS_VERITY_MERKLE_ITEM_KEY, | 
|  | pos, buf, size); | 
|  | } | 
|  |  | 
|  | const struct fsverity_operations btrfs_verityops = { | 
|  | .inode_info_offs         = (int)offsetof(struct btrfs_inode, i_verity_info) - | 
|  | (int)offsetof(struct btrfs_inode, vfs_inode), | 
|  | .begin_enable_verity     = btrfs_begin_enable_verity, | 
|  | .end_enable_verity       = btrfs_end_enable_verity, | 
|  | .get_verity_descriptor   = btrfs_get_verity_descriptor, | 
|  | .read_merkle_tree_page   = btrfs_read_merkle_tree_page, | 
|  | .write_merkle_tree_block = btrfs_write_merkle_tree_block, | 
|  | }; |